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Aharonov-Bohm oscillations of a particle coupled to dissipative environments

F. Guinea
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain

~Received 6 December 2001; published 14 May 2002!

The amplitude of the Bohm-Aharonov oscillations of a particle moving around a ring threaded by a magnetic
flux and coupled to different dissipative environments is studied. The decay of the oscillations on increasing
the radius of the ring is shown to depend on the spatial features of the coupling. When the environment is
modeled by the Caldeira-Leggett bath of oscillators, interference effects are suppressed beyond a finite length,
even at zero temperature. A nontrivial renormalization of the Aharonov-Bohm oscillations is also found when
the particle is coupled by the Coulomb potential to a dirty electron gas. A finite renormalization of the
Aharonov-Bohm oscillations is obtained for other models of the environment.
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I. INTRODUCTION

Phase coherence in metallic systems has been extens
studied since experiments suggested that the dephasing
tf seemed to saturate to a constant value at
temperatures,1 in apparent contradiction with the accept
theory.2,3 It has been argued that voltage fluctuations lead
a dephasing time consistent with saturation at l
temperatures,4,5 although related calculations lead to diffe
ent results6,7 ~see also Ref. 8!.

Comparison between the different calculations of
dephasing time of low-energy electrons in metals is obscu
by the various approximations required to deal with the
teractions and quenched disorder. The cause of depha
however, is the existence of a dynamic environment inter
ing with the electrons. A simpler situation is presented wh
the environment is different from the particles whose deph
ing is being studied. Even if that is the case, in a ma
particle system the environment induces interactions
tween the particles. Thus, the simplest case, when depha
at low temperatures can be studied, is that of a single par
coupled to an external dissipative environment. The prob
can also be relevant to studies of quantum effects in he
particles at metallic surfaces.

We will study here the amplitude of the Aharonov-Boh
oscillations of the particle moving around a ring of radiusR
threaded by a magnetic fluxF. This quantity provides infor-
mation about the suppression of quantum interference du
the environment. We will not attempt to define a dephas
time. On the other hand, the dependence of the Aharon
Bohm oscillations on the radius of the ring allows us
define, in certain cases, a length scaleRf beyond which the
oscillations decay exponentially or have a Gaussian dep
dence on the radius.

The simplest quantity that can be studied, and which
pends on the flux, is the free energy. At zero temperature,
in the absence of dissipative effects, the amplitude of
oscillations of the energy as function ofF is of order
\2/(MR2), whereM is the mass of the particle. The powe
law dependence of this scale on the length of the path of
particle can be interpreted as the absence of a typical le
for the suppression of quantum coherence effects, at
temperature.
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In the present work, we estimate how this amplitude
changed when the particle is coupled to a dissipative b
The following section presents the model used to anal
this problem. Section III discusses specific results for fi
types of dissipative environments:~i! The Caldeira-Leggett
harmonic bath9 ~a closely related aspect of this model w
analyzed in Ref. 10!; ~ii ! dissipation with a periodic spatia
dependence~the dissipative quantum rotor11!; ~iii ! dissipa-
tion with a Gaussian spatial dependence~the diffusion
model12!; ~iv! dissipation induced by a local coupling to th
low-energy modes of a clean metallic system;13 and ~v! dis-
sipation induced by the excitations of a dirty metallic syste
Section IV presents the conclusions.

II. THE MODEL

We assume that the degrees of freedom in the envir
ment can be integrated out, leading to retardation effect
the equations of motion of the particle that we are interes
in. These effects are best studied using the path-integral
mulation of quantum mechanics.14 Then, the action associ
ated to each path of the particle, in the absence of a magn
flux, can be written as

S

\
5E dt

M

2\ S ]X

]t D 2

1E dtdt8K„X~t!2X~t8!,t2t8…,

~1!

whereM is the mass of the particle, andX(t) is its position
at timet. The kernelK(X,t) includes the information abou
the environment and its interaction with the particle. At lo
times, one has

K~X,t!'
K~X!

utu2
~2!

whereK depends only on the spatial coordinates.
A simple choice is given by the Caldeira-Legge

model9,14

K~X,t!5
g

2p\

X2

t2
~3!
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ro

on
th
ic

b
th

f

o

a

or
b
,
ale
e
, at

nt
, the

the
q.

q.

he
15

f
er

n-

nge
ply

ent

i-

. A
d a
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andK(X)5(gX2)/(2p\), whereg is the friction coefficient
that describes the dynamics of the particle when\→0.

Two extensions of the kernel in Eq.~3! are11,12

K~X,t!5
a

2p

sin2@X/~4pL !#

t2
,

K~X,t!5
g l 2

2p\

e2X2/(2l )

t2
. ~4!

In the first case, the macroscopic friction coefficient isg
5(\a)/(4pL)2. In the second case,l is a length that defines
the spatial range of the interactions mediated by the envi
ment.

When the coupling between the particle and the envir
ment is weak, one can use the perturbation theory. In
work, we will study the coupling of the particle to a metall
system by means of a local potential of strengthU and
rangea,

Hint5UE d3r¢FS ur¢2R¢ u
a

D r~r¢!, ~5!

whereR¢ is the coordinate of the particle,r(r¢) is the density
operator of the electron gas, andF(u);0 if u@1. This cou-
pling leads to a retarded interaction along the path taken
the particle. Using the second-order perturbation theory,
interaction can be cast as13

Sint5
U2

2p\E dtdt8d3r¢d3r¢8dvd3k¢FS uR¢ ~t!2r¢u
a

D
3FS uR¢ ~t8!2r¢8u

a
D eik¢(r¢2r¢8)eiv(t2t8)x~k¢ ,v!, ~6!

wherex(k¢ ,v) is the density-density correlation function o
the metal.

The coordinateX of the particle will be restricted to lie
within a circle of radiusR, so that the motion can be als
described in terms of the angleu(t), as schematically shown
in Fig. 1. In terms of this angle, we have

uR¢ ~t!2R¢ ~t8!u52R sinFu~t!2u~t8!

2 G . ~7!

The action, Eq.~1!, can be expanded in circular harmonics

S

\
5E dt

MR2

2\ S ]u

]t D 2

1E dtdt8(
n

an

sin2H n@u~t!2u~t8!#

2 J
ut2t8u2

, ~8!

where thean’s are dimensionless constants, given by

an5
1

2pE dueinuK@2R sin~u/2!#. ~9!
20531
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The action in Eq.~8! resembles closely the quantum rot
model15 studied extensively in relation to the Coulom
blockade in normal tunnel junctions.11 In the present case
the short-range interaction is related to the energy sc
\2/(2MR2). When studying the quantum rotor model in th
context of mesoscopic junctions, this scale corresponds
the same time, to the charging energy of the junctionEC and
to the upper cutoff in the spectrum of the environme
coupled to the variable under study. In the present case
equivalent toEC depends on the radius of the ring,R, and the
two scales should be kept separate. Thus, and following
conventional notation for tunnel junctions, the model in E
~8! contains two scales,EC5\2/(2MR2), and an energy,
L0, which defines the short-time cutoff in the kernel in E
~2!. We will assume thatEC!L0.

In order to analyze the problem, we extend t
renormalization-group approach initially discussed in Ref.
to the action in Eq.~8!. We define a variable cutoffL, which
initially is set equal toL0. We need to consider the scaling o
the parameters$an%, and, for completeness, we also consid
the renormalization of the dimensionless couplingẼC
5EC /L due to the high-energy excitations of the enviro
ment. We lower the effective high-energy cutoff fromL to
L2dL, and rescale the dimensionless parametersẼC and
$an%. This procedure can easily be carried out, at this ra
of energies, the modes that are integrated out are sim
harmonic oscillations. Then, one can make the replacem

ansin2H n@u~t!2u~t8!#

2 J→ann2
@u~t!2u~t8!#2

4
,

~10!

so that each harmonicn contributes to the overall phase r
gidity with a term proportional toann2. Taking this into
account, one finds

FIG. 1. Schematic picture of the system studied in the text
particle interacting with a dissipative environment moves aroun
circle of radiusR. The circle is threaded by a magnetic fluxF.
7-2
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]ẼC

] l
5ẼC2c1(

n
n2anẼC

2 ,

]an

] l
52

1

2p2

n2an

c2ẼC
211(

m
m2am

, ~11!

wherel 52 ln(L) andc1 arec2 are constants of order unity
The scaling equation forẼC ceases to be valid whenẼC
;1. The renormalization of the$an% ’s is only significant
when ẼC;1. In addition, the equations for the$an% ’s must
be halted when(nn2an;1. We can write the second equ
tion in Eq. ~11! as

](
n

n2an

] l
52

1

2p2

( n4an

c2ẼC
211( n2an

. ~12!

The equation that determines the flow ofẼC shows two
regimes depending on whether

k5

S (
n

n2an
0D 2

( n4an
0

ẼC
0 ~13!

is smaller or greater than 1. Whenk!1, the absolute value
of EC is not changed by the renormalization of the mod
with energies betweenL0 and EC itself. In this case,EC
defines the cutoff of an effective theory where the only co
plings left are the$an% ’s, in a similar fashion to the usua
case studied in Ref. 15. This is the situation that is m
relevant to the calculations to be performed in the followin
The effective low-energy scale is determined by the scal
which (nn2an;1, as mentioned earlier. Using Eq.~12!, we
obtain

EC
ren;ECexpF 22p2

S ( n2anD 2

( n4an

G . ~14!

If k@1, the renormalization ofẼC is determined by the
coupling to the environment, and only when this coupli
flows towards zeroẼC can approach unity. The scale
which ẼC;1 implies that

EC
ren;L0e2ẼC

0 ke2k;L0e2l/ẼC
0
, ~15!

wherel is a constant.
The contribution to the action from the magnetic flu

threading the circle is a topological term, which can be w
ten as

dS

\
5 i

F

F0
E dt

]u

]t
, ~16!
20531
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whereF0 is the quantum unit of flux. This term enters in th
effective action in the same way as a gate voltage is inclu
in the correponding problem of tunneling in a small junctio
which has also been studied in the literature.16,17 It is known
that the fluctuations in the free energy at low temperatu
are determined by the renormalized value ofEC

ren . In the
following, we will assume that the amplitude of th
Aharonov-Bohm oscillations in the free energy of a partic
moving around a ring are also determined byEC

ren , as calcu-
lated using the scaling equations~11!. This scale is given in
Eqs.~14! or ~15!, whereEC

0 '\2/MR2.

III. RESULTS

A. Caldeira-Leggett model

The dynamics of a quantum particle around a ring, us
the Caldeira-Leggett bath of oscillators as a model for
environment, has been considered in Ref. 10. The anal
presented here of the Aharonov-Bohm oscillations is con
tent with the results in Ref. 10.

For the present model, the coefficients in the harmo
expansion in Eq.~8! reduce to

an5dn,1

gR2

\
5adn,1 , ~17!

and the parameter in Eq.~13! is k;(\g)/(ML0)!1. We
recover the quantum rotor in its simplest version. Using E
~14!, we find

EC
ren;ECe22p2a;

\2

MR2
exp@2~2p2gR2!/\#. ~18!

The Aharonov-Bohm oscillations will show a Gaussian d
cay as the radius of the ring is increased. Thus, quan
interference effects are suppressed beyond certain len
Rf;A(\/g). This suppression of the Aharonov-Bohm osc
lations is in qualitative agreement with the vanishing of t
Landau diamagnetism of a particle interacting with
Caldeira-Leggett bath of oscillators in a magnetic field18 at
zero temperature. In the language used in Ref. 18 our res
suggest that, in a constant magnetic fieldB, the properties of
the system at zero temperature are a function of the dim
sionless ratio (gr c

2)/\5gc/eB, where r c is the cyclotron
radius. This Gaussian suppression of the Aharonov-Bo
oscillations at zero temperature is consistent with the sim
suppression of interference effects between time-reve
paths discussed in Ref. 10.

Note that, asa;O(R2), the scaling equations~11! are
valid for large values ofR.

B. The dissipative quantum rotor

We now consider the retarded interaction described by
upper expression in Eq.~4!. In order to further simplify the
problem, we assume that the spatial dependence of the ke
is periodic around the circle. Then the spatial dependenc
the kernel allows for only one Fourier component, so that
decomposition needed in Eq.~8! becomes
7-3
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F. GUINEA PHYSICAL REVIEW B 65 205317
an5adn,n0
, ~19!

where a is the dimensionless constant in Eq.~4!, and n0
5R/L, whereL is the period of the kernel. The parameter
Eq. ~13! is k;(a\2)/(ML2L0)!1.

Using Eq.~14!, we find

EC
ren;

\2

MR2
e22p2a. ~20!

Hence, the Aharonov-Bohm oscillations show the dep
dence onR as in the nondissipative case, although the c
pling to the environment leads to a finite reduction of t
amplitude.

C. Coupling via a kernel with a Gaussian dependence
on distance

This model12 is defined in terms of a kernel, Eq.~2!,

K~X!5
g l 2

2p
e2X2/(2l 2), ~21!

where g is the friction coefficient, andl is a length that
characterizes the spatial correlations in the bath.

We now useX52R sin(u/2), and perform the Fourie
transform in Eq.~9! using the saddle-point approximation
obtain

an'
g l 2

\ S l

RDexp@2~n2l 2!/~2R2!#. ~22!

The parameterk in Eq. ~13! is

k;
g l 2

\

\2L0

MR2
, ~23!

whereL0 is the high-energy cutoff of the environment. W
havek!1 whenR@ l . The renormalization of the Aharonov
Bohm oscillations is given by

EC
ren;

\2

MR2
exp@2~2p2g l 2!/\#. ~24!

The amplitude of the Aharonov-Bohm oscillations is reduc
by a finite factor.

D. Coupling to a clean electron gas

The density-density correlation function of a thre
dimensional electron gas can approximately be written
low frequencies, as

x~k¢ ,v!'
u\vu

2p2~\2/m!2uk¢ u
uS 12

uk¢ u
2kF

D , ~25!

wherem is the electron mass,kF is the Fermi wave vector
andu(u) is the step function. The high-energy cutoff isL0

;EF;(\2kF
2)/(2m), whereEF is the Fermi energy. The in

teraction term in the effective action, Eq.~6!, can be written
as @see Eq.~2!#
20531
-
-

d

at

Sint'
1

2p\E d3R¢ ~t!d3R¢ ~t8!
K@ uR¢ ~t!2R¢ ~t8!u#

~t2t8!2
,

~26!

where

K~ uR¢ u!'
~Ua3!2

2p2~\2/m!2

12cos~2kFuR¢ u!

uR¢ u2
~27!

and we are assuming thatkFa@1. We perform theu integra-
tion in Eq. ~9! using the saddle-point approximation, and w
obtain

an;
~Ua3!2kF

2

~\2/m!2~kFR!
exp@2~3n2!/~kFR!2# ~28!

and, finally, we can approximate

an;
~Ua3!2kF

~\2/m!2R
;

d

kFR
, n!kFR, ~29!

where we are defining the phase shiftd induced by the par-
ticle on the states near the Fermi level of the electron ga

d;
~Ua3!2kF

6

EF
2

. ~30!

Using Eq.~29!, we obtain

(
n

n2an;d~kFR!3,

(
n

n4an;d~kFR!5, ~31!

and the parameter in Eq.~13! is k;(\2kF
2/MEF)!1.

Using equation~14!, we find

EC
ren;

\2

MR2
e22p2d. ~32!

Hence, the amplitude of the Aharonov-Bohm, as in the qu
tum rotor case, is reduced by a finite factor asR→`. Similar
results can be obtained using the response function of
two-dimensional electron gas. The qualitative features of
random-phase approximation response function used
are generic to the response of a clean electron gas, w
low-energy excitations can be described in terms of Landa
theory. Finally, the results presented in this section rem
valid if the local coupling between the particle and the ele
tron gas is be replaced by a screened electrostatic poten
If we assume that the charge of the particle ise* and the
charge of the electrons ise, the expressionUa3 in Eq. ~30!
has to be replaced by e* ekFT , where kFT

5A(4e2mkF)/(p\2) is the Fermi-Thomas wave vector.
7-4
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E. Coupling to a dirty electron gas

In this case, the susceptibility is given by

x~k¢ ,v!'n
Duk¢ u2

iv1Duk¢ u2
, ~33!

whereD is the diffusion coefficient,D;vFl;(\kFl )/m, l is
the mean free path, andn is the density of states. This ex
pression is valid foruk¢ u! l 21, andv!L0;(\D)/ l 2. In the
following, we consider separately the case when the coup
between the particle and the electrons is by means of a l
potential, as generically described in Eq.~6!, or by a
screened Coulomb potential. Unlike in the case of a cl
electron gas, discussed in the preceding section, the two
ations are not equivalent.

1. Coupling by a short-range potential

The time dependence of this kernel is not a simple po
law. One needs to compute explicitly the functionK(X,t),
using Eqs.~1! and ~6!. Taking into account the form of the
susceptibility, Eq.~33!, one obtains

K~X,t!;n~Ua3!2
2Dt1X2

\ADtD2t3
e2X2/(Dt). ~34!

We can now takeX52R sin(u/2), and decompose Eq.~34! in
circular harmonics. Using the saddle-point approximation
perform the integral overu, we obtain

Kn~t!;
n~Ua3!2

\DR S 1

t2
1

n2D

R2t
D exp@2~Dtn2!/R2#

;
d

kF
2Rl

S 1

t2
1

n2D

R2t
D exp@2~Dtn2!/R2. ~35!

We have defined, as in the preceding section, the phase
asd;(U/EF)2(kFa)6 andn;kF

3/EF . The terms in Eq.~35!
decay exponentially for values oft larger than ET

21

;@(\D)/R2#21, whereET can be defined as the Thoule
energy for the electrons moving around paths comparabl
the ring. Hence, in the more physical regime,ET@EC
5\2/(MR2), or, alternatively, (kFl )(M /m)@1, the effect of
the environment is exponentially suppressed, and there
be no significant renormalization of the Aharonov-Bohm o
cillations.

2. Coupling by the Coulomb potential

In this case, one has to replace the product (Ua3)2x(k¢ ,v)
used previously by

ImH 4pee*

uk¢ u214pee* x~k¢ ,v!
J '

uvu

uk¢ u2Dn
, ~36!

where e* is the charge of the particle, ande that of the
electrons. The kernel that describes the retarded interac
decays ast22 at long times. The spatial dependence of t
kernelK, as defined in Eq.~2! becomes
20531
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K~X!'E
uk¢ u! l 21

d3k¢
sin~ uk¢ uX!

\Dnuk¢ u3X
. ~37!

Setting X52Rusin(u)/2u, and performing the Fourier tran
form defined in Eq.~9!, we obtain

an;E
uk¢ u! l 21

d3k¢
1

uk¢ u3R
exp@2n2/~ uk¢ uR!2#

;E
k;n/R

k;1/l dk

k
;H 1

\nDR
lnS R

nl D , n!R/ l

0, n@R/ l

. ~38!

The parameterk defined in Eq.~13! is k;(MR)/(\nDl 2)
@1. The renormalization ofEC in this case is

EC
ren;

\2

MR2 S l

RD c/(kFl )2

, ~39!

wherec is a constant of order unity.

IV. CONCLUSIONS

We have analyzed the Aharonov-Bohm oscillations in fi
specific models for a particle coupled to different models
dissipative baths. In most cases these oscillations are
pressed by a factor that can be written ase2c(g l 2)/\, whereg
is the macroscopic friction coefficient,l is a length that char-
acterizes the spatial range of the interactions induced by
environment, andc is a constant. This factor is independe
of the radius of the orbit,R. This is the case, for instance
when the particle is coupled to a clean electron gas, wh
l;kF

21 .
However, when the environment is the Caldeira-Legg

bath of oscillators, the renormalization of the amplitude
the oscillations has a Gaussian dependence on the radi
the circle in which the particle moves, and the suppress
factor mentioned in the previous paragraph becom
e2c(gR2)/\. Hence, quantum interference effects become n
ligible beyond a certain length,Rf;A\/g, whereg is the
friction coefficient. A less divergent suppression is al
found for a charged particle coupled to a dirty electron g
where the dependence of the Aharonov-Bohm amplitude
a power law, although different from the value obtained
the absence of the environment.

This diverse behavior in different models arises from t
spatial range of the retarded interaction induced by the e
ronment. This difference is lost in the classical limit, whic
is attained at sufficiently high temperatures. When the th
mal length,LT;A\2/(MT), is much shorter than the rang
of the retarded interaction, the effect of the environment c
be expressed in terms of an effective friction coefficient, p
vided that the interaction in time decays ast22 at zero tem-
perature, as in most cases considered here.

The suppression of interference effects, when it exists
due to the formation of a screening cloud around the parti
with contributions from the high-energy modes of the en
ronment. The effect can be cast in terms of the existence
7-5
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F. GUINEA PHYSICAL REVIEW B 65 205317
Debye-Waller overlap factor that suppresses quantum in
ference effects.19 This factor can depend on the length of t
path of the particle around the magnetic flux, leading to
suppression of the Aharonov-Bohm oscillations. This int
pretation is consistent with the fact that the same renorm
ization enters in the effective mass of the particle. The c
ductance can be defined as a function of the sensitivity of
ground-state energy to a magnetic flux.20 Hence, the Debye-
Waller factor discussed here also reduces the conductan

Finally, it is worth noting that the divergence of the reno
malization of the effective mass that appears with the s
pression of the Aharonov-Bohm oscillations implies a qua
tative change in the propagator of the particle. T
et

C

5

20531
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‘‘quasiparticle peak’’ at zero momentum, which characteriz
the propagator of a free particle in the ground state, is
placed by an incoherent background.
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