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Transient electric current through an Aharonov-Bohm ring after switching of a two-level system

Gen Tatara
Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

~Received 21 December 2001; published 15 May 2002!

The response of the electronic current through an Aharonov-Bohm ring after a two-level-system is switched
on is calculated perturbatively by use of a nonequilibrium Green function. In the ballistic case the amplitude of
the Aharonov-Bohm oscillation is shown to decay to a new equilibrium value due to scattering into other
electronic states. The relaxation of the Altshuler-Aronov-Spivak oscillation in the diffusive case, due to the
dephasing effect, is also calculated. The time scale of the relaxation is determined by characteristic relaxation
times of the system and the splitting of a two-level-system. The oscillation phase is not affected. Experimental
studies of current response would give us direct information about characteristic times of mesoscopic systems.
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I. INTRODUCTION

Decoherence~or dephasing! caused by external perturba
tions is an important problem of quantum systems. Wit
equilibrium statistical mechanics, a convenient formula
estimating the dissipation by the environment was prese
by Caldeira and Leggett.1 There, decoherence was treated
a nonlocal interaction in imaginary time. The formula w
shown to be useful in considering macroscopic quant
phenomena,1 in which the tunneling rate was calculated on
as a static quantity.

The effects of decoherence on electron systems were s
ied in the 1980’s in the context of weak localization~e.g.,
decoherence by phonons and electron-electron interactio!.2,3

Decoherence gives rise to a mass of an electron-elec
propagator~a cooperon!, which governs magnetoresistanc
The decoherence time due to electron-electron interac
was calculated by solving the Cooperon equation4 and as a
mass of the Cooperon.5 Later it was demonstrated that th
dephasing time is equivalent to the time defined in an in
tive way from a decay of the overlap of the wave function6,7

One should note, however, that this definition does not
ways work~see below and in Sec. IV!.

Recently decoherence by a quantum two-level sys
~TLS! has been theoretically studied.8–10 In these works the
temperature dependence of the dephasing time,tw , was cal-
culated, motivated by an experimental finding of the satu
tion of the dephasing time asT→0 in disordered metal.11

The mechanism of saturation appears still controversial.
For studies of decoherence, recent mesoscopic sys

are suitable, since decoherence can be detected in a
trolled manner. A direct way to study decoherence is to
the interference of two different paths in a small ring. T
interference leads to an oscillation of conductance as a fu
tion of an external magnetic flux through the rin
@Aharonov-Bohm ~AB! ~Ref. 12! and Altshuler-Aronov-
Spivak ~AAS! ~Ref. 13! oscillations14#. The oscillation pat-
tern changes if perturbation causes scattering or depha
The first direct measurement of the effect of the phase du
transport through a quantum dot was carried out by use
the AB effect by Yacobyet al.15 Further studies revealed th
rigidity of the phase, which is consequence of time-rever
symmetry.16–18 The amplitude and phase of AB oscillatio
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was calculated in the presence of a dot driven by an ac fi
in Ref. 19. The effect of a time-varying potential on th
conductance of a ring was calculated in Ref. 20. The dyna
cal properties of quantum dots were studied theoretically
tensively in the context of resonant tunneling21 and the
Kondo effect.22,23

Recently the AB effect in the ballistic case was expe
mentally investigated.24,25 It was argued that the temperatu
dependence of the AB amplitude indicates a dephasing
proportional toT21.25 This behavior was discussed to b
consistent with a theoretical estimate of the dephasing du
charge fluctuation, taking account of the existence of
leads.26 However, the argument given in Ref. 25 might b
too naive, because theoretically the role of dephasing on
AB effect in the ballistic case is not obvious. In fact th
dephasing is represented in the calculation by the Coope
which exists only in the dirty case~see Sec. IV!. A possible
dephasing effect on ballistic current may be to change
spectral function.27

The aim of this paper is to study the response of
current through a narrow ring with a magnetic flux after
time-dependent environment is switched on. By use o
measurement of electronic properties with a high~THz! time
resolution,28 the observation of such a current response a
time-resolved dephasing process is possible. The curren
sponse may provide direct information about microsco
relaxation times@elastic (t) and inelastic (tw) lifetimes! and
properties of the perturbation source. As the environment
take a quantum two-level system. The transient curren
low temperatures is calculated diagrammatically using a n
equilibrium Green function.29–31 Coupling to a TLS is in-
cluded to the second order, and a linear response with res
to the probe electronic field is considered. The AB curren
calculated in the ballistic case, treating the arm of the ring
one dimensional.~The response of the AB current to sampl
dependent fluctuations in a dirty case would be similar
that of the AAS current.! A generic expression of the AB
response is obtained in terms of the correlation functions
the perturbation source. It was shown that only the amplitu
of the AB oscillation is affected, consistent with the pha
rigidity.16,17 The reduction of the amplitude is shown to b
due simply to the scattering into other electron states, an
not interpreted as dephasing. The overlap of the wave fu
©2002 The American Physical Society18-1
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GEN TATARA PHYSICAL REVIEW B 65 205318
tion with the initial state exhibits a decay after the TLS
switched on, but this has nothing to do with dephasing. T
is in contrast to the decay caused by electron-electron in
action in a disordered case.6 Theoretically this distinction is
natural, since dephasing in the strict sense cannot be
scribed by one-particle propagation~a Green function with
an elastic lifetime!. The effect is incorporated only when w
take into account the particle-particle ladder~the Cooperon!,
which represents the interference between a path and
reversed path in the presence of elastic impurity scatter
Physically interaction with a single TLS itself gives a de
nite phase factor and cannot cause dephasing in the bal
case. To cause dephasing, some randomness, such as
rities, is needed to give uncertainty to the phase due to
interaction. If there are many TLS’s with different energie
dephasing would appear even in the ballistic case.

In the calculation of the AAS current~in Sec. VI!, the
dephasing timetw is included phenomenologically~we do
not care about the origin here!. The lowest order contribution
we calculate corresponds to the correction totw by the TLS.
The calculation of response of the AAS current is very co
plicated, and hence we show the leading term only. The
fect of oscillating external field is briefly discussed in Sec.

II. FORMULATION

The Hamiltonian we consider isH5He1HTLS1H8,
where He5(kekck

†ck1H imp is the electron part @ek
5k2/(2m)2eF , eF being Fermi energy#, and H imp

[v i(kk8ck8
† ck represents the impurity scattering (v i is the

coupling constant!. HTLS is the Hamiltonian of the TLS,
which we describe later. The coupling between the elect
and the TLS is

H8~ t !5(
kQ

V~ t !ck1Q
† ck , ~1!

whereV(t) is an operator of the TLS, which is time depe
dent.V is treated as independent of the momentum tran
Q, assuming that the TLS is applied to a small area.
consider an electronic field (E) applied on a lead with a
frequency ofv. The vector potentialA is then written as
A(t)5(1/iv)Ee2 ivt. We consider a limit ofv→0 andEiz.
The electronic current in linear response is given asJ5J(0)

1J(A) , where

J(0)~x,t !5
1

V

Ez

v S e

2mD 2

~¹x2¹x8!z~¹x0
2¹x

08
!z

3Qxx8,x0x
08

,
~ t,t8,v!ux8→x,x

08→x0 ,t8→t ,

J(A)~x,t !52
e2

m
Az~x,t !Š^c†~xt8!c~xt !&‹u t8→t , ~2!

where x0 and x08 represent position in the lead where t
electronic field is applied. Double bracketsŠ^ &‹ include the
averaging over the electron and impurity. The correlat
function Qxx8,x0x

08
(t,t8) is defined as
20531
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Qxx8,x0x
08
~ t,t8,v!

[~2 i !2E
C
dt0e2 ivt0

Š^TCc~xt !c†~x08t0!

3c~x0t0!c†~x8t8!&‹. ~3!

TC denotes a path order on contourC in a complex time
plane ~Fig. 1!, and superscript, denotes taking the lesse
component with respect tot,t8 on the pathC.30 The Fourier
transform ofQ is written as

Qkk8~ t,t8,v!

[~2 i !2E
C
dt0e2 ivt0

Š^TCck~ t !ck8
†

~ t0!ck8~ t0!ck
†~ t8!&‹,

~4!

and the spatially uniform component of the currentJ(0) is
written as

J(0)~ t !5
1

V

Ez

v

e2

2m (
kk8

kzkz8

m
Qkk8

,
~ t,t,v!. ~5!

We first consider a case of a simply connected geome
The second order contribution toQ is the self-energy~SE!
type ~Fig. 2!. @The vertex correction vanishes, sincek andk8
in Eq. ~5! are independent of each other~note thatV does not
depend on the momentum transfer! andQkk8

, is an even func-
tion of k andk8.# The SE contributionQkk8

(SE)[dk,k8Qk
(SE) is

written as

FIG. 1. Path in the complex time plane.t is the time of mea-
surement.

FIG. 2. Second-order contribution toQ. ~a! Self-energy type.~b!
Vertex correction type, which vanishes since the interaction ve
V does not depend on the momentum transfer.
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Qk
(SE)~ t,t8,v!5E

C
dt0e2 ivt0E

C
dt1E

C
dt2

3@Gk~ t2t1!S~ t1 ,t2!Gk~ t22t0!Gk~ t02t8!

1Gk~ t2t0!Gk~ t02t1!S~ t1 ,t2!Gk~ t22t8!#.

~6!

Here

S~ t1 ,t2![ i (Qx~ t1 ,t2!Gk2Q~ t12t2!,

and

x~ t1 ,t2![2 i ^TcV~ t1!V~ t2!& ~7!

is a correlation function of the TLS. The lesser compon
(Q,) of Eq. ~6! is calculated by use of decomposition rul
such as @*Cdt1A(t2t1)B(t12t8)#,5*2`

` dt1@Ar(t
2t1)B,(t12t8)1A,(t2t1)Ba(t12t8)# and @A(t2t1)B(t
2t1)#,5A(t2t1),B(t2t1), (A and B are path-ordered
correlation functions!.30 The result is~see Fig. 3!
20531
t
FIG. 3. Decomposition ofQ, into retarded (r ), advanced (a),

and lesser components (,).
Green
Qk
(SE)~ t,t8,v!5(

v8
e2 iv8t~Gk,v12v

r Sv12v,v12v8
r Gk,v12v8

r Gk,v12v2v8
,

1Gk,v12v
r Sv12v,v12v8

r Gk,v12v8
, Gk,v12v2v8

a

1Gk,v12v
r Sv12v,v12v8

, Gk,v12v8
a Gk,v12v2v8

a

1Gk,v12v
, Sv12v,v12v8

a Gk,v12v8
a Gk,v12v2v8

a
1c.c.!, ~8!

where

Sv1 ,v2

r 5 i (
Qv3

~Gk2Q,v3

r xv12v3 ,v22v3

, 1Gk2Q,v3

. xv12v3 ,v22v3

r !, ~9!

Sv1 ,v2

, 5 i (Qv3
Gk2Q,v3

, xv12v3 ,v22v3

, , and c.c. denotes conjugate processes. Lesser and greater components of free

functions are given asGk
,(v)5 f vDGk(v) andGk

.(v)52(12 f v)DGk(v), wheref v[1/(ebv11) is the Fermi distribution
function andDGk(v)[Gk

a(v)2Gk
r (v). The expression ofQ, is further simplified if we use

kz

m
„Gk

r ~v!…25
]

]kz
Gk

r ~v!, ~10!

and a partial derivative with respect tokz .
After some calculation the SE contribution is obtained as

(
k

~kz!
2

m
Qk

(SE),~ t,t,v→0!52 iv(
k

~kz!
2

m (
v8

e2 iv8t (
v1v2

(
q

@PkQ
a ~v1 ,v2 ,v8!]v1

f v1
Gk,v1

r Gk,v1

a Gk,v12v8
a

1PkQ
r ~v1,v2,v8!]v1

f v12v8Gk,v12v8
a Gk,v12v8

r Gk,v1

r ]

2 i(
k

(
v8

e2 iv8t (
v1v2

(
q

@PkQ
a ~v1 ,v2 ,v8! f v1

DGk,v1
Gk,v12v8

a

1PkQ
r ~v1 ,v2 ,v8! f v12v8Gk,v1

r DGk,v12v8

1xv2 ,v22v8
, f v12v2

DGk2Q,v12v2
Gk,v1

r Gk,v12v8
a

#, ~11!

where
8-3



E

ux
he
rm

th

,

try.

he

e
q.

-

o

rm

GEN TATARA PHYSICAL REVIEW B 65 205318
PkQ
m ~v1 ,v2 ,v8![xv2 ,v22v8

, Gk2Q,v12v2

m

2~12 f v12v2
!DGk2Q,v12v2

xv2 ,v22v8
m ,

~12!

(m5a,r ) and (v[*(dv/2p). The current contribution
from the SE,J(SE), is defined by Eq.~5!, with Q replaced by
Q(SE).

The currentJ(A) @Eq. ~2!# is similarly calculated as

J(A)~ t !

5Ez

e2

m

1

v FE
C
dt1E

C
dt2Gk~ t2t1!S~ t1 ,t2!Gk~ t22t8!G,

5 iEz

e2

m

1

v (
k

(
v8

e2 iv8t (
v1v2

(
Q

3@PkQ
a ~v1 ,v2 ,v8! f v1

DGk,v1
Gk,v12v8

a

1PkQ
r ~v1 ,v2 ,v8! f v12v8Gk,v1

r DGk,v12v8

1xv2 ,v22v8
, f v12v2

DGk2Q,v12v2
Gk,v1

r Gk,v12v8
a

#.

~13!

It is seen that this contribution cancels the second part in
~11!. Hence the total current is obtained as

J~ t !5J01J(SE)~ t !1J(A)~ t !

5J02 i
1

V
EzS e

mD 2

(
k

~kz!
2(

v8
e2 iv8t (

v1v2
(
Q

3@PkQ
a ~v1 ,v2 ,v8!]v1

f v1
Gk,v1

r Gk,v1

a Gk,v12v8
a

1PkQ
r ~v1 ,v2 ,v8!]v1

f v12v8Gk,v12v8
a

3Gk,v12v8
r Gk,v1

r #. ~14!

Here J0[Ezs0 is current without the TLS,s0[(e2/3)
3(kF /m)2@N(0)/V#t, andN(0)[V(mkF/2p2) is the den-
sity of states.

Using ]v1
f v1

.2d(v1) and taking summations overk
andQ, we obtain

J~ t !5J022pJ0N~0!t (
v8v2

e2 iv8t

12 i tv8
i @xv2 ,v22v8

,

2 f v2
xv2 ,v22v8

a
1 f v22v8xv2 ,v22v8

r
#. ~15!

Aharonov-Bohm current

We next consider the case of a ring with a magnetic fl
shown in Fig. 4. For simplicity the perturbation due to t
TLS (H8) is treated such as to exist only on the upper a
~arm a! and the phasef[2pF/F0 (F0[h/2e being flux
quantum! due to the flux (F) affects only the lower arm,b.
We consider the case when the ring is slowly varying and
20531
q.

,

e

system is ballistic,L& l . The current through the ring is
given by the same expression as Eqs.~2!–~5!, but Green
functions need to be replaced by those in the ring geome
The Green function connectingx andx0 at the right and left
ends of the ring, respectively, is approximated as

Gring~x2x0!.Ga~x2x0!1Gb~x2x0!

5@G~x2x0!1~GSG!~x2x0!#

1eifG~x2x0!, ~16!

where the first term is the Green function though the arma
(Ga[G1GSG) and Gb(x2x0)[eifG(x2x0) represents
propagation through armb. In Eq. ~16! contributions from
the multiple circulation through the ring is neglected. T
Green function in the opposite direction fromx to x0 is

G~x02x!5Ga~x02x!1Gb̄~x02x!, ~17!

whereGb̄(x02x)[e2 ifG(x02x) carries the opposite phas
as Gb . The current through the ring is calculated from E
~2! as

Jring~ t ![Ja1Jb1Jab ~18!

whereJa andJb are currents through armsa andb, which are
given as (a5a,b)

Ja5
1

V

Ez

v S e

mD 2

(
k

kz
2(

v8
e2 iv8t (

v1v2

@Gak
r ~v11v8,v21v!

3Gāk
,~v2 ,v1!1Gak

,~v2 ,v1!Gāk
a~v12v,v22v8!#

1Ja
(A) , ~19!

Ja
(A) being the the contribution fromJ(A) on arma and Gā

[Ga . Current Ja is equal to Eq.~15! and Jb5J0, since
H850 on armb. The Fourier transform of the Green func
tions in Eq. ~19! is defined as Gak

m(v1 ,v2)
[*2`

` dt1*2`
` dt2e2 iv1t1eiv2t2Gak

m(t1 ,t2). (v1 is not neces-
sarily equal tov2, sinceGa includes the self-energy due t
the TLS, which is not energy conserving!. In Eq. ~18!, the
interference effect is included inJab , which reads

FIG. 4. Ring we consider. The TLS affects only the upper a
~a!, and the phase due to magnetic flux (f) is attached only on the
lower arm~b!.
8-4
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Jab5
1

V

Ez

v S e

mD 2

(
k

kz
2(

v8
e2 iv8t(

v1

@Gak
r ~v12v,v12v8!

3Gb̄k
,~v1!1Gak

,~v12v,v12v8!Gb̄k
a~v12v2v8!

1Gbk
r ~v1!Gak

,~v12v,v12v8!

1Gbk
,~v1!Gak

a~v12v,v12v8!#1Jab
(A)

[Jab
(0)1Jab

(2) . ~20!

HereJab
(0)52J0cosf and @by use of Eqs.~16! and ~17!#

Jab
(2)5

1

V

Ez

v S e

mD 2

(
k

kz
2(

v8
e2 ivt@eifQk

1,~v,v8!

1e2 ifQk
2,~v,v8!#1Jab

(A)(2)
, ~21!

whereJab
(A)(2)

is the contribution fromJ(A) and

Qk
1,~v,v8![(

v1

@Gk,v1

r ~GSG!v12v,v12v8
,

1Gk,v1

, ~GSG!v12v,v12v8
a

#,

Qk
2,~v,v8![(

v1

@~GSG!v12v,v12v8
r Gk,v12v2v8

,

1~GSG!v12v,v12v8
, Gk,v12v2v8

a
#. ~22!

These are calculated similarly to the derivation of Eq.~11! as

Qk
1,~v→0,v8!52 iv (

v1v2

]v1
f v1

Gk,v1

r Gk,v1

a Gk,v12v8
a

3PkQ
a ~v1 ,v2 ,v8!1Q18,

Qk
2,~v→0,v8!52 iv (

v1v2

]v1
f v12v8Gk,v1

r Gk,v12v8
r

3Gk,v12v8
a PkQ

r ~v1 ,v2 ,v8!1Q28, ~23!

where Q68 are terms which cancel withJab
(A)(2)

. The final
result ofJab

(2) is

Jab
(2)52

2p2

3

1

V
EzS e

mD 2

@N~0!kFt#2(
v8

e2 iv8t

12 iv8t

3(
v2

i
1

2
@eif~xv2 ,v22v8

,
22 f v2

xv2 ,v22v8
a

!

1e2 if~xv2 ,v22v8
,

12 f v22v8xv2 ,v22v8
r

!#. ~24!

From Eqs.~19! and~24!, we obtain the total current throug
the ring as
20531
Jring~ t !52~11cosf!J0

22pJ0N~0!t(
v8

e2 iv8t

12 iv8t
(
v2

i

2

3@~11eif!~xv2 ,v22v8
,

22 f v2
xv2 ,v22v8

a
!

1~11e2 if!~xv2 ,v22v8
,

12 f v22v8xv2 ,v22v8
r

!#.

~25!

III. CORRELATION FUNCTIONS OF A TWO-LEVEL
SYSTEM

The Hamiltonian of the TLS we consider is

HTLS5
V

2
sz , ~26!

where the two levels are represented by the Pauli matrixsz .
The interactionH8 is switched on att50 till t5T0 (T0 is
later set equal to the time of measurement!, and is written as

V~ t !5~usz1vsx!u~ t !u~T02t !, ~27!

where u and v are coupling constants andu(t) is a step
function. Here we consider the case in which the TLS
initially at usz5m& (m561) at t50. The correlation func-
tions are given as

x,~ t1 ,t2!52 i ^muV~ t2!V~ t1!um&,

52 i ~u21v2e2 imV(t12t2)!

3u~ t1!u~ t2!u~T02t1!u~T02t2!,

x.~ t1 ,t2!52 i ~u21v2eimV(t12t2)!u~ t1!

3u~ t2!u~T02t1!u~T02t2!, ~28!

x r~ t1 ,t2!5u~ t2t8!~x.2x,!~ t1 ,t2!,

xa~ t1 ,t2!52u~ t82t !~x.2x,!~ t1 ,t2!.

The Fourier transform is defined as (m5^,&,r ,a)

xv,v8
m [E

2`

`

dt1E
2`

`

dt2eivt1e2 iv8t2xm~ t1 ,t2!, ~29!

where we note thatv and v8 are not nesessarily equa
These are calculated as

xv2 ,v22v8
,

52 i @u2Gv2
Gv82v2

1v2Gv22mVGv82v21mV#,

xv2 ,v22v8
a

5v2(
6

6

v26mV
~Gv82Gv82v27mV!, ~30!

xv2 ,v22v8
r

5v2(
6

6

v22v86mV
~Gv82Gv26mV!,

where
8-5
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Gv~T0![E
0

T0
dt8eivt85

eivT021

i ~v1 i0!
~31!

~note thatGv depends onT0).

IV. RESPONSE OF AHARONOV-BOHM CURRENT
TO A TLS

The expression of Eq.~15! is estimated by use of Eq.~30!
with T0→t as

J~ t !5J022pJ0N~0!tF H u21v2S 12
2

p
tan21Ṽ D J ~12e2 t̃ !

1
2

p
v2E

0

Ṽ dx

11x2 S 12cosx t̃1
sinx t̃

x
D G , ~32!

whereṼ[mVt, t̃[t/t. In the case of low frequency,uṼu
!1, integration overx is carried out to be

J~ t !5J0F122pN~0!tH ~u21v2!~12e2 t̃ !1v2
2

p

3S Si~Ṽ t̃ !2
sinṼ t̃

t̃
1Ṽe2 t̃ D J G ~ uṼu!1!,

~33!

where Si(x)[*0
x(dy/y)siny. After the TLS (H8) is switched

on, the current relaxes to a new equilibrium value„J0@1
22pN(0)t(u212v2)#[J01dJ`… in the time scale ofV21

~Fig. 5!. In the opposite case,uṼu@1, the scale becomest:

J~ t !5J0@122pN~0!t~u212v2!~12e2 t̃ !# ~ uṼu@1!.
~34!

The result for the ring@Eq. ~25!#, is similarly calculated as

Jring~ t !52~11cosf!J02~11cosf!J02pN~0!t

3F H u21v2S 12
2

p
tan21Ṽ D J ~12e2 t̃ !

1
2

p
v2E

0

Ṽ dx

11x2 S 12cosx t̃1
sinx t̃

x
D G . ~35!

It is seen that the amplitude of the AB oscillation is reduc
by the TLS, but the reduction is due to the reflection of t

FIG. 5. Behavior of the current@Eq. ~32!# for the two casesṼ

50.1 andṼ510. u andv are chosen as 1.
20531
d
e

electron by the TLS in the same way as in a wire@Eq. ~32!#.
This indicates that the TLS does not affect the coherenc
electrons in the ballistic transport. This is clear in the sta
limit V→0, where dephasing cannot occur. In fact the de
rate in this case, 2pN(0)(u21v2), is simply equal to the
transition probability calculated from the self-energy,G
52i (ktr@(usz1vsx)Gk

r (v50)(usz1vsx)#. The effect of
the TLS surviving in the high-frequency limit,V→`, also
excludes the possibility of the dephasing mechanism.
will see that these limiting behaviors are different in case
the AAS current@Eq. ~57!#. The phase of the oscillation
(cosf) is not modified, similarly to the equilibrium case, i
which case sinf term is forbidden since it violates the time
reversal symmetry.16

The behavior att;0 of the current@Eq. ~35!# is given as

Jring~ t !.~11cosf!J0@222pN~0!~u21v2!t#

.~11cosf!2J0e2Gt/2 ~36!

whereG[2pN(0)(u21v2) and a factor of 1/2 is to accoun
for the TLS applied only on one of the two arms. This dec
rate G is nothing but the rate obtained by Fermi’s gold
rule. In fact the transition probability of the electron fro
momentumk to k8 is given by

uAk8m8km~ t !u25u2 i E
0

t

dt1^k8m8uH8~ t1!ukm&u2

5u2dm8mS sin@~ek82ek!t/2#

~ek82ek!/2
D 2

1v2dm8,2mS sin@~ek82ek2mV!t/2#

~ek82ek2mV!/2
D 2

~37!

wherem and m8(56) are the initial and final state of th
TLS. By use of

S sin@et/2#

e/2 D 2

→2pd~e!t

for t→`, we obtain (k8mm8uAk8m8km(t)u2
→2pt(k8@u2d(ek82ek)1v2d(ek82ek2mV)#5Gt.

This rateG is also evaluated from the overlap of the sta
at t and t50,

^0uTe2 i *0
t dt1H8(t1)u0&.12

i

2E0

t

dt2E
0

t

dt2u~ t12t2!

3@x.~ t1 ,t2!1x,~ t2 ,t1!#

3(
kk8

Gk8
,

~ t22t1!Gk
.~ t12t2!,

~38!

which results in.e2Gt for Gt!1.
In the case of electron-electron interaction, the decay

of the overlap integral was shown to be equivalent to deph
ing time.6,7 In the present case of ballistic transport, the d
8-6
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cay of the amplitude of the AB oscillation@Eq. ~35!# as well
as the overlap integral are not related to dephasing, but
due simply to the scattering into other states. What is cru
here is the lack of randomness needed to put an unce
phase on the wave function. Dephasing is taken into acco
when the effect of the Cooperon is considered in the p
ence of random disorder~Sec. VI!.

V. EFFECT OF AN OSCILLATING EXTERNAL FIELD

Our ballistic results, Eqs.~15! and ~25!, are general and
can be applied to other perturbation sources. We here
sider current~15! with an oscillating external field,V(t)
5v sinvt. In this casexa5x r50 and

xv2 ,v22v8
,

5
i

4
v2(

6
@Gv26V~G2v21v86V2G2v21v87V!#.

~39!

Current~15! is obtained as

J~ t !5J022pJ0N~0!t
v2

4

1

114Ṽ2
@2~12cos 2Vt

22Ṽ sin 2Vt !2~124Ṽ2!~12e2 t̃ !#. ~40!

As seen in Fig. 6, the current oscillates around new equ
rium value @J`5J022pJ0N(0)tv2/4# if the external field
is slowly varying (Ṽ!1), but oscillation is not dominant i
the perturbation is too fast for the electron to accommod
(Ṽ@1).

This result has the possibility of various applications. O
example is a ballistic transport through a nanoscale met
magnetic contacts. In magnetic contacts a large magne
sistance is observed due to a strong scattering by a dom
wall trapped in the contact region.32,33 Recently a nonlinear
I -V characteristic was observed in half-metallic oxide co
tacts, which is argued to be due to deformation of the wa34

In these small contacts, the application of a small oscillat
magnetic field might drive a slow oscillation of the wa
position and shape. This causes a time-varying scattering
tential of the electron, and hence would be detectable
measuring time-resolved current through the contact. A c
rent measurement may be useful to observe mesoscopic
namics.

FIG. 6. Behavior ofudJu[uJ(t)2J0u for the oscillating external
field @Eq. ~40!#, plotted in units of 2pJ0N(0)tv2. At t→` the
oscillation is aroundudJu51/432pJ0N(0)tv2.
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VI. RESPONSE OF ALTSHULER-ARONOV-SPIVAK
OSCILLATION

In this section we study the effect of switching of the TL
on the Altshuler-Aronov-Spivak~AAS! oscillation.13 This
oscillation is due to the interference of a particle-partic
propagator~Cooperon! induced by successive elastic scatte
ing. The oscillation is cos(2f), reflecting the charge of 2e
carried by a Cooperon. The AAS contribution is calculat
from Eq. ~2! with the Cooperon taken into account. In th
absence of a TLS, the Cooperon contribution to the curren
calculated as14

JAAS
(0) 5

Ez

V S e

mD 2

niv i
2(

k
kz~2kz!Gk

r G2k
r Gk

aG2k
a C~0!,

~41!

where

C~0![(
p

(
n50

` S niv i
2(

k
Gk

r Gp2k
a D n

.(
p

1

~Dp211/tw!t
~42!

is a Cooperon.ni and v i are the density and strength o
impurity scattering, respectively, which are related tot as
1/t52pniv i

2N(0). We have phenomenologically added a
inelastic lifetimetw

2, which is assumed to arise from othe
mechanisms than TLS’s. ForL* l w @ l w[ADtw is the inelas-
tic mean free path~dephasing length!#, C(0) is calculated as
@we assume that the width of the ring is smaller than inela
mean free path (L'& l w) and carry out summation overp as
in one dimension#

C~0!.
3Ll w

8p2l 2
~112e2L/ l wcos 2f!. ~43!

FIG. 7. Corrections by the TLS to the AAS oscillation. Th
shaded thick line denotes a Cooperon. Scattering by a normal
purity is indicated by a dotted line.
8-7
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~Higher-order contributions}e2nL/ l w, n>2 are neglected.!
The AAS current in the absence of a TLS is thus

JAAS
(0) 52Ezs0

3

2pkF
2ab

l w

l
e2L/ l wcos 2f, ~44!

a and b being the width and thickness of the ring, respe
tively.

Now we calculate the effect by the TLS. This is done
considering a correction to the Cooperon. Most import
processes are shown in Figs. 7~a!–7~c!. Process~a! is calcu-
lated as

Qk
(a),~ t,t,v!5~niv i

2!2 (
v8v1

e2 iv8t (
nn850

`

(
k8kiki8

(
p

3@Gk,v12vD $ki %,v12v
(n) Gk8,v12v

3Ev12v,v12v8Gk8,v12v8D $ki8%,v12v8
(n8)

3G2k1p,v12v8G2k1p,v12v2v8

3D $2ki1p%,v12v2v8
(n) G2k81p,v12v2v8

3D
$2k

i81p%,v12v2v8
(n8)

Gk,v12v2v8#
,,

~45!

where
20531
-

t

D $ki %,v1

(n) [P i 51
n ~Aniv i

2Gki ,v1
! ~46!

is a Green function connected by successive impurity s
tering,

E~ t,t8![~niv i
2!2 (

nn850

` E
C
dt1E

C
dt2@D (n)G#

3~ t2t1!ix~ t1 ,t2!Fnn8~ t12t2!@GD(n8)#~ t22t8!,

~47!

and Fnn8(t12t2)[@GD(n8)GD(n)G#(t12t2) ~We write
@AB#(t2t8)[*Cdt9A(t2t9)B(t92t8) and subscripts are
partially suppressed!. An important Cooperon behavior@Eq.
~42!# arises inQk

(a), only when allGki
’s in D $ki %,v12v

(n) and

D
$ki8%,v12v8
(n8)

are retarded Green functions andG2ki1p’s in

D $2ki1p%,v12v2v8
(n) and D

$2k
i81p%,v12v2v8

(n8)
are advanced

Green functions, and forp;0. By use of

(
n50

`

(
ki

D $ki %,v12v
(n)r D $2ki1p%,v12v2v8

(n)a .Cp,v8 ~p;0!,

~48!

whereCpv[1/@(Dp211/tw2 iv)t#, the dominant contribu-
tion of Eq. ~45! is calculated as
Qk
(a),~ t,t,v!5 (

v8v1

e2 iv8t~niv i
2!2~ f v12v2v82 f v12v8!@GD(n)GEGD(n8)G#v12v8

r
@GD(n)GD(n8)G#v12v2v8

a

5 (
v8v1

e2 iv8t~niv i
2!2~ f v12v2v82 f v12v8!(p

CpvCpv8(
k8

Gk,v12v
r Gk8,v12v

r Ev12v,v12v8
r Gk8,v12v8

r

3G2k1p,v12v8
r G2k1p,v12v2v8

a G2k81p,v12v2v8
a Gk,v12v2v8

a . ~49!

The retarded part ofE(t,t8) here is given as

Er~ t,t8!5~niv i
2!2 (

nn850

` E
2`

`

dt1E
2`

`

dt2@D (n)rGr #~ t2t1!i @x,~ t1 ,t2!Fnn8r~ t12t2!

1x r~ t1 ,t2!Fnn8.~ t12t2!#@GrD (n8)r #~ t22t8!. ~50!

In terms of the Fourier transform~Fig. 8!,

Ev12v,v12v8
r

5(
v4

@D (n)rGr #v12vi @xv12v42v,v12v42v8
r Fnn8

v4

. 1x,Fnn8r #@GrD (n8)r #v12v8

.2 i ~niv i
2!2(

v4

~12 f v4
!xv12v42v,v12v42v8

r
@D (n)rGr #v12v@GD(n8)GD(n)G#v4

a @GrD (n8)r #v12v8

52 i ~niv i
2!2(

v4

~12 f v4
!xv12v42v,v12v42v8

r (
p8

Cp8,v12v42vCp8,v12v42v8

3 (
k1k2

Gk1 ,v12v
r Gk12Q,v4

a G2k81p8,v4

a Gk22Q,v4

a Gk2 ,v12v8
r . ~51!
8-8
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We thus obtain

Qk
(a),~ t,t,v!52 in iv i

2t2 (
v8v1v4

e2 iv8t(
p

Gk,v12v
r

3G2k1p,v12v8
r G2k1p,v12v2v8

a Gk,v12v2v8
a

3~ f v12v2v82 f v12v8!~12 f v4
!

3xv12v42v,v12v42v8
r CpvCpv8

3(
p8

Cp8,v12v42vCp8,v12v42v8

3@213i t~v12v4!24p2Dt#. ~52!

Other processes in Figs. 7~b! and 7~c! are similarly calcu-
lated as

Qk
(b1c),~ t,t,v!52 in iv i

2t2 (
v8v1v4

e2 iv8t(
p

Gk,v12v
r

3G2k1p,v12v8
r G2k1p,v12v2v8

a

3Gk,v12v2v8
a

~ f v12v2v82 f v12v8!

3~12 f v4
!xv12v42v,v12v42v8

r CpvCpv8

3(
p8

Cp8,v12v42vCp8,v12v42v8

3@222 i t~4v124v42v2v8!15p2Dt#.

~53!

It is seen that one of the four Cooperons is canceled a
summation of the three processes~a!–~c!,35 and we obtain
Qk

AAS,[Qk
(a),1Qk

(b1c), as ~noting p,p8!k andv8t!1)

Qk
AAS,~ t,v→0!52 ivniv i

2t2

3 (
v8v1

e2 iv8t~Gk
r Gk

a!2

3(
pp8

CpvCpv8Cp8v1

3~ f v12v8xv1 ,v12v8
r

2 f v1
xv1 ,v12v8

a
!,

~54!

wherexa term is due to the complex processes@Fig. 7~d!#
andGk[Gk,v50.

FIG. 8. Diagrammatic representation ofEr .
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The current at low temperature is obtained by use of
~30! @and Eq.~5!# as

dJAAS~ t !5J0

pv2

mkFV (
pp8

1

Ap
E

2`

0

dv(
6

~6 !

3ImF2S 12e2Apt2 iApe2Apt
e2 i (v6V)t21

v6V D
3

3v6V1 i ~2Ap82Ap!

@~v6V!21Ap
2#~v1 iAp8!@v1 i ~Ap82Ap!#

1S 12e2(Ap82 iv)t

v1 iAp8

2e2(Ap82 iv)t
e2 i (v6V)t21

v6V D
3

1

@v1 i ~Ap82Ap!#~6V2 iAp8!
G , ~55!

whereAp[Dp211/tw . The slowest relaxation is governe
by the contribution fromp5p850 of the square bracke
part. The oscillation part of this contribution is obtained a

dJAAS~ t !.J0cos~2f!
3

4p

l w

l

v2

kF
2ab

tw
3F, ~56!

where

F[Im E
2`

0

dv(
6

6

tw
3 F2S12e2t/tw2 i

e2t/tw

tw

e2 i (v6V)t21

v6V D
3

3v6V1 i /tw

@~v6V!21tw
22#~v1 i /tw!v

1S 12e2(1/tw2 iv)t

v1 i /tw

2e2(1/tw2 iv)t
e2 i (v6V)t21

v6V D 1

v~6V2 i /tw!G . ~57!

It is easy to check thatdJAAS.0. This enhancement of th
AAS current is explained as due to the dephasing effec
the TLS, which suppresses localization. The phase of
oscillation is not modified~i.e.,dJAAS}cos 2f), and only the
amplitude relaxes after the TLS is switched. IfV!tw the
time scale of the relaxation is;V21. In the opposite case o
V@tw , there first appears a rise in the time scale oftw

followed by a rapid decay with small oscillation of frequen
of ;V ~Fig. 9!. The effect of the TLS vanishes both in th
low- and high-frequency limits;}V for V!1 and}1/V for
V@1. The vanishing of the effect in these limits, which
distinct from the ballistic case@Eq. ~35!#, is consistent with
the explanation by dephasing effect.

VII. SUMMARY AND DISCUSSION

We have calculated the electronic current through
Aharonov-Bohm ~AB! ring after a quantum two-level
system~TLS! is switched on. The TLS affects the amplitud
of AB and AAS oscillations, which relaxes to a new equili
rium value. Phases of both oscillations are not affected. If
8-9
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energy splitting of the TLS,V, is large, the time scale of th
amplitude relaxation is given by the characteristic time of
system, which is the elastic lifetimet in the ballistic case
and the inelastic lifetimetw in the diffusive case. In the
opposite case,V!t21,tw

21 , the time scale becomesV21.
Although the relaxation of the current appears similar in b
ballistic and diffusive cases, the physics behind the rel
ation is different. In the ballistic case the relaxation is due
a scattering of the states into other states, which is

FIG. 9. Relaxation of the amplitude of the AAS oscillation@F of
Eq. ~57!# after a switching of the TLS forVtw50.5, 2, and 5. For
Vtw!1 the behavior is monotonic, but forVtw*1 a bump appears
in the time scale of;tw and then a decay.
C

B

et

s.
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dephasing. In the diffusive case the relaxation is interpre
as due to dephasing. The crucial difference between the
is that in the diffusive case, on the one hand, the phase
duced by the TLS is randomly accumulated because of
contribution from the random paths the electron travels;
the ballistic case, on the other hand, there is no randomn
The dephasing effect would appear in the ballistic case if
energy of the TLS is distributed.

The effect of an oscillating external field is also calc
lated. The amplitude of the current oscillates if the exter
oscillation is slow enough for the electron to accommoda
but the current oscillation becomes unclear in the fast va
ing limit.

Recent high~THz! time-resolved measurements of ele
tronic properties28 make it possible to observe the curre
response and time-resolved dephasing processes. The cu
response may provide us with direct information about m
croscopic relaxation times@elastic (t) and inelastic (tw) life-
times# and properties of the perturbation source.

In nanoscale magnetic contacts,32,34 a motion such as a
slow oscillation of a magnetic domain wall may be dete
able as an oscillation of electronic current through the c
tact. Time-resolved transport measurement may becom
powerful method in studying mesoscopic dynamics.
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