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Field-induced spin-density-wave and butterfly spectrum in three dimensions
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Landau’s quantization for incompletely nested Fermi surfaces is known to give rise to magnetic-field-
induced spin-density wave&FISDW'’s) in two-dimensional organic metals. Here we show that three-
dimensional(3D) systems can have 3D-specific series of FISDW phases as energetically stable states, for
which we clarify how and why they appear as the magnetic field is tilted. Each phase is characterized by a
quantized Hall effect for eachr,, and o, that reside on a fractal-like Hofstadter’s butterfly.
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I. INTRODUCTION transfer energies satisfyy>t,~t, [as contracted witt,
>t,>t, in (TMTSF),X]. With a varied magnitude and ori-

Rich electronic states arising from the nesting of Fermientation of the magnetic fielB=(0,B,,B,), we have opti-
surfaces continue to provide fascination in various classes ghized the SDW nesting vector to show that a series of 3D
materials. Organic crystals provide particularly versatileFISDW phases do indeed exist, which is best expressed as a
Fermi surfaces, and it has indeed been sHaat a curious  phase diagram againsB(,B,). The phases comprise rich
series of spin-density-wavgSDW) states emerge in strong families, where they are characterized by quantized Hall con-
magnetic fields in a family of quasi-two-dimensional organicductivities o, ando,, as one hallmark of the 3D nature. On
conductors (TMTSR)X (TMTSF is tetramethyltetraselena- the energy axis, the FISDW is seen to reside on a fractal
fulvalene andX=PF;, etc), called the Bechgaard salt. The energy spectrum like Hofstadter's butterffywhich, curi-
field-induced spin-density wavéFISDW) occurs when the ously, also indicates the 3D-specific nature of the 3D
nesting of the Fermi surface is incomplete. The LandalFISDW. In fact this can be regarded as one realization,
quantization in the pockets formed as a result of an incomthrough a density-wave formation, of the butterfly and the
pletely nesting then causes a series of gaps to appear arougdantum Hall effect in three dimensions we have proposed
the main SDW gap? Since Er always lies in the largest on a general mathematical badisAn intuitive reason why
Landau gap, an integer quantum Hall effect arises. When théhe butterfly spectrum arise in the 3D FISDW is discussed in
magnetic field is increased, successive phase transitions takgrms of the topology of the incompletely nested Fermi sur-
place because the energetically favorable SDW nesting vedace in three dimensions in Sec. V.
tor jumps along the way, which results in discontinuous
changes of the Hall conductivity. This has been considered
for the TMTSF compourftithat happens to have very aniso-
tropic transfer energies between molecules wiht, :t, We consider a simple orthorhombic metal with an energy
~1:0.1:0.003, so that the system is almost perfectly twadispersion
dimensional(2D).
_ So the challenging problem we addregs here _is as follows: e(k)=—t, cosk,a—t, cosk,b—t, cosk,c, (1)
(i) can we have such Landau-quantization-assisted FISDW

states in three-dimensional systems, not as a remnant of thgereq b, andc are lattice constants and the transfer ener-
2D FISDW but as 3D-specific, energetically favorable StateSgies are assumed to satigfy-t, ,t, (i.e., are quasi-1D The
y1 Z oy

and if so,(ii) how and why do the successive phase tranSi'dispersion alongy, around the Fermi energy can be approxi-
mated as a linear functian:(|k,| —kg) [with =1 ande(k)

tions arise in three dimensions? LeBéatroduced third di-
measured fronEg ], while the three dimensionalitjwarping

rection hopping to a FISDW, and several autfdrsstudied
the quantum Hall effect in a 3D FISDW, where Hall conduc- of the Fermi surfacecan be described by the expansiortjn
andt, as

tivities o, and o,, are predicted to be quantized, respec-

tively. However, the condition for the emergence of 3D

FISDW phase itself has not been worked out except for a

limited case for (TMTSF)X where three dimensionality is (k) =ve([kd —ke) +er(ky), @

very small® So it has remained to be clarified whether and

how FISDW phases really do exist in three dimensions. e (k)=—t, coskyb—tzcoskzc—t)’, cos 2kyb—t; cos X,C
This is exactly the purpose of the present paper. We con-

sider the possibility of FISDW phases in 3D systems in mag- —ty cogkyb+k,c)+cogkb—k,C)], ()]

netic fields, where we shall show that the favorable situation

is anisotropic 3D systems with an anisotropy such that thevherek, =(k, ,k,), and

Il. FORMULATION FOR THE 3D FISDW
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t,=at?/t,, ~ .
o R)=2e X, 35, (22)dn,(22)X - - X I (Z6)
1---Ne

r_ 2 r_

tz_atz/tx*tyz_zatytzltx’ (4) Xefi(n1+2n3+n5+nG)Gbxfi(n2+2n4+n57n6)ch+i5

with a= — (coskga)/(4 sirfkea). (8)
Let us apply a magnetic field [,,B,) normal to the with

conductive axix. We take the spin quantization axis parallel t

to z We assume that a SDW is the most likely instability as 2 _

. ) ) z,=2t,/(G coqq,/2 2,=2t,/(G c040q,/2),

in the Bechgaard salfsand look at the mean-field equation 2%~ <" (Govg)coday2), 2z, (Gevr)cos,/2)

for the wave function with the 3D nesting vectay

:t/ :t/
=(x.0y,4,), which can be writteh? 23=1y/(Govp)cosy,  2s=t:/(Gevp) oy,

ZSZt),/z/[(Gb+GC)UF]Coi(qy—"qz)/z]'

26=1,/[(Gp— Go)ve]cog (q,—a,)/2], ©)
whereJ, is the Bessel function,

E-H.(x)  A(X) )(U(X))_
A*(x)  E-H0)/\v(x)]

Hi(X)=—ivgdst e (k. —€A)),
Gp,=eB,b,G.=eByc,

and 5(qy,q,) is a phase factor independentfThe sum-
mation in Eq.(8) can be rearranged into

Hi(X)=+ivedst+e (k. —q, —€A)), (5

whereA, = (B,x,—B,X) is the vector potential, and the band
energy measured fromuvgke. H;(H)) is the Hamiltonian _ _ _
for an electron on the right Fermi surface with up-s@@non A(X) =AE | €' (Ox MG NGe)x+is (10)

the left Fermi surface with down-spinwhile u(v) is the

corresponding wave function for an up-spin electron on theynhere| ., is a summation of products a’s. We can see
right Fermi surfacédown-spin on the left A(x) represents  that the energy gaps of width\l,,, open atk,= *(qy

the mean-field electron interaction, which can be approxi-—mG,—nG,). Since the Fermi energgat k,= + k) must
mately written as a single-mode functidr(x) ~Ae'%*. We jie in the largest gap to minimize the energy, we obtain
determineA and q self-consistently so as to minimize the

free energy aT =0 (i.e., the ground-state enepgyrhe SDW 3(0y—MG,—NG,) =kg, (11
also mixes down-spin states around the right Fermi surface

and up-spins around left Fermi surface, which defines an/NeréM andN are them andn that give the largesty,.
other order parameter. The phase difference between the twid'US thex component of the SDW nesting vector becomes

order parameters specifies the spin order direction oghe Ox=2Ke+ MG, +NG;.° Here we assumeke>Gyp,Ge,
plane. which is reasonable as long as typicaBy< 10* T.

If we separate out the, -dependent phase as Tq_be precise, gaps other than the onEat;a'n affect' the
stability of the FISDW, but in the weak-coupling regime at
T=0 we can show that the stability of the FISDW phase is
determined by the width of the gap in whiéh: resides as
shown below. SupposB, /G, is rational with

~ i [x
u(x)zu(x)exr{ — ;J'O € (k, —eA))dx'|,

Gb:pG! Gc:qu

[

~ i
X)=v(x)exg + — k,—q, —eA))dx’
v()=v(x) F{ vpfo eulki—a L) wherep andq are mutually prime integers. Equati@h0) can

then be rewritten as

~ i [x
A(X):A(X)exl{—;jo[q(kl—eAL) Z(X):AZ I, i 18)x+io (12)
+e (K, —ql—eAL)]dx’) _ (6)  Wherel, is the summation ofy,, over those fn,n) satisfying
mp+nqg=I. The energy spectrum has a gapkat * 3(0
) —1G) for each integet. We consider a situation where the
Equation(5) reads gap widths are smaller than the gap intervals. We can then
express the energy dispersion along the extended zone
E+ivedy  A(X) u(x) (shown in Fig. 1 as
~ ) - =0 (7)
A*(X) E—ivedg/ \v(x) . . . -
E* (k) =&+ 2 [sgri&” —le) (£ —le)*+[AI [
where the effect of the magnetic field is included in the off-
diagonal partK. When we plug Eq(3) into A, we obtain — (& —lg)], (13
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FIG. 1. The structure of the energy spectrum representing Eq. %—8
(13) in the text. 0 = T.g 4, 50
0 25 5.0
where ¢ (k,) = *five(k,F 2q,) are the dispersions foA o B ipd el o
=0 measured from the gaplat 0 for the right ¢*) and left (b) cle ty:tz=1:0.7 2 o
(&) Fermi surfaces witle = v G/2. The energy gained by 5.0 7 >
opening the gap in the metallic state is
|A § + +
Pt (B (k= £ (k. (14
" -
>
Herevy(>0) is a molecular-field constant, and the summa- 8 05| o
tion taken ovelEg— ¢.<E~(k,)<Eg, whereé&, is a cutoff. N
If we insert Eq.(13) into this equation, we have N {
[y
A
NG |AIL|2( 4%5) o
F=—-Dy—5—| 1+log—— - 20
Vo 2 A2 =33
| 0 6.0 > M50
€ 0 2.5 5.0
+D°|Zo |Al 1 |log Ele| (15 By/(ty/ ebvp)

FIG. 2. The phase diagram for the FISDW in three dimensions
at T=0 in the weak-coupling regime is shown againB, (B,)
for t,/t,=1 (a) or 0.7(b) [i.e.,t;/t)’,=1 (a) or 0.49(b) in Eq. (4)].
The phases are labeled by the quantum Hall integers
(M,N)[=(0yy,0,0 in units of (/2e?)], and those having
(dy,9,) # (7, 7) are underlined. We assunie=c, t,/t,=0.1 and
a=0.4. The 3D-natured phases are shaded.

wherelL is the index of the gap that contaifs , andD is
the density of states foA=0 which is assumed to be a
constant. From the gap equatiaif;/d|A|>=0, we obtain

(18 sential finding here is that there are FISDW phagecific to

AL |2 three dimensionswhich exist only when both, andt, are

=— OTL, (179 nonzero. We can see this by comparing Figs) 2nd ;{b),
where the 3D-specific phaséshaded are seen to shrink as

ThusA in general depends not only on the width of the gaptzlt)_,_—>0. The 3D-specific phases are classified into several
at Ex («I,) but also those of other gaps. In the weak-families: (M,N)=(N,—N) phases lying along ¢
coupling limit vo—0, howeverA is mainly determined by =tan ‘(B,/B;)=45°, and (2N,0) phases around
the factor exp—1/(|1 |%voDg)]. So larger, gives largerA  (By,Bz)=(0.1,0), etc., and their mirror image8(—B,).
in Eq. (16), which gives smalieF in Eq. (17). Therefore, we  Sun and Maki have shown that a smat) in (TMTSF),X
only have to maximizé in order to minimize the free energy. (Wheret; et neglected can give rise to a phase with non-
zeroM andN just at a particular angle @ (Lebed’s angle,
corresponding to 45° in our model for=c). The Sun-Maki
phase is possibly related to the present 3D phases, although it
We have obtained the phase diagram agaiBgtB,) by  does not belong to theN,—N) family here.
maximizing I ,(dy,q9,) for mesh points on &, ,B,) and The integers M§,N) have an important physical
(ay,9,) around @r, ). Figure 2 shows the result fay=t,  meaning—the Hall conductivity. Following Yakovenko’s for-
(a) andt,>t, (b). In both cases we do have a series of phasesulation for two dimension$> Sun and Mak have pre-
that are characterized by(,N) defined in Eq.(11). An es- dicted that the FISDW phase havingM(N) should have

le
Etle

|ALL =2§CEXL{

l1L|2voDy 70| IL

Ill. PHASE DIAGRAM AND HALL CONDUCTIVITY
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Hall conductivities ¢y, ,0,,) = (2€2/h)(M,N) (2 is the spin = =
facton. In our previous papéf, that demonstrated a realiza- (a) Sis| o
tion of Hofstadter’s butterfly in noninteracting 3D systems, o5 -

we obtained quantum Hall integers residing on the fractal
spectrum by making use of Streda’s formula following Hal-
perin, Kohmoto, and W{? where these integers are identi-
fied to be topological invariants assigned to each gap in the
butterfly. If we apply this general argument to the FISDW
problem treated here, the result coincides with Sun and Ma-
ki's. What is interesting about the FISDW states considered
here ¢,~t,) is that the wild variation of ¥1,N) with the
magnetic field accompanies a wild variation in the quantum
Hall conductivities.

The mathematical origin of the 3D phases can be traced
back to the basic equations abaiwehile we discuss the in-
tuitive reason later For §—45°, G,— G, vanishes, and the
argument of one of the Bessel functiodﬁb(ZG), diverges.

T % T XU TBUWMOT. N

- " vov

W oo ST aTTavsssy
o g e ey

D e e

E/ty

Since J,(z) has the maximum at~n, A(x) has a large
Fourier componene ™ "s(®~ G with a nonzerong. If we 25
assume other’s are small,l,, has a maximum atng,n)
=(ng,—ng), Which corresponds to theN(—N) phases.
Similarly, (—2N,0) phases correspond to the divergence of (b)
Z3x 1/Gb . 2.5

Now we come to the stability of the 3D phases. When we
go from 3D systems over to 2D systeing(or t,)— 0], the
3D phases vanish and we are left with 2D phases with
N,0(ON) that depend only o8, (B,), as seen from Fig.
2(b). These phases are known for (TMTSK) while the 3D
phases are new. The nesting vecto, ,Q,) is pinned to
(7r,7) in the (N,—N) and (- 2N,0) phases, while in the 2D
(N,0) phases and some of 3D phases the nesting starts to
deviate from @r,7) with N. We also note that the 3D phases
do not require very large magnetic fields. In fact, wiggnor
B, becomes too large the 3D phases give way to 2D ones
even whent,=t,, as seen in Fig. (@). This is because a
large in-plane component @ tends to confine the electron
motion within each layer, so that the system becomes 2D-
like.

3D FISDW phases with larger integers are less stable -2.5
sincel ,,, (width of the energy gapgenerally decreases with 0 1.0 20 25

mn v
increasingm and n. Hence the FISDW should become un- Bz /(ty/ ebvg)
stable when the magpetlc field _'S too Closthﬁ 0, 450' or FIG. 3. () The quasiparticle energy spectrum agaiBstfor
90°, Where the Hall integers diverge. In this region, SOM& /t,=1 with B, fixed to 2.5(dashed line in Fig. 1 We assume a
metallic phase may become stable, or some FISDW With,pling constant ,D,=0.34 and the cut off energi.=12.3, .
(ay.q) far from (m,7) may appear, while we have studied vertical lines indicate boundaries between different FISDW phases
the range 0.8<q,,q,< here. labeled by (,N). (b) A similar spectrum when we do not optimize
the nesting vectofi.e., q=(2kg ,7,m)], with a fixed A(=0.5;
here, for comparison. The positions of the gaps having the largest
IV. ENERGY SPECTRUM I mn are indicated by a solid line.

LB A EATIR A g g B S 7 )

I I, A Y o3
[EAYARRIEE AR X AN g s §

E/ty

The second key result in this paper is the quasiparticle

spectrum, which is plotted again&,/B, in Fig. 3a. A such a way that the Fermi energy always lies in the largest
structure reminiscent of Hofstader’s butterfly are conspicugap. For comparison, in Fig.(l® we display the energy
ous around the Fermi energy. A closer examination revealspectrum when the optimization of the nesting vector is ne-
that the whole spectrum, consisting of various butterflieglected with a fixed\. A zigzag trajectory of the position at
pieced together, is much more delicately constructed than which the largest gap occurs corresponds to the gaR at
single butterfly. This is exactly because the optimized nesting=0 in Fig. 3a).

vector[which jumps from one optimal\i,N) to another as We can also trace back the mathematical reason why we
B is varied causes the spectrum to be pieced together ifhave a butterfly. That is, the quasiparticle equation for the

205311-4
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present system happens to coincide to that for the 3D butter- (a)
fly in noninteracting systems previously studiédn that the

two periodsG,, and G, (arising from uniformB,and B,)
compete with each other, where a difference is that the am-
plitude of the periodicity is here related to the order param-
eterA. So the spectrum plotted agairt/B, is in fact ex-
pected to have the same structure as Hofstadter’s butterfly
revealed in Ref. 11. An important distinction from the non-
interacting case, however, is that the FISDW phase adjusts
itself in such a way that the largest gap in the butterfly has
the Fermi energy in it. So, while in the noninteracting case
the butterfly structure is observed only around the botfom
top) of the entire band, now we have the butterfly precisely
around the Fermi leveby construction so the situation
should be easier to realize experimentally.

Ko™

S
TIEOR X
SO PRs

V. DISCUSSIONS

Intuitive picture. To help understand the butterfly intu-
itively, we can look at the topology of the Fermi surface. If
we first look at the case of the 3D butterfly in noninteracting
systems, a typical Fermi surface around the band bottom
consists of nearly parallel planes with a set of holes connect-
ing them, as shown in Fig.(d). So we end up with, topo-
logically, a coexistence of a bunch of piplgs and another
bunch||z, and this induces a competition between the Landau
quantizations due tB, andB,, which causes the 3D butter-
fly. If we go back to the present FISDW, we can see that the
incompletely nested Fermi surface has a similar structure af-
ter the SDW gap formation, as typically shown in Figby
There we display a warped Fermi surface in three dimen-
sions, where the Fermi surface shifted by the nesting vector 21 on
is superimposed to show how they are interwoven. When the
SDW gap Opens |n thls |ncomp|ete|y nested Ferm| Surface |n FIG. 4. (a) Atyp|CaI Fermi surface for a noninteracting qUaS|'1D
three dimensions, we havenaultiply connected Fermi sur- System witht,>t,~t, andEg~t,,t, from the band bottom(b) A
face (i.e., a network of pipesreminiscent of Fig. @), as typical Fermi surfacémesh superposed with the nested ofueay)
well as isolated pockets. _translated byq_ for the 3D FI_SDW case. After the SDW gap open-

The situation sharply contrasts with the incompletelymg’ the Ferml. surface gonglsts of pocke_ts and a mult_lply connected
nested Fermi surface in two dimensions, where we end ugﬁg'vzgj of pipes. Solid lines exemplity open orbits f6r=0
with isolated pipes after the SDW formation. Thus the mul- '
tiply connected Fermi surface explains how the butterflylike D,
spectrum appears, although, to be more precise, there is a ty t;=eBhug. (18
magnetic breakthrough across the pockets and the multipl
connected Fermi surface. So we expect that the 3D butterfl
tends to appear in systems having multiply connected Fer
surfaces.

Figure 4b) also explains intuitively why SDW gaps are

\V\/hy this should be the criterion may be understood as fol-
m%ws. The basic equation is written in termszf. . . z5. As
discussed above, the 3D butterfly is a result of a competition
between the periods, andG.. In other words, we need to
N S o o havezs, ... zg=0(1), sincezs, ... zg contributes to the
not formed for magnetic fields having~0, 45°, and 90°, d:ourier component 0By, or G, throughd.(z). We can ex-

since the semiclassical orbits on the multiply connecte lud dz. f Vsis. i i |
Fermi surface are open in this case, so that the SDW formez Hd€ 21 and z; from our analysis, since they are always

tion is not energetically favorable. Mathematically, the diver-SMall when {y.qz) = (. m). So we end up with the crite-

gence of the arguments in Bessel functions mentioned aboV#" ty t;=€Bbug from the definition ofzs, .. . ¢ for b

is related to the configuration of the Fermi “pipes.” ~c. We do not have to add a conditioj,(=2\;t})
Experimental possibilitiesExperimentally, the best re- =€Blvg, since this condition is already included in the

gion to probe in the phase diagrafig. 2) to observe the 3D above one.

FISDW and the 3D butterfly should be where the 3D phase is We can give a rough idea how we can realize the above

observed for the entire tilting angle €J6|<45°) of condition. If we have a material with, say,,t;~10 K [cf.

the magnetic field with a fixedB|. This corresponds to a t,~10 K>t in (TMTSF),X] with values ofvg, b, andc

situation similar to those in (TMTSR)X, then the butterfly and the
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