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Competing mechanisms for step meandering in unstable growth
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The meander instability of a vicinal surface growing under step flow conditions is studied within a solid-
on-solid model. In the absence of edge diffusion the selected meander wavelength agrees quantitatively with
the continuum linear stability analysis of Bales and Zangwill@Phys. Rev. B41, 4400~1990!#. In the presence
of edge diffusion a local instability mechanism related to kink rounding barriers dominates, and the meander
wavelength is set by one-dimensional nucleation. The long-time behavior of the meander amplitude differs in
the two cases, and disagrees with the predictions of a nonlinear step evolution equation@O. Pierre-Louiset al.,
Phys. Rev. Lett.80, 4221~1998!#. The variation of the meander wavelength with the deposition flux and with
the activation barriers for step adatom detachment and step crossing~the Ehrlich-Schwoebel barrier! is studied
in detail. The interpretation of recent experiments on surfaces vicinal to Cu~100! @T. Maroutianet al., Phys.
Rev. B 64, 165401~2001!# in the light of our results yields an estimate for the kink rounding barrier at the
close-packed steps.
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I. INTRODUCTION

It has been shown in several experiments and comp
simulations that during epitaxial growth on a vicinal crys
surface, straight steps are unstable against the formatio
an in-phase meander.1,2 The phenomenon was first predicte
theoretically by Bales and Zangwill~BZ! within a continuum
theory.3 According to BZ, step meandering is caused by
energy barrier, the Ehrlich-Schwoebel~ES! barrier,4 which
suppresses the attachment of surface atoms to the step
the terrace above. The preferential attachment from be
implies that protrusions in the step are amplified, leading
linear diffusional instability.

Recent experimental measurements of the meander w
length on vicinal copper surfaces5,6 showed significant dis-
agreement with the predictions of the BZ theory. This has
to a search for alternative sources of instability.7–9 The most
prominent alternative mechanism is the kink Ehrlic
Schwoebel effect~KESE!, which invokes a kinetic barrie
that prevents atoms diffusing along step edges to cross
ners or kinks.10–12 In close analogy to the ES instability o
singular crystal surfaces,13–15 this induces a destabilizing
mass current along the step.

In this article we present kinetic Monte Carlo~KMC!
simulations of step meandering which display both types
instabilities within a single model. The relative importan
of the KESE vs the BZ instability can be tuned through t
facility of step-edge diffusion. By explicitly relating the pa
rameters of the KMC model to those of the continuu
theory, we show that the meander wavelength can be q
titatively predicted in both instability regimes. Our stud
thus proves the feasibility of extracting kinetic barriers fro
experimental meander morphologies. The simulations a
provide some insight into the long-time behavior of the m
ander amplitude, which can be compared to the predicti
of nonlinear continuum equations.16–18
0163-1829/2002/65~20!/205411~7!/$20.00 65 2054
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The model employed in our work is described in Sec.
Section III summarizes the predictions of continuum theo
for the meander wavelength, and explains how the mate
parameters of the continuum description are determined
the KMC model. The simulation results are presented in S
IV. We provide some discussion of the applicability of th
KESE scenario to the experiments6 on Cu~100! in Sec. V,
and conclude in Sec. VI.

II. MODEL

We employ a standard solid-on-solid~SOS! model,19 in
which the crystal surface is represented by columns of in
ger heighthr on a square lattice of substrate sitesr . The
elementary processes are the deposition of atoms at raF
and the hopping of adatoms to nearest-neighbor sites wi
rate

r 5r 0exp~2Ea /kBT!. ~1!

The activation barrierEa depends on the local configuratio
through

Ea5ES1niEn1~ni2nf !Q~ni2nf !EBB

1~mi2mf !Q~mi2mf !EES, ~2!

whereES is the energy barrier for diffusion on a flat terrac
En is the contribution of a nearest-neighbor bond to the
ergy barrier,EBB is an additional energy cost for bond brea
ing, and EES is the ES barrier;ni denotes the number o
in-plane nearest neighbors before the hop andnf after the
hop, whilemi andmf are the number of next-nearest neig
bors in the planes beneath and above before (mi) and after
(mf) the hop. The Heaviside functionQ(x)51 if x.0, and
0 otherwise.

The implementation of the ES barrier through the chan
in the number of out-of-plane next-nearest neighbors
©2002 The American Physical Society11-1
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FIG. 1. Evolution of a vicinal
surface with initially straight steps
under the dynamics of model I
Snapshots show a 1203500 piece
of a larger system (12031000
with 20 steps! after deposition of
50, 100, and 200 ML. The deposi
tion flux was F50.2 ML/s, and
the other parameters are as d
scribed in the text.
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been used in several earlier growth studies,2,20,21and the ad-
ditional bond breaking energyEBB was introduced in the
context of ion sputtering.22 The rates defined by Eqs.~1! and
~2! satisfy detailed balance with respect to the Hamiltoni

H5 (
^r ,r8&

@EKuhr2hr8u1EES~ uhr2hr8u21!

3Q~ uhr2hr8u21!#. ~3!

The sum runs over all nearest-neighbor pairs, and

EK5 1
2 ~En1EBB! ~4!

is the energy per unit length of a single height step runn
along one of the lattice axes; for the SOS model, this is a
the kink energy. The detailed balance condition is ea
checked by noting that the rates can be written as a pro
of Arrhenius @the term proportional toEn in Eq. ~2!# and
Metropolis~terms proportional toEBB andEES) dynamics,21

each of which fulfill detailed balance with respect to part
the Hamiltonian~3!.

SettingEBB50 the model, called hereaftermodel I, does
not include diffusion along the step edges, because the
ping rate along the step is equal to the rate of detachm
from the step. Edge diffusion is facilitated compared to d
tachment ifEBB.0 ~hereafter calledmodel II!. Model II also
20541
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contains a kink ES barrier, since atoms cannot round corn
without detaching from the edge.

The simulations were carried out on rectangular lattic
with periodic boundary conditions in the step direction a
helical boundary conditions in the direction of the vicinalit
The initial step spacing was typicallyl 56 ~exceptions are
noted in the figure captions!. For both models the values fo
the activation barriers were set toES50.35 eV, En
50.21 eV andEES50.15 eV, EBB50 for model I and for
model II we putEBB5En50.21 eV. The temperature wa
T5375 K, the diffusion prefactorr 05231011 s21 (r 054
31012 s21) for model I ~model II!, and the deposition flux
was varied in the rangeF50.005– 1.0 ML/s. These choice
were motivated mainly by our desire to study the variation
the meander wavelength over a range of control parame
without being strongly affected by finite-size effects and lim
ited computer time. In particular, the different diffusion pre
actors for the two models were chosen only to be able
study both models in the same range of flux and temperat
and do not carry any physical significance.

Typical configurations generated in the simulations
shown in Figs. 1, 2, and 3. For both models the initia
straight steps form an in-phase meander pattern with a c
acteristic wavelength. The selected wavelength remains c
stant during growth. The dependence of the meander wa
length on the model parameters is the main focus of
s

-
e

FIG. 2. Evolution under the
dynamics of model II. Snapshot
show a 1203500 piece of a larger
system (1203800 with 20 steps!
after deposition of 5, 20, and 60
ML. The deposition flux wasF
50.01 ML/s, and the other pa
rameters are as described in th
text.
1-2
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COMPETING MECHANISMS FOR STEP MEANDERING IN . . . PHYSICAL REVIEW B65 205411
following discussion. Some aspects of the temporal evo
tion of the pattern will be addressed in Sec. IV D.

III. RELEVANT LENGTH SCALES

Before turning to the quantitative analysis of the simu
tions, we summarize the available theoretical predictions
the length scale of the meander instability.

A. Bales-Zangwill instability

The BZ analysis proceeds by solving a diffusion equat
for the adatom concentration with boundary conditions giv
by the attachment-detachment kinetics at the steps. It
dicts an in-phase meander23 with a dominant wavelength18

lBZ54pAG~V lDceq
0 1asst!

V f SFl 2
. ~5!

HereV denotes the atomic area anda is the lattice spacing
All kinetic and thermodynamic parameters entering Eq.~5!
can be expressed in terms of the microscopic rates and e
gies of the KMC model. The diffusion coefficient on th
terrace readsD5r 0exp(2ES/kBT), and the step edge stiff
ness is given by24 G52a sinh2(EK/2kBT). To calculate the
equilibrium adatom concentrationceq

0 and the mobilitysst

along the step edge, it is useful to consider the step a
one-dimensional~1D! SOS interface in equilibrium with the
adatom gas on the terrace. For model I the transition rates
of Arrhenius form, i.e., dependent only on the configurat
before the jump, and exact results forceq

0 and sst can be
found.25 We obtain ceq

0 5exp(22En /kBT) and sst

5(D/2)exp(22En /kBT).
For model II the transition rates are no longer of Arrhe

ius type, and the exact results25 cannot be directly applied
Within linear fluctuation theory, the step edge mobility h
been estimated assst5a2/tL , wheretL is the characteristic
time for detachment from a kink.26 For our model II this
yields

sst'D exp@2~2En1EBB!/kBT#. ~6!

FIG. 3. Step configurations for models I~upper panel! and II
~lower panel! after deposition of 75 ML at a deposition fluxF
50.5 ML/s ~model I! and F50.01 ML/s ~model II!. The figures
show part of a 8003120 lattice with 20 steps.
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Strictly speaking, Eq.~6! has to be modified in the presenc
of kink ES barriers which reduce mass transport along
edge. A detailed analysis27 shows that an additional KESE
barrier EKES becomes relevant whenEKES.EK . In our
simulationsEKES'EBB<EK always, so Eq.~6! suffices. The
terrace adatom concentration is generally given by the
pressionceq

0 5exp(2DE/kBT), whereDE54EK is the forma-
tion energy for moving an adatom from a kink to th
terrace.28

The strength of the ES effect is contained in the param
f S5( l 22 l 1)/( l 1 l 21 l 1), where the length scales14,28 l 6

5D/k6 are inversely proportional to the attachment rates
adatoms approaching the step from below (k1) or above
(k2) ( l 2 is also known15 as the ES lengthl ES). For the
KMC model we estimate

k15D, k2'D exp~2EES/kBT!. ~7!

In fact the rate of attachment from the upper terrace depe
on the microscopic configuration of the step. A direct test
relation ~7! is presented below in Sec. IV C.

The expression used above for the edge mobilitysst is
valid only on length scales longer than the kink distancel K
'(1/2)exp(EK /kBT). On shorter scales edge diffusion
much more efficient, and the expression for the character
meander wavelength must be replaced by9

l̃BZ521/4Al KplBZ
1/2 ~8!

when edge diffusion dominates andl K@lBZ .

B. KESE instability

Step meandering due to the KESE can be discussed10 in
analogy to the ES instability of a one-dimension
surface.13,15 The characteristic wavelength depends on
one-dimensionalnucleation length lD , which is defined as
the average distance between two dimers that are nucle
on a straight step at the beginning of deposition, and the k
ES lengthl KES'exp@EKES/kBT#. For a strong KESE, in the
sense thatl D! l KES, the initial meander wavelength isl D ,
while for a weak KESE (l D@ l KES) it is of the order of13,14

lw'~ l D / l KES!1/2l D . ~9!

From one-dimensional nucleation theory the expression

l D5~12Dst /Fl !1/4 ~10!

for the nucleation length can be derived;29 hereFl is the flux
of terrace atoms onto the step. In contrast to the mobi
sst , the edge diffusion coefficientDst refers to the motion of
an edge atom along astraight step without kinks, and is
given byDst5D exp(2En /kBT) in the SOS model.

It should be noted that Eqs.~9! and ~10! apply to a 1D
surface in the absence of desorption; for a step this trans
into neglecting the detachment from the step. This appro
mation clearly breaks down as the bond breaking barrierEBB
approaches zero. Including the detachment from the step
troduces a new length scale into the problem, namely,
diffusion lengthxs5ADstt. Here t is the time an adatom
diffuses along a straight step before being ‘‘evaporated’’
1-3
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JOUNI KALLUNKI, JOACHIM KRUG, AND MIROSLAV KOTRLA PHYSICAL REVIEW B 65 205411
the terrace, andxs the distance the atom travels alon
the step in time intervalt. A lower bound fort is given by
the detachment rate from the straight stept21

5Dstexp(2EBB /kBT). In reality detached atoms have a hig
probability of reattachment, and thus the real evapora
time t is longer. A lower bound for the diffusion length the
readsxs5exp(EBB/2kBT). Repeating the calculation of th
nucleation length for a 1D surface with desorption,27 one
arrives at an expression for the nucleation length in the li
xs! l D , which reads

l D5S Dst

Fl D 1/2 1

xs
. ~11!

The same result can also be obtained by applying the sca
arguments of Jensenet al.30 in one dimension. For genera
values ofxs , l D is given as the solution of a transcenden
equation. A simple expression interpolating between the
cases~10! and ~11! reads

l D5S Dst

Fl D 1/4F121/41
1

xs
S Dst

Fl D 1/4G . ~12!

In the case of a weak KESE, repeating the calculation
Politi and Villain13 with desorption, one finds27 that for xs
! l KES! l D the most unstable wavelength is of the order

lw' l D
2 /xs , ~13!

which replaces Eq.~9!.

IV. SIMULATION RESULTS

A. Meander mechanisms

Figure 4 shows the meander wavelength as a functio

FIG. 4. Meander wavelength as a function of flux for model
~circles! and II ~diamonds!. Each symbol represents a single run
a lattice of size 1000330 with five steps. The error bars refer to th
variation of the wavelength within the configuration. For som
fluxes results for a lattice of size 1200330 have also been included
The simulations were run until the meander wavelength was cle
visible. The BZ length@Eq. ~5!# is plotted as a full line for model I
and a short-dashed line for model II. The long-dashed line is
nucleation length@Eq. ~10!# for model II.
20541
n

it

ng

l
o

f

of

deposition flux obtained from our KMC simulations. Th
wavelength was extracted from the profiles directly by m
suring the distance between subsequent minima in a si
profile. The error bars refer to the variation of the wav
length within a single profile. For model I the wavelength
found to scale asF20.4760.06, in qualitative agreement with
both the BZ lengthlBZ and the nucleation lengthl D in the
detachment-dominated limit@Eq. ~11!; for model I, xs'1
! l D]. Quantitatively the results are found to agree withlBZ
for the parameters used in the simulations, while the nu
ation lengthl D is smaller by approximately a factor 1/2.
more convincing piece of evidence for the Bales-Zangw
mechanism is the dependence of the meander waveleng
the Ehrlich-Schwoebel barrierEES, which is discussed be
low in Sec. IV C. The nucleation length is obviously ind
pendent ofEES.

For model II the meander wavelength scales
F20.2860.05, which disagrees with the BZ theory but is co
sistent both with the modified BZ length@Eq. ~8!#, and with
the nucleation length@Eq. ~10!# in the absence of detach
ment. However, Eq.~8! predicts a prefactor that is one ord
of magnitude too large. This is not surprising, since Eq.~8!
was derived for steps close to thermal equilibrium;9 under
growth conditions the kink density is much larger than
equilibrium value.

Including detachment and using the lower boundxs
5exp(EBB/2kBT) as an approximation for the diffusio
length yields an upper bound for the nucleation length. E
pressions~10! and~12! thus give lower and upper bounds fo
the nucleation length, which differ approximately by a fact
of 2. The lower bound@Eq. ~10!# is seen to quantitatively
describe the simulation data for model II, which shows th
for model II the detachment may be neglected. This confir
that one-dimensional nucleation is the relevant wavelen
selection mechanism under conditions of facile edge dif
sion, in accordance with the conclusions from previo
experimental5 and simulational7,8 work on surfaces vicinal to
Cu~100!.

However, the meander wavelength by itself does
uniquely specify the instability mechanism. The BZ theo
predicts a band of unstable wavelengths extending over
interval (lmin ,`), wherelmin5lBZ /A2 andlBZ , as given
by Eq.~5!, is the wavelength of perturbations with the max
mal growth rate. Numerical studies of a nonlinear evoluti
equation for the in-phase meander show that initial wa
lengths betweenlmin andlmax'3lBZ are preserved during
growth.17 Thus deviations from the BZ prediction@Eq. ~5!#
can be attributed partly to a wavelength different fromlBZ
which dominates the spectrum of initial perturbations. In t
context it is important to note that, for small fluxes, th
wavelength measured for model II issmaller than the mini-
mal unstable wavelengthlmin of BZ theory; this can be see
by shifting the short-dashed line in Fig. 4, which represe
lBZ for model II, downward by a factor ofA2. This proves
that for model II an instability mechanism different from th
BZ mechanism—the KESE—is the cause of the meande

B. Crossover between the two mechanisms

Which of the two meander mechanisms is operative
pends on the importance of step edge diffusion and on

I
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COMPETING MECHANISMS FOR STEP MEANDERING IN . . . PHYSICAL REVIEW B65 205411
strength of the KESE barrier. In our SOS model both
controlled by the bond breaking barrierEBB . Thus decreas-
ing EBB should lead to a crossover from the KESE instabil
to the BZ instability.

Simulation results for various values ofEBB are shown in
Fig. 5. The wavelength was determined by counting
number of minima in the step profile on a finite samp
Reported wavelengths are averages over five indepen
runs and the error bars are the standard deviations. Sinc
bond breaking barrier enters the kink energy through Eq.~4!,
the predicted length scales@Eqs.~5! and ~12!# both increase
with decreasingEBB in a qualitatively similar manner. In
addition, the decrease of the KESE barrier implies a tra
tion from the strong KESE regime to the weak KESE
gime. The numerical data clearly show that forEBB
.0.10 eV the meander wavelength is set by the nuclea
length l D , while for EBB,0.05 eV the simulations are con
sistent only with the BZ length, because the nucleat
length is considerably smaller, and the weak KESE len
@Eq. ~13!# is much larger than the actual meander wa
length.

C. Variation of the ES barrier

As a further test of BZ prediction~5! we have measured
the meander wavelength in model I for different values of
ES barrier. At T5375 K and with the barrierEES
50.15 eV used above, the Schwoebel lengthl 2'104@ l
and l 151, so thatf S'1 in Eq. ~5!. To study the effect of a
finite ES length we carried out simulations with a sing
terrace31 of width l 515, varying the ES barrier betwee
EES50.06 and 0.20 eV (l 256 –487), while keeping the
other barriers at the values given previously. Again, the
erage wavelengths were calculated from five independ

FIG. 5. The observed wavelengths~circles! for various values of
the bond-breaking barrierEBB . The full line is the nucleation length
@Eq. ~12!#, the dashed line the BZ length@Eq. ~5!#, and the dot-
dashed line the meander wavelength@Eq. ~13!# for weak KESE. The
crossover between the two meander mechanisms occurs ar
EBB'0.05 eV. Each point is an average over five independent r
on a 250 . . .1500330 lattice with three steps~step spacingl
510).
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runs. Figure 6 shows that the dependence of the mea
wavelength on the ES barrier is qualitatively described
BZ theory, but Eq.~5! is not quantitatively accurate. The tru
ES length appears to be smaller than that given in Eq.~7! by
about a factor 1/4, which corresponds to a reduction of
ES barrier by 0.04 eV. This cannot be a simple effect of s
roughness, since the implementation of the ES barrier u
in the present work in fact implies that the approach to
kinked step involves ahigher barrier than to a straight step
This issue deserves further consideration.

D. Temporal evolution

The two models can be distinguished with regard to
dynamics of meander formation. For model I the steps m
ander in phase from the beginning, whereas for model II
meander starts with random phase shifts between the s
~compare the early time configurations in Figs. 1 and!.
Later on, as the meander amplitude grows and the step-
interaction through the diffusion field becomes effective, t
correlations between the steps grow, leading asymptotic
to an in-phase step train. In light of the two different mech
nisms these observations are easy to understand: Sinc
model I the meander is due to the BZ instability, the st
train is expected to be in phase from the beginning, t
being the fastest growing mode;23 for model II the meander
starts independently at each step since the meander is d
the local adatom dynamics at the step edge.

We turn next to the time evolution of the meander amp
tude, which also differs for the two models~Fig.7!. We con-
sider the step widthw defined by

w2[L21(
x51

L

@y~x!#2, ~14!

where thex coordinate is directed along the step,L is the step
length, andy(x) is the step position relative to its mean. F
model II, w(t) increases very rapidly at the beginning, b
asymptotically saturates.33 In contrast, for model I the step
width was found to increase linearly in time for the longe

nd
s

FIG. 6. Meander wavelength as a function of the ES len
l ES5D/k2 for model I atF50.25 ML/s. Each symbol is an aver
age over five runs on a lattice of size 1250315 containing a single
step~step spacingl 515). The dashed line shows the BZ predictio
@Eq. ~5!#.
1-5
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times we could access.32 Both observations are at varianc
with the predictions of a nonlinear step evolution equat
for the in-phase meander,16–18 which predicts thatw;At.

Our results also contradict earlier Monte Car
simulation,16 in which the steps were described by sing
valued functions, thus prohibiting step overhangs and vo
and nucleation on the terraces was not allowed for. In th
simulations a regime withw;At was observed at long
times. A direct comparison of the two sets of simulations
not possible, however, because of the rather different ch
of parameters. In the earlier work of Ref. 16, the concen
tion of adatoms was set to a valueceq

0 50.119, which is sev-
eral orders of magnitude larger than in our simulations.
fact, at such high adatom concentrations step flow is ha
possible, if the nucleation on the terraces is not artificia
suppressed. For this reason we cannot reproduce the c
tions used in the earlier simulations.16

The linear amplitude growth in model I suggests th
minima and maxima of the step meander move at differ
velocities. This may be due to diffusional screening, wh
prevents adatoms from reaching the narrow fjords separa
the cells in the upper panel of Fig. 3. In model II the fjor
are wider, because adatoms are able to fill them up thro
edge diffusion. The saturation of the amplitude in mode
may be related to the stabilizing character of the KESE s
current at large slopes.10,12

V. RELATION TO EXPERIMENTS ON CU „100…

In this section we briefly comment on the relevance of o
work for the experimentally observed meander instability6 on
surfaces vicinal to Cu~100!. In these experiments two differ
ent vicinal surfaces were considered, which consist of den
packed^110& steps and open̂100& steps, respectively.

For the dense-packed^110& steps, edge diffusion is muc
more facile than detachment, so the scenario of our mod
should apply. Indeed, using expression~10! for the one-
dimensional nucleation length to interpret the experiment

FIG. 7. Average step widthw as a function of time for model I
@upper panel,F50.1 (s), 0.4 (h), and 0.8 (L) ML/s# and model
II @lower panel;F50.05 (!), 0.2 (L), 0.4 (h), and 0.8 (n)
ML/s#, from single runs on a lattice of size 500330 with five steps.
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measured activation energyEa50.092 eV of the meande
wavelengthl;e2Ea /kBT, one obtains an energy barrierEst

54Ea50.37 eV for diffusion along a straight edge, whic
is consistent with the estimateEst50.4560.08 eV derived
from the analysis of time-dependent scanning tunneling
croscopy observations.34 Also the flux dependence of~10! as
F21/4 agrees with the experimental power law exponent
20.2160.08.

What is missing to complete the picture is some dir
experimental evidence for a~strong! KESE at the^110&
step.35 Here we want to point out that indirect evidence of
kink ES barrier follows from a comparison of the grow
experiments6 with step fluctuation measurements. Using t
accepted value36 EK'0.13 eV for the kink energy, the mea
surement of the prefactor of the temporal step correlat
function37 yields the estimateEs'0.91 eV for the activa-
tion energy of the step-edge mobilitysst . It was mentioned
above in Sec. III that, in the absence of a strong KESE,
can be identified with the energy barrierEdet for the detach-
ment of a step adatom from a kink. In a simple bon
counting approximation ~which is supported by
effective-medium38 and embedded-atom39 calculations! the
detachment barrier is given byEdet'Est12EK . Using the
value ofEst determined from the meander wavelength of t
^110& step, this yieldsEdet'0.63 eV, which is much smalle
than the step fluctuation estimate ofEs .

The discrepancy strongly suggests that the migration
atoms along the kinked step is suppressed by an additi
kink ES barrierEKES. The quantitative analysis27 shows that
for EKES.EK , the activation energy forsst is given byEs

5Edet1EKES2EK , which, using the numbers quoted abov
yields the estimateEKES'0.41 eV. In agreement with sem
empirical calculations,38,39 the additional kink barrier is
found to be comparable to the barrierEst for diffusion along
a straight step.

The situation is rather different for the open^100& step, at
which a meander instability with similar characteristics h
been observed.6 Maroutian et al. identified the measured
wavelength for the open step with the one-dimensio
nucleation length~10!. This interpretation seems questio
able for the following two reasons. First, since the open s
can be viewed as being composed entirely of^110& kinks,
the edge diffusion barrierEst is expected to be much large
than along the close-packed step,40 while the additional bar-
rier for detachment from a kink~which is related to the en
ergy of ^100& kinks! is much smaller.39 Under these condi-
tions the initial growth of the step is not well described
the picture of one-dimensional nucleation. Second, sym
try arguments10,12show that the step-edge current induced
the KESE shouldstabilize, rather than destabilize the ope
step. Thus the mechanism which could lead to an instab
on the scale of the nucleation length is absent.

This leaves the BZ instability as the most plausible ins
bility mechanism.41 However, neither the activation energ
~as estimated from known energetic parameters36,38,39! nor
the F21/2 dependence predicted by Eq.~5! matches the ex-
perimentally determined meander wavelength.5,6 In addition,
in KMC simulations of Cu~100!, the surface composed o
1-6
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^100& steps was found to be stable;7 possibly this reflects the
stabilizing KESE. The experimentally observed instability
the open step thus poses a major puzzle at the moment

VI. CONCLUSION

In summary, we have studied the unstable growth dyna
ics of vicinal surfaces using a SOS model with two differe
choices of atomic processes. It was shown that in both c
the steps form an in-phase wave pattern. The forma
mechanism and the wavelength of the pattern depend
whether the diffusion of adatoms along the step edge
significant or not. In the case where step edge diffusion
negligible the wavelength was found to be correctly p
dicted by the continuum theory of BZ, while in the case
facile edge diffusion~combined with an ES barrier at kinks!
it is set by the one-dimensional nucleation length.

In both cases good agreement between the KMC sim
tions and the analytical predictions@Eqs.~5! and~10!# for the
ill,
,
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meander wavelength was achievedwithout any adjustable
parameters. However, the asymptotic time evolution of th
step profile disagrees with the prediction of an effective s
evolution equation.16–18Whether this disagreement is due
different physics described by the continuum and discr
models or due to the approximations made deriving the s
equation remains to be clarified.
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