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First-order intervalley scattering in low-dimensional systems
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The intervalley phonon scattering rate in one- and two-dimensional electron gases is calculated for the case
in which the transition matrix element is of first order in the phonon wave vector. This type of interaction is
important in silicon at low temperature. The interaction between electrons and bulk phonons is considered in
the standard golden rule approach by including the contribution of the components of phonon wave vector in
the confinement directidg). This process makes possible the transition between different subbands, and the
resulting total scattering rate differs significantly from the rate commonly used in Si quantum wells.
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I. INTRODUCTION to the previous one for a 2DE(®ec. 1) and extended to a
1DEG (Sec. ll).
Intervalley phonon scattering between sixfold-degenerate
A valleys plays an essential part in the electron transport Il. TWO-DIMENSIONAL ELECTRON GAS
mechanisms in silicon. Six modes are usually considered in All following calculations are made within the framework
transport modeling to describe this electron-phonon interac- 9 L
tion through thred and threeg processed.Regardless of of the effective mass approximation for a nondegenerate

lect 1% t auth i fficient ind electron gas. The wave function parallel to the interfage
selection rulesmost authors use a coupling coetlicient in e'plane) is assumed to be a plane wave and the normalized
pendent of the phonon wave vector to derive a zero-ord

€nvelope function in the confinementlirection is denoted

transition matrix for all these processes, which yields a CONy (7) for the mth subband. The first-order matrix element
flicting situation. On the one hand, zero-order intervalleycgup”ng the 2D statek (on levell) andk’ (on level m)

processes are forbidden for low-energy phonon mddes, through a phonon of 3D wave vectgris then given by
0-TA and g-LA because of symmetry restrictions; and on the

other hand, taking into account transitions involving such - h?
phonons is required to account for experimental results, es- My " 2pVio,,
pecially at low temperatur&.® To remedy this inconsistency,

Ferry proposed to expand the transition matrix to first order X O(k —k*ayy), @

in the phonon wave vector by introducing the coupling co-whereq,, andg, are the parallel and normal components of

efficient (D,q)? similar to that of intravalley acoustic pho- the phonon wave vectop is the crystal densityy the nor-

non scattering, wher®, is a deformation potential having malization volume,w;, the phonon angular frequency as-

the dimension of energy anglis the phonon momentuf. sumed to be independent, anll;, the phonon number. The

Forbidden transitions then become possible through the firstipper and lower signs refer to the emission and absorption of

order term of the transition matrix. This approach has beem phonon, respectively. The delta function in Ef). arises

successfully used to model the electron transport in bulk silifrom the overlap integral in they plane. It expresses the

con and silicon devices using the Monte Carlo technfqie. momentum conservation in this plane, which also implies
The same approach may be used to model Iowq)z(y= k?+k’2—2kk’ cosé, where @ is the scattering angle.

dimensional systems. The purpose of this paper is to careFhe remainder part of the overlap integral is given by

fully derive the scattering rate of first-order process in two-

dimensional2D) and 1D electron gasé2DEG and 1DEG _ ;

when considering bulk phonon modes. An expression was Fim(d2) J En(Z)expliq.2)£i(2)dz. @)

initially derived for 2DEG by omitting the coordinatg, of

the phonon wave vector in the confinement direcfi¢tow-

ever, although both initial and scattered electron wave ve

1 1
N, + §i§> Di0?|Fim(ay)|?

By integrating Eq(1) over the possible phonon states the
Jotal square of matrix element becomes

tors move in parallel directions, tleg coordinate must enter #2D2 1
the coupling constant and the integrati.on of the square matrix [M e |2= ST 1_ i+ > ii)ﬂ[l m+Tdiml,
element over all phonon states must include this coordinate, pVhwi, ™

as is usually done for zero-order process and acoustiGyhereA is the normalization surface area of the 2DEG. The
phonon scattering both in I11-V quantum wél€ and in Si  quantities in brackets are defined by

metal-ﬁxide semiconductor field-effect-transistor inversion

layers.~ The momentum conservation indeed is relaxed in

the confinement direction, as a consequence of the uncer- "m:qiyf |F|m(qz)|2dqz:27TQ§yf {(2)%m(2)%dz

tainty principle}? The expression of the scattering rate given 5

in this paper includes the contribution gf. It is compared =2m05yGim., (4)
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ozl T ] on (sometimes denotedl) with an energys w;,=11.4 meV
EA T ] m (Ref. 14 and a deformation potenti&il;=3.0 eV.” Figure 1
e - E shows absorption and emission rates for the lowest subband
R I N 10% & (I=1) of theA valley having the longitudinal axis along the
g B = ] 7 confinement direction. In such confinement conditions the
= ol - L0 B transverse mass,=0.1905n; is to be used as the 2D den-
2z v 134 ] % sity of states masgm,m, entering Eq.(9) and the longitu-
< ; 1 dinal massm;=0.9163n, is required for the energy-level
107 ! ' : 108 calculation, yielding five subbands in the energy range con-

0 0.05 0.1 0.15 0.2

Kinetic Energy (eV) sidered in Fig. 1.

One may compare Eq9) with the results of Ferry ob-
FIG. 1. First-order phonon scattering rais, vs energy for the ~ tained without considering, in the matrix element calcula-
lowest subband of a rectangular quantum well at 77 K. The wellion. By using the notations of the present work the resulting
width is L=5nm. The effective masses amg=m,=m, andm,  scattering rate fs

=m,. The subscript® andE refer to absorption and emission of

g-TA phonon ¢ w;,=11.4 meV), respectively. The dotted lines in- _ D? ym,my 1 N 1
dicate the rated’;;¢ (upper curvg andI'y;.4 (lower curve ob- Iim(e)= phlw;, —Wm N;, + 5=2
tained from Eq.(10) derived in Ref. 8. The energies are measured
from the bottom of first subband. X (g’ \/m)/(m;/—l—g ‘/mxmy)KImy (10
where the overlap factor is now
Jlm:f q§|FIm(qz)|2dqz- 5 2
Kim= f 8(2){m(2)dz]| . (11
The second integral involves the second derivative of
delta functior;® yielding The normalization thickness,, introduced in Eq(10) is
1 1 chosen as the level width in tteedirection. The requirement
Jim=— _J' Pim(2)pi(2)d2= — =—Hym, (6) of suph a normalizatior) results from _the omissiqn of the
2@ 2@ contribution to the matrix element. This has the disadvantage
Where of introducing a quantity whose definition is somewhat arbi-
trary. To calculate the scattering rdteq. (10)] to be com-
d2p,n(2) pared with expressiofB), we use the common definition of
pim(2)=4(2)¢m(z) and pp(2)= 4z (7)  level extensiof?

— 12 72
For simplicity the energy-momentum relatieifk) is as- Win=(Z)m=(2)m (12

sumed to have the parabolic form where(a),, denotes the average value ®on themth sub-

22 K2 band. For the ideal quantum well considered here, the level
h2[ kS y}
+ _

(k)= = | X width w, is obviously equal to the well width whatever the
2

m, m subband. The rat€';; resulting from Eq.(10) is plotted in
Fig. 1 (dashed ling All other things being equal, it is about
The total probability per unit timé',, for an electron to  35% less than the corresponding rate calculated from{®&g.
scatter fromth subband tonth subband of another valley is This shift, however, depends on the set of wave functions
then easily derived from Ed3) using the golden rule. By considered for the 2D system and on the definition of the
introducing the density of final statds(k’)=A/4=2, it is, level width. In Eq.(9) the quantityG,,; may be considered,
finally, in fact, as another definition of the inverse of the effective
level width of first subband. A more important difference
between both models comes from the fact that the overlap
factor [Eq. (11)] between equivalent valleys is unity for
42 =m, and vanishes if #m, which prohibits the transition

— — unless the initial and final states are in the same subband. In
(&' m;m)l/—’—s mxmy)GIm_ _2Hlm}r

8

y

D? — 11
F|m(8)=m\/mxmy N;,+ Eiz

X T L
8 contrast, taking into account the contributionafleads to

) nonzero overlap integral@l) and (5), making the coupling
between two different subbands non-negligible, as shown in

where prime superscripts refer to the final valley or finalFig. 1.

state. The final energy is'=e¢+*hw—A,, whereA, is The scattering rat¢Eq. (9)] may be separated in two

the energy shift between the final and initial subbands. Interterms. The first terniwith the overlap factoG,,,) involves

valley scattering rates calculated for 77 K are plotted in Figthe contribution of the parallel componeny, of the phonon

1 in the simple case of an infinite rectangular quantum wellwave vector to the coupling coefficient, and the second term

of width L=5nm. The phonon mode consideredgsIA  (with the factorH,,,) comes from theq, contribution. As
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FIG. 4. Total emission and absorption scattering rates vs energy

FIG. 2. Partial emission scattering rates vs energy in 2DEG foat 77 K for the lowest subband in square quantum vgallid lines
the same transitions as in Fig. 1 at 77 K. The symi@&|s andH,, and wire(dashed lingsof thickness 5 nm. The dotted lines indicate
refer to the corresponding parts of scattering rates in(g&q. the rates in three-dimensional gas. An isotropic mass is considered.

illustrated in Fig. 2 the latter is obviously much smaller than

the G,, part, and may be omitted in most relevant cases. It is GImZJ 0(Y,2)%Lm(y,2)?dy dz (14
an expected result arising because of the smallness of the
momentum uncertainty due to the confinement in compari- 2 2
son with the momentum transfer for the intervalley scatter- Hlm:J pim(Y,2) J p.m(Zy,Z) + J p|m(2y,Z) dy dz
ing. However, the contribution of the,,, term to the scat- ady 0z

tering ratel’|,, becomes more and more significant wiran (19
—I increases, i.e., when the energy separation between initialh

and final subbands increases. where

,Z)= Z \Z). 16
IIl. ONE-DIMENSIONAL ELECTRON GAS (Y, 2)=6(Y,2)Em(Y:2) (16

In the case of a 1DEG confined jnandz directions and The derivation of the total probability per unit tinig,,
characterized by envelope functiofig(y,z) the matrix ele- for an electron to scatter from tHeéh subband to thenth
ment remains similar to Eq1) with a delta functions(k’ subband of another valley is straightforward. For parabolic

—k=*q,) that expresses the momentum conservation irxthe bands one obtains
direction only. The overlap integrdf,,, now depends on

both q, andq, components: v2D? 1 1) Vym,

F|m(8) Pﬁswiy( v 2 2) \/;

F|m(qy,qz)=J {m(y,2)expliqyy)explig z){i(y,z)dy dz 52

(13) X (S,m)’(+8mx)G|m_WH|m . (17)
The derivation of the total matrix elemeM,,, still in-
volves quantitiess,,,, andH,,,, now defined by As for most scattering processes in a 1DEG, the 1D den-
sity of states generates a divergence of the scattering rate
1012 v v e g 1013 near threshold energy =0. It is a consequence of the semi-

: Tior Toe 3 classical expression of energy conservation. It vanishes if the

rigorous q dependence in the matrix element is included,
e.g., by calculating the self-energy of the electron-phonon
interaction to account for the collisional broadening efféct.
Convenient averaging technigues have been used to avoid
the divergence in semiclassical transport calculation.
Scattering rates calculated from E(@.7) are plotted in
P | NI Fig. 3 for the lowest subband of an infinite square quantum
L. L wire of side 4 nm. The effective masses in the confinement
' O.IKingt.izc Ene(:;y (evo)'4 0.5 directio.ns aremy=m; and m,= m, which yield six sub-_
bands in the energy range considered. Each subband is de-
FIG. 3. First-order phonon scattering rates vs energy for thdined by a pair of quantum numbers, but to simplify the
lowest subband in a square quantum wire of side 5 nm at 77 Knotations we only indicate in subscript the final pair of num-
Unlike in Eq.(17), the quantityl’;; here refers to the scattering rate bers in Fig. 1. Similarly to the 2DEG case the second term
between the lowest subband 11 and the final subljarihe ener-  (with H,,) coming from the contribution ofj, andq, com-
gies are measured from the bottom of first subband. ponents is much smaller than the main part.
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One may now compare the 1D and 2D scattering rates IV. CONCLUSION

[Egs.(9) and(17)] with the 3D ones’To make the compari- The first-order intervalley phonon scattering rate has

s;on m‘;rﬁ",gs'g”'f'ca”t we use a unique Isotropic mess been derived using the conventional approach of the Fermi
ff(m' mtz d', sc:_ thatTtrr]]e r?jt‘r:tsfaéetw?ﬁpendert‘t on thﬁ Coggolden rule. Including the contribution of the comporignt

memten rrection. g Wi FO tho N qur:in um wetll and phonon wave vector in the confinement direction enables
quantum wire IS now > nm. ~or th€ same phonon as N Préy,q yansition if the initial and final states are not in the same
vious figures, the total absorption and emission rates in thgubband which is impossible through the commonly used
lowest s.ubband are plotted in Fig. 4, together with the Cor'approacﬁ of this scattering mechanisms in Si quantum
responding 3D rates. The 1D ratédashed linesand 2D wells. The resulting total scattering rates in 1DEG and 2DEG

rates(solid lineg are piecewise approximations of the 3D ;.o \ery consistent with the corresponding rates in a bulk
rates(dotted line$ due to discontinuities in the final density system

of low-dimensional states. This satisfying result cannot be
obtained if the coordinates of the phonon wave vectors in

conflnement_dlrec'glons are omitted, as in Ef0). Finally, ACKNOWLEDGMENTS

one can easily verify that the 1D, 2D, and 3D total rates turn

out to be all the closer as the confinement width becomes The authors would like to thank JohanneSkr helpful
thicker. discussions.

1C. canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi- 10¢. Jacoboni and P. Luglithe Monte Carlo Method for Semicon-

Quaranta, Phys. Rev. B2, 2265(1975. ductor Device SimulatiofSpringer-Verlag, Wien, 1989
2H. W. Streitwolf, Phys. Status Solid7, K47 (1970. EM V. Fischetti and S. E. Laux, Phys. Rev.48, 2244(1993.
3D. K. Ferry, Phys. Rev. B4, 1605(1976. B. K. Ridley, J. Phys. C15, 5899(1982.

13 , ,
4J. C. Portal, L. Eaves, S. Askenazy, and R. A. Stradling, Solid MF. Abr.amovlgltz andN . 'A\‘( Sktei;g;lHandlt())OZ%k of Mathematical
State Commun14, 1241(1974. unctions(Dover, New York, 197p, p. :

14M. Asche and O. G. Sarbei, Phys. Status Solidi@ 11 (1981).

5 . )

GC‘ Hamaguchi, Physica B & _(134‘ 87(1983. 15K, Yamasaki, T. Ezaki, N. Mori, and C. Hamaguchi, Inst. Phys.

T. Yamada, J. _R. Zhou, H. Miyata, and D. K. Ferry, IEEE Trans. Conf. Ser. No. 16ZI0P Publishing, Bristol, UK, 1999 Chap.
Electron Device€ED 41, 1513(1994. 7. p. 313.

’P. Dollfus, J. Appl. Phys82, 3911(1997. 183, Briggs, B. A. Mason and J. P. Leburton, Phys. Rev®

8D, K. Ferry, Surf. Sci57, 218(1976. 12001(1989.

9S. M. Goodnick and P. Lugli, Phys. Rev. &, 2578(1988. 17y. Ando and A. Cappy, J. Appl. Phy34, 3983(1993.

212304-4



