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First-order intervalley scattering in low-dimensional systems
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Institut d’Électronique Fondamentale, CNRS UMR 8622, Universite´ Paris-Sud, Baˆtiment 220, F-91405 Orsay, Cedex, France

~Received 23 January 2002; published 11 June 2002!

The intervalley phonon scattering rate in one- and two-dimensional electron gases is calculated for the case
in which the transition matrix element is of first order in the phonon wave vector. This type of interaction is
important in silicon at low temperature. The interaction between electrons and bulk phonons is considered in
the standard golden rule approach by including the contribution of the components of phonon wave vector in
the confinement direction~s!. This process makes possible the transition between different subbands, and the
resulting total scattering rate differs significantly from the rate commonly used in Si quantum wells.
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I. INTRODUCTION

Intervalley phonon scattering between sixfold-degene
D valleys plays an essential part in the electron transp
mechanisms in silicon. Six modes are usually considere
transport modeling to describe this electron-phonon inte
tion through threef and threeg processes.1 Regardless of
selection rules2 most authors use a coupling coefficient ind
pendent of the phonon wave vector to derive a zero-or
transition matrix for all these processes, which yields a c
flicting situation. On the one hand, zero-order interval
processes are forbidden for low-energy phonon modesf-TA,
g-TA andg-LA because of symmetry restrictions; and on t
other hand, taking into account transitions involving su
phonons is required to account for experimental results,
pecially at low temperature.3–5 To remedy this inconsistency
Ferry proposed to expand the transition matrix to first or
in the phonon wave vector by introducing the coupling c
efficient (D1q)2 similar to that of intravalley acoustic pho
non scattering, whereD1 is a deformation potential havin
the dimension of energy andq is the phonon momentum.3

Forbidden transitions then become possible through the fi
order term of the transition matrix. This approach has b
successfully used to model the electron transport in bulk
con and silicon devices using the Monte Carlo technique6,7

The same approach may be used to model lo
dimensional systems. The purpose of this paper is to c
fully derive the scattering rate of first-order process in tw
dimensional~2D! and 1D electron gases~2DEG and 1DEG!
when considering bulk phonon modes. An expression w
initially derived for 2DEG by omitting the coordinateqz of
the phonon wave vector in the confinement direction.8 How-
ever, although both initial and scattered electron wave v
tors move in parallel directions, theqz coordinate must ente
the coupling constant and the integration of the square ma
element over all phonon states must include this coordin
as is usually done for zero-order process and acou
phonon scattering both in III-V quantum wells9,10 and in Si
metal-oxide semiconductor field-effect-transistor invers
layers.11 The momentum conservation indeed is relaxed
the confinement direction, as a consequence of the un
tainty principle.12 The expression of the scattering rate giv
in this paper includes the contribution ofqz . It is compared
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to the previous one for a 2DEG~Sec. II! and extended to a
1DEG ~Sec. III!.

II. TWO-DIMENSIONAL ELECTRON GAS

All following calculations are made within the framewor
of the effective mass approximation for a nondegener
electron gas. The wave function parallel to the interface~xy
plane! is assumed to be a plane wave and the normali
envelope function in the confinementz direction is denoted
zm(z) for the mth subband. The first-order matrix eleme
coupling the 2D statesk ~on level l! and k8 ~on level m!
through a phonon of 3D wave vectorq is then given by

umkk8u
25

\2

2rV\v in
S Nin1

1

2
6

1

2DD1
2q2uFlm~qz!u2

3d~k82k6qxy!, ~1!

whereqxy andqz are the parallel and normal components
the phonon wave vector,r is the crystal density,V the nor-
malization volume,v in the phonon angular frequency a
sumed to beq independent, andNin the phonon number. The
upper and lower signs refer to the emission and absorptio
a phonon, respectively. The delta function in Eq.~1! arises
from the overlap integral in thexy plane. It expresses th
momentum conservation in this plane, which also impl
qxy

2 5k21k8222kk8 cosu, whereu is the scattering angle
The remainder part of the overlap integral is given by

Flm~qz!5E zm~z!exp~ iqzz!z l~z!dz. ~2!

By integrating Eq.~1! over the possible phonon states t
total square of matrix element becomes

uMkk8u
25

\2D1
2

2rV\v in
S Nin1

1

2
6

1

2D V

2pA
@ I lm1Jlm#, ~3!

whereA is the normalization surface area of the 2DEG. T
quantities in brackets are defined by

I lm5qxy
2 E uFlm~qz!u2dqz52pqxy

2 E z l~z!2zm~z!2dz

52pqxy
2 Glm , ~4!
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Jlm5E qz
2uFlm~qz!u2dqz . ~5!

The second integral involves the second derivative
delta function,13 yielding

Jlm52
1

2p E r lm~z!r lm9 ~z!dz52
1

2p
Hlm , ~6!

where

r lm~z!5z l~z!zm~z! and r lm9 ~z!5
d2r lm~z!

dz2 . ~7!

For simplicity the energy-momentum relation«(k) is as-
sumed to have the parabolic form

«~k!5
\2

2 F kx
2

mx
1

ky
2

my
G . ~8!

The total probability per unit timeG lm for an electron to
scatter froml th subband tomth subband of another valley i
then easily derived from Eq.~3! using the golden rule. By
introducing the density of final statesD(k8)5A/4p2, it is,
finally,

G lm~«!5
D1

2

r\4v in
Amx8my8S Nin1

1

2
6

1

2D
3F ~«8Amx8my81«Amxmy!Glm2

\2

8p2 HlmG ,
~9!

where prime superscripts refer to the final valley or fin
state. The final energy is«85«7\v2D lm , whereD lm is
the energy shift between the final and initial subbands. In
valley scattering rates calculated for 77 K are plotted in F
1 in the simple case of an infinite rectangular quantum w
of width L55 nm. The phonon mode considered isg-TA

FIG. 1. First-order phonon scattering ratesG1m vs energy for the
lowest subband of a rectangular quantum well at 77 K. The w
width is L55 nm. The effective masses aremx5my5mt and mz

5ml . The subscriptsA andE refer to absorption and emission o
g-TA phonon (\v iv511.4 meV), respectively. The dotted lines in
dicate the ratesG11-E ~upper curve! and G11-A ~lower curve! ob-
tained from Eq.~10! derived in Ref. 8. The energies are measu
from the bottom of first subband.
21230
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l
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ll

~sometimes denotedg1! with an energy\v in511.4 meV
~Ref. 14! and a deformation potentialD153.0 eV.7 Figure 1
shows absorption and emission rates for the lowest subb
( l 51) of theD valley having the longitudinal axis along th
confinement direction. In such confinement conditions
transverse massmt50.1905m0 is to be used as the 2D den
sity of states massAmxmy entering Eq.~9! and the longitu-
dinal massmt50.9163m0 is required for the energy-leve
calculation, yielding five subbands in the energy range c
sidered in Fig. 1.

One may compare Eq.~9! with the results of Ferry ob-
tained without consideringqz in the matrix element calcula
tion. By using the notations of the present work the result
scattering rate is8

G lm~«!5
D1

2

r\4v in

Amx8my8

wm
S Nin1

1

2
6

1

2D
3~«8Amx8my81«Amxmy!Klm , ~10!

where the overlap factor is now

Klm5F E z l~z!zm~z!dzG2

. ~11!

The normalization thicknesswm introduced in Eq.~10! is
chosen as the level width in thez direction. The requiremen
of such a normalization results from the omission of theqz
contribution to the matrix element. This has the disadvant
of introducing a quantity whose definition is somewhat ar
trary. To calculate the scattering rate@Eq. ~10!# to be com-
pared with expression~9!, we use the common definition o
level extension15

wm5A^z2&m2^z&m
2 , ~12!

where^a&m denotes the average value ofa on themth sub-
band. For the ideal quantum well considered here, the le
width wm is obviously equal to the well widthL whatever the
subband. The rateG11 resulting from Eq.~10! is plotted in
Fig. 1 ~dashed line!. All other things being equal, it is abou
35% less than the corresponding rate calculated from Eq.~9!.
This shift, however, depends on the set of wave functio
considered for the 2D system and on the definition of
level width. In Eq.~9! the quantityG11 may be considered
in fact, as another definition of the inverse of the effecti
level width of first subband. A more important differenc
between both models comes from the fact that the ove
factor @Eq. ~11!# between equivalent valleys is unity forl
5m, and vanishes iflÞm, which prohibits the transition
unless the initial and final states are in the same subban
contrast, taking into account the contribution ofqz leads to
nonzero overlap integrals~4! and ~5!, making the coupling
between two different subbands non-negligible, as shown
Fig. 1.

The scattering rate@Eq. ~9!# may be separated in two
terms. The first term~with the overlap factorGlm! involves
the contribution of the parallel componentqxy of the phonon
wave vector to the coupling coefficient, and the second te
~with the factorHlm! comes from theqz contribution. As

ll

d
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BRIEF REPORTS PHYSICAL REVIEW B 65 212304
illustrated in Fig. 2 the latter is obviously much smaller th
theGlm part, and may be omitted in most relevant cases.
an expected result arising because of the smallness o
momentum uncertainty due to the confinement in comp
son with the momentum transfer for the intervalley scatt
ing. However, the contribution of theHlm term to the scat-
tering rateG lm becomes more and more significant whenm
2 l increases, i.e., when the energy separation between in
and final subbands increases.

III. ONE-DIMENSIONAL ELECTRON GAS

In the case of a 1DEG confined iny andz directions and
characterized by envelope functionszm(y,z) the matrix ele-
ment remains similar to Eq.~1! with a delta functiond(k8
2k6qx) that expresses the momentum conservation in thx
direction only. The overlap integralFlm now depends on
both qy andqz components:

Flm~qy ,qz!5E zm~y,z!exp~ iqyy!exp~ iqzz!z l~y,z!dy dz.

~13!

The derivation of the total matrix elementMkk8 still in-
volves quantitiesGlm andHlm now defined by

FIG. 2. Partial emission scattering rates vs energy in 2DEG
the same transitions as in Fig. 1 at 77 K. The symbolsGlm andHlm

refer to the corresponding parts of scattering rates in Eq.~9!.

FIG. 3. First-order phonon scattering rates vs energy for
lowest subband in a square quantum wire of side 5 nm at 77
Unlike in Eq.~17!, the quantityG i j here refers to the scattering ra
between the lowest subband 11 and the final subbandij . The ener-
gies are measured from the bottom of first subband.
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Glm5E z l~y,z!2zm~y,z!2dy dz, ~14!

Hlm5E r lm~y,z!F]2r lm~y,z!

]y2 1
]2r lm~y,z!

]z2 Gdy dz,

~15!

where

r lm~y,z!5z l~y,z!zm~y,z!. ~16!

The derivation of the total probability per unit timeG lm
for an electron to scatter from thel th subband to themth
subband of another valley is straightforward. For parabo
bands one obtains

G lm~«!5
&D1

2

r\3v in
S Nin1

1

2
6

1

2D Amx8

A«8

3F ~«8mx81«mx!Glm2
\2

8p2 HlmG . ~17!

As for most scattering processes in a 1DEG, the 1D d
sity of states generates a divergence of the scattering
near threshold energy«850. It is a consequence of the sem
classical expression of energy conservation. It vanishes if
rigorous q dependence in the matrix element is include
e.g., by calculating the self-energy of the electron-phon
interaction to account for the collisional broadening effec16

Convenient averaging techniques have been used to a
the divergence in semiclassical transport calculation.17

Scattering rates calculated from Eq.~17! are plotted in
Fig. 3 for the lowest subband of an infinite square quant
wire of side 4 nm. The effective masses in the confinem
directions aremy5mt and mz5ml , which yield six sub-
bands in the energy range considered. Each subband is
fined by a pair of quantum numbers, but to simplify th
notations we only indicate in subscript the final pair of nu
bers in Fig. 1. Similarly to the 2DEG case the second te
~with Hlm! coming from the contribution ofqy andqz com-
ponents is much smaller than the main part.

r

e
.

FIG. 4. Total emission and absorption scattering rates vs en
at 77 K for the lowest subband in square quantum well~solid lines!
and wire~dashed lines! of thickness 5 nm. The dotted lines indica
the rates in three-dimensional gas. An isotropic mass is conside
4-3



te

on
nd
r
th
o

D
y
b
i

ur
e

as
rmi

les
me
ed
um
EG
ulk

BRIEF REPORTS PHYSICAL REVIEW B 65 212304
One may now compare the 1D and 2D scattering ra
@Eqs.~9! and~17!# with the 3D ones.3 To make the compari-
son more significant we use a unique isotropic massm
5(mlmt

2)1/3, so that the results are independent on the c
finement direction. The width of both the quantum well a
quantum wire is now 5 nm. For the same phonon as in p
vious figures, the total absorption and emission rates in
lowest subband are plotted in Fig. 4, together with the c
responding 3D rates. The 1D rates~dashed lines! and 2D
rates ~solid lines! are piecewise approximations of the 3
rates~dotted lines! due to discontinuities in the final densit
of low-dimensional states. This satisfying result cannot
obtained if the coordinates of the phonon wave vectors
confinement directions are omitted, as in Eq.~10!. Finally,
one can easily verify that the 1D, 2D, and 3D total rates t
out to be all the closer as the confinement width becom
thicker.
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IV. CONCLUSION

The first-order intervalley phonon scattering rate h
been derived using the conventional approach of the Fe
golden rule. Including the contribution of the component~s!
of phonon wave vector in the confinement direction enab
the transition if the initial and final states are not in the sa
subband, which is impossible through the commonly us
approach of this scattering mechanisms in Si quant
wells. The resulting total scattering rates in 1DEG and 2D
are very consistent with the corresponding rates in a b
system.
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