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Aharonov-Bohm oscillations of a particle coupled to dissipative environments
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The amplitude of the Bohm-Aharonov oscillations of a particle moving around a ring threaded by a magnetic
flux and coupled to different dissipative environments is studied. The decay of the oscillations on increasing
the radius of the ring is shown to depend on the spatial features of the coupling. When the environment is
modeled by the Caldeira-Leggett bath of oscillators, interference effects are suppressed beyond a finite length,
even at zero temperature. A nontrivial renormalization of the Aharonov-Bohm oscillations is also found when
the particle is coupled by the Coulomb potential to a dirty electron gas. A finite renormalization of the
Aharonov-Bohm oscillations is obtained for other models of the environment.
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[. INTRODUCTION In the present work, we estimate how this amplitude is
changed when the particle is coupled to a dissipative bath.
Phase coherence in metallic systems has been extensivelyie following section presents the model used to analyze
studied since experiments suggested that the dephasing tirfiis problem. Section Il discusses specific results for five
7, seemed to saturate to a constant value at lowypes of dissipative environmenté) The Caldeira-Leggett
temperatured,in apparent contradiction with the accepted harmonic bath (a closely related aspect of this model was
theory?? It has been argued that voltage fluctuations lead t@nalyzed in Ref. 10 (ii) dissipation with a periodic spatial
a dephasing time consistent with saturation at lowdependencdthe dissipative quantum rofdy; (iii) dissipa-
temperature$? although related calculations lead to differ- tion with a Gaussian spatial dependengée diffusion
ent resultd’ (see also Ref.)8 model?); (iv) dissipation induced by a local coupling to the
Comparison between the different calculations of thelow-energy modes of a clean metallic syst€hand (v) dis-
dephasing time of low-energy electrons in metals is obscuregipation induced by the excitations of a dirty metallic system.
by the various approximations required to deal with the in-Section IV presents the conclusions.
teractions and quenched disorder. The cause of dephasing,
however, is the existence of a dynamic environment interact- Il. THE MODEL
ing with the electrons. A simpler situation is presented when
the environment is different from the particles whose dephas- We assume that the degrees of freedom in the environ-
ing is being studied. Even if that is the case, in a many/ment can be integrated out, leading to retardation effects in
partide system the environment induces interactions bethe equations of motion of the particle that we are interested
tween the particles. Thus, the simplest case, when dephasitiy These effects are best studied using the path-integral for-
at low temperatures can be studied, is that of a single particlgulation of quantum mechanic$ Then, the action associ-
coupled to an external dissipative environment. The problen@ted to each path of the particle, in the absence of a magnetic
can also be relevant to studies of quantum effects in heavfjux, can be written as
particles at metallic surfaces. S M /x| 2
We will study here the amplitude of the Aharonov-Bohm d , , ,
oscillations of t)rlle particle mor\)/ing around a ring of radRis 5:J' %(E +f drd7’K(X(7)=X(7').7=7),
threaded by a magnetic fluk. This quantity provides infor- D
mation about the suppression of quantum interference due to
the environment. We will not attempt to define a dephasingvhereM is the mass of the particle, and{7) is its position
time. On the other hand, the dependence of the Aharono\ﬁt timer. The kernelK(X,T) includes the information about
Bohm oscillations on the radius of the ring allows us tothe environment and its interaction with the particle. At long
define, in certain cases, a length scB|gbeyond which the times, one has
oscillations decay exponentially or have a Gaussian depen-
dence on the radius. K(X)
The simplest quantity that can be studied, and which de- K(X,7)~ 2 )
pends on the flux, is the free energy. At zero temperature, and |7

in the absence of dissipative effects, the amplitude of thgnere depends only on the spatial coordinates.

oscillations of the energy as function @b is of order A simple choice is given by the Caldeira-Leggett
#2/(MR?), whereM is the mass of the particle. The power- ,qqef-14

law dependence of this scale on the length of the path of the

particle can be interpreted as the absence of a typical length NG
for the suppression of quantum coherence effects, at zero K(X,7)= Y 2 (3)
temperature. 2mh 72
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and/C(X) = (yX?)/(27h), wherey is the friction coefficient
that describes the dynamics of the particle witenO.
Two extensions of the kernel in E(B) are?

a SirP[X/(4mL)]

K(X,T):Z 7—2 1
7|2 e—x2/(2|)
KX, 7)=5— ———. 4
(X,7) 2mh 2

In the first case, the macroscopic friction coefficientyis
=(fa)/(47L)?. In the second caskjs a length that defines
the spatial range of the interactions mediated by the environ-
ment.

When the coupling between the particle and the environ-
ment is weak, one can use the perturbation theory. In this
work, we will study the coupling of the particle to a metallic
system by means of a local potential of strengthand
rangea,

FIG. 1. Schematic picture of the system studied in the text. A
N |r — R| N particle interacting with a dissipative environment moves around a
Him=Uf d’r p(r),

a 6) circle of radiusR. The circle is threaded by a magnetic fldx

whereR is the coordinate of the particlp(r) is the density ~The action in Eq.(8) resembles closely the quantum rotor
operator of the electron gas, afdu)~0 if u>1. This cou- Model® studied extensively in relation to the Coulomb
pling leads to a retarded interaction along the path taken bplockade in normal tunnel ]u_nct|or]|§.|n the present case,
the particle. Using the second-order perturbation theory, thi§1e short-range interaction is related to the energy scale

interaction can be cast 8s #2/(2MR?). When studying the quantum rotor model in the
context of mesoscopic junctions, this scale corresponds, at
U2 - - IR(7)—| the same time, to the charging energy of the juncignand
Sint:mf drd7'd*rd*r'dod*kF| ——— to the upper cutoff in the spectrum of the environment

coupled to the variable under study. In the present case, the
|§(Tr)_p| e o equivalent tcE depends on the radius of the ririg,and the
XA\ ——F— ekr=rele(=m) v (k,w), (6)  two scales should be kept separate. Thus, and following the
conventional notation for tunnel junctions, the model in Eq.
(8) contains two scalesEc=%2/(2MR?), and an energy,
Ao, which defines the short-time cutoff in the kernel in Eq.
(2). We will assume thaE-<<A .

In order to analyze the problem, we extend the
renormalization-group approach initially discussed in Ref. 15
to the action in Eq(8). We define a variable cutoff, which
initially is set equal to\ 5. We need to consider the scaling of
the parametersa, }, and, for completeness, we also consider

: (7)  the renormalization of the dimensionless couplifi
_ o _ =Ec/A due to the high-energy excitations of the environ-
The action, Eq(1), can be expanded in circular harmonics asment. We lower the effective high-energy cutoff frainto

A—dA, and rescale the dimensionless paramekgrsand

WhereX(IZ,w) is the density-density correlation function of
the metal.

The coordinateX of the particle will be restricted to lie
within a circle of radiusR, so that the motion can be also
described in terms of the angl€ 7), as schematically shown
in Fig. 1. In terms of this angle, we have

|F*e(r)—F*e(f')|=2Rsir{—0(T)_20(T )

2 2
§:f dTﬂ(ﬁ) {ay,}. This procedure can easily be carried out, at this range
h 2h \dT of energies, the modes that are integrated out are simply
0 — 07 harmonic oscillations. Then, one can make the replacement
Sinz(n[ (m)—0(r )]}
2 _ ’ _ \12
+fd7d7,2 a " ® L LD =61} L8~ 6(r)]
n |7— 7| n 2 n 4 ’
(10

where thea,’s are dimensionless constants, given by
L so that each harmonic contributes to the overall phase ri-
_ = ing : gidity with a term proportional tow,n?. Taking this into
%n Za-rf dge™ K2R sin(6/2)]. ©) account, one finds
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JBe - ~ where®,, is the quantum unit of flux. This term enters in the
=Ec— ch nzanEé , effective action in the same way as a gate voltage is included
n in the correponding problem of tunneling in a small junction,
which has also been studied in the literattfé’ It is known
%_ _ i nay, (11) that the fluctuations in the free energy at low temperatures
al on2 ' are determined by the renormalized valueEf". In the
following, we will assume that the amplitude of the
Aharonov-Bohm oscillations in the free energy of a particle
wherel = —In(A) andc, arec; are constants of order unity. moving around a ring are also determinedg§", as calcu-
The scaling equation foE; ceases to be valid wheB:  lated using the scaling equatiofkl). This scale is given in
~1. The renormalization of th¢a,}'s is only significant Eqs.(14) or (15), whereES~#2/MR?.
whenEc~1. In addition, the equations for tHer,}'s must

be halted wher® n’a,~1. We can write the second equa- . RESULTS
tion in Eq.(11) as

dl

CECt+ % mla,

A. Caldeira-Leggett model

(92 n2a, z v The dynamics of a quantum particle around a ring, using
n 1 n the Caldeira-Leggett bath of oscillators as a model for the
- om? : (12 environment, has been considered in Ref. 10. The analysis

czEC1+E na, presented here of the Aharonov-Bohm oscillations is consis-

tent with the results in Ref. 10.
For the present model, the coefficients in the harmonic

The equation that determines the flow Bf shows two o
9 ¢ expansion in Eq(8) reduce to

regimes depending on whether

2 YR?
(2 nzag) a’n:6n,1 A =a5n’1, (17)
n ~
=—F? 13 . .
“ S ntad ¢ (13 and the parameter in Eql3) is x~(%y)/(MAg)<1. We
n“an recover the quantum rotor in its simplest version. Using Eq.

14), we find
is smaller or greater than 1. Whan<1, the absolute value (149

of E¢ is not changed by the renormalization of the modes 2
with energies between\, and E. itself. In this caseE¢ ES"~ Ece*2”2“~
defines the cutoff of an effective theory where the only cou-

plings left are the{a,}’s, in a similar fashion to the usual _— . .
case studied in Ref. 15. This is the situation that is mosf '€ Aharonov-Bohm oscillations will show a Gaussian de-
cay as the radius of the ring is increased. Thus, quantum

relevant to the calculations to be performed in the following.. terferen ffects ar . d bevond certain lenath
The effective low-energy scale is determined by the scale dprerterence etiects -are suppressed beyond certain length,

which = n?a,~1, as mentioned earlier. Using Ed.2), we Rd’_N V(ﬁ/?’)' This_ sgppression of the_Aharonov-_Bo_hm oscil-
obtain lations is in qualitative agreement with the vanishing of the

Landau diamagnetism of a particle interacting with a

Rzex;{—(szsz)/ﬁ]. (18

2 Caldeira-Leggett bath of oscillators in a magnetic figlait
(2 n2an> zero temperature. In the language used in Ref. 18 our results
ES"~Ecexp —27m2———|. (14 suggest that, in a constant magnetic fiBldhe properties of
> nta, the system at zero temperature are a function of the dimen-

sionless ratio (/rg)/hzyc/eB, wherer is the cyclotron
f k>1 th lizati E _is determined by th radius. This Gaussian suppression of the Aharonov-Bohm
I"< t’ tf? renormailza |ton Odc ISI € ﬁrm'?ﬁ. y I('a oscillations at zero temperature is consistent with the similar
coupling to the environment, and only W en this COUpIngsuppression of interference effects between time-reversed
flows towards zeroEc can approach unity. The scale at paths discussed in Ref. 10.
which Ec~1 implies that Note that, ase~O(R?), the scaling equationgll) are
~o ~0 valid for large values oR.
ES"~Age Ecke *~Age VEc, (15)
where is a constant. B. The dissipative quantum rotor

The contribution to the action from the magnetic flux  We now consider the retarded interaction described by the
threading the circle is a topological term, which can be writ-upper expression in Eq4). In order to further simplify the
ten as problem, we assume that the spatial dependence of the kernel
is periodic around the circle. Then the spatial dependence of
5—S:i EJ dq-a—e (16) the kernel allows for only one Fourier component, so that the
o Dy ar’ decomposition needed in E(B) becomes
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an=ady,, (19 KIIR(7) —R(7)]]

2 ’

Sn~ 5 f d*R(n)d*R(7)
where « is the dimensionless constant in Ed), and ng 2mh T—1')
=R/L, whereL is the period of the kernel. The parameter in (26)
Eq. (13) is k~ (ah?)/(ML2A ) <1.

Using Eq.(14), we find where

52 N (Ua®)?  1—cod2kg|R|)
Ercen""_eizwza. (20) ’C(|R|)% 2 2 2 2
M R2 274(hIm) IR|
Hence, the Aharonov-Bohm oscillations show the depenand we are assuming thigta>1. We perform the integra-
dence orR as in the nondissipative case, although the coution in Eqg.(9) using the saddle-point approximation, and we
pling to the environment leads to a finite reduction of theobtain

(27)

amplitude.
(Ua®)ke ) )
C. Coupling via a kernel with a Gaussian dependence ap~—————exX[[ —(3n9)/(keR)“] (28
on distance (A= Im)*(keR)
This modet? is defined in terms of a kernel, E(), and, finally, we can approximate
K(X)= ﬁe_xz/(zz) (21) (Ua®%ke &
2 ’ a, ~ n<kgR, (29

(h4m)2R  keR’
where vy is the friction coefficient, and is a length that
characterizes the spatial correlations in the bath. where we are defining the phase shifinduced by the par-
We now useX=2Rsin(#/2), and perform the Fourier ticle on the states near the Fermi level of the electron gas as
transform in Eq(9) using the saddle-point approximation to

obtain (Ua®)kg
2 R (30
24 22 2 Er
an%7 ﬁ exp:—(n I )/(2R )] (22)
) i Using Eq.(29), we obtain
The parametek in Eq. (13) is
Y2 12A, - > nZa,~8(keR)3,
h MR?’ 3 "
where A is the high-energy cutoff of the environment. We 4 5
havex<1 whenR>1. The renormalization of the Aharonov- ; "o~ 3(keR)”, (31)
Bohm oscillations is given by
, and the parameter in E(L3) is k~ (A2kZ/MEg)<1.
h i ion14 fi
B exf — (272 28], (24 Using equation(14), we find
MR )
h
The amplitude of the Aharonov-Bohm oscillations is reduced ES"~ _26—271-25_ (32
by a finite factor. MR

Hence, the amplitude of the Aharonov-Bohm, as in the quan-
tum rotor case, is reduced by a finite factoiRas «. Similar

The density-density correlation function of a three-results can be obtained using the response function of the
dimensional electron gas can approximately be written, atwo-dimensional electron gas. The qualitative features of the

D. Coupling to a clean electron gas

low frequencies, as random-phase approximation response function used here
. are generic to the response of a clean electron gas, whose
. | w]| K| low-energy excitations can be described in terms of Landau’s
XKooy~ = 0 1= 5 @5 theory. Finally, th | d in this sect i
2m2(H2Im)2[K| 2ke theory. Finally, the results presented in this section remain

valid if the local coupling between the particle and the elec-
wherem is the electron mas is the Fermi wave vector, tron gas is be replaced by a screened electrostatic potential.
and #(u) is the step function. The high-energy cutoffAs If we assume that the charge of the particleefs and the
~Eg~ (h°k2)/(2m), whereE is the Fermi energy. The in- charge of the electrons i the expressiota® in Eq. (30)
teraction term in the effective action, E@), can be written has to be replaced by e*ek-r, where Kkgr

as[see Eq(2)] = \/(4€’°mk:)/(74?) is the Fermi-Thomas wave vector.
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E. Coupling to a dirty electron gas

B 5 SIN(K|X)
In this case, the susceptibility is given by K(X)~ G ED R (37)
D|k|? Setting X=2R|sin(#)/2|, and performing the Fourier tran-
x(k, “’)~V 2 (33 form defined in Eq(9), we obtain
w+D|K|
whereD is the diffusion coefficientD ~v gl ~(fkgl)/m, | is 3 112 o2
the mean free path, and is the density of states. This ex- LI P k|E|3ReXF[—n I(|kIR)?]

pression is valid fotk|<|~1, andw<Ay~(AD)/I% In the
following, we consider separately the case when the coupling 11 dk inl & n<R/I
between the particle and the electrons is by means of a local Nf = _! DR n nll’ . (39
potential, as generically described in E(), or by a k~n/R K

screened Coulomb potential. Unlike in the case of a clean 0, n>R/l

electron gas, discussed in the preceding section, the two sitgthe parametek defined in Eq.(13) is k~(MR)/(%vDI?)

ations are not equivalent. >1. The renormalization o in this case is
1. Coupling by a short-range potential 52 cl(kgl)?
ren
The time dependence of this kernel is not a simple power c M R2 (ﬁ) ' (39

law. One needs to compute explicitly the functikiiXx, 7),

using Egs.(1) and (6). Taking into account the form of the wherec is a constant of order unity.

susceptibility, Eq(33), one obtains
IV. CONCLUSIONS

3)2 —Dr+X? o~ X%/(D7) o
K(X,7)~v(Ua%) ﬁ\/_Dz 5© 7. (34 We have analyzed the Aharonov-Bohm oscillations in five

specific models for a particle coupled to different models of

We can now tak&X = 2R sin(6/2), and decompose Eg4) in  dissipative baths. In most cases these oscillations are sup-

circular harmonics. Using the saddle-point approximation tpressed by a factor that can be writterea§(”' )/, wherey

perform the integral ove#, we obtain is the macroscopic friction coefficieritjs a Iength that char-
acterizes the spatial range of the interactions induced by the

r(Ua®?( 1 n°D environment, and is a constant. This factor is independent
Kn(D~—=Br | 27 5o exd —(D7n?)/R?] of the radius of the orbitR. This is the case, for instance,
T when the particle is coupled to a clean electron gas, where
5 (1, D ke "
~= ——|exd - (Dm?)/R2. (35) However, when the environment is the Caldeira-Leggett
keRIN 7 R bath of oscillators, the renormalization of the amplitude of

e oscillations has a Gaussian dependence on the radius of

We have defined, as in the preceding section, the phase sh e circle in which the particle moves, and the suppression

- 2 6 .3 ;
as6~(U/Ep)"(kea)” andv~Ke/E. The terms in Eq(39) ¢ 0 hantioned in the previous paragraph becomes

decay exponentially for values of larger than E;' —c(yRA)/h .
~[(#D)/R?]"*, whereE; can be defined as the Thouless & . Hence, quantum interference effects become neg-

energy for the electrons moving around paths comparable tigiPle beyond a certain lengttR,~ v#/7y, wherey is the

the ring. Hence, in the more physical regimg;>E riction coefficient. A less divergent suppression is also

—#2/(MR?), or, alternatively, k:1)(M/m)>1, the effect of found for a charged particle coupled to a dirty electron gas,
the environment is exponentially suppressed, and there Wlwhere the dependence of the Aharonov-Bohm amplitudes is

be no significant renormalization of the Aharonov-Bohm os- a power law, although different from the value obtained in
cillations. the absence of the environment.

This diverse behavior in different models arises from the
2. Coupling by the Coulomb potential spatial range of the retarded interaction induced by the envi-
. ronment. This difference is lost in the classical limit, which
In this case, one has to replace the produtal)?y(k,w) s attained at sufficiently high temperatures. When the ther-
used previously by mal length,L;~ VA2/(MT), is much shorter than the range
of the retarded interaction, the effect of the environment can
{ 4dmee } _ |l be expressed in terms of an effective friction coefficient, pro-

my =— = (36)
|k|“+4mee* x(K,w)

|IZ|2Dv' vided that the interaction in time decaysas’ at zero tem-
perature, as in most cases considered here.

where e* is the charge of the particle, arglthat of the The suppression of interference effects, when it exists, is

electrons. The kernel that describes the retarded interactionkie to the formation of a screening cloud around the patrticle,

decays ag 2 at long times. The spatial dependence of thewith contributions from the high-energy modes of the envi-

kernel I, as defined in Eq(2) becomes ronment. The effect can be cast in terms of the existence of a
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Debye-Waller overlap factor that suppresses quantum intefquasiparticle peak” at zero momentum, which characterizes
ference effect$® This factor can depend on the length of the the propagator of a free particle in the ground state, is re-
path of the particle around the magnetic flux, leading to theplaced by an incoherent background.
suppression of the Aharonov-Bohm oscillations. This inter-
pretation is consistent with the fact that the same renormal-
ization enters in the effective mass of the particle. The con-
ductance can be defined as a function of the sensitivity of the | am thankful to Y. Imry, R. Jalabert, G. Samoand A.
ground-state energy to a magnetic filHence, the Debye- Zaikin for helpful conversations, and A. Kamenev for point-
Waller factor discussed here also reduces the conductanceing out a mistake in an earlier version of the manuscript. This
Finally, it is worth noting that the divergence of the renor- work was done at the Institute for Theoretical Physics, Santa
malization of the effective mass that appears with the supBarbara. This research was supported in part by the National
pression of the Aharonov-Bohm oscillations implies a quali-Science Foundation under Grant No. PHY99-07949, and
tative change in the propagator of the particle. TheMEC (Spain under Grant No. PB96/0875.
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