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Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures
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We have developed an analytic model that describes in detail the establishment of self-ordered profiles
during semiconductor epitaxy on corrugated surfaces. Lateral, self-ordered epitaxy derives from surface gra-
dients in the chemical potential due to the nonplanarity of the pra@fdgillarity). The growth rate variation on
the different facets composing the profile determines whether the profile sharpens up at the bottom of the
grooves or at the apex of the corrugations. For alloy growth, additional entropy of mixing effects affect the
profile shape and composition. The predictions of the model were applied to explain the self-limiting surface
profiles obtained by organometallic chemical vapor depositioﬁOdE]-oriented grooves. Finally, this model
is used to design a variety of low-dimensional quantum-confined nanostructures.
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I. INTRODUCTION niques in the last decade, the essential principles of the self-

ordering mechanisms on nonplanar substrates have remained
Low-dimensional semiconductor nanostructures are imiargely unclear. Experimentally, it has been shown that self-
portant both for studies of the physics of low-dimensionallimiting profiles are established thanks to transient diffusion

systems and for potential applications in novel electronic andluxes at the extremal regions of the grod¥&The resulting

optical deviced. While two-dimensional semiconductor growth rates thus self-adjust in order to widen or narrow the
quantum wells(QW'’s) are currently fabricated with mono- profile when the deposited material or the growth conditions
layer control by state-of-the-art epitaxial techniques, producare changed and, subsequently, stabilize it to a new self-

tion of quantum wireSQWR’s) and quantum dotéQD’s)  limiting size®'® Such transients, arising for profiles narrower
requires a lateral control on the structure and its compositiorthan~50 nm, cannot be accounted for by conventional dif-
which is difficult to achieve with planar epitaxy. fusion models of nonplanar OMCVIRef. 19 and MBE

Different approaches have been adopted in order to obtaitRef. 18, which take into account lateral diffusion only due
lateral patterning of these nanostructures. Methods based ¢@ the different crystallographic morphology of the facets
etching and regrowft? suffer from defect incorporation into  composing the profile. In this paper, we will show how self-
the lateral interfaces, since they are not formeditu and  ordering phenomena, taking place at the 10 nm scale at the
are limited in size by the lithographic features. For this reatop or at the bottom of V-shaped profiles, can be accounted
son, much effort has been invested in developing techniqueer by capillarity effects, due to the nonplanarity of the sur-
for forming the nanostructuregduring the growth process. face. Within this model, size-dependent lateral surface diffu-
This can be achieved if a suitable driving force fateral  sion arises due to gradients of the chemical potential, which
epitaxyis established on the growing surface, which can orincrease as the profile becomes shatp&apillarity fluxes
der the nanostructures in terms of size, composition, andhodify the intrinsic growth rates on the different facets com-
position. Preferential segregation at steps can produce tiltgolosing the groove, establishing a self-limiting profile evolu-
QWR superlatticesSL’s) during growth of a fraction of tion either at the top of the mesas or at the bottom of the
monolayers on vicinal substratésyhile strain fields are the grooves, depending on the intrinsic growth rate anisotropy.
driving force for Stranski-Krastanow growth of strained In Sec. Il we will present the general features of the
QD’s.>® An alternative approach to thispontaneousself-  model, while in Sec. Il we will derive the equations describ-
ordering method consists in the creation of a surface teming the different self-ordering phenomena. In Sec. IV we will
plate before growth, which acts aseedfor the formation of see how our model can interpret the various self-limiting
nanostructure$.The sites at which self-limiting profiles are behaviors observed for different growth techniques and ori-
formed are determined by the prepatterned profile, whileentations of the corrugations. In Sec. V we will compare
their size and shape depend only on the material and growtfjuantitatively the predictions of the model with the self-
conditions. Although this approach introduces an additionalimiting profiles obtained at the bottom of the grooves with
processing step, it can result in better nanostructure unifotow pressurgLP) OMCVD.? Finally, we will show in Sec.
mity, since it overcomes the intrinsic randomness of theVl how the model can be used to design and predict the
nucleation process, exploited in spontaneous self-orderintprmation of a variety of self-ordered quantum-confined
techniques. Organometallic chemical vapor depositiomanostructures.

(OMCVD) and molecular beam epitaxi/BE) on substrates

patterned with V-groove arrafs® and pyramidal ll. GENERAL EQUATIONS OF THE MODEL

recesses* or masked with SiQ stripes® have been suc-

cessfully employed for the formation of uniform arrays of Phenomena of lateral epitaxy can be expressed in terms of

QWR'’s and QD’s. gradients of the surface chemical potential Since varia-
Despite the remarkable advances in these fabrication techions of x are a measure of the thermodynamical driving
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force for epitaxy, they determine surface diffusion fluxes to- surface profile
wards regions of lowej. If the surface properties change
only in one dimensionX), w of the componeni of an alloy
(considered as an ideal solutfnat a growth temperature

is written ag!

wi=po+ Qo[ o, (X)1412E+ Qo[ ¥(6) + 7" (6)1k(X)
+kgT Inx;(X), 1)

where x; is the component mole fraction. In E@l), the
second term is related to the tangential surface siresE
being the elastic modulus arfd, the atomic volumé&,the
third one(giving rise to capillarity effectsis due to the sur-
face curvaturex (Ref. 22 and involves the(orientation-

23 H
dependentsurface free energy(¢),” and the fourth one is  eta1y faceted, it is more convenient to express the chemical

a contribution due to the entropy of mixiA. potential on any facef, with areaA;, and bounded by
In the presence of a varying chemical potential, the sur her facets. #&26

ST . . . ot
face fluxj is given by the Nernst-Einstein relation

FIG. 1. Top: schematic cross section of a nonplanar profile com-
posed of a toft) and a bottom(b) parallel facet, separated by a
sidewall (s) inclined at an angl®). Bottom: chemical potential on
each facet.

Qo
. nD du 5 Mj:/J«O_"KZl(ViCSCQij_VjCOtaij)lir (4)
1= 7T o8 @ b

where ¢;; is the angle between facetandj, ; is the length
where n is the surface density of adatomB, the surface of the straight boundary between fagetndi, andy; is the
diffusion coefficient, andds an infinitesimal surface arc surface free energy of facetThis relation can be derived, in
length. For one-dimensional profiless=(dX?+dz?)2 Z  analogy with its continuum equivalent in E€L), by evalu-
being the coordinate parallel to the growth direction. In theating the change in surface energy associated with a parallel
absence of reevaporatigthe condition met typically in our displacement of surfacp23 Note that the anisotropy of the
growth conditiong the time evolution of the profileZ  surface free energy is taken into account without the limita-

=Z(X,t) is given by the continuity equation tions of Mullins’ expression. Here, the loc@enerally two-
dimensional curvaturex is replaced by the individual con-
aZ dj tributions|;/A; for each facet. Their meaning can be easily
E:R(x)_QOW’ 3) understood by considering a rectangular facet with #&ga

=I4l,:in this casd,/A;= 1/, is the inverse of the width of

whereR(X)=F(X)/€, is the local growth rate anfl(X) is  facetj in the direction perpendicular to the boundary 1 and is
the local growth flux. In principle, the evolution of the therefore directly related to the facet curvature in this direc-
growth front can be determined by solving the set of equation.
tions (1)—(3) for given initial stress, geometry, and composi-  Several facets develop during growth. For example, in LP
tion surface profiles. Analytical solutions can be found, how-OMCVD, growth profiles are composed of a centf&00)
ever, only in particular cases and with suitableand two latera{ 31} A facets at the extremal regions both at
approximations. The effects of lateral gradients of stress, fothe top and at the bottom of the grooves, separated by side-
virtually planar surfaces, have been treated in the analysis o¥all planes whose orientation is typically 5°-10° off
the vertical self-organization of Stranski-Krastanow InAs/{11LA towards[100].° For simplicity, we will, however,
GaAs island$. Thermal flattening of a nonplanar profile was take into account in our model a profile composed only of
treated analytically in the 1950s by Mullins for the case oftop (t) and bottom(b) parallel facets, separated by a sidewall
shallow corrugationsds=dX) and above the roughening (S) inclined by an anglé (see Fig. 1 This will simplify the
transition, when the smoothly varying surface free energyalculations, since it symmetrizes the boundaries of all facets
can be approximated as a constdhBelow the roughening and allows a more direct interpretation of the role of the
transition, the appearance of low-index, high-symmetry facparameters involved. Some highlights of a model taking in
ets(related to cusps in the surface free enéfggomplicates ~ account the full faceted structure of the profile will be dis-
the diffusion kinetics, whose description still remains some-cussed in the Appendix. For the profile of Fig. 1, the chemi-
what controversiat? cal potential on the topt), sidewall s, inclined by an angle
The profiles treated here are constituted of artificial,), and bottom(b) faces, derived from Eq4), assumes the
deeply etched groovés?182which develop characteristic form, respectively®
facets during growth, both at the top and at the bottom of the
grooves. The simplified Mullins approach is therefore not ¥

L ) ) . = o+ —
valid in our case, since cusps in the surface energy, associ- #=Ho I,
ated with the faceting of the profifé cannot be treated in the
expressior(1) of the chemical potential. If the profile is com- M= 0,
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Qo the bottom of the mesas. This indicates that a very strong
T. ) lateral diffusion of precursor species can wash out geometric
effects on the gas phase fluxes. This is a peculiarity of LP-
wherel, andl, are the widths of the top and bottom facets, OMCVD growth by means of trimethyl group-Ill precursors,
respectively,y=2(yscscf— yycoté), andy,= v, since they as compared to MBEwhere the growth rate on a facet in-
have the same orientation. Note that> us>u,,, as shown clined at an angle is reduced by a factor ca@3, or OM-
at the bottom of Fig. 1, which sets diffusion fluxes directedCVD with the much more unstable triethylGa and dimethyl-
towards the bottom region and, consequently, results in aethylaminealane precursofwhere a significant reduction of
increasedecreasgeof the growth rate at the bottofop). the growth rates at the bottom of the grooves is obsetted.
To determine these resulting growth rates, we have to findh our case and for MBE in the absence of shadowing ef-
a suitable form of the Nernst-Einstein and continuity equa<fects, we can define therefore the growth rate on each facet
tions (2) and(3) for the discontinuoug: written above, tak- as R;=Rr;, whereR is the “nominal” growth rate on a
ing into account also a nonuniform growth flux. Derivatives planar (100 reference sample ang an incorporation rate
of the chemical potential and of the diffusion flux should befor facetj, relative to the nominal one, depending only on the
replaced by discrete variations across neighboring facet$acet orientation. The growth rates at each facet then become
Solving this set of equations will determine the growth rate

Mp= Mo~

on each facet, subject to lateral diffusion fluxes due to cap- dz 20]
illarity effects. We follow the same formalism that Xé al® —=Rr, olts
applied to the case of the vertical self-organization of dt I
strained InAs islands. Equatid@) can be discretized by in-
troducing a surface flux from facgto the neighboring facet dz, Qo
i — =Rrs— —(jtstins),
dt ls
B Njj DJ My M ©6)
S SV dz, 2Q0jps

d—=Rrb+ | . (9)
where n;; is the surface density of adatoms at the facets t b

boundary and\;;, in analogy with the case of strain-

dependent chemical potentfals a distance over which the In the relations above, we take into account the symmetry of

effects of curvature become negligible. We therefore assumige boundaries limiting the tofpottom facets, which yields
~1, and I, for diffusion to the top and bottom facets, jst= —Js(isb= —ibs). Note thatjs<0 andj,s>0.

respectlvely Note thaD; /kgT is the adatom surface mobil-  Finally, the lengths of the facetsandl,, are related to the

ity on the facetj, and (Mj—Mi)/Mj is the average driving 9rowth rates by the geometr_|c relations, valid for a convex

force for adatom diffusion. Using E@5), Eq. (6) gives the and concave profile, respectively:

fluxes at the interfaces between the sidewall and the top and

bottom regions, respectively: dl, dz, dz 1 2 ibs
a=p(ﬁ—m>=p[RNst+Qohs( R + Q07— }
o= NisDs ps— m _ NisDsQoy
5T kgT 1, 2
® ‘ keTl; dl, (dzb dZS)
_:p - =
_nbst Ms™ Mp NpsDs{doy dt dt dt
Jbs™ Kk I - 2 >0, (7) :
sT b ke TI2 B (12 jis
=p| —RArgp—Qpjps I——E +QOI— , (10
S S

whereDy is the diffusion coefficient on the sidewalls.
The growth rate€ on each facef, surrounded by faceis

andk, are determined by the discretized continuity equation’’here the growth rate anisotropy parameters are defined as

rs=rs—ryandArg,=rs—ry,. The geometric factop de-
j Oy pends on the facets intersection angle. To reproduce correctly
Tt RO+ T(Jij_]jk)- (8)  the proportionality between the growth rate and the facet
expansion rate in LP-OMCVD-grown structures, we must
The “deposition” termsR;(X) depend generally on the crys- take into account that the intersection between the sidewalls
tallographic orientation of the facet and on the geometry ofand the extremal regions takes place at{tB&1} A/sidewall
the surface. For example, in OMCVD the presence of goundary(see Fig. 2 for the bottom regidreven if we dis-
groove can affect the precursor fluxes supplied from the gakegard the faceted nature of the extremal regions. From Fig.
phaset” while in MBE shadowing effects can be present2, we obtainp= 2/(tanf—tana), wherea=25° is the angle
for off-normal molecular beam'€.Both effects could in prin-  that the {311 A facet forms with the(100 plane and the
ciple reduce the growth rate at the bottom of the grooves. Ifiactor 2 is due to thésymmetrig variations on both sides of
our structures, however, no growth rate variations are obthe bottom facets. Since typically in our structuges45°, o
served across the sidewall planes, in going from the top teve havep=3.75.
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tively from Mullins’ analysist® nonplanar self-limiting pro-
files cannot be established in the presence of surface diffu-
sion alone. This monotonic expansion of the groove extrema
will eventually lead to its planarization, although with a dif-
ferent time dependence than the one predicted by(E2),
which is valid only for the initial stages of surface relaxation.

B. Self-limiting profiles during epitaxial growth

In the presence of a growth flux, the quantitigsandny,¢
can be determined by applying the procedure of Ref. 6 for
the sidewalls. For our geometry, howevarhere we are in-
terested in the limits>1, ), these densities can be approxi-
mated as\ p,s=Rrs7s/{) o, Whererg is the lifetime for ada-
tom incorporation on the sidewalladatom desorption can
be neglected under our growth conditipn8Vith this ap-
proximation, the set of equatiori8) becomes

FIG. 2. Schematic illustration showing the geometrical relation
between an infinitesimal height variation of the sidewdlls and
of the bottom facetslZ,, and the corresponding variation in the
extension of the bottom regicaahl, .

Ill. PREDICTIONS OF THE MODEL

dz C
A. Flattening of the profile in the absence of growth d—tt: R( re— rs|_3 ,
If no growth flux is present, Eqg9) become, with the :
fluxes described by Ed7), 4z ol 1s cl1 1
= I Y Y ’
dz, C dat 7 26\12 12
a
9% _ ol S (13)
—=R| ry+rs—=|,
dz, C(1 1 dt K
dt 21z 1g) with
dz, C 20,L2y
EIT (1 et
with and L= (D7) *? being the adatom diffusion length. With
) the approximatiorig>1, ; we can neglect the capillarity ef-
c 2nQoDgy fects on the sidewalls and assumhg&,/dt=Rr,. Equations
~ kgT (13) show that capillarity tends to direct adatoms to the con-

_ _ _ _ _ cave bottom region and to drive them away from the convex
where in this casen is the equilibrium surface density of top region.
adatoms.. . . . According to Eq.(10), self-limiting profiles are achieved
We will limit our analysis to only the first phases of the \,hen the growth rates on two neighboring facets are equal.

relaxation process, when the evolving contour is still shapgy e (g the crystallographic equivalence between the top and
preserving and the sidewall regions are still extending ovef, om regions, we can assumig=r, and henceAr.,
1 1 S

the majority of the grooved profilds>1;,l,. This implies  _ Ay — ¢ Therefore, equalization of the growth rates on

that, in Eq.(11), |dZs/dt|<dZ,/dt, dZ,/dt, and therefore adjacent facets is possible either at the bottom of the
Egs.(10) become groove or at the top of the mesa, depending of the sign of the
growth rate anisotropyr. If Ar>0, self-limiting growth is
%; @ obtainedat the bottom of the grooyavhile if Ar<0, self-
dat 37 limiting growth is obtainedat the apex of the corrugations
' In either case, the self-limiting width', are obtained by

for the top and bottom facets, respectively. These equationéettingdlb /dt=0 in Eq.(10):
’t - . .

can be integrated, yielding

113

L()=lo(1+t/7) ¥ 7=14/4Cp, sl o s

t(t) =lto( 1) 1= lio/4LP lhi=|C ar]) (14
— + 14 _ |4

o(D)=loo(1H+ /7)™ 75 =1po/4CP, (12 Therefore, a self-limiting evolution of a concatenvey
wherel,, (o=1y,(t=0). These expressions show that both theprofile is possibleonly if the growth rate on the surrounding
top and bottom of the profile tend to wided infinitumin  facets, in the absence of the positiveegative capillarity, is
the absence of a growth flux. Therefore, as expected qualitdarger (smalley than that at the curved region in question.
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Ar>0

FIG. 3. 3@ Schematic evolution of a V-grooved profile for a

positive growth rate anisotropysee text yielding self-limiting
propagation of the bottom facet, thanks to capillarity effects e

PHYSICAL REVIEW B 65 205306

FIG. 4. (a) Self-limiting evolution of the bottom profile, for the
caseAr>0 andlb>I§'. (b) The same for the top profile, withr
<0 andl>1$'.

same for a negative growth rate anisotropy, yielding self-limiting small [It<lf'(—Ar/rb)1/3] this equation would predict an

propagation of the top facet.

The two different situations are sketched in Fig. 3. Rart
describes the profile evolution for the case>0: the addi-

overallnegativegrowth rate at the top, due to the dominance
of negative capillarity effects. This situation could occur, for
example, in GaAs growth on extremely sharp, etched ridges
of a GaAs substrate. On the other hand, this equation cannot

tional, capillarity-induced growth rate at the bottom facetpredict correctly the profile evolution for the first stages of
balances exactlys, yielding self-limiting growth in this re- GaAs/AlGaAs heteroepitaxy in the cake|$'(—Ar/rp)*3,
gion. At the top, capillarity decreases further the growth ratesince a negative growth rate would in this case involve
on this facet, which therefore expands indefinitely, leading tacapillarity-induced diffusion of the different underlying ma-
a planarization of the groove. Pdl) describes the situation terial, with lower diffusion length antf'.

for Ar<0, where capillarity can compensate for the growth  From Eq.(15), the self-limiting evolution of the bottom or

rate anisotropy at the top, while the bottom facet will alwaystop profiles(10) can be written as a function of the nominal
grow faster than the sidewalls, thus expanding and leadingrowth thickness:

eventually to planarization.

C. Evolution towards self-limiting profiles % = pAr[ (@) 3_ 1} (Ar>0), (163
From relationg13) and(14), the GaAs growth rate at the dz, lb
bottom of the groovedrelative to the nominal onecan be
written for Ar>0 andAr <0, respectively, as .
dl; N
=—pAr||—| —1| (Ar<0). (16b
dz, lkS)l ’ dz, P [(lt) }
d—zn—rb+Ar E , (159
sh 3 Consistently with the analysis of the bottom growth rates,
%:r LAY lL) (15b) relations(16) show thatl, andl; tend to expandcontraci
dz, ° le/) when their size is smalldtarge) than their self-limiting one.

The recovery rates increase as these deviations become big-
ger. Thereforel, andl; will always tend towards their self-
limiting values, defined only by the material and the growth

wheredZ,=R dt For the self-limiting bottom region, Eg.
(159 states that the bottom growth rafi¢ diverges forl,,

<!, since in this limit the(negativé bottom chemical po-
tential and the related surface diffusion fluxes divefgee
Egs.(5) and(7)]; (ii) approaches for l,—1%', establishing

conditions. In particular, if the initial width of a bottom facet
is much narrower than the self-limiting one, a rapid expan-
sion of this facet will occur during the initial stages of

a uniform growth rate across the bottom faceted profile; angrowth. Conversely, if the initial profile is much wider than
(iii ) approachesy, for 1,13, since in this limit the capillar-  the self-limiting one, then the profile will contract initially at

ity (and entropy of mixiny effects become negligiblesee
Egs.(5) and(7)].

a ratex|Ar| (i.e., theintrinsic growth rate anisotropy since
in this limit capillarity effects are negligible. The bottom and

The self-limiting behavior at the top, described by Eq.top profile evolutions in this latter case are shown schemati-

(15b), is similar. However, note that whdn is sufficiently

cally in Figs. 4a) and 4b), respectively.
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b
OMCVD growth of AlL,Ga, _,As alloys on V-grooved sur- daz. p{ Ar(x) (E) -1
faces results in the formation of a self-limiting, Ga-ricér-
tical quantum wellat the bottom of the corrugatioR$This

compositional modulation can be easily understood in termghich are identical to Eqg15a and(16a for a binary IlI-V
of the stronger surface diffusion of Ga, with respect (G, compound, except for the entropy-related téproportional
which gives rise to larger capillarity fluxes of Ga towards the,[0 theb term in Eq.(17)]. Note that the qualitative behavior

bottom fqr a given s_urface profll[eseg Eq.(?)]. The partlal of the profiles(Sec. Il © remains valid also in the case of
compositional ordering due to capillarity results in a de'alloy growth

crease of the surface entropy of mixing, with respect to the
one for a uniform compositioff. Entropy of mixing effects
cause an increase of the bottom chemical potential for Ga

adatoms and a decrease of the one for Al adatoms, therefordV: INTERPRETATION OF EXPERIMENTAL GROWTH
hindering Ga diffusion and enhancing Al diffusion towards BEHAVIORS

the bottom. The resulting partial growth rates of AlAs and
GaAs can be written as

b |
+|—3(|b_|ﬁ)], (18
b

The observed behavior of nonplanar epitaxy depends
critically on the growth technique and on the orientation of

dzA sl \3 A\ 2 the corrugations. OMCVD on GaAg&l00 substrates pat-
b _ A A b,A S . — . . . .
ar XRrotAr (I_ +2 |—> In(x(1—=k)+K) |, terned with[011]-oriented grooves gives rise to straight
b b sidewall planes, misoriented about 5°—-10° fréhi 1} A to-
d76 sl |3 LG\ 2 (1—K)+k wards(100), whose orientation is preserved during growth.
—b=(1—x)R rC+ArG| 28| 4o = |nx— Their uniform growth rate is generally 20%—-25% higher
dt b Iy Iy k '

than that on the facets at the bottom and apex of the corru-
with indexesA referring to AlAs andG referring to GaAs. gations, probably due to the high density of steps forming on
The last terms in both equations are the entropy of mixinghese high-index planes. In agreement with our model, this
contributions, where the bottom Al mole fractizp has been  positive growth rate anisotropy yields a self-limiting evolu-
expressed ag,= x/[x(1—Kk)+Kk]. This relation is typical of tion of the bottom growth front, while the top region expands
diffusion models involving enthalpic and entropic contribu- until planarization is accomplishdédee Fig. 8)].° Uniform,
tions that can be derived empirically by assuming an overalVertical arrays ofIn)GaAs(Al)GaAs QWR'’s have been suc-
local Ga flux at the bottontgrowth plus lateralbeing en-  cessfully grown at the bottom of the grooves with this
hanced by a factok>1, with respect to that of Al” The  technique/~*' Notice that a similar self-limiting formation of
alloy self-limiting width of the bottom facet, resulting from QWR'’s at the bottom of V grooves can be obtained as well
the equalization of the bottom and sidewalls growth rates, isvith OMCVD on (100 substrates patterned with

the solution of the equation [011]-oriented SiQ stripes®* On the other hand, MBE on
[011] grooves exposes exactly orient¢til}B sidewalls,
iJrL:Ar(X) an whose growth rate is much smaller than on the extremal
(13 (15h? ' (100 facets™® In this case, the negative growth rate anisot-
. ropy causes a narrowing of the top of the mesas and can
with balance capillarity fluxes in this region, while the bottom
does not present any self-limiting behavisee Fig. 8)].
a=xArA(I3)%+ (1-x)ArS(1§6)°%, With this technique, self-ordered QWR’s have been grown

on the top facet$?> Some examples of OMCVD growth on
GaAs (100 patterned witH011]-oriented SiQ stripes have

shown a similar behavior, with the formation of exactly ori-
ented{111B sidewalls!® therefore, the groove orientation is

b=2{ x(L5)2In[x(1—k)+k]+(1—x)

X(LG)2|nX(1_k)+k a critical parameter in defining the growth rate anisotropy
s k ' and consequently the self-ordering behavior. On the other

A G hand, MBE on[011]-oriented grooves generally does not
Ar(x)=xAr"+(1-x)Ar~. exhibit clear self-ordering behavior either at the top or at the

The self-limiting profile of an alloy is therefore expressed asbottom of the corrugations, probably due to the instability of

; o the sidewall planes. AlAs growth is an exception, yielding a
the result of the interplay among capillaritg) entropy of . .
mixing (b), and growth rate anisotroAr (x)]. resharpening behavior at the bottom of the grodves.

The evolution of the alloy growth rate and facet width atf Tt% compare in tmlore ?c.?ta'l the p_rlelzdlctlonstoftthe mOdh?l
the bottom are given by, respectively, or the experimental profiles, we will concentrate on self-

limiting GaAs/Al,Ga, _,As bottom profiles grown by low-

dz sl 3 pressure20 mbay OMCVD on GaAs(100) substrates pat-
de =rp(X)+ Ar(x)(l—b + —3(I b— If,' , (18a terned with[ 011]-oriented V grooves. Growth details can be
n b/ y found in Ref. 9.
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V. APPLICATION OF THE MODEL TO NONPLANAR
OMCVD GROWTH

A. Al,Ga,_,As profiles: Dependence on the composition

Figure 5a) shows a series of dark-field transmission elec- T=700°C
tron microscopy (TEM) cross sections of self-limiting x=0.75
Al,Ga, _,As layers grown at 700 °C, with increasing be-
tween 0.30 and 0.75. Nominally 5-nm-thick GaAs markers
were inserted to measure the self-limiting, &k, ,As pro-
file width. The images show that the bottom profile becomes
sharper as the Al mole fraction is increased, while the angle
between the sidewalls slightly decreases. Note the facete
nature of the profile, composed of a centtH00 plane sepa-
rated from the high-index sidewalls by tW@1L A planes
(see third image from topThe recovery of the AlGa _,As
self-limiting profile after its broadening during GaAs growth
is accompanied by the approaching of the three vertical
guantum well(VQW) branches that correspond to each bot-
tom facet®® In Fig. 5b) we show the dependence of the
self-limiting width of the bottom profilég' [(100)+{31LA
width; see arrow in Fig. ®)] on the composition for a series
of different samples grown at 700°C. Since the nominal
growth ratesR are different for different Al compositions and
our model implies a dependence of the profile width on
R~ (see beloy, we have normalized the values kjf to
the cubic root of the alloy growth rates, relative to the GaAs
one. Since the maximum growth rate was 0.53 nm/s and the
minimum (for GaAs was 0.25 nm/s, this normalization
yields a correction factor of at most 1.25. The data show that
the profile sharpens up by a factor of about 15 upon going
from GaAs to AlAs.

To model the evolution of the bottom profile with we 3
apply Eq.(17), which takes into account independent Ga and f ]
Al adatom diffusion, as well as the effects of the entropy of /o ~ \ArA =0 no entropic :
mixing. Note that, sincel($)?>(L%)?, the AlAs term ofb is - S o effects '
negligible for the entire composition range with respect to g 80 I S~ !
the GaAs one. We will therefore neglect the AlAs entropy .~ 60 | S~ < AP=1 )
term, thus ascribing any entropy-related compositional varia- —=° ~a ; !
tions in the VQW toGa diffusionaway from the bottom. In 40 - N
Fig. 5(b) we fit the experimental data with the solution of Eq. 20 [ with entropic
(17) (solid line). In the fit, we leftLS as the only free pa- o effects |
rameter, as we inferred the other quantities from the experi- b) 0 0.2 0.4 0.6 0.8 1
ments: k=1.81+0.05* 13';=129+3 nm, 1} ,=9.1 X

+0.1 nm, andAr®=0.22+0.05. We have no reliable esti-
mate forAr” at our disposal; however the fit is very insen-
sitive to this parameter: by changing” from 0 to 1, the
corresponding best fit dIsG varied only by about 4%, with-
out affecting the quality of the fit. The main source of uncer-
tamty. in the fit is t.he grror IQMGé which causes a-10% self-limiting Al,Ga, _,As layers, grown by low-pressure OMCVD
e.rror !n the determlnatlorl dIS : LS, =175-20 nm. The Ga at 700 °C, withx ranging between 0.30 and 0.75, where nominally
diffusion length on the sidewalls is therefore smaller than ons_.,m_thick GaAs markers were insertét) Measured self-limiting

the (100 ridges (estimated to be=0.5 um at 700°C by  ygth of the bottom profile, as a function &ffor 700 °C. The solid
atomic force microscopy measuremeniBhis conclusion is jine is a fit to the data, with the function defined in E4j7). Long-
consistent with the fact that the sidewalls consist of high-dashed and short-dashed lines, delimiting the shaded region, repre-
index planes, with a higher density of steps and kinks, andent the dependence H} on x neglecting the entropy of mixing
hence a better incorporation efficiency than the monolayereffects and settindr g=0.22 andAr ,=1 or Ar*—0, respectively
smooth(100) facets. (see text for details

FIG. 5. (a) Dark field TEM cross sections of a series of four

205306-7



G. BIASIOL, A. GUSTAFSSON, K. LEIFER, AND E. KAPON PHYSICAL REVIEW B5 205306

Without entropy of mixing effects, the solution of Eq.
(17) would reduce to

a 1/3

Ar(x)

sl__
Iy =

3\ 13

_(x(ArA/ArG)(Iz!A>3+<1—x><lz',G>
- X(ArAAr®) +(1—x)

T=650°C

We indicated with a shaded region in Fi@b}Showlg' would
depend orx, according to the expression above, setting the
limiting valuesAr©=0.22 andAr”=1 (long-dashed lineor
ArA—0 (short-dashed linelt is clear that the experimental
results cannot be reproduced with this simplificatianless
one takes unphysically large values of the ratid"/Ar® of

the order of 60

B. Al,Ga;_,As profiles: Dependence on the growth
temperature

Figure 8a) shows a series of dark-field TEM cross sec-
tions of self-limiting Al 4:Ga, 55As layers, grown at different
temperatures (600—765°C). Nominally 8.7-nm-thick GaAs
markers were inserted to measure the self-limiting
Al 4Gay sAs profile width. Reducing the growth tempera- 30
ture has qualitatively the same effect of increasing the Al
mole fraction, i.e., a sharpening of the profile and a slight
reduction in the angle between the sidewalls. The profile
sharpening can be understood in both cases as due to the
reduction of the diffusion lengtfsee Eq(14)].

Equation(14), valid for GaAs, can be rewritten as

e
H O ®Oo

Py, (Nm)

X=
x=.19
x=.29
x=.47

(a4 K

b 11I.5 1I2 12I.5 13
EZQOVD ] 13 " ) 17k, T (eV)
Ar kgT ~°°%) 7

sl__
b=

FIG. 6. (a) TEM cross sections of a series of four self-limiting

with D of the Arrhenius formD =D exp(—Eg/ksT), Eg Al 4Gay sAs layers, grown at temperaFures ranging between 690
being the activation energy for diffusion. The parameterdnd 765 °C, where nominally 8.7-nm-thick GaAs markers were in-
7 can be approximated as the average time passing betweéﬁrt?d' The dashed line represents a hyperbolic flt of the groove
the arrival of two adatoms at the same site; thrss 1/R proflle.(b_) Arrhenius plot ofpg,, for AIGaAs'aII(')ys with composi-
(if Ris expressed in MLJs(Ref. 32 can be considered tion ranging Ibdetwee|.>1|’]—0 andx=0.47. Solid lines iire fits of the
as a temperature-independent quantity. Therefore, the terﬁ}g(penmenta ata with Eq19) (GaAs or Eq.(17) (AlGaAS).
perature dependence ofg' has an Arrhenius form
exp(— EB/3kBT): Ar being Virtua”y constant in the tempera- equations describing the self-limiting profiles and the profile
ture range considered.For Al,Ga _,As, the temperature evolution are the same, whether expressed in termk, of
dependence olff)', given by Eq.(17), is more complicated Of p.
and comes essentially from the Arrhenius form P, I3, We have examined the temperature dependence of the
LA, andLS. ' ' sglf-limiting profiles for ALGai,XAs alloys for 0<x<<0.45.

The profile width is characterized by the length of the Figure @b) shows Arrhenius plots gf for x=0, 0.19, 0.29,
(100 and{31L:A facets. However, when the profile becomesand 0.45 for growth temperatures ranging from 600 to
too narrow, these facets are not easily distinguishable. In thi§¢50 °C. The Arrhenius fit for GaAs givesg=1.9+0.3 eV.
case, it is useful to approximate the profile with a hyperbolalhe GaAs behavior can be plugged into Ej7) to fit the
tangent to the bottom and sidewall facksee the third pro- AlGa,_,As profiles, as a function df$ only. As before, we
file from top in Fig. &a)].%* The growth front is therefore have assumedL{)?>(L%)2, fixed Ar®=0.22+0.05 (this
fully identified by the radius of curvature at the bottom of value does not change appreciably within the range con-
the hyperbolalthat is, proportional to thg100-+{31LA sidered, and verified the insensitivity of the fit to the value
facet length and by the asymptotic anglé between the of Ar”. Least-squares fits of the &g _,As profiles, shown
sidewalls and the horizontal. It can be shown analyticallyin Fig. 6(b), are practically indistinguishable from Arrhenius
that, except for a geometrical proportionality factor, thelaws and yieIdE’§=2.3iO.2 eV, consistently for the three
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compositions. This higher energy is consistent with stronger
Al-As bonds with respect to Ga-As on&5A more quantita-
tive discussion of these values, in comparison with what has
been found o100 surfaces, is, however, not useful due to
the wide range of results obtained on this orientafion.
Finally, we can estimate the order of magnitude;ﬁfand
L2 . By using Eq.(19) with y~50 meV/AR 3 r~1, Ar
~0.2, and, for example, the measured valuek oin GaAs
and AlAs layers at 700 °C~+4100 nm and~10 nm, respec-
tively), we obtainLS~150-200 nm and.2~5 nm. This
value ofLsG agrees well with the estimate given in the pre-
vious section.

C. Effects of the growth rate

By decreasing the growth rat® the self-limiting profile
should expanduntil it becomes planar in the absence of
growth—see Sec. Il Asince effects of diffusion towards
the bottom of the groove become increasingly dominant with
respect to the effects of growth rate anisotropy. We have
verified this hypothesis on self-limiting GaAs profiles, with
growth rates ranging between 0.036 and 0.370 nm/s. Twc
series of layers were grown at 650 and 700 °C, respectively
The GaAs layers were separated by 10-nm-thick AlGaAs
markers, grown at 0.5 nm/s. As verified in previous stutfies,
all the GaAs layers were thick enough to ensure the achieve {
ment of a self-limiting GaAs profile at their top interface.

Figure 7a) is a TEM cross section of the series grown at 20 b——l L : e
650 °C. The growth rates increase progressively from layer 1 0.8 1 2 s #
to 4. It can be seen from the upper interface of the GaAs T~1/R (s™)

layers and the corresponding AlGaAs markers that the profile

narrows down aR increases. Figure(d) showspg, for T FIG. 7. (a) Dark-field TEM cross section of four GaAs layers,
=650 °C(circles andT=700 °C(squarep as a function of separated by AlGaAs markers and grown at 650 °C. The nominal
1/R, displayed in a log-log scale. In both casgeg,decreases growth rates were 0.036 nm{gyer 1), 0.102 nm/(2), 0.295 nm/

by a factor of~2.5 upon increasing the growth rate from (3), and 0.370 nm({4), and the nominal thicknesses ranged between
0.036 to 0.370 nm/s. With the approximation above for 25 and 50 nm(b) Log-log plot of ps| in GaAs layers, as a function
=1/R, we would expeclﬁ' (or ps|)~R71/3. A power fit of of the inverse of_the growth ratt_a, for =650 °C (circles and

the data of Fig. ) gives an exponent of 0.36+0.05 for 700 °C(squares Lines are power fits to the dataee text
T=650°C and—0.32+0.06 forT=700 °C(see lines in the
figure), showing that this simplifying interpretation of, is
able to explain quantitatively the observed dependengg,of
on the growth rate.

.- --e--T =650°C
30 F _-?' —&— T =700°C

ers. The widening of the profile due to the growth interrup-
tion is evident. In Fig. &), we plot the bottom curvature
=1/p of the Aly4Ga ssAs profile for T=700°C (circles
and 750 °C(squarey as a function of the growth interrup-
tion timet, in a log-log scale. For both temperaturasgde-
D. Flattening of the profile in the absence of growth creases by about a factor of 3, whiléncreases from 0 to

To examine the thermal relaxation of the nonplanar sur1800 s.
face profiles, we have compared the predictions of the model The curvaturex should tend to zero following the law
developed in Sec. Il A for the bottom of the groove with a
series of AlGaAs profiles, in which growth was interrupted _ Ko
for increasing time intervals after deposition of 100-nm-thick K= (1+t/rb)“'
AlGaAs layers. This thickness is sufficient to ensure the
achievement of a self-limiting profile in AlGaAs, just before wherea=0.25, according to Eq12). The log-log plot evi-
the interruptior?. Here 5-nm-thick GaAs marker layers were dences th¢™“ dependence of the curvature, tér,>1. The
grown immediately after the growth interruptions, to quenchsolid and dashed lines are a fit of the data for 700 and
and observe the relaxed AlGaAs profiles. Figu(a) 8hows 750 °C, respectively, with the functiof20), in which the fit
the schematics of this layer sequence and TEM cross separameters are, and «, while x, (self-limiting curvature
tions of two examples of such studies: namely,forthe givenx andT) is taken as the measured valuexdfor
Al 4:Ga sAs layers grown at 700 °C withotop) and with  t=0. The fit to the two series of data yields values of 0.28
(bottom a 1800 s growth interruption before the marker lay- +0.02 and 0.27 0.02 fora@ and 3910 s and 335 s for

(20
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FIG. 8. (a) Left: schematics of the layer sequence used for the
growth interruption studies. Right: TEM cross sections of the pro- b)
files at the bottom of the groove for a growth interruption of 0 s FIG. 9. () Measured evolution of the GaAs profile widthg
(top and 1800 s(bottom), after growth of a 100-nm-thick N - ol - A
Al 42, AS layer at 700 °C(b) Self-limiting curvaturex=1/p at toyvards their self-limiting valudy' as a function qf the nominal

0.4570.5 thickness, fofT =650 °C, grown on A ,Ga, ssAs (circles, and T

the bottom of a V groove in Al,:Ga, 55As alloys, as a function of —700°C, grown on AjGa, As (squares Solid lines are theoret-

the growth interruption time, fof =700 °C (circles and 750°C . ' 2 : i .
(squares Solid and dashed lines are fits of the experimental date'tcaI predictions of the profile evolutiorj&g. (163], with the pa-

. . L i rameterd ' and Ar fixed as the values determined experimentally
with the function(20). The exponent appearing in EQO) is a b : . A
parameter of the fi. (see text (b) Measured evolution of the ALGa, ;/As profile widths

I, towards their self-limiting value as a function of the nominal
thickness, forT=650 °C (circles and T=700 °C (squareys both

Ty, at T=700 and 750 °C, respectively. The good match ofgrown on self-limiting GaAs. Solid lines are fits of the data, with
the value of a with the theoretical value 0.25 demonstratethe parameterk andAr(x) fixed as the values determined experi-
the validity of the model and of the simplifications assumedmentally and the Ga diffusion length on the sidewalls as a fitting
The possible slight decrease of the recovery tirpavith T paramete(see text

can be associated with the Arrhenius dependencé ohn, ) ) ) )
which is the main quantity influencing the temperature belhickness increaseisee Table )l The time evolution of the
havior of 7y, through relationg11) and (12). GaAs profile has been modeled by integrating numerically

Eq.(16a. The solid line represents the simulated profile evo-
lution according to this equation, where we have selected the
E. Evolution of GaAs and AlGa,_,As profiles values ofl$' andAr measured experimentallgee Table)l
We have compared the calculated and the experimentdihe evolutions of both GaAs profiles are well reproduced by
results for the time evolution df, towards its self-limiting  the theoretical curves with our choice of parameters.
value for GaAs, A} Ga -As, and A} 4:Ga s5AS, grown at
650 and 700°C. The samples consisted of a sequence ¢
layers of increasing thickness, up to a thickness for which &
self-limiting profile is establishetgbout 50 nm GaAs lay-
ers were grown on self-limiting AGa, _,As profiles, and

§ TABLE I. Measured self-limiting extensions of the bottom pro-
les and growth rate anisotropiesr in GaAs, Al Ga -As and
l0.4:G& 55AS, grown at 650 and 700 °C.

> | I$" (nm) Ar
Qléfai,xAs layers were grown on self-limiting GaAs pro- T—650°C T=700°C T=650°C T=700°C
Figure 9a) showsl,, as a function ofzZ,,, for GaAs o 67+2 129+3 0.21+0.05 0.22:0.05
grown at 650 °C on self-limiting Al-Ga&, /As (circles and at 0.3 18.1-0.4 31.5-0.7 0.23-0.05 0.19-0.05
700°C on self-limiting A} 45Ga ssAS (squares Both pro- .45 13.6-0.3  17.704  0.23-0.05 0.210.05

files evolve towards their self-limiting sizes as the GaAs
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The self-limiting evolution of A}Ga-As and A. Al,Ga;_,As VQW's
Alo.4§58 seAS (including entropy of mixing effecisis mod- As seen above, the Ga segregation in the VQW’s during
eled by integrating numerically Eq18b). We have again  aiGaas growth derives directly from the higher mobility of
plugged into the equation the measured values of the selisy agatoms, with respect to the Al ones, and from the cor-
limiting profile widths and gr%wth rate anisotropi#see  rections due to entropy of mixing effects. The self-limiting
Table . We have left therefore’, contained in the param-  facet widths for AlGaAs alloys give the confinement dimen-
eterb, as a fitting parameter. Figuré® shows the experi-  sjon of VQW structures. A detailed account of the formation

mental points and the results of the fit for(AGay7As at  mechanisms of such VQW's is given elsewh&te.
650 °C (circles and 700 °C(squarep A similar behavior is

obtained for A} 4sGa, s5As (not shown. Least-squares fits of
the experimental values at 700°C yielddd®= 145 B. GaAdAl,Ga;,As QWR's

+20 nm from the A} Ga, 7As data and_SG=130i 20 nm The fact that the self-limiting width increases with in-

from the Al 4GasAs data. These values are consistentcreasing diffusion length of the group-lll adatoms on the
with each other and of the same order as those determined sidewalls explains directly the self-ordering of crescent-
Fig. 5(b), though about 20%—25% lower. At 650 °C, we ob- shaped QWR’s. Thus, growing a low-band-gap semiconduc-
tained, consistently,SG:gOi 10 nm from the A} Ga,-As  tor layer (e.g., GaA$, characterized by a longer diffusion

data ancLSG=70i 10 nm from the A} ,Ga, ssAs data. The length, on a self-limiting, higher-band-gap V-groove surface
ratio between the average Ga diffusion lengths at 650 ante.g., AIGaA$ leads to an expansion of the bottom facet and

700°C vyields LE(650 °C)LE(700°C)=0.58+0.11. Since the experimentally observed formation of a QWR. The QWR
Ls=(Ds7s)Y? and 74~ 1/R, according to Eq(19) we have shape can be predicted, as a function of the nominal GaAs

thickness and growth conditions, using E46a. For the

LS(Ty) ES/ 1 1 typical GaAs/AlGaAs QWR thicknesses, we hakg<I}
G—=exr{7(ﬁ— F) . (for GaAsg; therefore, we can neglect the deposition term
Ls(T2) B'2 "B (*—1") in Eq. (168 and approximaté, with the analytic

With ES=1.9+0.3 eV (see Sec. V B this relation gives a formula (12), with = (I5.ac) /[4PAr (I§)c)°] (where *

diffusion length ratio L,C(650°C)LE(700°C)=0.55 AG” stands for AlIGaAs. The thickness profil&(X,Z,), as a

+0.11, in excellent agreement with the value found from thefunCtIcm of the 'ate”’?' coordmao_é a?”d of the ”OrT"”a'_ thick-
nessZ,, can be easily found within the approximations tak-

fits above. L : .
Figure 9 shows that the transient size variations takin ng into account a single bottom facet or a hyperbolic surface
rofile. In this latter case(X,Z,) becomes

place during evolution towards the self-limiting profile are
qualitatively different, depending on wheth@<|§,' (a) or
19>13! (b).

GaAs/AlGa; ,As case (a)In the initial stages of profile  t(X,Zn)=rsZy+tan 6’)[ \/[Potaf( 0)1?
evolution we havé,<I3'; therefore, the term “ 1” can be
neglected in Eq(16a@ and the profile will evolve approxi- Uz
mately according to the lad2). This is due to the fact that, —Vlpotan(6)]°+X
when the profile is very sharp, with respect to the surface
diffusion length, lateral capillarity fluxes are dominant over
nominal growth fluxes.

AlLGa, _,As/GaAs case (b)n the initial stages of profile
evolution, we havéb>lg'; therefore, the capillarity and en-
tropy of mixing terms can be neglected in E&8b). This is
equivalent to stating that for very shallow profilé@such
wider than the surface diffusion lengthateral fluxes are
negligible, and each facet grows with its “intrinsic” growth
rater;. As a consequendeee Eq.(18b)], the profile con-
traction is initially constant, at a rate given by (x). This
linear profile evolution is well reproduced in Fig(k® for
[,=<20 nm.

12
+X2

Z
1+—
b

: (21)

where p, is the bottom radius of curvature on which the
QWR is deposited and, in this case, corresponds to the Al-
GaAs self-limiting radius. This equation defines completely
the QWR shape in the hyperbolic approximation, as a func-
tion of the material self-limiting shapes and of the nominal
thickness.

As an example, we plot in Fig. 18 the thickness profile
of a GaAs QWR with nominal thicknes,=2.5 nm, with
the self-limiting parameters measured experimentap:lf;\'/,_;\G
=6.4 nm(corresponding to an Al mole fractior=0.4 and
a growth temperaturd =650°C, with R=0.4 nm/s) and
pg!G=24 nm x=0, T=650°C,R=0.25 nm/s, solid ling
For comparison, the figure also shows thickness profiles for
the samepj o andZ,,, with pjls=12 nm(dotted ling and
pilc=48 nm(dash-dotted ling

The model developed above is useful not only for evalu- The relation above can be used to calculate the wire quan-
ating the self-limiting characteristics of the growth, but cantum confinement potential. This can be done analytically in
also be employed to elucidate the self-ordering of severathe adiabatic approximation for the case of an infinitely deep
types of quantum nanostructures relying on such selftransverse potential welf.In this limit, the electron subband
limiting surface evolution. separation found in Ref. 34 can be expressed as

VI. FORMATION OF QUANTUM-CONFINED
NANOSTRUCTURES
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FIG. 11. Open symbols: measured QWR SL radius of curvature,
as a function of the SL thickness, in é.8 nm/3.9 nm
GaAs/Al 4Ga ssAs SL grown at 650 °C. Solid symbols: simu-
lated radius of curvature, using Eq$6a and(18h). Circles: upper
Al 4Gay sAs profile. Squares: upper GaAs profile.

layer balance themselves over each period, thus yielding a
self-limiting SL evolution. Solid symbols show the result of
the modeling of SL growth, where we have simulated nu-
merically the SL profile using Eq9169 and (18b). The
parameters of the simulation were fixed by fitting the self-
limiting evolution of GaAs and AJ,Ga ssAs at 650 °C, de-
termined in Sec. VE. The plot shows that the SL self-
limiting growth can be well reproduced with our model. The
FIG. 10. () Simulated thickness profiles of a hyperbolic shapedSimUIation gave self-limiting SL radii of curvature of 17.9
o . . ) o nm, 159 nm, 13.4 nm, and 12.0 nm for SL's with
GaAs/AlGaAs QWR with nominal thickness 2.5 nmpg g Alg 1Gay oS thicknesses of 2.2 nm, 3.9 nm, 7.8 nm, and

=6.4 nm, andpE[G:lZ nm (dotted ling, 24 nm(solid line), and vel h ith th . |
48 nm (dashed-dotted line (b) Calculated electron subband sepa- 11.6 nm, respectively. The agreement with the experimenta

ration energies, as a function of the nominal QWR thickness, for th&/alues (19.+1.1 nm, 15-_&0-3 nm, 12.¢0.5 nm, and
three sets of growth parameters of p@it in the adiabatic approxi- 11.0£0.7 nm, reSpeCth?h’ls comparable to that of the em--
mation, for an infinitely deep transverse potential W&lef. 34. pirical model presented in Ref. 37, based on the exponential

evolution of GaAs and AlGaAs profiles.
AE:ﬁ%\/1—(1+zn/7b)—1’4

m* phlAct(0Z,)% D. In,Ga,_,A¥Al,Ga,_As QWR’s

AE (meV)

wherem* is the electron effective mass an(D,Z,) is the Compositional  self-ordering takes place also in
GaAs layer thickness at the bottom of the QWR crescentNxGai—xAs alloy layers grown on V grooves, resulting in
calculated from Eq(21). The calculated values ofE as a  the formation of an In-rich VQW at the bottom of the
function of the nominal thickness, for the sets of parameter§rooves® InGaAs self-ordering can be explained by our

of the three QWR profiles considered above, are plotted ifnodel, as the diffusion length of In is larger than that of Ga.
Fig. 1Q0b). In this case, however, one should also take into account the

effects of strain when InGaAs is grown on GaAs or AlGaAs
buffer layers. This can be done formally by solving the
Nernst-Einstein and continuity equations outlined above,

We have shown in Ref. 37 that GaAs/(Sla _,As QWR  with a surface chemical potential that takes into account non-
superlattices can be grown with ,8a _,As barriers much planarity, entropy of mixingand strain, this latter effect be-
thinner than the ones needed to recover the self-limitingng included through Eq(l). Besides this complication, ex-
Al,Ga, _,As profile. A peculiar SL self-limiting state is es- perimental determination of the structural parameters in
tablished and has been modeled analytically in Ref. 37 byhese systems is less straightforward than in the
using empirical, exponential evolution laws for the GaAs andAl,Ga, _,As/GaAs case, since the contrast obtained in AFM
Al,Ga _,As profiles. In Fig. 11 we show the measured GaAs(Ref. 39 and dark-field TEM cross sections is due both to
and ALGa, _,As radii of curvature, as a function of thick- composition and strain. Some complementary information is
ness, in 1.8 nm/3.9 nm GaAs/Al 4:Ga ssAs SL grown at  therefore needed, such as, for example, the lateral and verti-
650 °C (open symbols It can be seen that, after an initial cal strain distributions that can be inferred from high-
transient, the profile variations during deposition of a singleresolution x-ray diffractiorf®=42

C. GaAd9Al,Ga;_,As QWR superlattices
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E. Al,Ga,_,As/GaAs quantum dots on inverted pyramids substrates, where the dots form at the intersection of three

By etching tetrahedral recesses on (B-byiented GaAs planes at the bottom of a tetrahedral inverted pyrafhid.

substrates, self-ordering of OMCVD-grown ,&8a _,As is
observed at the bottom of these pyramiti&Srowth on the APPENDIX
side facets of the pyramids is analogous to the one taking
place in V grooves: sidewalls with similar qud4i11}A

planes develop, and at their intersection self-ordere
GaAs/AlGy ,As QWR's and AlGa ,As VQW's are

formed®® At the bottom of the pyramids, at the intersection

In this paper, we have developed a diffusion model to
xplain self-limiting growth at the bottom of the grooves by
ssuming that this region is composed only of a single facet.
This simplification has proved to be very useful for interpret-

ing self-ordering phenomena as a function of a few physical

of the tlhr?e QWR's an? VQWSs, a GgAfs;;quantum ddIOt and "’barameters, which can be easily inferred from experimental
vertical AlGaAs QWR form, respectively. Our model can o its. This picture, however, lacks a description of the full
be extended to treat two-dimensional lateral diffusion in such; o ctrycture of the extremal regions. In this appendix we

a tetrahedral geometry. will present the equations of motion for all three fadeise

_ central(100) and two lateraf311}A] that constitute the ex-
F. Conclusions tremal regions, again fixing our attention to the bottom of the

In summary, we have developed an analytic model thaffoove(see Fig. 2 _ _
explains self-ordered epitaxy on nonplanar substrates. Self- FOr such a structure, the chemical potential at each facet
limiting profiles result from the interplay among three pro- iS given by the set of equations
cesses. _

(i) The growth rate anisotropyamong the different facets -~ ¥180
composing the grooved profile. This anisotropy depends on
the growth technique and leads to a resharpening of the non-
planar profile either at the bottom of the groovggically in 2o

OMCVD on [011]-oriented groovesor at the top of the M3t= Mot
ridge (typically in MBE on[011]-oriented grooves
(i) The capillarity fluxesof adatoms towards the bottom
of the groove. These fluxes can self-adjust in order to yield a
steady-state propagation of the faceted profile either at the
bottom or at the top region, depending on the growth rate
anisotropy. The dependence of these fluxes on the adatom l3p
diffusion length determines the self-limiting profile width, as
a function of the material and growth conditions. v1Qyg
(iii) The nonuniformity of theentropy of mixingin the H1p= Ko™
profile of alloys. The different diffusion length of the alloy
components results in segregation of the more mobile spavhere
cies at the bottom of the groove and of the less mobile at the _
top of the mesa. However, these variations of the alloy com- ¥1=2(ysCsCa— yicota),
position give rise to gradients of the entropy of mixing,
which tend to reestablish a uniform composition. v3=vsCSd 0— a) + y,CSCa — y;(cot #— a) + cota),
With suitable approximations, we were able to apply .
quantitatively our model to the experimental self-limiting be- @ is the angle between tH@11}A and the(100) facets(see
havior of GaAs/AlGa,_,As nanostructures grown by LP Fig. 2, and the subscripts 1 and 3 refer to 90 and
OMCVD on V-grooved substrates. Besides giving an accui314A facets, respectively. According to E(), therefore,
rate physica' interpretation of Se|f_ordering phenomena ”f{he Surface ﬂUXeS betWeen the S|deWa”S and the bOttom
nonplanar epitaxy, this analytic model provides an estimaté311tA and between the botto{811A and the bottoni100)
of some quantities relevant to the epitaxial process, such @€, respectively,
adatom diffusion lengths and activation energies on the

groove sidewalls. ~ N3sDsQoy3

Our model could be further developed in the future to Jab™= keTI2
describe the self-limiting growth of more complex systems. Blsh
By including the effects of strain on the surface chemical - —
potential, the model could be extended to lattice-mismatched i :% n_ ﬁ)
In,Ga, _,As/(Al)GaAs heteroepitaxy on V groové$ pro- P eTIE, i e/

vided that a more detailed knowledge of the composition and

strain profiles in these structures can be obtained. Finally, by We will assume that the boundaries between{tB&1} A
formulating the corresponding two-dimensional diffusionand the sidewalls evolve also in this case according to Eq.
process, it should be possible to describe self-limiting growth16a, with |,=2l3,cosa+l,,. This assumption is justified

of GaAs/AlGaAs quantum dots grown on (1Btpatterned by the good agreement of the observed behavidy, afith
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70 The adatom concentratian ; at the boundaries between the
60 I .- E- AL A-m--"- bottom{311} A and(100) can be found as mentioned in Sec.
_-m-T Il B. After some algebra, we obtain
50 - -
@ T = 650°C Ryl
T y 13700 Kypt+Kgp’
g an I ] o | s 0 R1p™ Rap
= 20 L N where the atom transfer rateK;,=j;,/n13 and Kgy
d =]ap/Ngs are independent of the adatom concentrations. By
10 noticing thatdl,,= (2 cota)(dZ;,—dZ,), we obtain
0 | | | |
3
a) ° 1 20Z (nm)30 40 * M=2 cota| r+r 2—I3b :
o dz, BT 1,12
1b 1b'3b
140 o
120 | n ___* where A=(Ds/D3)(y3/v1). The equation above and Eq.
B __-----m""7T77 (168 define the evolution of th¢311}A and (100 bound-
100 |- " --T aries, in the absence of the entropy of mixing effects.
80 g T=700°C ~ We have fitted the evolution df, andly, for GaAs pro-
) 15 o 1, files, atT=650 and 700 °{see Fig. 8a)] with the system of
£ 60 K s | equations just described. In Fig. 12 we show the results of
=~ a0 ,'. b such fits, where we have fixed thg's to their measured
L] values and varied the parametdr A good match to the
@ W experimental data is obtained fAr=5-10 for the two cases
0 ! ! ! ! described here. Sinck is the ratio of quantities that should
0 10 20 30 40 50 not differ significantly from facet to facet, it is reasonable to
b) Z (nm) obtain values forA not too far from 1. Thus, the results

support the validity of the procedure and of the approxima-

tions made above. However, we will not discuss further the
numerical value ofA found here, since it is not possible to
estimate independently the diffusion coefficient and surface
energy ratios that appear in this parameter.

FIG. 12. Measuredsymbols and calculatedlines) evolution of
the (100 (circles and{31LA (squares boundaries in GaAs het-
eroepitaxy on self-limiting AJ 4£Ga s5As at 650 °C(a) and on self-
limiting Al 3 3G& 7As at 700 °C(b).

the simplified model developed above. According to &),

the equation of motion of the centrd00) facet can be writ- ACKNOWLEDGMENTS
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