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Polarons in cylindrical quantum wires
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We present a study of polaron self-energies in a cylindrical quantum wire considering both volume and
surface phonon modes in the dielectric continuum approximation. Full advantage is taken of the problem
symmetries, and a generalization of the Lee-Low-Pines unitary transformation has been used. For the interac-
tion with the volume phonon modes, we show that two opposite behaviors can be found for the self-energy as
a function of the wire size, depending on whether or not the phonon modes are confined. These results are
consistent with those concerning the mass renormalization and the first wire excited-state self-energy. Finally,
we have also calculated the polaron self-energy for the electron–surface-phonon interaction showing that in
this case the self-energy depends on the difference between the wire and embedding medium dielectric con-
stants; it increases on reducing the wire size and can cross the volume confined polaron self-energy.
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I. INTRODUCTION

An electron confined in a low-dimensional structure c
interact with different species of phonons. When the confi
ment is structural as in deep-mesa-etched or grown st
tures, confined phonons and either surface or interf
phonons should be considered when the confined structu
free standing or embedded in an other material, respectiv1

Recent developments in epitaxial crystal growth techniq
have made quantum wire~QW! nanostructures more an
more important. A lot of attention has been paid to t
electron-phonon interaction in these systems. The Ha
tonian for the electron-confined phonons interaction in re
angular QW’s has been derived by Stroscio2 following the
calculation of confined modes in a dielectric slab discus
by Licari and Evrard,3 under the continuum dielectric~CD!
approach. Polaron theory by using Stroscio’s Hamilton
has been developed.4,5 Confined phonons in cylindrica
QW’s in the CD approximation has been studied in Ref.
Confined and interface phonons interaction have been
cluded by Li and Chen7 and by Xieet al.8 Enderlein9 em-
ployed the dispersive dielectric continuum model in order
study optical phonon modes in cylindrical QW’s and calc
lated the Fro¨hlich interaction for confined and interfac
modes. The electron–surface-phonon interaction in cylin
cal QW’s has been studied by Shenget al.10 Several authors
have investigated the problem of an electron bound to
impurity and interacting with either bulk,11,12 using the so-
called bulk-phonon approximation, or confine
phonons.8,13,14The effects of a magnetic field15–17 have also
been considered. The problem of the screening due to
electron gas,18,19 and the band gap renormalization20 have
also been investigated.

In this paper we will focus our attention on the polar
renormalization effects due to the electron-phonon inter
tion in a cylindrical QW. We adopt a Lee-Low-Pines21 ~LLP!
approach modified in view of the cylindrical symmetry.
0163-1829/2002/65~20!/205415~7!/$20.00 65 2054
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fact, some translational symmetries are lost with respec
the infinite-medium case, and that will induce differe
Hamiltonian transformations in order to follow the idea
the LLP method. We shall choose a suitable form for t
phonons distribution functions in order to calculate the p
laron properties by means of a variational procedure. I
shown that the polaron ground-state self-energy as a func
of the wire radius has two opposite behaviors according
whether phonons are confined or not. In particular, a c
fined electron interacting with unconfined phonons gives r
to a polaron self-energy which increases with decreasing
wire radius while the opposite occurs for a confined elect
interacting with confined phonons. In the latter case, it is a
shown that a crossing is possible between volume and
face polarons self-energies whose occurrence depends o
wire radius and the material dielectric constants.

II. MODEL AND THEORY

We consider the confined and interface electron-pho
interaction Hamiltonian calculated by Xieet al.8 in the CD
approximation. This entails the following approximations:!
the effective mass approximation for the electron,~2! the
crystal is treated as continuous medium,~3! the dispersion-
less longitudinal confined phonon modes have vanish
electrostatic potential at the interfaces,~4! the interface pho-
non modes have the maximum electrostatic potential at
interfaces, and~5! the vibrations of the ions are harmoni
Choosing asz axis the wire longitudinal axis, the Fro¨hlich
Hamiltonian is8

H5
p2

2m*
1 (

mlkz

\v0Famlkz

† amlkz
1

1

2G
2 (

mlkz
FGLO

ml ~kz!JmS xmlr

R Deimwe2 ikzzamlkz

† 1H.c.G ,
~1!
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with

uGLO
ml ~kz!u25

4e2\v0

LJm11~xml!
2~xml

2 1kz
2R2!

S 1

«0
2

1

«`
D , ~2!

whereR is the wire radius,xml is the l th zero of the Besse
function Jm(x), v0 is the dispersionless frequency of th
bulk longitudinal optical phonons, and finally«0 and«` are
the static and high-frequency dielectric constants. An imp
tant dimensionless constant giving the interaction coup
strength is

a5
e2

2Rp
S 1

«0
2

1

«`
D Y \v0 ,

whereRp5A\/2m* v0 is the polaron radius. For instance,
gallium arsenide it isa50.07 andRp54.0 nm.

Because of the invariance for translations along thez axis
and for rotations around the same axis, the total linear m
mentum

Pz5pz1 (
mlkz

\kzamlkz

† amlkz
~3!

and thez component of the total angular momentum,

Lz5 l z1 (
mlkz

m\amlkz

† amlkz
, ~4!

commutes with the Hamiltonian~1!. Here pW and lW are the
electronic linear and angular momenta. These two comm
tion rules will give the opportunity of eliminating from th
problem the electronic coordinatesz andw. We can achieve
this with a sequence of unitary transformations. The first o
is

H85e2S1HeS1, ~5!

where the operatorS1 is defined as

S152 i (
mlkz

kzzamlkz

† amlkz
. ~6!

The second unitary transformation is

H15e2S2H8eS2, ~7!

where

S252 i (
mlkz

mwamlkz

† amlkz
. ~8!

The last unitary transformation we use is that of Le
Low, and Pines:21

H25U21H1U, ~9!

with

U5expF (
mlkz

f ml* ~kz ,r!aml~kz!2 f ml~kz ,r!aml
† ~kz!G .

~10!
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Here f ml(kz ,r) are functions connected to the Fourier tran
form of the charge density and to the electron-phonon c
pling. Since we are looking for the system ground state,H2
can be averaged on the zero-phonon stateu0& leading to

^0uH2u0&5
1

2m*
~pr1J!21G1

1

2m*
@pz

21pw
21Kz

21Kw
2

22~Kzpz1Kwpw!1T1D#, ~11!

where

Kz5 (
mlkz

\kzu f ml~kz ,r!u2, ~12!

Kw5 (
mlkz

m\

r
u f ml~kz ,r!u2, ~13!

T5 (
mlkz

\2S kz
21

m2

r2 D u f ml~kz ,r!u2, ~14!

D5 (
mlkz

\2U] f ml~kz ,r!

]r U2

, ~15!

G5 (
mlkz

\v0u f ml~kz ,r!u2

2 (
mlkz

FGLO
ml ~kz!JmS xmlr

R D f ml~kz ,r!1c.c.G ~16!

J5
i\

2 (
mlkz

F f ml~kz ,r!
] f ml* ~kz ,r!

]r
2 f ml* ~kz ,r!

] f ml~kz ,r!

]r G .
~17!

Fortunately, Eq. ~11! can be further simplified. Since
f mlkz

(kz ,r) are either real or imaginary, it follows thatJ

50. Moreover,pw5 l z /r can be written asM\/r whereM\
is the angular momentum eigenvalue. Searching for e
tronic state withM50, we can setpw50. Finally, because
of the wire symmetry, we havef ml(kz ,r)5 f 2ml(kz ,r), and
this implies thatKw50. All that allows us to write Eq.~11!
as

^0uH2u0&5
pr

21pz
2

2m*
1G1

1

2m*
@Kz

222Kzpz1T1D#.

~18!

At this point we can use as electron-phonon wave functi

uC&5F~r!expS i `zz

\ D u0&, ~19!

whereF(r) could be expressed as a linear combination
Bessel functionsJn . However, we are only interested in th
ground and first excited electronic states: due to the la
energy separation among the cylinder minibands, we neg
both the interactions between the ground and first electro
states and the interactions between these states and all h
5-2
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excited electronic states. For the ground state we have
a variational approach, with the following ansatz for t
trial wave function: F(r)50 for r>R and F(r)
5N(12r2/R2)g for r,R with g the variational parameter
We note that for g51.35 the function F(r) fits
J0(2.404 82r/R) very well. On the contrary, for the firs
electronic excited state we have just usedJ1(3.8317r/R)
without any variational parameter.

In order to determinef ml(kz ,r) we impose that the func
20541
edtional variation ofE5^CuH2uC& with respect tof ml* (kz ,r)
be zero—that is,

d^CuH2uC&

d f ml*
50. ~20!

A lengthy calculation leads to the following Euleria
equation:
erential

term

with the
imental
tron
tion func-
2
1

uFu2
duFu2

dr

d fml

dr
2

d2f ml

dr2
1S \2kz

21
\2m2

r2
12m* \v0D f ml2@2\kz~`z2Kz!# f ml52m* GLO

ml ~kz!JmS xmlr

R D . ~21!

Unfortunately, contrary to other situations where we have been able to find an exact analytical solution of a diff
equation of this type,22,23 to solve Eq.~21! is an hard task. We have therefore chosen a form forf ml(kz ,r) to be used within
a variational calculation. An ansatz forf ml(kz ,r) can be constructed as following. First, one observes that neglecting the
D in Eq. ~18!, Eq. ~20! leads to the following approximate expression forf ml(kz ,r):

f̄ ml~kz ,r!5

2m* GLO
ml ~kz!JmS xmlr

R D
S \2kz

21
\2m2

r2
12m* \v0D 22\kz~`z2Kz!

. ~22!

This equation immediately suggests the ansatz

f ml~kz ,r!5Fml~kz! f̄ ml~kz ,r!, ~23!

whereFml(kz) are to be determined by the condition]E/]Fml* 50. After some calculations we get

Fml~kz!5

K GLO
ml ~kz!JmS xmlr

R D f̄ ml~kz ,r!L
K Dml~kz ,r!u f̄ ml~kz ,r!u2L 1

\2

2m* K Ud f̄ml

dr
U2L 1

\kz

m* K Kzu f̄ ml~kz ,r!u2L
, ~24!

with

Dml~kz ,r!5\v01
\2kz

2

2m*
1

\2m2

2m* r2
22\`zkz , ~25!

where we have used the abbreviation^•••&5^Fu•••uF&. From Eq. ~23! we obtain the expression off ml(kz ,r), which
characterizes the phonon distribution. In Eq.~23! we adopt a form for the phonon distribution functionsf ml(kz ,r) which is
somehow similar to the choice of Ref. 24 where excitons in polar semiconductors are studied. We are confident
reliability of this variational approach because it led to results, for the case of excitons, in fair agreement with exper
data and with the results of more elaborate theories.22 The two systems—exciton in a bulk polar semiconductor and elec
in a confined polar system—are investigatable with similar approaches because in both cases the phonons distribu
tions have an explicit dependence on the spatial coordinates.

The total system energy is obtained by substituting againf ml(kz ,r) in E:

E5
2~2g11!g

2g21 S Rp

R D 2

\v01
`z

2

2m*
2 (

mlkz

U K GLO
ml ~kz!JmS xmlr

R D f̄ ml~kz ,r!L U2

^Dml~kz ,r!u f̄ ml~kz ,r!u2&1
\2

2m* K Ud f̄ml

dr
U2L 1

\kz

m* ^Kzu f̄ ml~kz ,r!u2&

2 (
mlkz

^Kz
2&

2m*
.

~26!
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The last two terms in Eq.~26! constitute the polaron self
energyDE.

The mass renormalization can be studied22 with the con-
dition

^Kz&5h`z , ~27!

from which we can obtainE with a variational calculation on
the electronic state by minimizingE with respect tog. Here
h is a parameter that does not depend on`z and must be
calculated self-consistently. Once this has been done, the
laron effective massmp can be obtained from the relation

DE~`z![DE~0!1
`z

2

2m*
S 12

m*

mp
D .

The electron-surface phonon interaction can be stud
with the Hamiltonian8

H5
p2

2m*
1(

mkz

\vFbmkz

† bmkz
1

1

2G
2(

mkz

@G IO
m ~kz!e

imwe2 ikzzbmlkz

† 1H.c.#gm~kzr!,

~28!

where

gm~kzr!5H Km~kzR!I m~kzr!, r<R,

I m~kzR!Km~kzr!, r.R,
~29!

uG IO
m ~kz!u25

4e2\v

LKm~kzR!2I m~kzR!2kzRIm8 ~kzR!

3S 1

«2«0
2

1

«2«`
D , ~30!

v25F11
«02«`

«`2« GvTO
2 , ~31!

«5
I m~kzR!Km8 ~kzR!

I m8 ~kzR!Km~kzR!
«d , ~32!

and«d is the dielectric constant of the embedding mediu
Following again the method of Ref. 21 and our variation
procedure, we find that the polaron self-energy with`z50 is

DE(S)52(
mkz

u^G IO
m ~kz!gm~kzr! f̄ m~kz ,r!&u2

^dm~kz ,r!u f̄ m~kz ,r!u2&1
\2

2m*
K U d f̄m

dr
U2L ,

~33!

where

f̄ m5
G IO

m ~kz!gm~kzr!

dm~kz ,r!
, ~34!
20541
o-

d

.
l

dm~kz ,r!5\v1
\2kz

2

2m*
1

\2m2

2m* r2
. ~35!

III. RESULTS AND DISCUSSION

Now we can discuss our numerical results. In panel~a! of
Fig. 1 we plot the polaron ground-state self-energy with`z
50. As can be seen, forR.4Rp the three-dimensional bulk
limit DE52a\v is recovered, while forR→0 the self-
energy approaches zero. This result can easily be expla
with the observation that by decreasing the radius, the v
ume of the effective material decreases until any medium
polarize is no longer available. However, in most polar
calculations the electron is considered as confined whe
the electron-phonon interaction is taken as that of an
tended~bulk! system. This choice leads to the opposite b
havior for the self-energy, as shown in panel~b! of Fig. 1.
The Hamiltonian from which this result is derived is given
the Appendix. For instance, Erc¸elebi and Senger25 and
Pokalitov et al.26 found indeed that approaching the on
dimensional limit the polaron self-energy increases, beca
the increase of the particle confinement implies an enhan
ment of the effective electron-phonon coupling. A simil
effect can be found in the magnetopolaron theory.23 The self-
energy reduction with decreasingR shown in panel~a! of
Fig. 1 highlights the peculiar behavior when the confine
electron–confined-phonon interaction is considered
should be the relevant effect in most either free-standing
embedded nanostructure.1

In Fig. 2 we plot the polaron effective massmp with the
coupling constanta50.1 which is representative of an entir
set of calculations. It can be seen from this figure that
polaron effective mass reduces, for a wire radius less t
the polaron radius, to the electron effective massm* . Again

FIG. 1. The polaron ground-state self-energy as a function of
wire radius. In panel~a! the phonon modes are localized whereas
panel~b! they are delocalized.
5-4
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this finding, which is consistent with the polaron self-ener
reduction, may have interesting consequences for f
standing nanostructures.

In Fig. 3 we present the results of a calculation in whi
we considered the first excited electronic state taking
F(r) in Eq. ~19! the functionJ1(3.8317r/R) which is zero
at the surface and it has a node on the wire center.
self-energy plotted is much smaller than that correspond
to the ground state@see panel~a! of Fig. 1#. This result re-
flects the nodal structure of the electronic wave function a
indicates a polaron subband gap renormalization which t
to decrease with increasing energy.

FIG. 2. The polaron effective mass as a function of the w
radius. The electron-phonon coupling constant isa50.1.

FIG. 3. The polaron self-energy for the first wire excited state
a function of the wire radius.
20541
y
e-
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In Fig. 4 we present the last set of results in which w
compare the self-energies due to both volume and sur
polarons. As material parameters we have chosen thos
GaAs considering two values of the embedding medium
electric constant («d51 and«d54). It is seen that the sur
face self-energy, contrary to the volume contribution,
creases on reducing the wire radius. This effect, which is
to an increasing surface to volume ratio, implies a cross
between surface and volume self-energies at a value ofR/Rp
which depends on the value of the external dielectric c
stant «d . In any case, when strictly confined systems a
considered, the surface renormalization effects can bec
dominants with a strength which depends on the exte
dielectric constant.

So far we have discussed our results within the fram
work of the standard CD model. A comparison with a mo
fied CD model27,28 should not introduce, at first glance
changes in our conclusions. In fact, the interface phon
modes of the modified CD model agree with those of
standard model, in the zero-dispersion limit. Moreover,
our opinion, the corrections for the bulklike phonon mod
introduced by the modified CD model could contribute
strengthen our results, due to the intermixing of the bulkl
modes with the interface modes. However, the exact con
quences of the modified CD model are beyond of the lim
of the present paper and possibly they will be the subjec
future work.

IV. SUMMARY

In this work we presented calculations on the polar
renormalization effects due to both the electron-surface
electron-volume phonon interactions in a cylindrical qua
tum wire with infinitely deep potential. A generalization o
the Lee-Low-Pines method has been developed and a v

s

FIG. 4. Volume and surface polaron ground-state self-energ
a function of the wire radius. For surface phonons GaAs parame
have been used.
5-5
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tional procedure has been followed. Universal curves h
been calculated for the self-energies and for the mass re
malization. We have shown that two opposite behaviors
the polaron self-energy are obtained depending on whe
or not the volume phonon modes are confined. For a fr
standing nanostructure the self-energy significantly redu
for smaller sizes whereas just the opposite occurs when
tended~bulk! phonon modes are considered.

The self-energy due to the interaction with surfa
phonons has been calculated showing that the self-en
strongly depends on both the difference between the w
and embedding medium dielectric constants and on the
radius. Moreover, we have shown that there is the possib
for certain values of dielectric constants and wire radius
having a crossing between the volume and surface s
energies. Finally, decreasing the wire radius the renorma
tions due to volume confined phonon may become less
portant of those due to surface phonons. The strength of
effect decreases when the dielectric constant of the em
ding medium increases and approaches the value of the
electric constant of the wire. We believe that these res
may be relevant in the physics of colloidally synthesiz
semiconductor nanocrystals1 and in establishing their physi
cal chemistry properties.29
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APPENDIX

The Fröhlich Hamiltonian for a bulk polar material is

H5
p2

2m*
1(

KW
\v0aKW

†
aKW 1(

KW
~VKW eiKW •rWaKW 1H.c.!,

~A1!

with

VKW 5F4paRp

SL

~\v0!2

k21kz
2 G 1/2

, ~A2!
v.

tte

20541
e
or-
r
er
e-
es
x-

gy
re
re
y,
f
lf-
a-
-
is
d-

di-
ts

/

where the phonon wave vector isKW 5(kW ,kz) and S is the
normalization cross-sectional area andL its length. In order
to rewrite Hamiltonian~A1! in cylindrical coordinates we
transform canonically the boson operatoraKW ~which we write
asakW ,kz

) into the angular momentum representation

ak,kz ,m5AkF S

~2p!2G 1/2E
0

2p

Qm* ~wkW !akW ,kz
dwkW , ~A3!

where

Qm~w!5
1

A2p
eimw. ~A4!

Using Eq.~A3! and the expansion

eikW•rW52p (
m52`

`

~ i !mJm~kr!Qm~w!Qm* ~wkW !, ~A5!

wherewkW is thekW polar angle, the Hamiltonian in Eq.~A1!
becomes

H5
p2

2m*
1(

mkz

E
0

`

dk\v0ak,kz ,m
† ak,kz ,m

1(
mkz

E
0

`

dk@VkW ,kz
Tk,n~r!Qm~w!

3eikzzak,kz ,m1H.c.#, ~A6!

where

Tk,m~r!5AkS~ i !mJm~kr!.

The Hamiltonian of Eq.~A6! has been used with the con
fined ground electron state for the self-energy calculat
whose results are shown in panel~b! of Fig. 1.
J.

n,

tus
1P. Moriarty, Rep. Prog. Phys.64, 297 ~2001!.
2M. A. Stroscio, Phys. Rev. B40, 6428~1989!.
3J. J. Licari and R. Evrard, Phys. Rev. B15, 2254~1977!.
4W. S. Li, S. W. Gu, T. C. Au-Yeung, and Y. Y. Yeung, Phys. Re

B 46, 4630~1992!.
5K. D. Zhu and S. W. Gu, Solid State Commun.80, 307 ~1991!.
6N. C. Constantinou and B. K. Ridley, Phys. Rev. B41, 10 627

~1990!.
7W. S. Li and C. Y. Chen, Physica B229, 375 ~1997!.
8H. J. Xie, C. Y. Chen, and B. K. Ma, Phys. Rev. B61, 4827

~2000!.
9R. Enderlein, Phys. Rev. B47, 2162~1993!.

10W. D. Sheng, Y. Q. Xiao, and S. W. Gu, J. Phys.: Condens. Ma
 r

5, L129 ~1993!.
11F. A. P. Osorio, M. H. Degani, and O. Hipolito, Phys. Rev. B52,

4662 ~1995!.
12I. Zorkani and L. Filali, Phys. Status Solidi B215, 999 ~1999!.
13E. P. Pokatilov, V. M. Fomin, S. N. Balaban, S. N. Klimin, and

T. Devreese, Phys. Status Solidi B210, 879 ~1998!.
14D. S. Chuu, Y. N. Chen, and Y. K. Lin, Physica B291, 228

~2000!.
15E. P. Pokatilov, S. N. Klimin, S. N. Balaban, and V. M. Fomi

Phys. Status Solidi B189, 433 ~1995!.
16T. Q. Lu, Y. S. Zheng, C. X. Zhang, and W. H. Wu, Phys. Sta

Solidi B 197, 399 ~1996!.
17L. Wendler, Physica B270, 172 ~1999!.
5-6



u,

hy
nd

POLARONS IN CYLINDRICAL QUANTUM WIRES PHYSICAL REVIEW B65 205415
18B. Tanatar, K. Gu¨ven, C. R. Bennett, and N. C. Constantino
Phys. Rev. B53, 10 866~1996!.

19G. Q. Hai, F. M. Peeters, J. T. Devreese, and L. Wendler, P
Rev. B48, 12 016~1993!.

20C. R. Bennett, K. Gu¨ven, and B. Tanatar, Phys. Rev. B57, 3994
~1998!.

21T. D. Lee, F. Low, and D. Pines, Phys. Rev.90, 297 ~1953!.
22G. Iadonisi, Nuovo Cimento7, 1 ~1984!.
20541
s.

23D. Ninno and G. Iadonisi, Phys. Rev. B39, 10 963~1989!.
24J. Pollmann and H. Bu¨ttner, Phys. Rev. B16, 4480~1977!.
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