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Field-induced spin-density-wave and butterfly spectrum in three dimensions
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Landau’s quantization for incompletely nested Fermi surfaces is known to give rise to magnetic-field-
induced spin-density waves~FISDW’s! in two-dimensional organic metals. Here we show that three-
dimensional~3D! systems can have 3D-specific series of FISDW phases as energetically stable states, for
which we clarify how and why they appear as the magnetic field is tilted. Each phase is characterized by a
quantized Hall effect for eachsxy andszx that reside on a fractal-like Hofstadter’s butterfly.
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I. INTRODUCTION

Rich electronic states arising from the nesting of Fer
surfaces continue to provide fascination in various classe
materials. Organic crystals provide particularly versa
Fermi surfaces, and it has indeed been shown1 that a curious
series of spin-density-wave~SDW! states emerge in stron
magnetic fields in a family of quasi-two-dimensional organ
conductors (TMTSF)2X ~TMTSF is tetramethyltetraselena
fulvalene andX5PF6, etc.!, called the Bechgaard salt. Th
field-induced spin-density wave~FISDW! occurs when the
nesting of the Fermi surface is incomplete. The Land
quantization in the pockets formed as a result of an inco
pletely nesting then causes a series of gaps to appear ar
the main SDW gap.2,3 Since EF always lies in the larges
Landau gap, an integer quantum Hall effect arises. When
magnetic field is increased, successive phase transitions
place because the energetically favorable SDW nesting
tor jumps along the way, which results in discontinuo
changes of the Hall conductivity. This has been conside
for the TMTSF compound4 that happens to have very anis
tropic transfer energies between molecules withtx :ty :tz
;1:0.1:0.003, so that the system is almost perfectly t
dimensional~2D!.

So the challenging problem we address here is as follo
~i! can we have such Landau-quantization-assisted FIS
states in three-dimensional systems, not as a remnant o
2D FISDW but as 3D-specific, energetically favorable sta
and if so,~ii ! how and why do the successive phase tran
tions arise in three dimensions? Lebed5 introduced third di-
rection hopping to a FISDW, and several authors6,8,9 studied
the quantum Hall effect in a 3D FISDW, where Hall condu
tivities sxy and szx are predicted to be quantized, respe
tively. However, the condition for the emergence of 3
FISDW phase itself has not been worked out except fo
limited case for (TMTSF)2X where three dimensionality i
very small.8 So it has remained to be clarified whether a
how FISDW phases really do exist in three dimensions.

This is exactly the purpose of the present paper. We c
sider the possibility of FISDW phases in 3D systems in m
netic fields, where we shall show that the favorable situat
is anisotropic 3D systems with an anisotropy such that
0163-1829/2002/65~20!/205311~6!/$20.00 65 2053
i
of

u
-
nd

e
ke
c-

s
d

o

s:
W
the
s,
i-

-
-

a

n-
-
n
e

transfer energies satisfytx@ty;tz @as contracted withtx
@ty@tz in (TMTSF)2X#. With a varied magnitude and ori
entation of the magnetic fieldB5(0,By ,Bz), we have opti-
mized the SDW nesting vector to show that a series of
FISDW phases do indeed exist, which is best expressed
phase diagram against (By ,Bz). The phases comprise ric
families, where they are characterized by quantized Hall c
ductivitiessxy andszx as one hallmark of the 3D nature. O
the energy axis, the FISDW is seen to reside on a fra
energy spectrum like Hofstadter’s butterfly,10 which, curi-
ously, also indicates the 3D-specific nature of the
FISDW. In fact this can be regarded as one realizati
through a density-wave formation, of the butterfly and t
quantum Hall effect in three dimensions we have propo
on a general mathematical basis.11 An intuitive reason why
the butterfly spectrum arise in the 3D FISDW is discussed
terms of the topology of the incompletely nested Fermi s
face in three dimensions in Sec. V.

II. FORMULATION FOR THE 3D FISDW

We consider a simple orthorhombic metal with an ene
dispersion

e~k!52tx coskxa2ty coskyb2tz coskzc, ~1!

wherea,b, andc are lattice constants and the transfer en
gies are assumed to satisfytx@ty ,tz ~i.e., are quasi-1D!. The
dispersion alongkx around the Fermi energy can be appro
mated as a linear functionvF(ukxu2kF) @with \51 ande(k)
measured fromEF#, while the three dimensionality~warping
of the Fermi surface! can be described by the expansion inty
and tz as

e~k!5vF~ ukxu2kF!1e'~k'!, ~2!

e'~k'!52ty coskyb2tz coskzc2ty8 cos 2kyb2tz8 cos 2kzc

2tyz8 @cos~kyb1kzc!1cos~kyb2kzc!#, ~3!

wherek'[(ky ,kz), and
©2002 The American Physical Society11-1
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ty85aty
2/tx ,

tz85atz
2/tx ,tyz8 52atytz /tx , ~4!

with a52(coskFa)/(4 sin2kFa).
Let us apply a magnetic field (0,By ,Bz) normal to the

conductive axisx. We take the spin quantization axis paral
to z. We assume that a SDW is the most likely instability
in the Bechgaard salts,7 and look at the mean-field equatio
for the wave function with the 3D nesting vectorq
5(qx ,qy ,qz), which can be written2,3

S E2H↑~x! D~x!

D* ~x! E2H↓~x!
D S u~x!

v~x!
D 50,

H↑~x!52 ivF]x1e'~k'2eA'!,

H↓~x!51 ivF]x1e'~k'2q'2eA'!, ~5!

whereA'5(Bzx,2Byx) is the vector potential, and the ban
energy measured from2vFkF . H↑(H↓) is the Hamiltonian
for an electron on the right Fermi surface with up-spin~or on
the left Fermi surface with down-spin!, while u(v) is the
corresponding wave function for an up-spin electron on
right Fermi surface~down-spin on the left!. D(x) represents
the mean-field electron interaction, which can be appro
mately written as a single-mode functionD(x);Deiqxx. We
determineD and q self-consistently so as to minimize th
free energy atT50 ~i.e., the ground-state energy!. The SDW
also mixes down-spin states around the right Fermi surf
and up-spins around left Fermi surface, which defines
other order parameter. The phase difference between the
order parameters specifies the spin order direction on thexy
plane.

If we separate out thee'-dependent phase as

u~x!5ũ~x!expF2
i

vF
E

0

x

e'~k'2eA'!dx8G ,
v~x!5 ṽ~x!expF1

i

vF
E

0

x

e'~k'2q'2eA'!dx8G ,
D~x!5D̃~x!expS 2

i

vF
E

0

x

@e'~k'2eA'!

1e'~k'2q'2eA'!#dx8D . ~6!

Equation~5! reads

S E1 ivF]x D̃~x!

D̃* ~x! E2 ivF]x
D S ũ~x!

ṽ~x!
D 50, ~7!

where the effect of the magnetic field is included in the o
diagonal part,D̃. When we plug Eq.~3! into D̃, we obtain
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D̃~x!5Deiqxx (
n1 . . . n6

Jn1
~z1!Jn2

~z2!3 . . . 3Jn6
~z6!

3e2 i (n112n31n51n6)Gbx2 i (n212n41n52n6)Gcx1 id,

~8!

with

z152ty /~GbvF!cos~qy/2!, z252tz /~GcvF!cos~qz/2!,

z35ty8/~GbvF!cosqy , z45tz8/~GcvF!cosqz ,

z55tyz8 /@~Gb1Gc!vF#cos@~qy1qz!/2#,

z65tyz8 /@~Gb2Gc!vF#cos@~qy2qz!/2#, ~9!

whereJn is the Bessel function,

Gb5eBzb,Gc5eByc,

and d(qy ,qz) is a phase factor independent ofx. The sum-
mation in Eq.~8! can be rearranged into

D̃~x!5D(
mn

I mne
i (qx2mGb2nGc)x1 id, ~10!

where I mn is a summation of products ofJn’s. We can see
that the energy gaps of widthuDI mnu open atkx56 1

2 (qx
2mGb2nGc). Since the Fermi energy~at kx56kF) must
lie in the largest gap to minimize the energy, we obtain

1
2 ~qx2MGb2NGc!5kF , ~11!

whereM and N are them and n that give the largestI mn .
Thus thex component of the SDW nesting vector becom
qx52kF1MGb1NGc .5 Here we assumekF@Gb ,Gc ,
which is reasonable as long as typicallyB,104 T.

To be precise, gaps other than the one atEF can affect the
stability of the FISDW, but in the weak-coupling regime
T50 we can show that the stability of the FISDW phase
determined by the width of the gap in whichEF resides as
shown below. SupposeGb /Gc is rational with

Gb5pG, Gc5qG,

wherep andq are mutually prime integers. Equation~10! can
then be rewritten as

D̃~x!5D(
l

I le
i (qx2 lG)x1 id, ~12!

whereI l is the summation ofI mn over those (m,n) satisfying
mp1nq5 l . The energy spectrum has a gap atkx56 1

2 (qx
2 lG) for each integerl. We consider a situation where th
gap widths are smaller than the gap intervals. We can t
express the energy dispersion alongx in the extended zone
~shown in Fig. 1! as

E6~kx!5j61(
l

@sgn~j62 l«!A~j62 l«!21uDI l u2

2~j62 l«!#, ~13!
1-2
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where j6(kx)56\vF(kx7 1
2 qx) are the dispersions forD

50 measured from the gap atl 50 for the right (j1) and left
(j2) Fermi surfaces with«5\vFG/2. The energy gained by
opening the gap in the metallic state is

F5
uDu2

v0
1(

k,6
@E6~kx!2j6~kx!#. ~14!

Herev0(.0) is a molecular-field constant, and the summ
tion taken overEF2jc,E6(kx),EF , wherejc is a cutoff.
If we insert Eq.~13! into this equation, we have

F5
uDu2

v0
2D0

uDI Lu2

2 S 11 log
4jc

2

uDI Lu2D
1D0(

lÞ0
uDI L1 l u2logU l«

jc1 l«U, ~15!

whereL is the index of the gap that containsEF , andD0 is
the density of states forD50 which is assumed to be
constant. From the gap equation,]F/]uDu250, we obtain

uDI Lu52jcexpS 21

uI Lu2v0D0

1(
lÞ0

UI L1 l

I L
U2

logU l«

jc1 l«U D ,

~16!

F52D0

uDI Lu2

2
. ~17!

ThusD in general depends not only on the width of the g
at EF (}I L) but also those of other gaps. In the wea
coupling limit v0→0, however,D is mainly determined by
the factor exp@21/(uI Lu2v0D0)#. So largerI L gives largerD
in Eq. ~16!, which gives smallerF in Eq. ~17!. Therefore, we
only have to maximizeI in order to minimize the free energy

III. PHASE DIAGRAM AND HALL CONDUCTIVITY

We have obtained the phase diagram against (By ,Bz) by
maximizing I mn(qy ,qz) for mesh points on (By ,Bz) and
(qy ,qz) around (p,p). Figure 2 shows the result forty5tz
~a! andty.tz ~b!. In both cases we do have a series of pha
that are characterized by (M ,N) defined in Eq.~11!. An es-

FIG. 1. The structure of the energy spectrum representing
~13! in the text.
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sential finding here is that there are FISDW phasesspecific to
three dimensions, which exist only when bothty and tz are
nonzero. We can see this by comparing Figs. 2~a! and 2~b!,
where the 3D-specific phases~shaded! are seen to shrink a
tz /ty→0. The 3D-specific phases are classified into seve
families: (M ,N)5(N,2N) phases lying along u
[tan21(By /Bz)545°, and (22N,0) phases around
(By ,Bz).(0.1,0), etc., and their mirror images (By↔Bz).
Sun and Maki8 have shown that a smalltz in (TMTSF)2X
~where tz8}tz

2 neglected! can give rise to a phase with non
zeroM andN just at a particular angle ofB ~Lebed’s angle,
corresponding to 45° in our model forb5c). The Sun-Maki
phase is possibly related to the present 3D phases, althou
does not belong to the (N,2N) family here.

The integers (M ,N) have an important physica
meaning—the Hall conductivity. Following Yakovenko’s fo
mulation for two dimensions,13 Sun and Maki8 have pre-
dicted that the FISDW phase having (M ,N) should have

q.

FIG. 2. The phase diagram for the FISDW in three dimensio
at T50 in the weak-coupling regime is shown against (By ,Bz)
for tz /ty51 ~a! or 0.7 ~b! @i.e., tz8/ty851 ~a! or 0.49~b! in Eq. ~4!#.
The phases are labeled by the quantum Hall integ
(M ,N)@5(sxy ,szx) in units of (h/2e2)#, and those having
(qy ,qz)Þ(p,p) are underlined. We assumeb5c, ty /tx50.1 and
a50.4. The 3D-natured phases are shaded.
1-3
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Hall conductivities (sxy ,szx)5(2e2/h)(M ,N) ~2 is the spin
factor!. In our previous paper,11 that demonstrated a realiza
tion of Hofstadter’s butterfly in noninteracting 3D system
we obtained quantum Hall integers residing on the frac
spectrum by making use of Streda’s formula following H
perin, Kohmoto, and Wu,12 where these integers are iden
fied to be topological invariants assigned to each gap in
butterfly. If we apply this general argument to the FISD
problem treated here, the result coincides with Sun and
ki’s. What is interesting about the FISDW states conside
here (ty;tz) is that the wild variation of (M ,N) with the
magnetic field accompanies a wild variation in the quant
Hall conductivities.

The mathematical origin of the 3D phases can be tra
back to the basic equations above~while we discuss the in-
tuitive reason later!. For u→45°, Gb2Gc vanishes, and the
argument of one of the Bessel functions,Jn6

(z6), diverges.

Since Jn(z) has the maximum atz;n, D̃(x) has a large
Fourier componente2 in6(Gb2Gc)x with a nonzeron6. If we
assume otherz’s are small,I mn has a maximum at (m,n)
5(n6 ,2n6), which corresponds to the (N,2N) phases.
Similarly, (22N,0) phases correspond to the divergence
z3}1/Gb .

Now we come to the stability of the 3D phases. When
go from 3D systems over to 2D systems@ tz(or ty)→0#, the
3D phases vanish and we are left with 2D phases w
N,0(0,N) that depend only onBz (By), as seen from Fig
2~b!. These phases are known for (TMTSF)2X, while the 3D
phases are new. The nesting vector (qy ,qz) is pinned to
(p,p) in the (N,2N) and (22N,0) phases, while in the 2D
(N,0) phases and some of 3D phases the nesting star
deviate from (p,p) with N. We also note that the 3D phase
do not require very large magnetic fields. In fact, whenBy or
Bz becomes too large the 3D phases give way to 2D o
even whenty.tz , as seen in Fig. 2~a!. This is because a
large in-plane component ofB tends to confine the electro
motion within each layer, so that the system becomes
like.

3D FISDW phases with larger integers are less sta
sinceI mn ~width of the energy gap! generally decreases wit
increasingm and n. Hence the FISDW should become u
stable when the magnetic field is too close tou50, 45°, or
90°, where the Hall integers diverge. In this region, so
metallic phase may become stable, or some FISDW w
(qy ,qz) far from (p,p) may appear, while we have studie
the range 0.9p<qx ,qy<p here.

IV. ENERGY SPECTRUM

The second key result in this paper is the quasipart
spectrum, which is plotted againstBz /By in Fig. 3~a!. A
structure reminiscent of Hofstader’s butterfly are conspi
ous around the Fermi energy. A closer examination reve
that the whole spectrum, consisting of various butterfl
pieced together, is much more delicately constructed tha
single butterfly. This is exactly because the optimized nes
vector @which jumps from one optimal (M ,N) to another as
B is varied# causes the spectrum to be pieced togethe
20531
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such a way that the Fermi energy always lies in the larg
gap. For comparison, in Fig. 3~b! we display the energy
spectrum when the optimization of the nesting vector is
glected with a fixedD. A zigzag trajectory of the position a
which the largest gap occurs corresponds to the gap aE
50 in Fig. 3~a!.

We can also trace back the mathematical reason why
have a butterfly. That is, the quasiparticle equation for

FIG. 3. ~a! The quasiparticle energy spectrum againstBz for
tz /ty51 with By fixed to 2.5~dashed line in Fig. 1!. We assume a
coupling constantv0D050.34 and the cut off energyEc512.5ty8 .
Vertical lines indicate boundaries between different FISDW pha
labeled by (M ,N). ~b! A similar spectrum when we do not optimiz
the nesting vector@i.e., q5(2kF ,p,p)#, with a fixed D(50.5ty8
here!, for comparison. The positions of the gaps having the larg
I mn are indicated by a solid line.
1-4
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present system happens to coincide to that for the 3D bu
fly in noninteracting systems previously studied,11 in that the
two periodsGb and Gc ~arising from uniformBzand By)
compete with each other, where a difference is that the
plitude of the periodicity is here related to the order para
eterD. So the spectrum plotted againstBz /By is in fact ex-
pected to have the same structure as Hofstadter’s butt
revealed in Ref. 11. An important distinction from the no
interacting case, however, is that the FISDW phase adj
itself in such a way that the largest gap in the butterfly h
the Fermi energy in it. So, while in the noninteracting ca
the butterfly structure is observed only around the bottom~or
top! of the entire band, now we have the butterfly precis
around the Fermi levelby construction, so the situation
should be easier to realize experimentally.

V. DISCUSSIONS

Intuitive picture. To help understand the butterfly intu
itively, we can look at the topology of the Fermi surface.
we first look at the case of the 3D butterfly in noninteracti
systems, a typical Fermi surface around the band bot
consists of nearly parallel planes with a set of holes conn
ing them, as shown in Fig. 4~a!. So we end up with, topo
logically, a coexistence of a bunch of pipesiy and another
bunchiz, and this induces a competition between the Land
quantizations due toBy andBz , which causes the 3D butte
fly. If we go back to the present FISDW, we can see that
incompletely nested Fermi surface has a similar structure
ter the SDW gap formation, as typically shown in Fig. 4~b!.
There we display a warped Fermi surface in three dim
sions, where the Fermi surface shifted by the nesting vectq
is superimposed to show how they are interwoven. When
SDW gap opens in this incompletely nested Fermi surfac
three dimensions, we have amultiply connected Fermi sur
face ~i.e., a network of pipes! reminiscent of Fig. 4~a!, as
well as isolated pockets.

The situation sharply contrasts with the incomplete
nested Fermi surface in two dimensions, where we end
with isolated pipes after the SDW formation. Thus the m
tiply connected Fermi surface explains how the butterflyl
spectrum appears, although, to be more precise, there
magnetic breakthrough across the pockets and the mul
connected Fermi surface. So we expect that the 3D butte
tends to appear in systems having multiply connected Fe
surfaces.

Figure 4~b! also explains intuitively why SDW gaps ar
not formed for magnetic fields havingu;0, 45°, and 90°,
since the semiclassical orbits on the multiply connec
Fermi surface are open in this case, so that the SDW for
tion is not energetically favorable. Mathematically, the div
gence of the arguments in Bessel functions mentioned ab
is related to the configuration of the Fermi ‘‘pipes.’’

Experimental possibilities.Experimentally, the best re
gion to probe in the phase diagram~Fig. 2! to observe the 3D
FISDW and the 3D butterfly should be where the 3D phas
observed for the entire tilting angle (0,uuu,45°) of
the magnetic field with a fixeduBu. This corresponds to a
situation
20531
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ty8 ,tz8*eBbvF . ~18!

Why this should be the criterion may be understood as
lows. The basic equation is written in terms ofz1 . . . z6. As
discussed above, the 3D butterfly is a result of a competi
between the periodsGb andGc . In other words, we need to
havez3 , . . . ,z6*O(1), sincez3 , . . . ,z6 contributes to the
Fourier component ofGb or Gc throughJn(z). We can ex-
clude z1 and z2 from our analysis, since they are alway
small when (qy ,qz).(p,p). So we end up with the crite
rion ty8 ,tz8*eBbvF from the definition ofz3 , . . . ,z6 for b
'c. We do not have to add a conditiontyz8 ([2Aty8tz8)
*eBbvF , since this condition is already included in th
above one.

We can give a rough idea how we can realize the ab
condition. If we have a material with, say,ty8 ,tz8;10 K @cf.
ty8;10 K@tz8 in (TMTSF)2X# with values ofvF , b, andc
similar to those in (TMTSF)2X, then the butterfly and the

FIG. 4. ~a! A typical Fermi surface for a noninteracting quasi-1
system withtx@ty;tz andEF;ty ,tz from the band bottom.~b! A
typical Fermi surface~mesh! superposed with the nested one~gray!
translated byq for the 3D FISDW case. After the SDW gap ope
ing, the Fermi surface consists of pockets and a multiply conne
network of pipes. Solid lines exemplify open orbits foru50
and 45°.
1-5
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peculiar quantum Hall effect should be observed for a m
erateB&10 T. The energy scale of the butterfly will bety8 or
tz8 , as seen in Fig. 3. To have a large FISDW gap ene
scale, on the other hand, larger theuBu the better, since for a
small magnetic field~for which z’s become large! I mn has a
spreaded distribution againstm and n and the gaps becom
smaller.
J.
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