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Surface morphology of GaAs during molecular beam epitaxy growth: Comparison of experimental
data with simulations based on continuum growth equations

A. Ballestad,* B. J. Ruck,† J. H. Schmid, M. Adamcyk, E. Nodwell, C. Nicoll,‡ and T. Tiedje
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
~Received 15 August 2001; revised manuscript received 29 November 2001; published 23 April 2002!

Using atomic force microscopy andin situ elastic light scattering we show that the surface of molecular
beam epitaxy~MBE! grown GaAs tends towards an equilibrium roughness independent of the initial condition,
as predicted by kinetic roughening theory. Two separate continuum growth equations are consistent with the
observed equilibrium roughness, namely, the Kardar-Parisi-Zhang~KPZ! equation ]h/]t5n¹2h1(l/2)
3(¹h)21h, whereh is the surface height andh represents nonconservative noise, and the MBE equation
]h/]t52k¹4h2(L/2)¹2(¹h)21hc , where hc represents conservative noise. These equations represent
different physical smoothing mechanisms, so to distinguish between them we have numerically solved both
equations. A novel geometric implementation of the nonlinear terms avoids instabilities associated with stiff-
ness of the equations. We find that the time and length scale dependence of the smoothing of initially rough
substrates is consistent with the KPZ equation but not the MBE equation. As the growth temperature is
increased the coefficientn increases relative tol, but the KPZ description remains valid over the entire
measured temperature range of 550–600 °C. Reducing the As overpressure increases the anisotropy of the
surface morphology. We provide a physical interpretation of the KPZ equation in which the incorporation rate
of mobile adatoms on the surface is governed by evaporation/condensation type dynamics. These results
provide important insight into the MBE growth mechanism of GaAs.

DOI: 10.1103/PhysRevB.65.205302 PACS number~s!: 68.55.2a, 81.10.Aj, 81.15.Aa
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I. INTRODUCTION

A variety of important semiconductor devices are bas
on epitaxial thin films grown by techniques such as mole
lar beam epitaxy~MBE!. In all of the important materia
systems, surfaces and interfaces play a fundamental ro
determining the performance of these devices. The surfa
of growing films also provide a unique and interesting test
ground for a wide range of new theories and ideas relatin
scale invariance in dynamical systems.1–4 It is therefore cru-
cial to understand the structure and evolution of the surf
morphology during film growth.

GaAs homoepitaxy is a promising system in which
study the surface morphology of epitaxial films. However
consistent description of the large scale properties of
grown surface is still lacking. This is partly due to the com
plexity introduced by the large number of growth para
eters, such as the growth temperature, the arsenic over
sure, or the initial condition of the surface. One particula
useful tool for investigating the surface morphology
grown films is provided by continuum growth equation
Theoretical analysis of different growth mechanisms yie
different continuum equations,1–4 so determining the equa
tion that best fits the experimental data can provide valua
insight into the dominant physical processes involved in
growth. For example, the presence of a Schwoebel barri5,6

that inhibits downward diffusion of mobile atoms at st
edges leads to an unstable growth equation. Mounds
served on MBE grown GaAs surfaces7–12have in some case
been attributed to this phenomenon.7–10

More recently, we have used a stable growth equat
namely, the Kardar-Parisi-Zhang~KPZ! equation,13 to show
that mounds observed on GaAs grown at 550 °C are actu
0163-1829/2002/65~20!/205302~14!/$20.00 65 2053
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a transient remnant of the rough initial surface.14 The KPZ
equation is nonconservative, that is, the growth rate of
surface depends on the local slope, a feature that is incon
tent with usual MBE growth conditions. For this reason
fourth order conservative growth equation~the MBE equa-
tion! has also been proposed,15–17in which smoothing occurs
via surface diffusion. Determining which of these two equ
tions best describes the evolving GaAs surface remains
outstanding issue.

In this paper we compare detailed real-time andex situ
measurements of MBE grown GaAs surfaces with numer
simulations of both the KPZ and the MBE equations. T
KPZ equation with nonconservative noise quantitatively
produces the observed surface morphology at all gro
times over the entire measured range of spatial frequenc
The MBE equation with conservative noise predicts the c
rect long-time surface roughness, but cannot account for
smoothing rate of large scale surface features. We there
conclude that GaAs homoepitaxy is described by the K
equation. To account for the nonconservative nature of
KPZ equation we introduce a simple, physically realistic n
malization scheme for the growth rate, although for our s
faces this modification has very little effect on the results

II. CONTINUUM GROWTH EQUATIONS

In a continuum approximation, where the discrete nat
of the atoms is averaged out, the evolution of the surf
morphology during film growth can be described by a co
tinuum growth equation. In this approach the time rate
change in the surface heighth(x,t) is expressed in terms o
the various derivatives ofh.1–4
©2002 The American Physical Society02-1
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A. Kardar-Parisi-Zhang equation

One of the most studied continuum equations is the K
equation13

]h

]t
5n¹2h1

l

2
~¹h!21h, ~1!

where h5h(x,t) represents the random noise associa
with the deposition and incorporation of atoms on the s
face. Generally, the noise is assumed to be uncorrelated,
^h(x,t)h(x8,t8)&5Dd(x2x8)d(t2t8), where ^•••& repre-
sents an average over possible noise configurations. P
cally, the linear term is used to represent evaporati
condensation dynamics between a vapor with a cons
chemical potentialmv and a surface with an average chem
cal potentialm0,mv . In the continuum approximationm0 is
determined by the surface tensionss ~free energy per unit
surface area!. To lowest order, variations aboutm0 are in-
duced by the local surface curvature1 as m(x)5m0
2ss¹

2h(x). The incorporation rate is determined by the r
laxation ansatz]h/]t52Ym, whereY.0 is the interface
mobility. Inserting the expression form and subtracting the
constant growth rateYm0 yields the second order linea
growth equation, withn5ssY.

The nonlinear term is an approximation which is oft
used to model the situation where growth proceeds outw
from the local surface normal,1,2 although we show below
that other interpretations are possible. It should be noted
the nonlinear term violates mass conservation as it does
conserve the average height of the surface. The KPZ e
tion with l50 is often referred to as the Edwards-Wilkinso
~EW! equation.18

B. MBE equation

Under typical GaAs MBE growth conditions, atoms arri
ing at the surface undergo significant diffusion before inc
porating at favorable sites. If the sticking coefficient is un
then the growth rate is determined solely by the flux, a
nonconservative terms should not be present in the gro
equation. To this end the MBE equation has be
formulated:1,2,15–17,19,20

]h

]t
52k¹4h2

L

2
¹2@~¹h!2#1h, ~2!

whereh may be either nonconservative flux noise with t
correlation function defined above, or conservative diffus
noise with correlation function1 ^h(x,t)h(x8,t8)&
5Dc¹

2d(x2x8)d(t2t8). The fourth order linear term ca
be derived from a conservation law, in which surface c
rents are driven by gradients in the surface chem
potential.1,21 The fourth order nonlinear term is believed
be generated by a nonequilibrium surface chemical poten
induced by the deposition flux.1 Note that we neglect the
term ¹(¹h)3 as no physical mechanism is known to gen
ate this term in the absence of the¹2h term.17
20530
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C. Conservative KPZ equation

A conservative version of the KPZ equation can be g
erated by modifying the nonlinear term. To achieve this,
first note that when the growth proceeds outward from
surface normal at a constant ratel, the growth rate can be
projected onto the vertical direction leading to

]h

]t
5lA11~¹h!2'lF11

1

2
~¹h!2G , ~3!

demonstrating the link between normal growth and the K
term. The approximation is valid foru¹hu!1. For a rough
surface of side lengthL, Eq. ~3! leads to the addition of a
total volume

dV5dtE
0

L

lA11~¹h!2d2x,

5ldtL2^A11~¹h!2&, ~4!

in an infinitesimal timedt, where^•••& represents an aver
age over the surface. On a perfectly flat surface of the sa
dimensions the total volume added is simplydV05ldtL2. A
conservative growth equation is obtained by normalizing
volume added, then subtracting the growth rate. This
achieved through the substitution

l

2
~¹h!2→lFdV0

dV
A11~¹h!221G , ~5!

where we have used the approximation in Eq.~3!. Physically,
in the case of GaAs growth discussed here, the correc
describes the situation where the density of mobile atoms
the surface adjusts itself such that the net incorporation
balances the arrival rate of atoms from the growth flux. T
resulting equation is nonlocal, and is difficult to investiga
using standard analytical techniques. However, it is eas
simulate the behavior numerically, as we show below. He
after, unless specifically stated, all references to the K
equation refer to the conservative version which is consis
with the physical process of MBE growth.

D. Universality classes

The different kinds of growth process, as represented
the different growth equations, can be characterized by t
universality class. Associated with each universality clas
a set of exponentsa ~roughness exponent!, b ~growth expo-
nent!, andz[a/b ~dynamic exponent!, describing the scal-
ing properties of the surface. Table I summarizes the kno
exponents for some of the growth equations.2

Experimental measurements of the surface shape ca
used to extract the growth exponents, thereby giving an
dication of the particular equation governing the surface e
lution. One useful measure is the power spectral den
~PSD!, defined by

PSD~q,t !5@ ĥ~q,t !#2, ~6!
2-2
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SURFACE MORPHOLOGY OF GaAs DURING MOLECULAR . . . PHYSICAL REVIEW B65 205302
where ĥ(q,t) is the Fourier transform ofh(x,t) at spatial
frequencyq. After a long period of growth the PSD is ex
pected to approach an asymptotic form determined by
critical exponents of the growth equation. In (211) dimen-
sions the asymptotic form is PSD(t→`);q22(11a), where
q5uqu, and the overall amplitude depends on both
strength of the noise and the coefficients in the growth eq
tion. For finite growth times, the asymptote will be observ
only for q larger than some cutoff valueqc;t21/z.

E. Simulations

The critical exponents given in Table I for the differe
growth equations are difficult to determine experimenta
due to a limited dynamic range accessible during grow
Furthermore, for real systems the morphology of the star
surface may also affect the scaling properties of the syste
finite growth times. During this transient regime, measu
ments of the scaling exponents may not reveal the univer
ity class. Instead, it is desirable to compare the measu
surfaces to simulations of the different growth equations

We have discretized the continuum growth Eqs.~1! and
~2!, including the modification described by Eq.~5!. Numeri-
cal instabilities restrict the range of parameters which can
used in typical finite difference implementations of the no
linear terms,22 so instead we have used a novel implemen
tion based on the normal growth approximation to the K
term @Eq. ~3!#. The algorithm translates all points on th
surface outwards from the normal by a constant amo
thereby providing an excellent way to approximate t
(¹h)2 term. Details of the implementation of this term an
the other terms in the growth equation are provided in
Appendix.

Nonconservative noise is included in the simulations
adding an amountGnsnA12DtU(t) to each point on the sur
face at each time step,2 where sn

252D/(Dx)2, Dx is the
spacing between the lattice points in the simulation,Dt is the
simulation time step,U(t) is a random number uniformly
distributed between20.5 and 0.5, andGn is a dimensionless
fitting parameter. For flux noise, one expectsGn51, andD
5Fa3 in our units,2 whereF is the flux in nm/s, anda is the
GaAs monolayer height~0.28 nm!.

Conservative noise can also arise during the growth p
cess due to fluctuating currents of adatoms flowing on
surface. We have implemented an algorithm to approxim
conservative noise in the following way. At each time ste
we add/remove an amountGcscA12U(t) from each point on

TABLE I. Critical exponents associated with various grow
equations in (211) dimensions. The second column indicat
whether the noise is conservative~C! or nonconservative (N).

Equation Noise a b z

EW N 0 0 2
KPZ N 0.385 0.24 1.58
MBE N 0.667 0.2 3.333
MBE C 0 0 4
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the surface and transfer exactly this amount to one of
nearest neighbor sites. This is repeated for each of the
nearest neighbors, using periodic boundary conditions.
coefficientsc5ADt/(Dx)4 ensures that the amplitude of th
PSD generated by the simulations does not change if we
the lattice spacingDx or time stepDt. Gc is a fitting param-
eter with dimensions nm3/s1/2 that adjusts the overall nois
level to optimize the match between the simulations and
perimental data. Generally,Gc is expected to increase as e
ther the number of mobile atoms or the individual adato
diffusion constant increases. Although other, more deta
implementations of conservative noise are certainly possi
our algorithm is adequate for testing the continuum grow
equations.

Simulations of each of the growth equations describ
above have been used to generate the PSD at a rang
different times, using a flat surface as the initial conditio
The fourth order MBE equation was simulated using eith
conservative or nonconservative noise. In all cases the c
cal exponents extracted from the PSDs agree within un
tainty with the values given in Table I, confirming the acc
racy of our numerical schemes.

III. EXPERIMENTAL METHOD

All samples in this study were prepared on@001# oriented
GaAs substrates in a VG-V80H MBE chamber equipp
with solid source effusion cells for both group III and grou
V elements. The growth rate, determined by the Ga flux, w
kept constant at around 1mm/h during each run. A valved
cracker was used as the As source, under conditions w
give almost entirely As2 as the group V flux. The group V to
group III beam equivalent pressure~BEP! flux ratios were
estimated from measurements made with an ion ga
placed in front of the samples. The substrate temperature
monitored by optical bandgap thermometry23 throughout the
growth, with an absolute accuracy of about65 °C. Prior to
loading into the MBE chamber, the substrates were expo
to ultraviolet ozone to remove carbon contaminants. The
sulting surface oxide was removedin situ, either by thermal
evaporation at 600 °C under an As2 overpressure, or by an
atomic hydrogen etch. The hydrogen used in the etch
cracked with a W filament placed in front of the samp
During the etch the substrate was nominally set to 150
but radiation from the W filament caused the temperature
rise somewhat above this value. Details of the parame
associated with each sample can be found in Table II.

During growth, the surface roughness was monitored
elastic light scattering. Light from a chopped Hg arc lam
was incident through a quartz viewport onto the growi
sample. The surface roughness diffusely scatters some o
incident light out of the chamber through two addition
viewports, where it is detected by photomultiplier tubes fitt
with wavelength selective filters. The chamber geometry,
the wavelength of light monitored, allows us to measure
roughness at spatial frequencies of 16 and 41mm21, corre-
sponding to length scales of 393 and 153 nm, respectively
fact, it can be shown that the measured light scattering sig
is proportional to the PSD of the surface at the spatial f
2-3
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A. BALLESTAD et al. PHYSICAL REVIEW B 65 205302
quency monitored.24,25The scattering vectors for the two sig
nals are 22.5° apart on the plane of the wafer, so the rou
ness is probed along slightly different directions on the fi
surface.

Atomic force microscope~AFM! images were obtained
from the samples soon after removal from UHV, using
Digital Instruments Multimode Scanning Probe Microscop
Scans ranging from 131 mm2 to 1003100 mm2 were
taken in tapping mode using Si tips with approximate
radius 30 nm.26 Therefore, we can obtain reliable data up
spatial frequencies of at least 100mm21 before tip convo-
lution effects become significant.

IV. RESULTS AND ANALYSIS

A. Growth on thermally desorbed substrates

1. Time dependence

Figure 1 shows a GaAs surface immediately prior
growth, after thermal cleaning of the surface oxide. The th
mal desorption process produces a surface covered with
with the largest pits separated by a characteristic distanc
around 1 mm, and having a maximum depth of around
nm. Figure 2 shows a set of AFM scans from samples gro
for different times at 550 °C on thermally cleaned substra
using a similar As2 flux for each growth. Each of the grow
surfaces is covered with mounds elongated along the@11̄0#
crystal axis, and separated by sharp V grooves. The mou
have a characteristic separation similar to that of the pits
the starting surface, strongly suggesting that they are a r
nant of the initial condition.

The r.m.s. roughness of the surfaces shown in Figs. 1
2 decreases steadily with time during growth, progress
through 4.9, 1.0, 0.7, and 0.5 nm after 0, 10, 37.5, and
min of deposition, respectively. This smoothing is incons
tent with the ideas of unstable growth,9,10 in which the

TABLE II. Summary of growth parameters for the samples d
scribed in the text.Tsub is the substrate temperature and V:III is th
Ga to As flux ratio ~BEP! during growth. The oxide remova
method is either thermal desorption~TD! or hydrogen etch~HE!.

Sample
Tsub

~°C!
Growth time

~min! V:III Surface prep.

730 T0 0 TD
744 H1 595 75 6.5 HE
755 T4 550 75 2.9 TD
769 H0 0 HE
776 H2 552 10 5.5 HE
780 H3 553 37.5 6.5 HE
836 T6 600 69 8.3 TD
838 T2 550 37.5 7.8 TD
839 T1 550 10 8.3 TD
841 T3 550 150 8.4 TD
852 T5 550 3 8.5 TD
899 H5 550 30 1.0 HE
912 H4 550 30 3.0 HE
20530
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mounds would be expected to increase in amplitude as t
progresses. A careful comparison of Figs. 2~a!–2~c! shows
also that the number of mounds decreases as the su
smooths, while the lateral length scale of the remain
mounds increases. This is consistent with the behavior
pected from the second order nonlinear term in Eqs.~1! and
~5!; the mounds grow outward in time such that the larg
mounds absorb the smaller ones.

If a single continuum equation is to be used to descr
the surface evolution, then the equation must be capabl
reproducing the morphology after a range of different grow
times. The persistence of V grooves on the surface sugg
that a nonlinear equation, such as the KPZ or MBE eq
tions, is the correct choice. Figure 3 shows two surfa
simulated using the KPZ equation with parametersnx
510 nm2/s, ny51 nm2/s, and lx5ly512 nm/s, where
the subscriptsx and y correspond to the@11̄0# and @110#
directions, respectively. Nonconservative noise was inclu
in each of the simulations with strengthGn510, consider-
ably larger than the valueGn51 expected from the random
arrival of atoms from the flux~see Sec. II E!. Figure 4 shows
two surfaces simulated using the MBE equation with para
eterskx533105 nm4/s, ky5105 nm4/s, Lx5106 nm3/s,
andLy5105 nm3/s. Conservative noise was added to the
simulations with strengthGc5100 nm3/s1/2. In both cases
the simulations are performed on a 2563256 grid, using an
AFM scan of the desorbed wafer as the initial condition.

For both sets of simulations the times match the shor
two growth times in Fig. 2~10 and 37.5 min!, and the coef-
ficients have been adjusted to provide the best poss
agreement with the experimental data. Note that the coe
cients used for the KPZ simulations are slightly different
those used in Ref. 14 to model a 75 min growth. This is d
to slight variations in the surface morphology caused by
higher As2 overpressure used during the growth of t
present samples. Without the nonlinear terms both gro

-

FIG. 1. A 10310 mm2 AFM image of a GaAs wafer after
thermal removal of the surface oxide~sampleT0). The scale bar is

in nm, and the arrow points along the@11̄0# direction.
2-4
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SURFACE MORPHOLOGY OF GaAs DURING MOLECULAR . . . PHYSICAL REVIEW B65 205302
FIG. 2. 10310 mm2 AFM images from samples grown unde
nominally identical conditions, but for different times, on therma
desorbed substrates.~a! 10 min growth~sampleT1). ~b! 37.5 min
growth ~sampleT2). ~c! 150 min growth~sampleT3). The scale

bars are in nm, and the arrows point along the@11̄0# direction.
20530
equations generate inversion symmetric surfaces,1–4 whereas
with our inclusion of the nonlinear terms both equatio
cause the etch pits on the starting surface to develop
mounds separated by V grooves, in agreement with the
perimental surface morphology. However, while the surfa
generated by the KPZ equation have similar roughness to
real surfaces at all length scales, the MBE equation gener
less smoothing of the largest features than is seen in
experiment. Modifying the parameters of the MBE equati
to enhance smoothing of the deepest pits causes the sm
mounds to be less prominent than those on the real surf

Figure 5~a! shows the PSDs of a thermally desorbed su
strate~sampleT0), a sample grown for 10 min~sampleT1),
and a sample grown for 150 min~sampleT3), measured
along the@11̄0# direction. Figure 5~b! shows the PSD from
the same surfaces measured along the@110# direction. PSDs

FIG. 3. 10310 mm2 simulations generated using the conserv
tive form of the KPZ equation with growth times of~a! 10 min and
~b! 37.5 min. The scale bars are in nm, and the arrows point al

the @11̄0# direction. The simulations compare well with the re
surfaces shown in Fig. 2.
2-5
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A. BALLESTAD et al. PHYSICAL REVIEW B 65 205302
calculated from AFM scans ranging in size from
31 mm2 to 1003100 mm2 were combined to generat
these figures. The PSD shrinks rapidly as a function of ti
during growth, until it reaches a saturated level for spa
frequencies greater than a crossover frequencyqc ~indicated
by the vertical dashed lines!. The crossover frequency de
creases monotonically as a function of growth time, go
from around 36mm21 to around 9 mm21 (@11̄0# direc-
tion!, or from around 60mm21 to around 17mm21 (@110#
direction! after 10 and 150 min growth, respectively. In th
saturated region (q.qc) the PSD is well described by
power law, with slope close to22, and a magnitude which i
the same for all samples grown under similar conditions. T
peak in the PSD of the thermally desorbed surface, locate
around 4 mm21, moves gradually towards lower spatial fr

FIG. 4. 10310 mm2 simulations generated using the MB
equation with growth times of~a! 10 min and~b! 37.5 min. The

scale bars are in nm, and the arrows point along the@11̄0# direc-
tion. The fourth order equation also produces a mounded surf
although the depth of the cusps between the mounds is greater
on the real surfaces.
20530
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quencies during growth as the average size and spacin
the mounds increases.

The solid lines on Fig. 5 show the PSD’s obtained fro
simulations using the conservative form of the KPZ equ
tion. Figure 6 shows the PSD of the same samples show
Fig. 5, but in this case the solid lines are PSDs obtained fr
simulations using the MBE equation. The simulation tim
match the experimental data, and the parameters are the
as those used to generate the images shown in Figs. 3 a
As above, the PSD’s are generated from a combination
simulated surfaces of different sizes. In the saturated reg
q.qc the magnitude of the PSD is determined by both
coefficients in the growth equation and the strength of
noise included in the simulations. The values of the para
eters Gn ~KPZ equation! and Gc ~MBE equation! quoted
above were determined by matching the simulated and m
sured PSD’s in the saturated region at high spatial frequ
cies.

The KPZ simulations in Fig. 5 are in excellent agreeme
with the experimental data over the entireq range. Forq
.qc the MBE equation with conservative noise predicts t
correct slope on the log-log plot~Fig. 6!. However, unlike
the KPZ equation, it does not predict the time dependenc

e,
an

FIG. 5. PSD after different growth times on thermally clean

substrates, measured along~a! the @11̄0# direction and~b! the
@110# direction. The symbols represent the experimental data.
solid lines, representing 10 and 150 min simulations generated
the KPZ equation, are in excellent agreement with the experime
data. The vertical dashed lines indicate the cutoff frequenciesqc at
10 and 150 min~right to left!.
2-6
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SURFACE MORPHOLOGY OF GaAs DURING MOLECULAR . . . PHYSICAL REVIEW B65 205302
the cutoff frequency, and forq,qc it tends to predict a slope
steeper than the experimental data. Very little smooth
takes place at the lowest spatial frequencies in the M
equation simulations, whereas the experimental data cle
show a decrease corresponding to filling in of the therm
desorb pits.

The time dependence of the surface roughness can als
monitored by elastic light scattering. Figure 7 shows
measured light scattering signal at spatial frequencies o
and 41 mm21 during the thermal cleaning and subsequ
growth of sampleT4. AFM images from this sample hav
been published previously.14 The thermal desorption of th
surface oxide at 600 °C, which takes place at around 10
in the figure, is accompanied by a rapid increase in the s
tered light intensity at both spatial frequencies, caused by
appearance of the desorption pits seen in Fig. 1. The sam
is maintained at 600 °C for several minutes to complete
oxide removal, during which time the surface smooths c
siderably at 41mm21 but stays approximately constant
16 mm21, corresponding to the annealing of some sh
scale features. The sample is brought down to growth t
perature (550 °C) after 23 min, and growth begins at a ti
of 31 min. The surface immediately begins to smooth at b

FIG. 6. PSD of the same samples shown in Fig. 5, measu

along~a! the @11̄0# direction and~b! the @110# direction. The solid
lines are from 10 and 150 min simulations generated with the M
equation. The simulated PSD has a strongerq dependence than th
PSD of the grown films. The vertical dashed lines indicate the c
off frequenciesqc at 10 and 150 min~right to left!.
20530
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length scales, until a background level is reached after ab
10 min of growth.

The light scattering data indicate that, during growth, t
surface smooths at a rate which is approximately indep
dent of the probed length scale. In fact, the data are w
described by an exponential decay with time constantst16
and t41 both equal to around 3 min. An exponential dec
would be expected from purely linear equations such as
EW equation or the fourth order linear term in the MB
equation. However, the EW equation predicts the charac
istic smoothing times to be in the ratiot41/t165(16/41)2,
and the linear MBE equation predicts the ratio (16/41)4, both
inconsistent with the observed ratio.

The predicted smoothing rates of nonlinear equatio
such as the KPZ equation, are harder to determine ana
cally, but for a given starting surface they can be determin
from simulations. The insets in Fig. 7 compare the measu
light scattering signal during growth to the scattering sig
calculated from simulations using the KPZ equation. T
agreement between the calculated and measured data is
reasonable, as the only variable parameter in the calcula
is the initial amplitude. All other parameters were taken to
identical to those employed in Ref. 14 to fit the AFM imag
from this sample, namely,nx510 nm2/s, ny51 nm2/s, lx
5ly55 nm/s, andGn510. Most notably, the calculate
time constant is only weaklyq dependent~much less so than
for simulations based on the linear growth equations!, and is
within a factor of two of both of the measured values.

During the growth of this sample, the plane of inciden
of the Hg lamp lay 45° between the@11̄0# and @110# axes.
The 16 mm21 signal is measured in the plane of incidenc
while the 41 mm21 signal is measured at an angle 22.5° o
of the plane of incidence, rotated towards the@110# direc-
tion. Therefore, the 16mm21 signal measures the roughne
along a direction closer to the@11̄0# axis, where the value o

d

E

t-

FIG. 7. Diffuse light scattering signal at 16 and 41mm21 mea-
sured during growth of sampleT4. For clarity, the 41mm21 signal
has been offset. The insets show semilogarithmic plots of porti
of the same data during the growth, after subtraction of the cons
background level. The solid lines on both plots show the predic
light scattering from simulations using the KPZ equation.
2-7
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n is largest, than the 41mm21 signal, which measures alon
a direction with a smaller value forn. This partially offsets
the expected faster smoothing rate at 41mm21. More im-
portantly, the KPZ term has a large effect on the smooth
rate early in the growth when the surface is at its rough
The KPZ term tends to favor a much weakerq dependence in
the smoothing rate than the linear term in the growth eq
tion. Further simulations have shown that this weak sens
ity to length scale cannot be reproduced by the MBE eq
tion.

Finally, in Fig. 8~a! we show a series of scan lines fro
AFM images of samples grown at 550 °C. From bottom
top the cross sections come from the thermally desor
starting surface, and samples grown for 3, 10, 37.5, and
min ~samplesT0, T5, T1, T2, andT3, respectively!. The
scan lines are taken along the@110# direction and are offse
by 15 nm for clarity. Figure 8~b! shows scan lines from th
KPZ simulations, where the different lines are extracted
the same times as those in Fig. 8~a!. Figure 8~c! shows a
similar set of scan lines from the MBE equation simulatio

FIG. 8. Scan lines along the@110# direction from~a! measured
AFM images, ~b! the corresponding KPZ simulations,~c! MBE
equation simulations, and~d! Edwards-Wilkinson equation simula
tions. From bottom to top the curves correspond to growth time
0, 3, 10, 37.5, and 150 min. The lines in~a! are from five separate
samples, whereas the scan lines in~b!, ~c!, and~d! are taken at the
same position in the evolving simulations. Scans are offset for c
ity.
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The initial condition for the simulations is the thermally d
sorbed surface~sampleT0). These lines are all taken from
the same position on the surface as the simulation p
gressed. It is clear that while the KPZ simulations are
excellent agreement with the real surfaces at all times
length scales, the MBE equation does not correctly pre
the rate at which the deepest pits fill in. This, again, indica
that the rate of change of the surface morphology dur
growth of this material system is only weaklyq dependent.

In Fig. 8~d! we also include a series of scan lines e
tracted from a simulation using the Edwards-Wilkins
equation with nx520 nm2/s, ny55 nm2/s, and Gn510
~i.e., the KPZ equation withlx5ly50 nm/s). As before,
the parameters have been selected to optimize the simil
between the simulated and real surfaces. Although we ob
reasonable agreement with the real data after long gro
times, the large features associated with the desorption
clearly smooth too slowly in the simulation. Furthermore, t
cusplike features reproduced in the KPZ simulations beco
rounded in the purely linear simulation, demonstrating
importance of the nonlinear KPZ term.

2. Temperature dependence

Figure 9~a! shows an AFM scan from sampleT6, grown
for 69 min at 600 °C on a thermally desorbed substrate. T
surface still shows large scale moundlike features relate
the initial roughness. However, the V grooves between
mounds are not apparent, and the surface is much more
version symmetric than the samples grown at 550 °C.

To simulate the 600 °C growth, we have scaled the lin
coefficients in the KPZ equation by a factor of 3 relative
their values at 550 °C. This is the ratio that would be e
pected if the linear term represents a thermally activated p
cess with activation energy of around 0.7 eV. Using valu
for the nonlinear coefficients oflx5ly55 nm/s, andGn
510 results in the simulation shown in Fig. 9~b!. As above,
the KPZ simulation generates an excellent likeness of
experimental data. The increase of the linear relative to
nonlinear coefficients enhances the anisotropy of the sur
structure, and at the same time reduces the inversion as
metry. Overall, the grown surface is smoother at 600 than
550 °C.

B. Growth on hydrogen etched substrates

1. Kinetic roughening

Figure 10~a! shows an AFM image of a substrate fro
which the surface oxide has been removed by hydrogen e
ing. Unlike the thermal desorption process, the hydrog
etch leaves a relatively smooth surface, with an r.m.s. rou
ness of less than 0.2 nm in this sample. Figure 10~b! shows
an AFM image from sampleH1, grown for 75 min at 595 °C
on a hydrogen etched substrate. The surface remains
tively smooth, with r.m.s. roughness equal to 0.2 nm. T
large amplitude mounds seen on the thermally desor
samples are absent in this case, but the roughness doe
pear to be correlated over larger length scales than on
initial substrate. A 75 min growth simulation generated us

f

r-
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the KPZ equation with parametersnx530 nm2/s, ny
53 nm2/s, lx5ly55 nm/s, andGn510, is shown in Fig.
10~c!, where the hydrogen etched surface was used as
initial condition. These parameters, which are the same
those used above to successfully model the growth at 60
on thermally desorbed substrates, provide an excellent l
ness of the grown surface.

Because the starting surface is almost flat, we can inv
tigate the kinetic roughening of the films grown on hydrog
etched substrates. The PSD of two such films, grown
550 °C for 10 and 37.5 min, are shown in Figs. 11~a! and
11~b! ~samplesH2 andH3, respectively!. The PSD of the
starting surface, not shown in the figure, lies slightly bel
the PSD’s of the grown films, and has a sharper roll-off
high spatial frequencies. In the@11̄0# direction, the PSD of

FIG. 9. ~a! 10310 mm2 AFM image from sampleT6, grown at
600 °C on a thermally desorbed substrate.~b! 10310 mm2 simu-
lation using the KPZ equation withnx530 nm2/s, ny53 nm2/s,
and lx5ly55 nm/s. The morphology of the 600 °C grown su
face is reproduced. The scale bars are in nm, and the arrows

along the@11̄0# direction.
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FIG. 10. ~a! A 535 mm2 AFM image of a GaAs wafer which
has had the surface oxide removed by hydrogen etching~sample
H0). ~b! A 535 mm2 AFM image from sampleH1, grown for 75
min at 595 °C on a hydrogen etched substrate.~c! A 535 mm2

simulation generated using the KPZ equation. The surface show
~a! was used as the initial condition, and the parameters are
same as those used to simulate the growth on thermally deso
substrates at 600 °C. The scale bars are in nm, and the arrows

along the@11̄0# direction.
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the grown films follows a power law with exponent approx
mately 22 over the entireq range. The amplitude of the
PSD in this direction is independent of time, indicating tha
saturated roughness has been reached. In the@110# direction
the PSD also follows a power law with exponent22, but
only for spatial frequencies greater than a cutoff freque
qc of about 20 mm21 after 10 min growth, and abou
10 mm21 after 37.5 min growth~indicated by the vertica
dashed lines on the figure!. Below the cutoff frequency the
PSD is approximately independent ofq, and has an ampli-
tude which increases with time. This behavior is exac
what is expected from kinetic roughening; correlations
velop at longer and longer length scales as time progres
leading to a saturation in the PSD which extends to sma
and smaller spatial frequencies. The PSD saturates m
quickly along the@11̄0# axis due to the more rapid smooth
ing rate in this direction.

The solid lines in Figs. 11~a! and 11~b! show simulated
PSDs generated with the KPZ equation using the same
rameters used to generate the simulated PSDs in Figs.~a!
and 5~b!, but with a hydrogen etched starting surface. T
simulations are in excellent agreement with the measu

FIG. 11. PSD of samples grown on hydrogen etched substra

measured along~a! the @11̄0# direction and~b! the @110# direction.
The growth times are 10 and 37.5 min for samplesH2 andH3,
respectively. The solid lines are from simulations generated with
KPZ equation, using the same parameters used to model the gr
on thermally desorbed substrates. The vertical dashed lines in~b!
indicate the cutoff frequenciesqc at 10 and 37.5 min~right to left!.
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data. Most notably, the slope and amplitude of the satura
PSD’s are reproduced, and the position of the cutoff f
quencyqc is in good agreement with the data. Therefore,
conclude that the modified KPZ equation describes
growth on both smooth and rough initial surfaces.

The exponent of the power law describing both the m
sured and the simulated PSD’s is close to22 in both direc-
tions. This is in agreement with the exponents measured
the thermally desorbed surfaces, although it is somewhat
prising, as it differs from the KPZ prediction of22.8. We
return to this point in Sec. V, below.

2. Dependence on As overpressure

The anisotropy of the surface structure is sensitive to
As2 overpressure during growth. This is demonstrated in F
12 which shows three high resolution AFM scans fro
samples grown at 550 °C on hydrogen etched substrates
der varying As2 flux @samplesH3 ~a!, H4 ~b!, andH5 ~c!#.
Well defined atomic steps are visible in all three images. A
group V to group III flux ratio of 6.5@Fig. 12~a!# the surface
is covered with islands which show a moderate amount
elongation along the@11̄0# direction, as demonstrated by th
relatively isotropic two dimensional PSD shown in the ins
As the V:III ratio is decreased to 3.0@Fig. 12~b!# the anisot-
ropy increases, and the PSD becomes much more elong
In terms of the continuum growth equations this correspo
to an enhancement in the anisotropy of the coefficien
Physically, the elongation results from an anisotropic mob
ity of the adatoms, and possibly also an anisotropy in
incorporation dynamics on the surface.27 Due to the 234
surface reconstruction some degree of anisotropy is pre
even at the highest As flux. Once the V:III ratio approach
unity @Fig. 12~c!# the surface structure changes considerab
possibly due to an imminent change in the reconstruct
from 234 to 232. The surface is now covered by terrac
that are almost continuous along the@11̄0# direction, each
with a characteristic width of around 80 nm. This leng
scale is reflected in the PSD, which now shows two peaks
either side of the origin along the direction of elongation.

The GaAs surfaces described in Refs. 8–10, on wh
mounds were attributed to unstable growth, also show a la
degree of anisotropy. This indicates that they were gro
under an effectively lower As overpressure (As4 was used as
the source! than most of the samples displayed here. It
therefore interesting to consider whether an apprecia
Ehrlich-Schwoebel barrier may exist in conditions of low A
flux. The length scale in Fig. 12~c! could be taken as indi-
cating the presence of an Ehrlich-Schwoebel barrier in
@110# direction, but we note that the tops of the terraces
almost atomically flat, whereas in unstable growth slop
terraces would be expected. The exact mechanism by w
this surface morphology forms is unknown, but it does n
appear to be easy to model with continuum growth eq
tions, either stable or unstable.

V. DISCUSSION

The simulations show that both the KPZ and the MB
equation can qualitatively reproduce the mounds on the
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SURFACE MORPHOLOGY OF GaAs DURING MOLECULAR . . . PHYSICAL REVIEW B65 205302
FIG. 12. 232 mm2 AFM images illustrating the effect of re
ducing the As2 overpressure.~a! V:III ratio56.5 ~sampleH3), ~b!
V:III ratio53.0 ~sampleH4), and~c! V:III ratio51.0 ~sampleH5).
The scale bars are in nm, and the surface features are elon

along the@11̄0# direction ~along the arrow!. The 2D PSD of each
image is included as an inset, with spatial frequencies ranging f
2300 to 300 mm21 in each direction.
20530
face. Quantitatively, however, only the KPZ equation is a
to reproduce the PSD of the surfaces. This is because
measured PSD smooths at a rate which is fairly insensitiv
the length scale being probed. The stronger spatial freque
dependence inherent in the higher order MBE equat
makes it difficult to reproduce the relativelyq independent
decrease in the measured PSD~see Figs. 5 and 6!.

It is important, then, to consider the physical origin of t
terms in the KPZ equation, as it applies to GaAs homoe
axy. To gain insight, we have compared high resolution AF
images of samples which were annealed at growth temp
ture for 15 min after completion of the film, with sample
which were quenched in temperature immediately a
growth.28 For films grown under similar conditions, the larg
scale surface morphology of the annealed and unanne
samples is very similar. However, at short length sca
smooth atomic terraces are far more pronounced on the
nealed samples, while the terraces in the quenched sam
are made up of a large density of small islands. Clearly
small islands coalesce into smooth terraces during annea
This indicates that Ga atoms attached to step edges are
to dissociate from the step and return to the mobile ada
phase under MBE conditions. A single Ga atom may the
fore make several visits to step edge sites on the sur
before finally being incorporated into the film. This is co
sistent with the growth process being dominated by
evaporation/condensation like dynamics between the sur
and the adatoms. As discussed in Sec. II A, the second o
linear term in the growth equation then arises from the le
ing ¹2h term in an expansion of the surface chemical pot
tial.

The values ofl required in the simulations are conside
ably larger than the growth rate of around 0.3 nm/s, so
nonlinear KPZ term cannot be accounted for by simply
suming the surface grows outward from the surface norm
Instead, we believe the KPZ term represents a correctio
the surface chemical potential due to the incident flux. T
(¹h)2 correction has been discussed in the context of
fourth order MBE equation.1,17 In our case, the rate limiting
step in the smoothing of the surface appears to be the in
poration of adatoms at sites with low chemical potenti
rather than the diffusion of adatoms driven by gradients
the chemical potential. Therefore, the nonlinearity is of s
ond order rather than fourth order.

Our interpretation of the terms in the KPZ equation a
provides a natural explanation for the excess noise in
KPZ simulations. The noise represents fluctuations in
density of adatoms at a given point on the surface. Wh
adatoms are both incorporating and dissociating from s
edges, these fluctuations can easily be much larger than
fluctuations in the arrival rate of adatoms from the flux. F
thermore, due to the existence of the 234 surface recon-
struction, it may not be favorable for Ga adatoms to inc
porate individually.27 Instead, the basic unit which must b
added to the surface may consist of several Ga atoms
example, enough to recreate a unit cell of the 234 recon-
struction. In this case the coefficient of the noise correlat
function will be modified fromD5Fa3 to D5nFa3, where
n is the number of Ga atoms forming the basic incorporat
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A. BALLESTAD et al. PHYSICAL REVIEW B 65 205302
unit. Therefore the valueGn510 used in the KPZ simula
tions seems entirely reasonable.

We now comment on the power law observed in the P
at high spatial frequencies. Despite the importance of
nonlinear terms for reproducing the surface morphology,
PSD tends to display the power law exponent expected
the purely linear equations~i.e., 22). This should not be
taken as indicating a disagreement with the theoretical
dictions. Instead, it simply indicates that we are in a trans
regime in which the relatively large linear terms are dom
nating the nonlinear terms at short length scales.22 The small
surface roughness at short length scales means that the
linear term can be neglected in this regime. This conclus
is supported by the results of further simulations using
KPZ equation. For example, using the isotropic parame
n55 nm2/s, l55 nm/s, andGn510 the simulations ex-
hibit a power law exponent of22 in the PSD even afte
1000 min of growth on a flat 10310 mm2 substrate. How-
ever, using the parametersn50.01 nm2/s, l55 nm/s, and
Gn510 an exponent of22.8 is observed for times greate
than about 60 min.

VI. CONCLUSIONS

Based on our comparison between experimental data
simulations of continuum growth equations, we conclu
that the evolution of the surface morphology of MBE grow
GaAs is described by the KPZ equation with a stable lin
term. By contrast, the MBE equation fails to reproduce
measured surface morphology of the grown films. These
sults lead us to the following interpretation of the domina
smoothing mechanism during film growth. The surface
covered by mobile adatoms which diffuse randomly on
surface, forming an effective vapor phase. Incorporation
these adatoms takes place preferentially at sites on the
face with positive curvature, as described by a second o
growth equation. Nonlinear corrections to the incorporat
rate are observed to be important. We attribute these cor
tions to a noneqilibrium contribution to the surface chemi
potential associated with the deposition flux. Mass transp
driven by gradients in the surface chemical potential, as
scribed by the MBE equation, does not appear to pla
significant role, being dominated instead by the incorpo
tion dynamics. In MBE growth, the incorporation proce
must necessarily be of a conservative nature, i.e., the gro
rate should not depend on the surface slope. To accoun
this fact we have made a slight correction to the KPZ eq
tion. It is important to point out that, due to the rather sm
slopes on even the thermally desorbed substrates, this m
fication has only a very minor effect on the morphology
the simulated surfaces. Therefore, the simulations are es
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tially indistinguishable from simulations of the unmodifie
KPZ equation.

For a given growth condition, a single set of paramet
successfully describes growth on surfaces with different
tial roughness, demonstrating the applicability of the KP
equation. Regardless of initial condition, after long grow
times the surface tends towards an equilibrium roughn
level determined by the interplay between the smoothing
and random noise in the system, as predicted by kin
roughening theory. We have found that increasing the te
perature or As overpressure leads to smoother surfaces
plying increased values for the coefficients of the smooth
terms in the KPZ equation. Increasing the As overpress
also reduces the anisotropy of the surface morphology.
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APPENDIX NUMERICAL METHOD

Conventional finite difference schemes for the nonline
term in the KPZ equation use a centered difference appr
mation, such as (¹h)2'(hi 112hi 21)2/4Dx2, where hi is
the height at thei th point on the one-dimensional~1D! sur-
face, andDx is the spacing between the points. As noted
Ref. 22, this implementation fails to include the grid poi
hi , and can be highly unstable. This restricts the range
parameters which can be used in simulations, so instead
have used an alternate implementation based on the no
growth interpretation of the KPZ term@Eq. ~3!#, where the
surface is translated outwards from the local surface nor
by a constant amount.

Consider the 1D discrete representation of a surf
shown in Fig. 13~a!. The dashed lines show the positions
each surface element after translation outwards by a unif
amount. The thick solid line shows the new surface gen
ated from the dashed lines, by choosing the maximum at
point where there is ambiguity in the choice of the ne
height. This procedure can be generalized to 2D. Fig
13~b! shows the stencil used for the 2D calculation, whe
the relevant surface elements have been shaded. At m
only one of the four shaded surface elements will actua
decide the final height increment at pointP. To determine
which this is, we find the largest ofhA , hB , hC , andhD ,
and call thish1. Of the two remaining points ofA, B, C, and
D which are closest to this point, we find the one with t
next largesth, and call thish2. Then, assumingDx5Dy,
DhP5H ldt, if @h1<hP& h2<hP#,

ldtA11@~hP2h1!/Dx#2, if @h1.hP& h2<hP#,

ldtA11@~hP2h1!/Dx#21@~hP2h2!/Dx#2, if @h1.hP& h2.hP#.

~A1!
2-12
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SURFACE MORPHOLOGY OF GaAs DURING MOLECULAR . . . PHYSICAL REVIEW B65 205302
The final step is to subtractldt from the matrix of height
increments, thus leaving a matrix of values closely appro
matingl(¹h)2/2. This algorithm is stable for any values o
l, as long as the time step is not excessive. Furthermore
simulation code can be fully vectorized, leading to a 16-fo
decrease in calculation time over an implementation us
nested for loops to access the matrix elements. The algor
has been fully tested on artificial surfaces for which (¹h)2

can be calculated exactly.

FIG. 13. ~a! Application of the normal growth algorithm to a
discrete representation of a 1D surface. The surface is trans
outwards by an amount ds5ldt, leading to a growth rate in the
vertical direction ofdh. ~b! The 2D stencil@ABCDP# used to
calculate the (¹h)2 term at pointP.
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The conservative form of the KPZ equation@Eq. ~5!# is
implemented via an extension to the nonconservative K
simulation. After calculatingDh on an N3N matrix for a
given time step using Eq.~A1!, the total volume represente
by Dh is determined:dV5(Dx2Dh. This is done prior to
subtractingldt from Dh. The new matrixDhC is then cal-
culated: DhC5Dh(dV/dV0)2ldt, where dV05l(NDx)2

is the volume that would be added to a flat surface during
same time step using the growth rule Eq.~A1!. Note that this
is not the same as ensuring a conservative growth term
simply subtracting the average surface height at each
step.

The second order linear term is implemented using a
point stencil on the 2D lattice, i.e.,

¹2h'nxFhi 11,j22hi , j1hi 21,j

Dx2 G
1nyFhi , j 1122hi , j1hi , j 21

Dy2 G , ~A2!

whereDx5Dy in our simulations. The fourth order linea
term is implemented with a nine point stencil as

¹4h'kxFhi 12,j24hi 11,j16hi , j24hi 21,j1hi 22,j

Dx4 G
1kyFhi , j 1224hi , j 1116hi , j24hi , j 211hi , j 22

Dy4 G .

~A3!

The different coefficients (nx ,ny ,kx ,ky) allow for the in-
clusion of anisotropy in the simulations. Linear transform
tions of the terms in the numerical calculation allow the a
isotropy axis to be rotated such that they match
elongation axis of the AFM images. It is obvious from E
~2! that this algorithm can also be used to simulate the fou
order nonlinear term, by simply applying the¹2 scheme to
the matrix of (¹h)2 values generated in the manner d
scribed above.
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