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Polarons in cylindrical quantum wires

F. Buonocore
STMicroelectronics, Softcomputing/Nano-Organics/Si-Optics & Micromachining Operation, Stradale Primosole 50, 1-95121 Catania, Italy

G. ladonisi, D. Ninno, and F. Ventriglia
I.N.F.M. and Dipartimento di Scienze Fisiche, UniversiiaNapoli Federico 1l, Complesso Universitario Monte S. Angelo, Via Cintia,
1-80126 Napoli, Italy
(Received 16 October 2001; published 14 May 2002

We present a study of polaron self-energies in a cylindrical quantum wire considering both volume and
surface phonon modes in the dielectric continuum approximation. Full advantage is taken of the problem
symmetries, and a generalization of the Lee-Low-Pines unitary transformation has been used. For the interac-
tion with the volume phonon modes, we show that two opposite behaviors can be found for the self-energy as
a function of the wire size, depending on whether or not the phonon modes are confined. These results are
consistent with those concerning the mass renormalization and the first wire excited-state self-energy. Finally,
we have also calculated the polaron self-energy for the electron—surface-phonon interaction showing that in
this case the self-energy depends on the difference between the wire and embedding medium dielectric con-
stants; it increases on reducing the wire size and can cross the volume confined polaron self-energy.
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[. INTRODUCTION fact, some translational symmetries are lost with respect to
the infinite-medium case, and that will induce different
An electron confined in a low-dimensional structure canHamiltonian transformations in order to follow the idea of
interact with different species of phonons. When the confinethe LLP method. We shall choose a suitable form for the
ment is structural as in deep_mesa_etched or grown Stru(phonons distribution functions in order to calculate the Ppo-
tures, confined phonons and either surface or interfackron properties by means of a variational procedure. It is
phonons should be considered when the confined structure $§own that the polaron ground-state self-energy as a function
free standing or embedded in an other material, respecfivelyof the wire radius has two opposite behaviors according to
Recent developments in epitaxial crystal growth techniquein‘,}’hether phOHQHS are Conflned or npt. In part|cu|ar', a con-
have made quantum wiréQW) nanostructures more and fined electron interacting Wli:‘h u_nconflned phonons gives rise
more important. A lot of attention has been paid to theto_a pola_lron se_lf-energy Wh_lch increases with d_ecreasmg the
electron-phonon interaction in these systems. The HamilWire radius while the opposite occurs for a confined electron
tonian for the electron-confined phonons interaction in rectinteracting with confined phonons. In the latter case, it is also
angular QW’s has been derived by Stroédollowing the shown that a crossing is possible between volume and sur-
calculation of confined modes in a dielectric slab discussedfce polarons self-energies whose occurrence depends on the
by Licari and Evrard, under the continuum dielectricCD) wire radius and the material dielectric constants.
approach. Polaron theory by using Stroscio’s Hamiltonian
has been developéd. Confined phonons in cylindrical
QW's in the CD approximation has been studied in Ref. 6. \we consider the confined and interface electron-phonon
Confined and interface phonons interaction have been innteraction Hamiltonian calculated by Xigt al® in the CD
cluded by Li and Chehand by Xieet al® Enderleil em-  approximation. This entails the following approximations: 1
ployed the dispersive dielectric continuum model in order tothe effective mass approximation for the electr¢®), the
study optical phonon modes in cylindrical QW's and calcu-crystal is treated as continuous mediu(8), the dispersion-
lated the Fralich interaction for confined and interface |ess longitudinal confined phonon modes have vanishing
modes. The electron—surface-phonon interaction in cylindriglectrostatic potential at the interfacé4) the interface pho-
cal QW's has been studied by Sheeigal'* Several authors non modes have the maximum electrostatic potential at the
have investigated the problem of an electron bound to afhterfaces, and5) the vibrations of the ions are harmonic.
impurity and interacting with either bulk;* using the so-  Choosing ag axis the wire longitudinal axis, the Hutich
called  bulk-phonon  approximation, or  confined Hamiltonian i€
phonon$ 1314 The effects of a magnetic fiefti !’ have also
been considered. The problem of the screening due to an p
electron gag®'® and the band gap renormalizatiBrhave H= py— +n§( hwg
also been investigated. z

Il. MODEL AND THEORY

2 1

.
Amik,Amik, T 5

In this paper we will focus our attention on the polaron | xmpe\
renormalization effects due to the electron-phonon interac- - 2 FTO(kz)\]m(T) e'mve "‘Zza:n,kz+ H.c.|,
tion in a cylindrical QW. We adopt a Lee-Low-Pirfé$LLP) mik;
approach modified in view of the cylindrical symmetry. In D
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with Heref,,(k,,p) are functions connected to the Fourier trans-
form of the charge density and to the electron-phonon cou-
4e’h o, 1 1 pling. Since we are looking for the system ground stktg,
Lo 1O 2062 |+k2R2) 8_0_ ;) 2) can be averaged on the zero-phonon sfajdeading to
m z

whereR is the wire radiusy,, is thelth zero of the Bessel 1 5 1 5 o o o
function J.,(x), w, is the dispersionless frequency of the (0IH2|0)= o (Pp+ I+ G+ Py [pz+pe+K;+KG
bulk longitudinal optical phonons, and finallyy, ande.. are

|FLmé kz)|2:

the static and high-frequency dielectric constants. An impor- —2(K,p,+Kgp,)+T+D], (11
tant dimensionless constant giving the interaction couplinc_\;Nh
strength is ere
2
e (1 1 K,= > fiky|fri(Ky,p)|2 12
= (__; /ﬁwo, =2 ko)l (12
whereR,= \/2m* w, is the polaron radius. For instance, in m#h 5
gallium arsenide it isx=0.07 andR,=4.0 nm. :mlk 7 fmi(kz,0)[%, (13
Because of the invariance for translations alongzhgis z
and for rotations around the same axis, the total linear mo- 5
mentum T=mIk 12 K+ — | [fmi(kz.0)|?, (14)
Z
P,=p,+ 2 kA ami 3) 2
z z If mi(k,,p)
mik, D= 52 mi(Kz,p ‘ , (15)
and thez component of the total angular momentum, mik,
LZ:|Z+E mﬁaxﬂk Amik.s (4) G= ﬁw0|fml(kz:P)|2
mik, z mik,
commutes with the Hamiltoniafl). Herep and I are the M ) (Xmlp)f K o)+
oo - , c.c| (16
electronic linear and angular momenta. These two commuta- mik, (kz)Jm R mi(kz.p) (16
tion rules will give the opportunity of eliminating from the
problem the electronic coordinatesind ¢. We can achieve ifi afx(Kz,p) Ifmi(K,,p)
. . . . . *
this with a sequence of unitary transformations. The first one) = = 2 fmi(kz,p) o mi(Kz,p) o |
is mikz
17)
H'=e SiHe®, (5  Fortunately, Eq.(11) can be further simplified. Since

fm|kz(kz,p) are either real or imaginary, it follows that

=0. Moreoverp,=1,/p can be written ad1#/p whereM#
is the angular momentum eigenvalue. Searching for elec-

where the operato; is defined as

i T
Si= _'% kzzamlkzam'kz' ©  tronic state withM =0, we can sep,=0. Finally, because
_ ‘ o of the wire symmetry, we have,(k,,p)=f_i(k,,p), and
The second unitary transformation is this implies that ,=0. All that allows us to write Eq(11)
as
H,=e S2H’e%, (7
where p P2 1
(O[H,|0)= £—=+ G+ ——[KZ—2K,p,+ T+D].
2m* 2m*
$= =1 2, Meanami, (8) (18)
‘ At this point we can use as electron-phonon wave function
The last unitary transformation we use is that of Lee, )
oal ip,Z
Low, and Pine: |\If>=d>(p)exr{ hz )|O>, 19
H,=U""H,U, 9 . -
_ where®(p) could be expressed as a linear combination of
with Bessel functions,,. However, we are only interested in the
ground and first excited electronic states: due to the large
U=ex * (k,.p)a —f_(k,.p)al (k,)|. energy sc_aparanqn among the cylinder m|n|banQS, we neglept
F{E mi(Kz:)mi(kz) = Fmi(kz p)am (kz) both the interactions between the ground and first electronic

(10 states and the interactions between these states and all higher
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excited electronic states. For the ground state we have useidnal variation ofE=(W|H,|W¥) with respect tof},(k,,p)

a variational approach, with the following ansatz for thebe zero—that is,

trial wave function: ®(p)=0 for p=R and ®(p)

=N(1—p?/R?)” for p<R with y the variational parameter. (W H,| W

We note that for y=1.35 the function ®(p) fits —2>:0

Jo(2.40482/R) very well. On the contrary, for the first Sfh,

electronic excited state we have just usgd3.831%/R)

without any variational parameter. A lengthy calculation leads to the following Eulerian
In order to determind,,(k,,p) we impose that the func- equation:

(20

1 d|®|? dfy, _dzfm, NTER #2m?
|®> dpdp dp? ©op?

Unfortunately, contrary to other situations where we have been able to find an exact analytical solution of a differential

equation of this typé>?to solve Eq.(21) is an hard task. We have therefore chosen a fornf fgtk,,p) to be used within

a variational calculation. An ansatz foy,(k,,p) can be constructed as following. First, one observes that neglecting the term

D in Eqg. (18), Eq. (20) leads to the following approximate expression fgii(k,,p):

+2m*hwo>fml—[zhkzwz—Kz>]fm.=2m*r[“5<kz>Jm(m). (21)

R

2m*F["é<kz>Jm(X”F;'p)
Frni(kz.p) = o : (22
(ﬁ2k§+ o +2m*hwo) —2hk,(p,—K,)
This equation immediately suggests the ansatz
Fni(Kz,0) = F mi(Ko) Frni(Kz ), (23
whereF,(k,) are to be determined by the conditio&/JF,,=0. After some calculations we get
XmiP\—
<FE’é(kz>Jm(—g )fm.<kz.p>>
Fmi(ky) = — , 24)
ml( z) . , ﬁz dfm| 2 ﬁkz . , (
Dml(k21p)|fml(k21p)| + om* W + m* Kz|fml(kaP)|
with
h%kZ  h2m?
—2hpK,, (25

Dok ) =g+ -

m*  2m*p
where we have used the abbreviatipn -)=(®|---|®). From Eq.(23) we obtain the expression df,(k,,p), which
characterizes the phonon distribution. In E23) we adopt a form for the phonon distribution functiohg(k,,p) which is
somehow similar to the choice of Ref. 24 where excitons in polar semiconductors are studied. We are confident with the
reliability of this variational approach because it led to results, for the case of excitons, in fair agreement with experimental
data and with the results of more elaborate thedfi@e two systems—exciton in a bulk polar semiconductor and electron
in a confined polar system—are investigatable with similar approaches because in both cases the phonons distribution func-
tions have an explicit dependence on the spatial coordinates.

The total system energy is obtained by substituting adgitk,,p) in E:

2
XmiP \—
2(2y+1)y(R,|2 o? ‘<FT5<kz>Jm(—’g )fm.<kz,p>> (K2)
E=——1—"| 2 hwgt+ z —2 — — 2
2y—1 R 2m*  mik, _ ) A% | |dfy 5 ik, —— o Mk 2m*
<Dml(k11p)|fml(kZiP)| >+2m* W +F<Kz|fml(kzap)| >
(26)
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The last two terms in Eq(26) constitute the polaron self-

energyAE.

The mass renormalization can be studfedith the con-

dition

(Kp=mn9,,

from which we can obtailx with a variational calculation on
the electronic state by minimizing with respect toy. Here
7 is a parameter that does not dependggnand must be

(27)

PHYSICAL REVIEW B55 205415

ﬁ2k2 ﬁ2m2
dm(ky,p)=hw+ — +
m(Kz,p) 2m* 2m*p

S (35

Ill. RESULTS AND DISCUSSION

Now we can discuss our numerical results. In pagagbf
Fig. 1 we plot the polaron ground-state self-energy with
=0. As can be seen, fd®>4R, the three-dimensional bulk
limit AE=—afw is recovered, while foR—0 the self-

calculated self-consistently. Once this has been done, the P@hergy approaches zero. This result can easily be explained

laron effective massn, can be obtained from the relation

502
AEWJEAEmy+22

*

1__
mp

m'k

with the observation that by decreasing the radius, the vol-
ume of the effective material decreases until any medium to
polarize is no longer available. However, in most polaron

calculations the electron is considered as confined whereas
the electron-phonon interaction is taken as that of an ex-

The electron-surface phonon interaction can be studieéended(bulk) system. This choice leads to the opposite be-

with the Hamiltoniafi

2

havior for the self-energy, as shown in pariel of Fig. 1.
The Hamiltonian from which this result is derived is given in
the Appendix. For instance, Fstebi and Sengét and

H= P - +> bTmemer% Pokalitov et al?® found indeed that approaching the one-
2m* - mk, dimensional limit the polaron self-energy increases, because
the increase of the particle confinement implies an enhance-
— > [T (kyemee bl +H.clgm(kyp), ment of the effective electron-phonon coupling. A similar
mk, ‘ effect can be found in the magnetopolaron thédfyhe self-
(28 energy reduction with decreasirig shown in panel@ of
Fig. 1 highlights the peculiar behavior when the confined-
where electron—confined-phonon interaction is considered and
K (KR (kop) <R should be the relevant effect in most either free-standing or
gn(kp)=1 ™ 2o ) P=T (299 embedded nanostructute. _ _
meE Im(k,R)Km(k,p), p>R, In Fig. 2 we plot the polaron effective mass, with the
coupling constan&= 0.1 which is representative of an entire
4e%% o set of calculations. It can be seen from this figure that the
TS (K, |?= 5 - polaron effective mass reduces, for a wire radius less than
LKm(kzR) I m(kzR) 2k Rlp(kR) the polaron radius, to the electron effective mass Again
X ! - ! ) (30) 2.5
£€—€y &€~ ¢&4
€0~ €x
w?=|1+ sooc—s 3o, (31) 201
o= Im(sz)Km(sz) - (32) e 1.5 (b)
| n(KR)Kn(kR) 5
and e is the dielectric constant of the embedding medium. E 10
Following again the method of Ref. 21 and our variational ’
procedure, we find that the polaron self-energy withk 0 is
AE(S)Z—E |<F|ng)(kz)gm(kzp)fm(kz:p)>|2_ — 051 (a)
™ e ) Tt ) < O > .
m{Kz, )| Tm(Kz,p omt dp 00 .
(33 0 1 2 3 4
where R/RP
m FIG. 1. The polaron ground-state self-energy as a function of the
T o= o(kz) gm(kzp) (34) wire radius. In panefa) the phonon modes are localized whereas in
m dm(ky,p) panel(b) they are delocalized.

205415-4



POLARONS IN CYLINDRICAL QUANTUM WIRES PHYSICAL REVIEW B65 205415

2.5

1.0154 a=0.1

surface

1.000

0.0 0.5 1.0 15

R/R,

FIG. 2. The polaron effective mass as a function of the wire FIG. 4. Volume and surface polaron ground-state self-energy as
radius. The electron-phonon coupling constankis0.1. a function of the wire radius. For surface phonons GaAs parameters
have been used.

this finding, which is consistent with the polaron self-energy

reduction, may have interesting consequences for free- In Fig. 4 we present.the last set of results in which we
standing nanostructures. compare the self-energies due to both volume and surface

In Fig. 3 we present the results of a calculation in whichPolarons. As material parameters we have chosen those of
we considered the first excited electronic state taking a aAs considering two values of the embedding medium di-

®(p) in Eq. (19) the functiond,(3.831%/R) which is zero  Slectiic constantgy=1 andey=4). It is seen that the sur-

at the surface and it has a node on the wire center. ThE‘lce self-energy,.contrary' to th? V°'”F”e contrlbu.tlon', n-
self-energy plotted is much smaller than that correspondin§'€35€s ON reducing the wire radius. This effect, which is due
to the ground statfsee panela) of Fig. 1. This result re- 0 an increasing surface to volume ratio, implies a crossing

flects the nodal structure of the electronic wave function ané)etween surface and volume self-energies at a vallR R

indicates a polaron subband gap renormalization which ten}ﬂ’h'Ch depends on the value of _the exter_nal dielectric con-
to decrease with increasing energy. Stantey. In any case, when strictly confined systems are

considered, the surface renormalization effects can become
dominants with a strength which depends on the external
dielectric constant.

So far we have discussed our results within the frame-
0.034 work of the standard CD model. A comparison with a modi-
fied CD modet’?® should not introduce, at first glance,
changes in our conclusions. In fact, the interface phonon
modes of the modified CD model agree with those of the
standard model, in the zero-dispersion limit. Moreover, in

s 0.02 our opinion, the corrections for the bulklike phonon modes
3 introduced by the modified CD model could contribute to
wi strengthen our results, due to the intermixing of the bulklike
< modes with the interface modes. However, the exact conse-

0.01 guences of the modified CD model are beyond of the limits
of the present paper and possibly they will be the subject of
future work.

0.00 IV. SUMMARY
0 1 2 s 4 In this work we presented calculations on the polaron
R/F{p renormalization effects due to both the electron-surface and

electron-volume phonon interactions in a cylindrical quan-

FIG. 3. The polaron self-energy for the first wire excited state agum wire with infinitely deep potential. A generalization of
a function of the wire radius. the Lee-Low-Pines method has been developed and a varia-
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tional procedure has been followed. Universal curves havghere the phonon wave vector i6=(k,k,) and S is the

been calculated for the self-energies and for the mass rendfiprmalization cross-sectional area dnits length. In order
malization. We have shown that two opposite behaviors fokg rewrite Hamiltonian(A1) in cylindrical coordinates we
the polaron self-energy are obtained depending on whethgfansform canonically the boson operagr(which we write

or not the volume phonon modes are confined. For a freeasa |, ) into the angular momentum representation
standing nanostructure the self-energy significantly reduces "*

for smaller sizes whereas just the opposite occurs when ex-
tended(bulk) phonon modes are considered.

The self-energy due to the interaction with surface Bk, m™ Vk
phonons has been calculated showing that the self-energy
strongly depends on both the difference between the Wirg\’here
and embedding medium dielectric constants and on the wire
radius. Moreover, we have shown that there is the possibility,
for certain values of dielectric constants and wire radius, of
having a crossing between the volume and surface self- ®m("”):E
energies. Finally, decreasing the wire radius the renormaliza-
tions due to volume confined phonon may become less imUsing Eq.(A3) and the expansion
portant of those due to surface phonons. The strength of this
effect decreases when the dielectric constant of the embed-
ding medium increases and approaches the value of the di-
electric constant of the wire. We believe that these results
may be relevant in the physics of colloidally synthesized
semiconductor nanocrystaland in establishing their physi-
cal chemistry properties.

S
(2m)?

1/2 o
fo On(eRagk deg, (A3)

e'me, (A4)

e“z'f;zzwm;m(i)me(kp)G)m(QD)?n(‘PlZ): (AS)

where ¢ is the k polar angle, the Hamiltonian in EGAL)

becomes
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APPENDIX +Ek . dK[Vik, Tin(p)Om( )
mkz
The Frdlich Hamiltonian for a bulk polar material is Ko
xXe"agy mt H.c], (AB6)
2
p T
(A1)
with Tim(p)= VK )M Im(Kp).
4maR, (hag)? 12 The Hamiltonian of Eq(A6) has been used with the con-
Vi= SL P > | (A2)  fined ground electron state for the self-energy calculation
ket k; whose results are shown in parib) of Fig. 1.
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