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Two-dimensional negative donors in magnetic fields
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A finite-difference solution of the Schro¨dinger equation for negative donor centersD2 in two dimensions is
presented. Our approach is of exact nature and allows us to resolve a discrepancy in the literature on the ground
state of a negative donor. Detailed calculations of the energies for a number of states show that for field
strengths less thang50.117a.u. the donor possesses one bound state, for 0.117,g,1.68 a.u. there exist two
bound states and for field strengthsg>1.68 a.u. the system possesses three bound states. Further relevant
characteristics of negative donors in magnetic fields are provided.
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I. INTRODUCTION

The properties ofD2 centers in narrow quantum well
have become a subject of considerable interest during
past years.1–9 In very narrow wells this system can be co
sidered as a two-dimensional~2D! counterpart of the atomic
H2 ion. A frequently used compound for current experime
tal investigations~see, for example, Ref. 10! of such systems
are layers of GaAs/AlGaAs. The high mobility, i.e., sma
effective mass of the electrons and the comparatively la
dielectric constant of this semiconductor material allow us
study strong magnetic-field effects in the laboratory. Both
two-dimensional character of the motion of the electrons
the external magnetic field make the ground state of the
tem more tightly bound than that of the field-free thre
dimensional H2 ion. Considering neutral donorsD0 the pla-
nar electron density of the 2D donor is enhanc
significantly compared to that of the 3D donor. The cor
sponding charge distribution makes the interaction of an
ditional distant charge with the neutral donor very differe
for the three-dimensional compared to the two-dimensio
situation. In three dimensions it is well known that, for
fixed center~nucleus!, the combination of a magnetic fiel
with the 3D long-range attractive polarization forces lead
an infinite number of bound states for the negat
donor.11–14In two dimensions the long-range interaction is
repulsive character. Indeed, it was shown by Larsen
McCann2 that an electron situated far from a 2DD0 center
experiences an overall repulsive potential that prevails b
the attractive Coulomb attraction due to the center and
attractive polarization forces. The distances of the orde
the extension of the neutral-donor exchange and correla
effects play a major role with respect to the binding mec
nism of the additional electron.

Two-dimensionalD2 centers in magnetic fields are d
scribed by a three-dimensional Schro¨dinger equation. The
finite-difference numerical method15–22 allows us to solve
this Schro¨dinger equation without any simplifications or a
proximations with respect to the geometry of the wave fu
tion, correlation effects etc. Due to this property of our co
putational approach, here it will be possible to obtain
definite answer for the ground-state energy and the num
of bound states of the two-dimensionalD2 center in mag-
netic fields. The critical values of the field strengths that
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associated with the appearance of the bound states wil
determined. One of the major motivations for the pres
work are the different theoretical values for the ground-st
energy of a two-dimensional negative donor with and wi
out magnetic field existing in the literature. Variation
calculations1,3 on one hand and Monte Carlo simulations7 on
the other yield uncompatible predictions for the ground-st
energies. This puzzle will be resolved within the prese
work.

II. THE SCHRÖ DINGER EQUATION
AND THE METHOD OF SOLUTION

The Hamiltonian of our two-dimensional system of tw
interacting electrons with an effective massm and a singly
charged positive ion placed into a magnetic field perpend
lar to the plane can be written in Cartesian coordinates (x,y)
as

H52
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Here we use the unitsaeff5\2ee22m215em* 21(5.29
31029) cm for the length, Eeff5e4\22me22

5m* e22(27.2) eV for the energy and Beff
5ce3m2\23e225m* 2e22(2.35053105) T for the
magnetic-field strength.g5B/Beff , m0 is the mass of the
free electron,m* 5m/m0 , e is the dielectric constant of the
semiconductor material,r 15(x1

21y1
2)1/2,r 25(x2

21y2
2)1/2,

and r 125urW12rW2u. The spin terms are omitted.
In contrast to variational calculations we are not biased

using a particular ansatz for the variational wave function
will perform a full grid solution to the Schro¨dinger equation
that allows to control and estimate the remaining minor
viation from the exact eigenfunctions and eigenvalues. In
following we provide an outline of our approach that embo
ies various properties and transformations of the Hamilton
and the corresponding Schro¨dinger equation.

Transforming the electronic degrees of freedom to po
coordinates (r 1 ,f1) and (r 2 ,f2) yields for the Hamiltonian
~1!
©2002 The American Physical Society13-1
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The eigenfunctions of this Hamiltonian are the eigenfu
tions of the Hamiltonian~1! if we require them to be periodic
with period 2p with respect to the variablesf1 andf2. The
eigenfunctions of the Hamiltonian~2! should also be eigen
functions of thez projection of the total orbital angular
momentum operator that is a conserved quantity, i.e.,l zC
5MC with

l z52 i
]

]f1
2 i

]

]f2
. ~3!

Introducing the coordinatesr 1 ,r 2 ,f,F where

f5f12f2 ~4!

and

F5
f11f2

2
~5!

we have

l z52 i
]

]F
. ~6!

For these coordinates the Hamiltonian takes on the app
ance
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~7!

Eigenfunctions of the operatorl z read as follows

C~r 1 ,r 2 ,f,F!5eiM Fc~r 1 ,r 2 ,f!. ~8!

We, therefore, have

HC5eiM Fhc ~9!

with
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~10!

This Hamiltonian depends on three degrees of freed
(r 1 ,r 2 ,f) and the corresponding Schro¨dinger equation can
therefore, be solved for the eigenfunctions and eigenva
by applying our finite-difference method.15–17 The coordi-
natesr 1 and r 2 are in the domain

0,r 1,1`, 0,r 2,1` ~11!

with zero boundary conditions for infinity. The correspon
ing domain and boundary conditions for the anglef have to
be analyzed in more detail.

From Eq. ~5! one can conclude that solutions of th
Schrödinger equation belonging to the Hamiltonian~10!
should be considered in the domain22p<f<2p with cy-
clic boundary conditions. This leads to eigenfunctions t
can be either symmetric or antisymmetric with respect
interparticle exchange. The first one corresponds to spin
glet states whereas the second one yield spin triplet sta
Beyond this we encounter additional eigenfunctions of
operator ~10!, which are not eigenfunctions of our initia
Hamiltonian ~1!, i.e., these eigenfunctions do not descri
physical solutions. Indeed, by exploiting certain symmetr
of the wave function it is possible to confine the domain
the anglef to 0<f<2p for the Schro¨dinger equation be-
longing to the Hamiltonian~10!. As a consequence the non
physical solutions are excluded. For the states withM50 the
solutions can be obtained using an even smaller doma
<f<p.

The numerical finite-difference method employed here
solve the eigenvalue problem for the Hamiltonian~10! is a
modification of the approach developed in previous wo
devoted to atoms in strong magnetic17–19 and electric fields
~see Refs. 20 and 21, and references therein! and contains, in
particular, technical aspects used in three-dimensio
problems.16,22 Our computational procedure consists of t
following main steps. The nodes have to be chosen in
spatial domainV:0<r 1,1`,0<r 2,1`,0<f<2p ~or
0<f<p). The values of the wave functions at the positio
of the nodes are the numerical representation of the solut
of the initial differential equations. The nodes of the thre
dimensional mesh in the space (r 1 ,r 2 ,f) are placed at all
the points with coordinates (r 1i ,r 2 j ,fk) wherer 1i ,r 2 j , and
fk are sets of the mesh node coordinates along the co
sponding axes. For the coordinatef it is natural to use a
uniform mesh with nodes atfk52p(k21/2)/N for the re-
gion 0<f<2p ~caseMÞ0) andfk5p(k21/2)/N for the
region 0<f<p ~caseM50), whereN is the number of
nodes in the directionf. For r 1 and r 2 we have used non
3-2
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TABLE I. D2 donor total and binding energies in two dimensions for theM50 singlet ground state
Results of our calculations@IS# and Refs. 2,3,7@other#. The energies of the neutral donor are also given

g ED2
@IS# ED2

@other# ED @IS# ED @other# EB
D2

@IS# EB
D2

@other#

0 22.240 27 22.239~Ref. 3! 22.000 00 22.000~Ref. 3! 0.240 27 0.239~Ref. 3!
22.000~Ref. 7! 0.2555~Ref. 7!

0.02 22.260 14 22.0099 67 0.250 17
0.05 22.289 47 22.0248 69 0.264 60
0.1 22.337 12 22.0495 18 0.287 60
0.2 22.428 08 22.0981 16 0.329 96
0.5 22.673 54 22.673~Ref. 3! 22.2384 16 22.239~Ref. 3! 0.435 12 0.435~Ref. 3!
1.0 23.021 51 23.021~Ref. 3! 22.4551 52 22.455~Ref. 3! 0.566 36 0.566~Ref. 3!
1.0 22.455~Ref. 7! 0.585~Ref. 7!
2.0 23.587 33 23.586~Ref. 3! 22.8362 03 22.836~Ref. 3! 0.751 13 0.750~Ref. 3!
3.0 24.053 55 23.1659 76 23.175~Ref. 7! 0.887 57 0.91~Ref. 7!
4.0 24.458 83 24.459~Ref. 3! 23.4595 82 23.459~Ref. 3! 0.999 25 1.000~Ref. 3!
10.0 26.276 90 26.261~Ref. 3! 24.8151 51 24.813~Ref. 3! 1.461 75 1.463~Ref. 3!
20.0 28.369 94 28.369~Ref. 3! 26.4071 14 26.405~Ref. 3! 1.962 83 1.964~Ref. 3!
50.0 212.5581 211.4583~Ref. 2! 29.621 89 28.86227~Ref. 2! 2.9362 2.5961~Ref. 2!
100.0 217.2937 216.2045~Ref. 2! 213.272 07 212.53314~Ref. 2! 4.0216 3.6715~Ref. 2!
200.0 223.9989 222.9166~Ref. 2! 218.4491 64 217.72454~Ref. 2! 5.5497 5.1923~Ref. 2!
500.0 237.3107 236.234~Ref. 2! 228.7371 20 228.02495~Ref. 2! 8.5736 8.2097~Ref. 2!
1000.0 252.316 251.243~Ref. 2! 240.339 26 239.63327~Ref. 2! 11.977 11.610~Ref. 2!
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uniform distributions of nodes similar to those described
Ref. 19, which cover the infinite domains 0<r 1,1` and
0<r 2,1`, asN→`.

We employ the inverse iteration method to obtain t
eigenfunctions and energy eigenvalues. This requires sol
a system of linear equations with a matrix that is a fini
difference approximation to the Hamiltonian. The solution
these equations is particularly simple if the matrix has
block-tridiagonal structure. The latter can be achieved us
the simplest three-point approximation for the derivatives
one of the coordinates. The choice of this coordinate is d
tated by obtaining a convenient form for the representa
of the boundary conditions. For the two other coordinates
are free to apply more precise higher-order approximati
to their derivatives. The final values for the energy~and other
observables! are provided by using the Richardson extrap
lation technique for the corresponding results emerging fr
a series of geometrically similar meshes with different nu
ber of nodes. Using this approach we achieve a major
crease of the numerical precision and, in particular, we
tain together with each numerical value a reliable estimat
its precision.15,17 Typically, meshes used in the present c
culations range from~the sparsest! mesh with 203 nodes to
~the thickest! one with 383 nodes, i.e., 38 nodes in eac
direction.

III. RESULTS AND DISCUSSION

Our results for the energies of the ground state of
two-dimensionalD2 center are presented in Table I. Th
table contains also the corresponding energies for the gro
state of theD0 center and a comparison with the best resu
obtained in the literature.2,3,7 Refs. 2 and 3 are variationa
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and Ref. 7 represent Monte Carlo simulations. One can
that the variational results by Larsen and McCann coinc
for weak and intermediate field strengths3 very well with our
results. In contrast to this the results obtained by Louie a
Tao Pang7 differ significantly from these values. The absen
of any approximations in our approach and the possibility
reliably evaluate the convergence of our results allow us
conclude that the results obtained in Ref. 7 overestimate
true values for the binding energy of the ground state of
two-dimensional negative donor considerably.~The reader
should note that all digits of the values for our calculat
energies given in Table I are converged, i.e., coincide w
the exact results!. This resolves the discrepancy on th
ground-state energy of the negative donor present in the
erature as demonstrated by the results contained in Tab
particularly for g50 but also for nonvanishing field
strengths.

For strong magnetic fields (g..1) Table I also provides
the energies obtained by Larsen and McCann in ano
variational calculation.2 Our results both on the total an
binding energies show that the ground state of the syste
more strongly bound than predicted by Ref. 2. The diff
ences for the energies depend only weakly on the magn
field strength and are approximately 1.08 a.u. for the to
energy and approximately 0.36 a.u. for the binding ener
These significant deviations of our results from those
tained in Ref. 2 are due to the fact that the binding energ
of the neutral donor in a strong magnetic-field are under
timated in Ref. 2. As shown below this leads also to
overestimation of the binding properties of the excited sta
of the D2 center.

The ground state of theD2 center is the only bound stat
for g50. We have carried out calculations for excited sta
3-3
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TABLE II. Total and binding energies forD2 triplet excited states withM,0.

g EM521
D2 EB EM522

D2 EB EM523
D2 EB

0.05 22.024 53 20.000 34 22.024 74 20.000 13 22.024 81 20.000 06
0.1 22.0492 20.0003 22.049 16 20.000 36 22.049 33 20.000 19
0.2 22.100 0.002 22.097 15 20.000 97 22.097 59 20.000 528
0.5 22.253 0.015 22.2360 20.0024 22.236 554 20.001 862
1.0 22.502 75 0.047 60 22.45 23 20.0029 22.4511 20.0039
2.0 22.9512 0.1150 22.837 75 0.001 55 22.8302 20.0060
4.0 23.684 74 0.2249 23.472 622 0.013 04 23.450 805 20.008 773
10.0 25.2634 0.4482 24.857 87 0.042 72 24.796 20.019
20.0 27.10 28 0.6957 26.4853 0.0782 26.381 20.026
50.0 210.801 61 1.179 72 29.7707 0.1488 29.590 20.032
100.0 214.993 09 1.721 02 213.501 0.229 213.236 20.036
200.0 220.933 2.484 218.794 0.345 218.41 20.04
500.0 232.732 3.995 229.25 0.51 228.69 20.05
500.0 232.1289~Ref. 2! 4.1009~Ref. 2! 228.6261~Ref. 2! 0.602~Ref. 2! 228.0464~Ref. 2! 10.021~Ref. 2!
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of both symmetric and antisymmetric character of the spa
wave function with respect to the interchange of the coo
nates of the electrons~i.e., spin singlet and spin triple
states!. These calculations were implemented both forM
50 and forMÞ0. The latter states were investigated also
Larsen and McCann.2 Without loss of generality we confin
ourselves to negative magnetic quantum numbersM,0.
Pairs of states being different only with respect to the sign
M possess equal binding energies within the correspon
Landau zones. However, opposite to states with negativeM,
states withM.0 do not belong to the lowest Landau zon
Therefore, it is reasonable to focus on valuesM<0.

Our calculations show that the ground state of theD2

center is the only spin singlet state that is bound in the p
ence of magnetic fields. This conclusion coincides with
sults obtained in Ref. 2. On the other hand, it follows fro
our calculations of the triplet states~see Table II! that there
are two triplet states that become bound above some co
sponding critical values forg. These are the energetical
lowest states forM521 and M522, respectively. The
M521 state becomes bound forg.0.117~the total energy
of both D and D2 at g50.117 is22.057 852). The state
with M522 becomes bound forg.1.68 ~the total energy
at g51.68 is22.720 788).

From Table II it is evident that the lowest state with ma
netic quantum numberM523 is not bound for any
magnetic-field strength considered here and probably also
higher field strengths~the binding energyEB5ED2ED2

is
negative and its absolute value increases with increa
field strength!. This result differs from that obtained b
Larsen and McCann.2 They received positive binding ene
gies for this state for sufficiently strong magnetic field
Their binding energy forg5500 is presented in Table II. Th
main reason for this discrepancy is the underestimation
the binding energy of the neutral donor in Ref. 2 as can
seen from Table I. The data of Table II together with o
results for other excited states~they are unbound! allow us to
conclude that theD2 considered possesses only two bou
20531
al
i-

y

f
g

.

s-
-

re-

-

or

g

.

of
e
r

excited states—possessing magnetic quantum numberM
521 andM522.

Along with the total and binding energies of the tw
dimensional negative donorD2 we have calculated som
geometrical parameters of its wave function, which prov
additional information about the system. In Fig. 1 we pres
the expectation valueR25^r 1

21r 2
2&, which characterizes the

extension of the spatial distribution of the electrons in t
simplest and most straightforward way as a function of
field strength. First of all, we observe that the electro
cloud is shrinking monotonically with increasing fiel
strength for all bound states. This had to be expected acc
ing to what we know about the behavior of tightly boun
states of few-electron system in strong magnetic fields.21 The
difference of the behavior ofR2 for the ground (M50) and

FIG. 1. ^r 1
21r 2

2& depending on the magnetic-field strength f
the three lowest states of the two-dimensionalD2 center. Effective
atomic units are used~see text!.
3-4
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excited (MÞ0) states for relatively weak magnetic fields
obvious. The ground state is bound forg50, its wave func-
tion remains localized for all values ofg, andR2 possesses
finite limit for g→0. Furthermore, it changes little forg
<0.1 a.u. For the excited statesR2 is not bounded forg
→0. It changes rapidly with increasing field strength parti
larly in the weak magnetic-field regime. Therefore,R2 pos-
sesses finite values for excited states only due to the pres
of the magnetic field. On the other hand, the dependence
R2 on the magnetic-field strength in the high-field regime
similar for all considered states since they are dominated
the diamagnetic termg2(r 1

21r 2
2)/8 of the Hamiltonian. The

occurrence of a small curvature in the dependence ofR2(g)
for M521 betweeng50.1 andg510 is due to the influ-
ence of internal binding forces of the system, which are
negligibly small compared to the magnetic forces for t
range of field strengths.

IV. BRIEF SUMMARY

We have shown that the two-dimensional negative do
D2 possesses three bound states, i.e., two bound ex
states in the presence of a sufficiently strong magnetic fi
The spin singlet ground state is bound for arbitrary fi
strengths. Our investigation of the ground state clarifie
discrepancy in the literature and confirms previous va
tional calculations.1,3 As a result the energy eigenvalues o
an
ab
e

e

l
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tained in Ref. 7 turn out to violate the variational princip
and are too low, i.e., the corresponding binding energies
too large. For weak and intermediate field strengths we
tain good agreement of our total and binding energies c
pared to those of Ref. 3. In the high-field regime, howeve
significant lowering of the total energies and raising of t
binding energies are obtained within the present invest
tion. Our particular computational approach allows for
estimate of the difference of our~up to several digits con
verged! results and the exact ones consequently allows u
draw definite conclusions on the energies and propertie
the donor. A series of calculations for excited states sh
that two other states become bound with increas
magnetic-field strength. They are the lowest excited sta
with M521 (g.0.117) andM522 (g.1.68). The ex-
tension of these states decreases monotonically with incr
ing field strength.
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