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Competing mechanisms for step meandering in unstable growth
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The meander instability of a vicinal surface growing under step flow conditions is studied within a solid-
on-solid model. In the absence of edge diffusion the selected meander wavelength agrees quantitatively with
the continuum linear stability analysis of Bales and Zangj#hys. Rev. B41, 4400(1990]. In the presence
of edge diffusion a local instability mechanism related to kink rounding barriers dominates, and the meander
wavelength is set by one-dimensional nucleation. The long-time behavior of the meander amplitude differs in
the two cases, and disagrees with the predictions of a nonlinear step evolution efDafRierre-Louiset al,,

Phys. Rev. Lett80, 4221(1998]. The variation of the meander wavelength with the deposition flux and with
the activation barriers for step adatom detachment and step cr@gsinghrlich-Schwoebel barrieis studied

in detail. The interpretation of recent experiments on surfaces vicinal (@00Ou[T. Maroutianet al,, Phys.
Rev. B 64, 165401(2001)] in the light of our results yields an estimate for the kink rounding barrier at the
close-packed steps.

DOI: 10.1103/PhysRevB.65.205411 PACS nunider81.10.Aj, 05.70.Ln, 68.35.Bs

[. INTRODUCTION The model employed in our work is described in Sec. Il.
Section Il summarizes the predictions of continuum theory

It has been shown in several experiments and computder the meander wavelength, and explains how the material
simulations that during epitaxial growth on a vicinal crystal parameters of the continuum description are determined for
surface, straight steps are unstable against the formation 8¢ KMC model. The simulation results are presented in Sec.
an in-phase meand&f. The phenomenon was first predicted V. We provide some discussion of the applicability of the
theoretically by Bales and ZangwilBZ) within a continuum KESE scenario to the experimefitsn CU100) in Sec. V,
theory? According to BZ, step meandering is caused by ar@nd conclude in Sec. VI.
energy barrier, the Ehrlich-Schwoeb@&$9) barrier* which
suppresses the attachment of surface atoms to the step from Il. MODEL
the terrace above. The preferential attachment from below
implies that protrusions in the step are amplified, leading to Y
linear diffusional instability.

Recent experimental measurements of the meander wav
length on vicinal copper surfacesshowed significant dis-
agreement with the predictions of the BZ theory. This has le
to a search for alternative sources of instabilityThe most
prominent alternative mechanism is the kink Ehrlich- r=roexp(—E,/kgT). 1)
Schwoebel effectKESE), which invokes a kinetic barrier
that prevents atoms diffusing along step edges to cross cofhe activation barrieg, depends on the local configuration
ners or kinks:®=*?In close analogy to the ES instability of through
singular crystal surfaces;*® this induces a destabilizing
mass current along the step. Ea=EstniEy+(ni—np)O(ni—n¢)Egs

_ In th_is article we present_ kineti_c qute Car[&MC) +(m—m;) @ (m;— my)Egs, )
simulations of step meandering which display both types of
instabilities within a single model. The relative importancewhereEs is the energy barrier for diffusion on a flat terrace,
of the KESE vs the BZ instability can be tuned through theE, is the contribution of a nearest-neighbor bond to the en-
facility of step-edge diffusion. By explicitly relating the pa- ergy barrierEgg is an additional energy cost for bond break-
rameters of the KMC model to those of the continuuming, andEgs is the ES barriern; denotes the number of
theory, we show that the meander wavelength can be quain-plane nearest neighbors before the hop andfter the
titatively predicted in both instability regimes. Our study hop, whilem; andm; are the number of next-nearest neigh-
thus proves the feasibility of extracting kinetic barriers frombors in the planes beneath and above befang @nd after
experimental meander morphologies. The simulations als¢m;) the hop. The Heaviside functio® (x)=1 if x>0, and
provide some insight into the long-time behavior of the me-0 otherwise.
ander amplitude, which can be compared to the predictions The implementation of the ES barrier through the change
of nonlinear continuum equation®:*® in the number of out-of-plane next-nearest neighbors has

We employ a standard solid-on-soli§0S model®® in

hich the crystal surface is represented by columns of inte-
ger heighth, on a square lattice of substrate sitesThe
€lementary processes are the deposition of atoms atrate
cfmd the hopping of adatoms to nearest-neighbor sites with a
rate
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FIG. 1. Evolution of a vicinal
surface with initially straight steps
under the dynamics of model I.
Snapshots show a 12®00 piece
of a larger system (1201000
with 20 steps after deposition of
50, 100, and 200 ML. The deposi-
tion flux was F=0.2 ML/s, and
the other parameters are as de-
scribed in the text.

been used in several earlier growth studié%?*and the ad- contains a kink ES barrier, since atoms cannot round corners

ditional bond breaking energigg was introduced in the without detaching from the edge.

context of ion sputtering’ The rates defined by Eqgl) and The simulations were carried out on rectangular lattices

(2) satisfy detailed balance with respect to the Hamiltonian:with periodic boundary conditions in the step direction and
helical boundary conditions in the direction of the vicinality.

_ The initial step spacing was typically=6 (exceptions are
- - ! + - 1 . . .
H E,) [Ex[he=hr|+Eesl [ =hp/[~1) noted in the figure captioihsFor both models the values for
the activation barriers were set t&s=0.35 eV, E,
XO(lh,—hp|—1)]. (8 =0.21 eV andEgs=0.15 eV, Egg=0 for model | and for

model Il we putEgg=E,=0.21 eV. The temperature was
T=375 K, the diffusion prefactor,=2x10" st (r,=4
Ex=1(E,+Egg) 4) X 102 sfl)'for model | (model II), and the deposition flux
was varied in the rangé=0.005—-1.0 ML/s. These choices
is the energy per unit length of a single height step runningvere motivated mainly by our desire to study the variation of
along one of the lattice axes; for the SOS model, this is alsthe meander wavelength over a range of control parameters
the kink energy. The detailed balance condition is easilyithout being strongly affected by finite-size effects and lim-
checked by noting that the rates can be written as a produdted computer time. In particular, the different diffusion pref-
of Arrhenius[the term proportional t&E, in Eq. (2)] and  actors for the two models were chosen only to be able to
Metropolis (terms proportional t&gs andEgg) dynamics?®  study both models in the same range of flux and temperature,
each of which fulfill detailed balance with respect to part ofand do not carry any physical significance.
the Hamiltonian(3). Typical configurations generated in the simulations are
SettingEgg=0 the model, called hereaftenodel | does shown in Figs. 1, 2, and 3. For both models the initially
not include diffusion along the step edges, because the hoptraight steps form an in-phase meander pattern with a char-
ping rate along the step is equal to the rate of detachmerscteristic wavelength. The selected wavelength remains con-
from the step. Edge diffusion is facilitated compared to de-stant during growth. The dependence of the meander wave-
tachment ifEgg>0 (hereafter callednodel I)). Model Il also  length on the model parameters is the main focus of the

The sum runs over all nearest-neighbor pairs, and

FIG. 2. Evolution under the
dynamics of model Il. Snapshots
show a 12& 500 piece of a larger
system (12& 800 with 20 steps
after deposition of 5, 20, and 60
ML. The deposition flux wasF
=0.01 ML/s, and the other pa-
rameters are as described in the
text.
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Strictly speaking, Eq(6) has to be modified in the presence
of kink ES barriers which reduce mass transport along the
edge. A detailed analy$isshows that an additional KESE
barrier Exgs becomes relevant whekyges>Eyx. In our
simulationsEygs~Egg<Ey always, so Eq(6) suffices. The
terrace adatom concentration is generally given by the ex-
pressiom8q= exp(—AE/KgT), whereAE=4E is the forma-
tion energy for moving an adatom from a kink to the
terrace?®

The strength of the ES effect is contained in the parameter
fs=(_—1,)/(I+1_+1,), where the length scal¥s®|..
=D/k. are inversely proportional to the attachment rates for
0 100 200 300 400 500 adatoms approaching the step from beloky. X or above
(k_) (I_ is also knowr® as the ES lengthgg). For the
KMC model we estimate
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FIG. 3. Step configurations for models(upper pangland I
(lower panel after deposition of 75 ML at a deposition flux
=0.5 ML/s (model ) and F_=0.0_1 ML/s (model 1l). The figures k,=D, k_~D exp(—Egs/kgT). )
show part of a 808 120 lattice with 20 steps.

In fact the rate of attachment from the upper terrace depends
following discussion. Some aspects of the temporal evoluen the microscopic configuration of the step. A direct test of

tion of the pattern will be addressed in Sec. IV D. relation (7) is presented below in Sec. IV C.
The expression used above for the edge mobility is
IIl. RELEVANT LENGTH SCALES valid only on length scales longer than the kink distahge

~(1/2)expEk /kgT). On shorter scales edge diffusion is

~ Before turning to the quantitative analysis of the simula-much more efficient, and the expression for the characteristic
tions, we summarize the available theoretical predlCtlonS fOfneander Wave|ength must be rep|acea by

the length scale of the meander instability.
Nez=2""TmhgZ ®

when edge diffusion dominates ahg> gy .
The BZ analysis proceeds by solving a diffusion equation

for the adatom concentration with boundary conditions given B. KESE instability

by the attachment-detachment kinetics at the steps. It pre-

dicts an in-phase meand&with a dominant wavelength

A. Bales-Zangwill instability

Step meandering due to the KESE can be discd8sed
analogy to the ES instability of a one-dimensional

0 surfacet®® The characteristic wavelength depends on the
I'(QIDcgqtaosy) . . : S .
Npz=41 5 i (5) one-dimensionahucleation length 4, which is defined as
QfgFl the average distance between two dimers that are nucleated

on a straight step at the beginning of deposition, and the kink

Here() denotes the atomic area aads the lattice spacing. ES lengthl ee~exExes/kaT]. For a strong KESE, in the

All kinetic and thermodynamlc parameters entering E). sense thatp<<lkgs, the initial meander wavelength Ig,
can be expressed in terms of the microscopic rates and eN€I e for a weak KESE o> cd) it is of the order o314
gies of the KMC model. The diffusion coefficient on the KE
terrace read® =ryexp(—Es/kgT), and the step edge stiff- ~ -
ness is given B I'=2a sintf(E/2kgT). To calculate the M= (loflkes ™o =
equilibrium adatom concentratiorr:@q and the mobilityo g,
along the step edge, it is useful to consider the step as a _ 14
one-dimensionallD) SOS interface in equilibrium with the lo=(12Ds/FD) (10
adatom gas on the terrace. For model | the transition rates afer the nucleation length can be derivEthereF| is the flux
of Arrhenius form, i.e., dependent only on the configurationof terrace atoms onto the step. In contrast to the mobility
before the jump, and exact results fogq and o can be oy, the edge diffusion coefficiem, refers to the motion of
found?® We obtain cgq=exp(—2En/kBT) and o5 an edge atom along straight step without kinks, and is
=(D/2)exp(2E, /kgT). given byDg=D exp(—E,/kgT) in the SOS model.

For model Il the transition rates are no longer of Arrhen- It should be noted that Eq$9) and (10) apply to a 1D
ius type, and the exact resdftannot be directly applied. surface in the absence of desorption; for a step this translates
Within linear fluctuation theory, the step edge mobility hasinto neglecting the detachment from the step. This approxi-
been estimated as,,=a? r_, wherer, is the characteristic mation clearly breaks down as the bond breaking bakigr

time for detachment from a kirf€. For our model Il this ~approaches zero. Including the detachment from the step in-
yields troduces a new length scale into the problem, namely, the

diffusion lengthxs=Dg7. Here 7 is the time an adatom
osr~=D exd — (2E,+Egp)/kgT]. (6) diffuses along a straight step before being “evaporated” to

From one-dimensional nucleation theory the expression

205411-3



JOUNI KALLUNKI, JOACHIM KRUG, AND MIROSLAV KOTRLA PHYSICAL REVIEW B 65205411

1000 : : deposition flux obtained from our KMC simulations. The
wavelength was extracted from the profiles directly by mea-
suring the distance between subsequent minima in a single
profile. The error bars refer to the variation of the wave-
length within a single profile. For model | the wavelength is
found to scale a§ %4~ %% in qualitative agreement with
both the BZ lengthhz; and the nucleation length, in the
detachment-dominated lim[tEq. (11); for model I, x;~1
<lp]. Quantitatively the results are found to agree witty
for the parameters used in the simulations, while the nucle-
‘;:%\ ation lengthlp is smaller by approximately a factor 1/2. A

= more convincing piece of evidence for the Bales-Zangwill
mechanism is the dependence of the meander wavelength on
the Ehrlich-Schwoebel barridgzg, which is discussed be-
107 10™ 10 low in Sec. IV C. The nucleation length is obviously inde-

F pendent ofEgs.
_ For model Il the meander wavelength scales as

FIG. 4. Meander wavelength as a function of flux for models IF—o.zato.os’ which disagrees with the BZ theory but is con-
(circles and Il (diamond$. Each symbol represents a single run on sistent both with the modified BZ lengflEq. (8)], and with
a lattice of size 1008 30 with five steps. The error bars refer to the the nucleation lengtfiEg. (10)] in the absence of detach-
variation of the wavelength within the configuration. For some ont However, Eq(8) predicts a prefactor that is one order
fluxes results for a lattice of size 128B0 have also been included. of magnitude too large. This is not surprising, since &j.
The simulations were run until the meander wavelength was clearl)évas derived for steps close to thermal equilibri?:mnder

visible. The BZ lengtHEq. (5)] is plotted as a full line for model | growth conditions the kink density is much larger than its
and a short-dashed line for model Il. The long-dashed line is th%quilibrium value.

nucleation lengtiEq. (10)] for model II.
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Including detachment and using the lower bourg
) =expEgg/2kgT) as an approximation for the diffusion
the terrace, andks the distance the atom travels along |gngih ;izldsBan upper bound for the nucleation length. Ex-
the step in time intervat. A lower bound for'r is given bly pressiong10) and(12) thus give lower and upper bounds for
the detachment rate from the straight step ™  the nucleation length, which differ approximately by a factor
=Dgexp(—Egs/kgT). In reality detached atoms have a high of 2. The lower boundEq. (10)] is seen to quantitatively
probability of reattachment, and thus the real evaporatiogjescribe the simulation data for model II, which shows that
time 7 is longer. A lower bound for the diffusion length then for model Il the detachment may be neglected. This confirms
readsxs=expEgp/2ksT). Repeating the calculation of the that one-dimensional nucleation is the relevant wavelength
nucleation length for a 1D surface with desorptfdrone  selection mechanism under conditions of facile edge diffu-
arrives at an expression for the nucleation length in the limijon, in accordance with the conclusions from previous

Xs<lp, which reads experimental and simulationdl® work on surfaces vicinal to
D 1/2 1 Cu(loo)
= _St) - (12) However, the meander wavelength by itself does not
F Xs uniquely specify the instability mechanism. The BZ theory

The same result can also be obtained by applying the scalirﬂed":ts a band of unstable wavelengths extending over the
arguments of Jenseet al® in one dimension. For general Nterval (\min,), WhereX min=X\gz/\2 andigz, as given
values ofxs, |p is given as the solution of a transcendentalPy EG: (5), is the wavelength of perturbations with the maxi-
equation. A simple expression interpolating between the twé"@l growth rate. Numerical studies of a nonlinear evolution

cases(10) and (11) reads equation for the in-phase meander show that initial wave-
lengths between i, and\ 5~ 3\gz are preserved during
s\ s 1(Dg| growth!” Thus deviations from the BZ predictidiEqg. (5)]
lp= I 1277+ X:(ﬁ) } (12 can be attributed partly to a wavelength different fragy,

which dominates the spectrum of initial perturbations. In this
In the case of a weak KESE, repeating the calculation ogontext it is important to note that, for small fluxes, the
Politi and V|IIa|n13 with desorption, one flnaé that for Xg Wave|ength measured for model |l ssnallerthan the mini-
<lkes<Ip the most unstable wavelength is of the order  ma| unstable wavelength,;, of BZ theory; this can be seen
2 by shifting the short-dashed line in Fig. 4, which represents
A~ Ip/xs, 13 \gz for model I, downward by a factor of/2. This proves
which replaces Eq9). that for model Il an instability mechanism different from the
BZ mechanism—the KESE—is the cause of the meander.

IV. SIMULATION RESULTS .
B. Crossover between the two mechanisms

A. Meander mechanisms Which of the two meander mechanisms is operative de-

Figure 4 shows the meander wavelength as a function gbends on the importance of step edge diffusion and on the

205411-4



COMPETING MECHANISMS FOR STEP MEANDERING IN ... PHYSICAL REVIEW B5 205411
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0.00 0.10 0.20 0.30 FIG. 6. Meander wavelength as a function of the ES length
Eqs les=D/k_ for model | atF=0.25 ML/s. Each symbol is an aver-

age over five runs on a lattice of size 12505 containing a single
FIG. 5. The observed wavelengtfercles for various values of  step(step spacing=15). The dashed line shows the BZ prediction
the bond-breaking barriégg . The full line is the nucleation length  [Eq. (5)].
[Eq. (12)], the dashed line the BZ lengflEqg. (5)], and the dot-
dashed line the meander wavelengfi. (13)] for weak KESE. The  ryns. Figure 6 shows that the dependence of the meander
crossover between the two meander mechanisms occurs aroupghyelength on the ES barrier is qualitatively described by
Egs~0.05 eV. Each point is an average over five independent rung > theory, but Eq(5) is not quantitatively accurate. The true
on a 250..1500x30 lattice with three stepgstep spacingl ES length appears to be smaller than that given in(Bdby
=10). about a factor 1/4, which corresponds to a reduction of the
ES barrier by 0.04 eV. This cannot be a simple effect of step
strength of the KESE barrier. In our SOS model both argoughness, since the implementation of the ES barrier used
controlled by the bond breaking barrigg . Thus decreas- in the present work in fact implies that the approach to a
ing Egg should lead to a crossover from the KESE instability kinked step involves &igher barrier than to a straight step.

to the BZ instability. This issue deserves further consideration.
Simulation results for various values Bfg are shown in

Fig. 5. The wavelength was determined by counting the
number of minima in the step profile on a finite sample.
Reported wavelengths are averages over five independent The two models can be distinguished with regard to the
runs and the error bars are the standard deviations. Since tAgnamics of meander formation. For model | the steps me-
bond breaking barrier enters the kink energy through(gg. ander in phase from the beginning, whereas for model Il the
the predicted length scalg¢ggs.(5) and (12)] both increase meander starts with random phase shifts between the steps
with decreasingEgg in a qualitatively similar manner. In (compare the early time configurations in Figs. 1 and 2
addition, the decrease of the KESE barrier implies a transiLater on, as the meander amplitude grows and the step-step
tion from the strong KESE regime to the weak KESE re-interaction through the diffusion field becomes effective, the
gime. The numerical data clearly show that féigg  COrrelations between the steps grow, leading asymptotically
>0.10 eV the meander wavelength is set by the nucleatiofP an in-phase step train. In light of the two different mecha-
lengthl , while for Egg<<0.05 eV the simulations are con- Nisms these observations are easy to understand: Since for
sistent only with the BZ length, because the nucleatiofnodel I the meander is due to the BZ instability, the step
length is considerably smaller, and the weak KESE lengtirain is expected to be in phase from the beginning, this

[Eq. (13)] is much larger than the actual meander wavebeing the fastest growing mod&for model Il the meander
length. starts independently at each step since the meander is due to

the local adatom dynamics at the step edge.
We turn next to the time evolution of the meander ampli-
C. Variation of the ES barrier tude, which also differs for the two modelBig.7). We con-
As a further test of BZ predictioff) we have measured sider the step widthv defined by

the meander wavelength in model | for different values of the .
ES barrier. At T=375 K and with the barrierEgg P 2
=0.15 eV used above, the Schwoebel length=104>| we=L xz::l [y (14
andl, =1, so thatfg=1 in Eq.(5). To study the effect of a
finite ES length we carried out simulations with a single where thex coordinate is directed along the stéps the step
terracé' of width |=15, varying the ES barrier between length, andy(x) is the step position relative to its mean. For
Egs=0.06 and 0.20 eV I( =6-487), while keeping the model Il, w(t) increases very rapidly at the beginning, but
other barriers at the values given previously. Again, the avasymptotically saturates.In contrast, for model | the step
erage wavelengths were calculated from five independenwidth was found to increase linearly in time for the longest

D. Temporal evolution

205411-5



JOUNI KALLUNKI, JOACHIM KRUG, AND MIROSLAV KOTRLA PHYSICAL REVIEW B 65205411

19 ' ' measured activation enerdy,=0.092 eV of the meander
wavelengthn ~e~Ea’eT one obtains an energy barrigg,
=4E_,=0.37 eV for diffusion along a straight edge, which
is consistent with the estimateg,;=0.45-0.08 eV derived
from the analysis of time-dependent scanning tunneling mi-
croscopy observationé Also the flux dependence ¢10) as
F~ 14 agrees with the experimental power law exponent of
—0.21+0.08.

What is missing to complete the picture is some direct
experimental evidence for éstrong KESE at the(110
step®® Here we want to point out that indirect evidence of a
kink ES barrier follows from a comparison of the growth
| ‘ . experimentS with step fluctuation measurements. Using the
0 100 200 accepted valu Ex~0.13 eV for the kink energy, the mea-

t/ML surement of the prefactor of the temporal step correlation

FIG. 7. Average step widtiv as a function of time for model | fgnct|or137 yields the estlmateE(,%(.).'91 eV for the af:tlva-
[upper panelE=0.1 (O), 0.4 ), and 0.8 © ) ML/s] and model tion energy of the step-edge mobility,, . It was mentioned .
Il [lower panel;F=0.05 (), 0.2 (¢), 0.4 (0), and 0.8 ()  above in Sec. lll that, in the absence of a strong KESE, this
ML/s], from single runs on a lattice of size 5830 with five steps. ~ can be identified with the energy barrige for the detach-

ment of a step adatom from a kink. In a simple bond-
times we could accesé.Both observations are at variance counting — approximation (which is  supported by
with the predictions of a nonlinear step evolution equationeffective-mediur®® and embedded-atcth calculations the
for the in-phase meand&t;®which predicts thatv~ /. detachment barrier is given Myer~Es+2Ek . Using the

Our results also contradict earlier Monte Carlo value ofEg, determined from the meander wavelength of the
simulation’® in which the steps were described by single(110 step, this yield€4~0.63 eV, which is much smaller
valued functions, thus prohibiting step overhangs and voidghan the step fluctuation estimate ©f .
and nucleation on the terraces was not allowed for. In these The discrepancy strongly suggests that the migration of
simulations a regime withw~ \t was observed at long atoms along the kinked step is suppressed by an additional
times. A direct comparison of the two sets of simulations iskink ES barrierEes. The quantitative analysiSshows that
not possible, however, because of the rather different choict®r Exgs>Ex , the activation energy fow, is given byE,
of parameters. In the earlier work of Ref. 16, the concentra= Egert Exes— Ex , which, using the numbers quoted above,
tion of adatoms was set to a valag,=0.119, which is sev- Yields the estimat&ygs~0.41 eV. In agreement with semi-
eral orders of magnitude larger than in our simulations. Irempirical calculations?* the additional kink barrier is
fact, at such high adatom concentrations step flow is hardljound to be comparable to the barrtgy; for diffusion along
possible, if the nucleation on the terraces is not artificiallya straight step.

suppressed. For this reason we cannot reproduce the condi- The situation is rather different for the opgh00) step, at
tions used in the earlier simulatiots. which a meander instability with similar characteristics has

The linear amplitude growth in model | suggests thatbeen observell.Maroutian et al. identified the measured
minima and maxima of the step meander move at differenwavelength for the open step with the one-dimensional
velocities. This may be due to diffusional screening, whichnucleation length(10). This interpretation seems question-
prevents adatoms from reaching the narrow fjords separatingole for the following two reasons. First, since the open step
the cells in the upper panel of Fig. 3. In model Il the fiords can be viewed as being composed entirelf b10) kinks,
are wider, because adatoms are able to fill them up througthe edge diffusion barrieEs; is expected to be much larger
edge diffusion. The saturation of the amplitude in model Iithan along the close-packed st@pyhile the additional bar-
may be related to the stabilizing character of the KESE stepier for detachment from a kinkwhich is related to the en-

current at large sloped:* ergy of (100) kinks) is much smalle?® Under these condi-
tions the initial growth of the step is not well described by
V. RELATION TO EXPERIMENTS ON CU (100) the picture of one-dimensional nucleation. Second, symme-

try argument¥*?show that the step-edge current induced by

In this section we briefly comment on the relevance of ourthe KESE shouldstabilize rather than destabilize the open
work for the experimentally observed meander instabliiy ~ step. Thus the mechanism which could lead to an instability
surfaces vicinal to QU00. In these experiments two differ- on the scale of the nucleation length is absent.
ent vicinal surfaces were considered, which consist of dense- This leaves the BZ instability as the most plausible insta-
packed(110) steps and opefil00) steps, respectively. bility mechanisnf! However, neither the activation energy

For the dense-packdd10) steps, edge diffusion is much (as estimated from known energetic paraméfefs®$ nor
more facile than detachment, so the scenario of our model tihe F "2 dependence predicted by E@&) matches the ex-
should apply. Indeed, using expressi6t0) for the one- perimentally determined meander waveleritfttin addition,
dimensional nucleation length to interpret the experimentallyin KMC simulations of C@100), the surface composed of
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(100 steps was found to be stablgossibly this reflects the meander wavelength was achieveithout any adjustable
stabilizing KESE. The experimentally observed instability of parameters However, the asymptotic time evolution of the
the open step thus poses a major puzzle at the moment. step profile disagrees with the prediction of an effective step
evolution equation®~*8Whether this disagreement is due to
VI. CONCLUSION different physics described by the continuum and discrete

) models or due to the approximations made deriving the step
In summary, we have studied the unstable growth dynamgquation remains to be clarified.
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