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Two-dimensional negative donors in magnetic fields
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A finite-difference solution of the Schdinger equation for negative donor centers in two dimensions is
presented. Our approach is of exact nature and allows us to resolve a discrepancy in the literature on the ground
state of a negative donor. Detailed calculations of the energies for a number of states show that for field
strengths less thap=0.117a.u. the donor possesses one bound state, for 8:3%71.68 a.u. there exist two
bound states and for field strengths=1.68 a.u. the system possesses three bound states. Further relevant
characteristics of negative donors in magnetic fields are provided.
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[. INTRODUCTION associated with the appearance of the bound states will be
determined. One of the major motivations for the present
The properties oD~ centers in narrow quantum wells work are the different theoretical values for the ground-state
have become a subject of considerable interest during thenergy of a two-dimensional negative donor with and with-
past year§__9 In very narrow wells this system can be con- out magnetic field existing in the literature. Variational
sidered as a two-dimension@D) counterpart of the atomic calculation$® on one hand and Monte Carlo simulatibos
H™ ion. A frequently used compound for current experimen_the other yield uncompatible predictions for the ground-state
tal investigationgsee, for example, Ref. 1@f such systems €nergies. This puzzle will be resolved within the present
are layers of GaAs/AlGaAs. The high mobility, i.e., small work.
effective mass of the electrons and the comparatively large
dielectric constant of this semiconductor material allow us to Il. THE SCHRO DINGER EQUATION
study strong magnetic-field effects in the laboratory. Both the AND THE METHOD OF SOLUTION
two-dimensional character of the motion of the electrons and o ) )
the external magnetic field make the ground state of the sys- 1he Hamiltonian of our two-dimensional system of two
tem more tightly bound than that of the field-free three-interacting electrons with an effective massand a singly
dimensional H ion. Considering neutral donoB? the pla- charged positive ion place_d into a magnetic field perpendlcu-
nar electron density of the 2D donor is enhancedar to the plane can be written in Cartesian coordinaxeg)(
significantly compared to that of the 3D donor. The corre-8S
sponding charge distribution makes the interaction of an ad-

ditional distant charge with the neutral donor very different Y o Y 0 0 g

; ; : ) H=—Z(Vi+ Vo) —is| —yioo- X =Yoo~
for the three-dimensional compared to the two-dimensional 2 2 X ay1 Xy
situation. In three dimensions it is well known that, for a 5
fixed center(nucleus, the combination of a magnetic field x|+ y—(r2+r2)— i_ i_,_ i 1)
with the 3D long-range attractive polarization forces lead to 20y, 81 ¥ ry ry Iy

an infinite number of bound states for the negative ) 5 o g .1
donor'*~4In two dimensions the long-range interaction is of Here_gwe use the unitfg=hee m = em (5'_2;3
repulsive character. Indeed, it was shown by Larsen and® 1(1 zzcm for —the length, E=e€"% “me
McCanrf that an electron situated far from a 2D center ~M € (?Z'Z_)z ev ) f_ozr the energy and Be
experiences an overall repulsive potential that prevails botfr C&'M A~ e “=m*“e~*(2.3505< 105), T for the
the attractive Coulomb attraction due to the center and th@agnetic-field strengthy=B/Be, M is the mass of the
attractive polarization forces. The distances of the order off€€ €lectronm®™=m/my, € is the dielectric constant of the
the extension of the neutral-donor exchange and correlatiofemiconductor material,r ;= (x{+y7)Y2r,= (x5 +y3) "
effects play a major role with respect to the binding mechaandr,,=|r,—r,|. The spin terms are omitted.
nism of the additional electron. In contrast to variational calculations we are not biased by
Two-dimensionalD ~ centers in magnetic fields are de- using a particular ansatz for the variational wave function but
scribed by a three-dimensional Sctimger equation. The will perform a full grid solution to the Schrdinger equation
finite-difference numerical meth&d?2 allows us to solve that allows to control and estimate the remaining minor de-
this Schralinger equation without any simplifications or ap- viation from the exact eigenfunctions and eigenvalues. In the
proximations with respect to the geometry of the wave func{ollowing we provide an outline of our approach that embod-
tion, correlation effects etc. Due to this property of our com-ies various properties and transformations of the Hamiltonian
putational approach, here it will be possible to obtain aand the corresponding Schiiager equation.
definite answer for the ground-state energy and the number Transforming the electronic degrees of freedom to polar
of bound states of the two-dimensioral” center in mag- coordinatesi(;, ;) and (,,¢,) yields for the Hamiltonian
netic fields. The critical values of the field strengths that arg1)
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B 1,92+1a #? 1 9 B 1a2+1 a+a2+1a+|v|21+1
2\ gr2 rydry gr3 rpdr; 2\ gr2 rydry gr3 Trpdrp) 8 \rf o r2
1(1 ¢ 1 0>\ y[ o d iM[1 1)\9 1[1 1) My
"2\ 2o 2002 T 2 G T ae, "2\ 2 2\ 2T 2

ridgr r;deé; 1 2 ra rz ri r;/deé
2
4 1 1 2 1 1 1
+§(r%+r§)_r__r_ +7—(r§+r§)————+ P o
1 2 8 ri T2 (ri+r5—2ryrcosp)t
1 10

b @ _ 1o

[r1+r5—2r5r,co8 s~ ¢h)] This Hamiltonian depends on three degrees of freedom

) _ _ o _ (r1.r,,¢) and the corresponding Scliinger equation can,
The eigenfunctions of this Hamiltonian are the eigenfunc-therefore, be solved for the eigenfunctions and eigenvalues
tions of the Ham|lt0n|am1) if we require them to be periOdiC by app|y|ng our finite-difference meth&aT]J The coordi-
with period 2 with respect to the variables; and¢,. The  natesr,; andr, are in the domain
eigenfunctions of the Hamiltoniaf2) should also be eigen-
functions of thez projection of the total orbital angular- 0<r;<+4w, 0<r,<+w (11)

momentum operator that is a conserved quantity, i,&, ) N o
=MW with with zero boundary conditions for infinity. The correspond-

ing domain and boundary conditions for the angl&ave to
9 9 be analyzed in more detail.
IZ__IW_IW' 3 From Eq. (5) one can conclude that solutions of the
! 2 Schralinger equation belonging to the HamiltonigO)
Introducing the coordinates;,r,,¢,® where should be considered in the domairR < ¢<27 with cy-
clic boundary conditions. This leads to eigenfunctions that
dp=¢1— b (40 can be either symmetric or antisymmetric with respect to
interparticle exchange. The first one corresponds to spin sin-
glet states whereas the second one yield spin triplet states.
b1+ by Beyond this we encounter additional eigenfunctions of the
- (5) operator(10), which are not eigenfunctions of our initial
Hamiltonian (1), i.e., these eigenfunctions do not describe
we have physical solutions. Indeed, by exploiting certain symmetries
of the wave function it is possible to confine the domain of
o d the angle¢ to 0< ¢=<2x for the Schrdinger equation be-
lp=—i N (6) longing to the Hamiltoniari10). As a consequence the non-
physical solutions are excluded. For the states With O the
For these coordinates the Hamiltonian takes on the appeagp|utions can be obtained using an even smaller domain 0
ance < (ﬁS ar.
The numerical finite-difference method employed here to
1((92 149 & 1(9) 1(1 1
H=—§ —t——t—=+——] ==+ =

and

7 solve the eigenvalue problem for the Hamiltonid®) is a
P2 modification of the approach developed in previous works
devoted to atoms in strong magnéfic:® and electric fields

1( 1 1) 92 1( 1 1) 2y (see Refs. 20 and 21, and references thesid contains, in
I Tl el B R D L T particular, technical aspects used in three-dimensional
2\ri r3)0®db 2\r} rfag? 209 problemst®?? Our computational procedure consists of the
2 1 1 following main steps. The nodes have to be chosen in the
+7—(rf+r§)————+ _ spatial domainQ:0=<r,;<+», 0=<r,<+o,0<$=<27 (or
8 2 (r2+r3—2rr,cosg)*? 0<¢=). The values of the wave functions at the positions
) of the nodes are the numerical representation of the solutions
of the initial differential equations. The nodes of the three-
Eigenfunctions of the operatdy read as follows dimensional mesh in the space;(r,,¢) are placed at all
. the points with coordinates {; ,r; ,¢\) wWherer 4;,r,;, and
W(ry,rp,0,@)=eMPy(ry,ry,¢). (8) ¢, are sets of the mesh node coordinates along the corre-

sponding axes. For the coordinafeit is natural to use a

uniform mesh with nodes ap,=2m(k—1/2)/N for the re-
HW =eM®Phy (9) gion 0< ¢=<2m (caseM #0) and¢,= w(k—1/2)/N for the

region O< =< (caseM=0), whereN is the number of
with nodes in the directiop. Forr, andr, we have used non-

We, therefore, have
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TABLE I. D™ donor total and binding energies in two dimensions for bhe- O singlet ground state.
Results of our calculationdS] and Refs. 2,3,7other]. The energies of the neutral donor are also given.

y EP [IS] EP ™ [othef] E® [1S] EP [other] EX [IS] ED [othed
0 —2.24027 -2239(Ref. 3  —2.00000 —2.000(Ref.3  0.24027 0.239Ref. 3
—2.000(Ref. 7) 0.2555(Ref. 7)
0.02 -2.26014 —2.0099 67 0.25017
0.05  —2.28947 —2.0248 69 0.264 60
01  —233712 —2.049518 0.287 60
02  —2.42808 ~2.098116 0.329 96
05  —267354 -2673(Ref.3 —2238416 —2.239(Ref.3 043512 0.435Ref. 3
1.0  —-3.02151 -3.021(Ref.3 —2455152 —2455(Ref. 3 056636 0.568Ref. 3
1.0 —2.455(Ref. 7) 0.585(Ref. 7)
20 358733 -3586(Ref.3 —2.836203 —2.836(Ref.3 0.75113 0.75QRef. 3
30  —4.05355 ~3.165976 —3.175(Ref.7)  0.88757  0.91Ref. 7)
40 445883 —4459(Ref.3 —3.459582 —3.459(Ref. 3  0.99925 1.00GRef. 3
100  —6.27690 -6.261(Ref. 3 —4.815151 —4.813(Ref. 3 1.46175 1.463Ref. 3
200 836994 -8.369(Ref.3 —6.407114 —6.405(Ref. 3 1.96283 1.964Ref. 3
50.0 125581 —11.4583(Ref. 2 —9.62189 —8.86227(Ref. 2 29362 2.5964Ref. 2
100.0 —17.2937 —16.2045(Ref. 2 —13.27207 —12.53314(Ref. 2 4.0216 3.6715Ref. 2
200.0 —23.9989 —22.9166(Ref. 2 —18.449164 —17.72454(Ref. 2 55497 5.1923Ref. 2
500.0 —37.3107 —36.234(Ref. 2 —28.737120 —28.02495(Ref. 2 8.5736 8.2097Ref. 2
1000.0 —52.316 —51.243(Ref.? —40.33926 —39.63327(Ref.2 11.977 11.61QRef. 2

uniform distributions of nodes similar to those described inand Ref. 7 represent Monte Carlo simulations. One can see
Ref. 19, which cover the infinite domains<G; <+ and that the variational results by Larsen and McCann coincide
0<r,<+oo, asN—oo, for weak and intermediate field strengtvery well with our

We employ the inverse iteration method to obtain theresults. In contrast to this the results obtained by Louie and
eigenfunctions and energy eigenvalues. This requires solvingao Panddiffer significantly from these values. The absence
a system of linear equations with a matrix that is a finite-of any approximations in our approach and the possibility to
difference approximation to the Hamiltonian. The solution ofreliably evaluate the convergence of our results allow us to
these equations is particularly simple if the matrix has aconclude that the results obtained in Ref. 7 overestimate the
block-tridiagonal structure. The latter can be achieved usingrue values for the binding energy of the ground state of the
the simplest three-point approximation for the derivatives fortwo-dimensional negative donor considerakiyhe reader
one of the coordinates. The choice of this coordinate is dicshould note that all digits of the values for our calculated
tated by obtaining a convenient form for the representatiorenergies given in Table | are converged, i.e., coincide with
of the boundary conditions. For the two other coordinates weéhe exact resulls This resolves the discrepancy on the
are free to apply more precise higher-order approximationground-state energy of the negative donor present in the lit-
to their derivatives. The final values for the enefggd other  erature as demonstrated by the results contained in Table |
observablesare provided by using the Richardson extrapo-particularly for y=0 but also for nonvanishing field
lation technique for the corresponding results emerging fronstrengths.
a series of geometrically similar meshes with different num-  For strong magnetic fieldsy(>>1) Table | also provides
ber of nodes. Using this approach we achieve a major inthe energies obtained by Larsen and McCann in another
crease of the numerical precision and, in particular, we obvariational calculatiord. Our results both on the total and
tain together with each numerical value a reliable estimate obinding energies show that the ground state of the system is
its precisiom:>!’ Typically, meshes used in the present cal-more strongly bound than predicted by Ref. 2. The differ-
culations range fronithe sparsestmesh with 28 nodes to  ences for the energies depend only weakly on the magnetic-
(the thickest one with 38 nodes, i.e., 38 nodes in each field strength and are approximately 1.08 a.u. for the total
direction. energy and approximately 0.36 a.u. for the binding energy.
These significant deviations of our results from those ob-
tained in Ref. 2 are due to the fact that the binding energies
of the neutral donor in a strong magnetic-field are underes-

Our results for the energies of the ground state of thd¢imated in Ref. 2. As shown below this leads also to an
two-dimensionalD ™~ center are presented in Table I. This overestimation of the binding properties of the excited states
table contains also the corresponding energies for the grouraf the D~ center.
state of theD® center and a comparison with the best results The ground state of thB ~ center is the only bound state
obtained in the literaturé®’ Refs. 2 and 3 are variational for y=0. We have carried out calculations for excited states

IIl. RESULTS AND DISCUSSION
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TABLE Il. Total and binding energies fdD ~ triplet excited states wittv <O.

y ED” . Es ED” Es ED. Es
0.05 —2.024 53 —0.000 34 —-2.02474 —0.00013 —2.024 81 —0.000 06
0.1 —2.0492 —0.0003 —2.04916 —0.000 36 —2.04933 —0.00019
0.2 —2.100 0.002 —-2.097 15 —0.00097 —2.097 59 —0.000528
0.5 —2.253 0.015 —2.2360 —0.0024 —2.236 554 —0.001 862
1.0 —2.50275 0.047 60 —2.4523 —0.0029 —2.4511 —0.0039
2.0 —2.9512 0.1150 —2.83775 0.00155 —2.8302 —0.0060
4.0 —3.684 74 0.2249 —3.472 622 0.01304 —3.450 805 —0.008 773
10.0 —5.2634 0.4482 —4.857 87 0.04272 —4.796 —0.019
20.0 —-7.1028 0.6957 —6.4853 0.0782 —-6.381 —0.026
50.0 —10.80161 1.17972 -9.7707 0.1488 —-9.590 —-0.032
100.0 —14.993 09 1.72102 —-13.501 0.229 —13.236 —0.036
200.0 —20.933 2.484 —18.794 0.345 —-18.41 —-0.04
500.0 —-32.732 3.995 —-29.25 0.51 —28.69 —-0.05
500.0 —32.1289(Ref. 2 4.1009(Ref. 2 —28.6261(Ref. 2 0.602(Ref. 2 —28.0464(Ref. 2 +0.021(Ref. 2

of both symmetric and antisymmetric character of the spatiaéxcited states—possessing magnetic quantum nuniders
wave function with respect to the interchange of the coordi=—1 andM=—2.

nates of the electronsi.e., spin singlet and spin triplet Along with the total and binding energies of the two-
states. These calculations were implemented both kér  dimensional negative dondd™ we have calculated some
=0 and forM #0. The latter states were investigated also bygeometrical parameters of its wave function, which provide
Larsen and McCanfWithout loss of generality we confine additional information about the system. In Fig. 1 we present
ourselves to negative magnetic quantum numbdrs0.  the expectation valuB?=(rf+r3), which characterizes the
Pairs of states being different only with respect to the sign ofXtension of the spatial distribution of the electrons in the
M possess equal binding energies within the correspondingimplest and most straightforward way as a function of the
Landau zones. However, opposite to states with negitive 1€ld strength. First of all, we observe that the electronic

states withM >0 do not belong to the lowest Landau zone. ¢/oud is shrinking monotonically with increasing field
Therefore. it is reasonable to focus on valhés0. strength for all bound states. This had to be expected accord-

Our calculations show that the ground state of Be ing to what we know about the behavior of tightly bound

center is the only spin singlet state that is bound in the presStates of few-electron system in strong magnetic figldghe

ence of magnetic fields. This conclusion coincides with redifference of the behavior dR? for the ground ¥ =0) and

sults obtained in Ref. 2. On the other hand, it follows from 100

our calculations of the triplet statésee Table Il that there

are two triplet states that become bound above some corre

sponding critical values fory. These are the energetically

lowest states folM=—1 and M= —2, respectively. The 10

M= —1 state becomes bound fer>0.117(the total energy

of bothD andD~ at y=0.117 is —2.057 852). The state

with M= -2 becomes bound foy>1.68 (the total energy

at y=1.68 is—2.720788). ~
From Table Il it is evident that the lowest state with mag-

netic quantum numbeM=-—3 is not bound for any o

magnetic-field strength considered here and probably also fo & 4 4

higher field strengthéthe binding energ\fEg=EP—EP s

negative and its absolute value increases with increasing

field strength. This result differs from that obtained by

Larsen and McCanhThey received positive binding ener- 0.01

gies for this state for sufficiently strong magnetic fields.

Their binding energy fory=500 is presented in Table Il. The o o oo

main reason for this discrepancy is the underestimation of ) v

the binding energy of the neutral donor in Ref. 2 as can be

seen from Table I. The data of Table Il together with our  FIG. 1. (r?+r3) depending on the magnetic-field strength for

results for other excited statébey are unboundallow us to  the three lowest states of the two-dimensiobal center. Effective

conclude that thé ™~ considered possesses only two boundatomic units are usetsee text

1 +r;

1000

o
[=]
-
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excited (M #0) states for relatively weak magnetic fields is tained in Ref. 7 turn out to violate the variational principle
obvious. The ground state is bound fp+=0, its wave func- and are too low, i.e., the corresponding binding energies are
tion remains localized for all values of andR? possesses a too large. For weak and intermediate field strengths we ob-
finite limit for y—0. Furthermore, it changes little foy  tain good agreement of our total and binding energies com-
<0.1 a.u. For the excited stat& is not bounded fory  pared to those of Ref. 3. In the high-field regime, however, a
—0. It changes rapidly with increasing field strength particu-significant lowering of the total energies and raising of the
larly in the weak magnetic-field regime. TherefoR¥, pos-  binding energies are obtained within the present investiga-
sesses finite values for excited states only due to the presenten. Our particular computational approach allows for an
of the magnetic field. On the other hand, the dependences éktimate of the difference of ouup to several digits con-

R? on the magnetic-field strength in the high-field regime areverged results and the exact ones consequently allows us to
similar for all considered states since they are dominated bgiraw definite conclusions on the energies and properties of
the diamagnetic tern*yz(riJr r%)/8 of the Hamiltonian. The the donor. A series of calculations for excited states show
occurrence of a small curvature in the dependend@?6f) that two other states become bound with increasing
for M=—1 betweeny=0.1 andy=10 is due to the influ- Magnetic-field strength. They are the lowest excited states
ence of internal binding forces of the system, which are noWwith M=—1 (y>0.117) andM=—2 (y>1.68). The ex-
negligibly small compared to the magnetic forces for this_tensi_on of these states decreases monotonically with increas-
range of field strengths. ing field strength.
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