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Many-body theory for luminescence spectra in high-density electron-hole systems
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~Received 7 August 2001; revised manuscript received 12 November 2001; published 15 May 2002!

We present a unified theory for the luminescence spectra in highly excited semiconductors, which is appli-
cable throughout the whole density regime including the electron-hole (e-h) BCS state and the excitonic
Bose-Einstein condensate. The calculated spectra clearly show the crossover behavior between thee-h BCS
state and the excitonic Bose-Einstein condensate. The analysis is based on the generalized random-phase
approximation combined with the Bethe-Salpeter equation. This approach allows us to consider the strong and
weake-h pair correlations on the same basis. In particular, we find that the broad spectral component arising
from the carrier recombination in thee-h BCS state splits into theP andP2 lines with decreasinge-h density.
This behavior can be predicted neither by the BCS-like mean-field theory nor by the interacting Boson model.
The result agrees with a recent noteworthy experiment for the strongly excited ZnO, where the ultraviolet laser
emission was observed at room temperature.
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I. INTRODUCTION

Many-body effects in photoexcited semiconductors ha
attracted considerable attention in the last three decades
system exhibits various states by changing the frequency
intensity of excitation light. The Bose-Einstein condensat
~BEC! of excitons is particularly interesting, and has be
extensively studied both theoretically and experimental1

However, we still do not have conclusive experiments
direct observation of the excitonic BEC because of the s
eral complicated experimental situations such as pho
effect,2 spatial inhomogeneity of exciton density, band a
isotropy, finite lifetime of excitons, and so forth. Recent d
velopments in experimental techniques allows us to obse
remarkable phenomena suggesting the generation of ma
scopic quantum coherence in semiconductors. In particu
the anomalous exciton transport phenomena observe
Cu2O ~Ref. 3! and BiI3 ~Ref. 4! are typical examples o
them. These phenomena become more significant with
creasing electron-holee-h density, and this property is in
marked contrast to the simple ballistic exciton propagation
conventional diffusive exciton transport.

When we theoretically analyze many-body effects
high-densitye-h systems induced by an intense light, co
ventional approaches based either on the weak interac
Boson model5 or on the BCS-like mean-field theory6 are not
appropriate. This is because the mean interparticle distan
often of the same order as the radius of a bounde-h pair in
practical experimental situations. We have to incorporate
state-filling effect, the band-gap renormalization~BGR! and
the quantum fluctuation associated with the center-of-m
motion of e-h pairs on the same footing.

The system exhibits a crossover between the excito
BEC state in relatively low densities and thee-h BCS state
in very high densities.7 We should remind that physical prop
erties of these states are qualitatively different from e
other. Namely, in thee-h BCS state, the relative motion o
e-h pairs is relevant and the order parameter is the BCS-
gap at the quasi-Fermi level. In the excitonic BEC state,
the other hand, the center-of-mass motion ofe-h pairs deter-
0163-1829/2002/65~20!/205204~13!/$20.00 65 2052
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mines the macroscopic quantum coherence and the orde
rameter is the density of condensed excitons.

Apart from the photoexcited semiconductors, the BC
BEC crossover has long been discussed in a variety of ph
cal contexts including superconductivity,8 nuclear matter,9

and superfluid3He ~Ref. 10!. In particular, much attention
has been focused on the BCS-BEC crossover in connec
with high-Tc cuprate superconductivity,11,12 where a
pseudogap structure is observed in the normal-state den
of-states for underdoped cuprates almost up to room t
perature. It is known that the coherence length of highTc
superconductor is the same order as the mean interpar
distance.13 This fact is in contrast with the conventional s
perconductors where the Cooper pairs are strongly over
ping in real space. The optically excitede-h system has a
marked advantage to investigate the BCS-BEC crossover
cause the macroscopic quantum state can easily be contr
without changing the composition of materials.

Recently, a microscopic theory for time-resolved lumine
cence spectra has been proposed to study the buildup o
exciton liminescence during the plasma cooling processe14

The theory is further elaborated to study the secondary em
sion, the hot luminescence, and the exciton formation un
the photonic environments.15 This attempt is particularly in-
teresting because the spontaneous generation of the m
scopic coherence in photoexcited semiconductors is on
the fundamental interests as in the case of the BEC in c
atomic vapors.16

In this paper, we study the luminescence spectra from
macroscopic quantum state in highly excited semicond
tors; the theory is applicable throughout the whole densi
including thee-h BCS state in very high densities and th
excitonic BEC in relatively low densities. The analysis
based on the BCS-like pairing theory combined with t
Bethe-Salpeter equation17 for the e-h pair correlation func-
tion. This formulation allows us to incorporate the sta
filling effect, the band-gap renormalization, and the we
(e-h Cooper pair formation! and strong~exciton formation!
pair correlations on the same basis. This analysis is clo
related to those in Refs. 18 and 19, where the absorp
©2002 The American Physical Society04-1
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T. J. INAGAKI AND M. AIHARA PHYSICAL REVIEW B 65 205204
spectra for condensed exciton system is analyzed by num
cally solving the ladder BS equation. In the present theo
we incorporate the collective phase fluctuation associa
with the center-of-mass motion ofe-h pairs by the general
ized random-phase approximation~GRPA!.20 In addition, the
present theory considers the many-exciton correlations s
as the inelastic exciton-exciton interaction; the many-exci
correlation is one of the main interests in the present se
conductor spectroscopy, and this effect can be discussed
ther with the semiconductor Bloch equation21 nor on the
semiconductor luminescence equation proposed by K
et al.14

The calculated spectra exhibit the BCS-BEC crosso
that can be analyzed neither by the BCS-like mean-fi
theory nor by the interacting Boson model. In particular,
present theory clearly shows that the broad emission b
arising from the pair recombination in thee-h BCS state,
splits into theP andP2 lines with decreasing carrier densit
Here theP (P2) line arises from the the radiative recomb
nation of an exciton assisted by the excitation of anot
exciton from the 1S to ionization-continuum (2S) state. In
addition, we find in the calculated spectra the weak emiss
line above the quasichemical potential ofe-h pairs originat-
ing from the recombination of Bogoliubov quasiparticle pa
generated by the collective phase fluctuation.

We analyze the density dependence of the band-gap
due to the band-gap renormalization, and find that
present theory agrees very well with experiments for Z
and CuCl. Furthermore, we discuss the density depende
of each spectral component one-h density. The presen
theory shows that the linear~quadratic! density dependenc
of the peak intensity of exciton (P2) line saturates with in-
creasinge-h density. It should be stressed that, in low de
sities, the present theory enables us to calculate the coh
exciton emission,P and P2 lines with the same basic equa
tion.

From the point of view of the BCS-BEC crossover, t
present work is regarded as an important attempt to cla
the phenomenon by using response functions. It should
remarked that only the thermodynamic properties have b
studied in the previous works on this subject.

The present theory is also important from applicati
point of view. The optical properties of wide band-gap II-V
semiconductors have attracted much attention following
development of the short-wavelength semiconductor lase
odes. In particular, the room-temperature ultraviolet la
emission from the self-assembled ZnO microcrystallite t
film22 is interesting, because other wide band-gap mater
such as ZnSe, exhibit the ultraviolet laser emission o
when the system is at sufficiently low temperatures~below
100 K!. This laser emission arises from theP-line, and the
many-body effects play an essential role in the lasing mec
nism. Therefore, elaborating the quantitative theory for hi
densitye-h system is particularly important to design nov
optical devices based on the wide band-gap materials.
present theory is a quantitative theory for luminescence s
tra of highly excited semiconductors, which provides us w
a theoretical basis to design novel short-wavelength opt
devices using wide band-gap materials.
20520
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The paper is organized as follows. In Sec. II, we der
the BS equation for thee-h pair correlation function within
the quasistatically screened ladder approximation. We in
duce the Bogoliubov quasiparticle operators to take into
count thee-h pair correlation. The numerical analysis an
comparison with experiments are given in Sec. III. We d
cuss in Sec. III A the dependence of the renormalized ba
gap on thee-h density, and compare the corresponding e
periments for ZnO~Refs. 23,24! and CuCl.25 In Sec. III B,
the e-h pair correlation and the BCS-like gap formation a
discussed by analyzing the density dependences of thee-h
pair excitation energy and thee-h pair wave function with
zero center-of-mass momentum. We show in Sec. III C
calculated luminescence spectra and compare them
those given by the BCS-like mean-field theory, the GR
analysis, and the corresponding experiment for ZnO.26 We
analyze in Sec. III D the density dependences of the lu
nescence intensity and the spectral position for each spe
component. Conclusions are given in Sec. IV. Finally,
show in the three appendixes the derivation of the sev
formulas that are used to evaluate the ladder BS equatio

II. FORMULATION

A. Model Hamiltonian

We consider a three-dimensionale-h system in a direct-
gap semiconductor atT50, which consists of an isotropic
nondegenerate parabolic conduction and valence bands
identical electron and hole effective masses; the analysis
different effective masses will be given in a forthcomin
paper.27 The repulsive interactions between electrons and
tween holes as well as thee-h attractive interaction are take
into account. The spin degrees of freedom are neglecte
focus our attention on the essential point of the BCS-B
crossover. We consider that the system is in a quasistatio
state given by the quasichemical potentialm of thee-h pairs.
The Hamiltonian is expressed in terms of annihilation ope
tors of electrons (cp) and holes (dp) as follows:

Hmat5(
k

$«k
eck

†ck1«k
hd2k

† d2k%1
1

2 (
k,p,q

Vq$ck1q
† cp2q

† cpck

1dk1q
† dp2q

† dpdk22ck1q
† ckdp2q

† dp%. ~1!

The single-particle energies of electrons and holes are
pressed in terms of their effective massm as «k

e5k2/(2m)
1Eg2m/2 and«k

h5k2/(2m)2m/2, respectively, whereEg

is the band-gap energy. The Coulomb interaction is writ
asVq54pe2/(e0q2), wheree0 is the background dielectric
constant of the unexcited crystal.

B. BCS-like gap equation fore-h systems

We rewrite Eq.~1! with respect to Bogoliubov quasipar
ticle operatorsak andbk to consider thee-h pair correlation.
The annihilation operators for Bogoliubov quasiparticles
defined by the Bogoliubov transformation,
4-2
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MANY-BODY THEORY FOR LUMINESCENCE SPECTRA . . . PHYSICAL REVIEW B65 205204
ck5ukak1vkb2k
† ,

~2!
d2k5ukb2k2vkak

† ,

where the Bogoliubov parametersuk and vk are subject to
the unitarity condition,uk

21vk
251. For later convenience

we introduce the coherence factors by

Ck,p
(0)5ukup1vkvp ,

Ck,p
(1)5ukvp1vkup ,

~3!
Ck,p

(2)5ukup2vkvp ,

Ck,p
(3)5ukvp2vkup ,

and the two-component operator in Nambu representatio

fk5S ak
† ,

b2k
D , fk

†5~ak ,b2k
† !. ~4!

The e-h HamiltonianHmat is then expressed as follows:

Hmat5(
k

E k
m~fk

†tmfk!1
1

2 (
k,p,q

Wk,p
m,n~q!~fk1q

† tmfk!

3~fp2q
† tnfp!, ~5!

where t0 and tj ( j 51,2,3) are the 232 unit matrix and
Pauli matrix, respectively. In the following analysis, we u
the summation convention with respect to indicesm and n
(m,n50,1, . . .,3), unless otherwise stated. In Eq.~5!, E k

m is
written as follows:

Ek
05 1

2 ~«k
e2«k

h!50,

Ek
15

1

2 S «k
e1«k

h2(
q

VqDCk,k
(1) ,

~6!
Ek

250,

Ek
35

1

2 S «k
e1«k

h2(
q

VqDCk,k
(2) .

Furthermore, the quantityWk,p
m,n(q) is written as follows:

Wk,p
m,n~q!

5VqS Ck1q,k
(0) Cp2q,p

(0) 0 iCk1q,k
(0) Cp2q,p

(3) 0

0 0 0 0

iCk1q,k
(3) Cp2q,p

(0) 0 2Ck1q,k
(3) Cp2q,p

(3) 0

0 0 0 0

D
m,n

.

~7!

The Bogoliubov parameters are determined by the va
tional method; we minimize the expectation value of t
Hamiltonian,^Hmat&0, under the charge neutrality conditio
(k$^ck

†ck&01^d2k
† d2k&0%50, where ^•••&0 stands for the
20520
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expectation value with respect to the Bogoliubov quasipa
cle vacuum. A straightforward calculation gives

uk
25

1

2 S 11
zk

Ek
D , vk

25
1

2 S 12
zk

Ek
D , ~8!

wherezk , Dk , and Ek[Azk
21Dk

2 are the renormalized en
ergy of e-h pairs, the BCS-like energy gap, and the exci
tion energy of a pair of Bogoliubov quasiparticles, respe
tively. The quantitieszk and Dk are determined by solving
the following self-consistent equations:

zk5S k2

2m*
1Eg2m D 22(

p
Vk2pvp

2

5S k2

2m*
1Eg2m D 2(

p
Vk2pS 12

zp

Ep
D , ~9a!

Dk524(
p

Vk2pupvp522(
p

Vk2p

Dp

Ep
, ~9b!

wherem* [m/2 is the reduced mass ofe-h pairs. The sec-
ond term on the right-hand side of Eq.~9a! expresses the
band renormalization effect arising from the electron~hole!
exchange interaction, and Eq.~9b! is the BCS-like gap equa
tion that describes the spontaneous generation of the B
like energy gap.

In order to obtain physical insight into the BCS-like ga
equation, we express Eq.~9! in terms of thee-h pair wave
function with zero center-of-mass momentum,ck5^ckd2k&
5Dk /(2Ek). Making use of Eq.~8!, the BCS-like gap equa
tion can be rewritten as

H k2

2m*
1Eg2m22(

p
Vk2pvp

2J ck2~122vk
2!

3(
p

Vk2pcp50. ~10!

Equation~10! is reduced to the Wannier equation in the lim
of low e-h density, becausevk

25^ck
†ck&05^d2k

† d2k&0 is the
distribution function for electrons and holes. Therefore t
BCS-like pair theory is able to properly describe the relat
wave function of excitons in the low-density case as well
the BCS-like pair states in the high-density case as discu
in Refs. 6,8,28,29,31.

C. Linear optical response

In order to calculate the luminescence spectra, we c
sider the radiation-matter coupled system described by
following Hamiltonian:

H tot5H rad1Hmat1H int , ~11!

whereH rad andH int are the Hamiltonians for radiation fiel
and for the interaction between radiation and carriers, resp
tively; Hmat is the e-h Hamiltonian given by Eq.~1!. H rad
and H int are written in terms of annihilation operator fo
photonsb as follows:
4-3
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T. J. INAGAKI AND M. AIHARA PHYSICAL REVIEW B 65 205204
H rad5vb†b, ~12a!

H int5(
k

$gkb
†ckd2k1gk* d2k

† ck
†b%, ~12b!

wherev andgk are the frequency of the light and radiatio
matter coupling constant, respectively.

We then consider the equation of motion for the expec
tion value of the photon number operator,N(t)5b†(t)b(t).
A perturbative calculation with respect toH int gives

d

dt
^N~ t !&5P,~v!^N~ t !11&2P.~v!^N~ t !&, ~13!

where^•••& indicates the expectation value with respect
the ground state ofH tot . The quantitiesP,(v) andP.(v)
are the emission and the absorption rate of photons, res
tively, and they are expressed in terms of electron and h
operators as follows:

P.~v!

5(
k,p

gk* gpE
0

`

dt^d2p~ t !cp~ t !ck
†~0!d2k

† ~0!&0eivt1c.c.

522 ImG.~v2m1 ig!,

P,~v!

5(
k,p

gk* gpE
0

`

dt^ck
†~0!d2k

† ~0!d2p~ t !cp~ t !&0eivt1c.c.

522 ImG,~v2m1 ig!, ~14!

whereg is the exciton decay constant and^•••&0 stands for
the expectation value with respect to the ground state
Hmat. The quantitiesG.(v) and G,(v) are the Fourier
transform of the correlation functions defined by

iG.~ t !5Q~ t !(
k,p

gk* gp^d2p~ t !cp~ t !ck
†~0!d2k

† ~0!&0 ,

~15a!

iG,~ t !5Q~ t !(
k,p

gk* gp^ck
†~0!d2k

† ~0!d2p~ t !cp~ t !&0 .

~15b!

The luminescence spectrumI (v) is given by the spontane
ous emission rate,P,(v),

I ~v!522 ImG,~v2m1 ig!. ~16!

We rewrite Eq.~15b! with respect to the two-componen
operator Eq.~4! to incorporate thee-h pair correlation. Sub-
stituting Eq.~4! into Eq. ~15b!, we obtain the following for-
mula:
20520
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iG,~ t !5
1

4
Q~ t !

3 (
j ,m51

3

(
k,p

gk* gpKk, j
† ^F j

0†~k,0!Fm
0 ~p,t !&0Kp,m ,

~17!

whereKp, j5(Cp,p
(2) ,2 i ,Cp,p

(1)) j and

F j
q†~p,t !5fq1p

† ~ t !tjfp~ t !. ~18!

As shown in Appendix A, the operatorF3
0(p) is the constant

of motion; therefore the Fourier transform of Eq.~17! is
expressed as follows:

G,~v!5
I coh

4~v1 ig!

1
1

4 (
j ,m51

2

(
k,p

gk* gpKk, j
† @Gk,p~v!# j ,mKp,m ,

~19a!

whereGk,p(v) is the Fourier transform of the following 2
32 matrix correlation function:

@Gk,p~ t !# j ,m52 iQ~ t !^F j
0†~k,0!Fm

0 ~p,t !&0 , ~19b!

and

I coh5(
k,p

gk* gpKk,3
† ^F3

0†~k!F3
0~p!&0Kp,3

1(
j 51

2

(
k,p

gk* gp$Kk, j
† ^F j

0†~k!F3
0~p!&0Kp,31c.c.%.

~19c!

In deriving Eq. ~19!, we should note that the expectatio
value ^•••&0 is evaluated in terms of the quasistationa
state. The first term on the right-hand side of Eq.~19a! gives
the sharp spectrum at the quasichemical potential of thee-h
pairs; this spectral component arises from the coherent s
taneous emission from the macroscopic quantum state. In
coherent emission process, thee-h recombination does no
generate Bogoliubov quasiparticles so that the spectral l
width is merely determined by the lifetime of thee-h pairs.
On the other hand, the second term on the right-hand sid
Eq. ~19a! expresses the incoherent spontaneous emission
companied by the creation of Bogoliubov quasiparticles; t
spectral component reflects the various interesting feat
arising from the many-body interaction in high-densitye-h
systems.

As shown in Appendix B,I coh is written as follows:

I coh5
1

8 (
j 51,2

(
k,p

gk* gpCk,k
(1)^F j

p2k†~k!F j
p2k~k!&Cp,p

(1) .

~20!
4-4
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MANY-BODY THEORY FOR LUMINESCENCE SPECTRA . . . PHYSICAL REVIEW B65 205204
We evaluatê Fp2k†(k)t0Fp2k(k)&0 by the GRPA; we show
the details of calculation in Appendix C. Substituting E
~C9a! into the second term on the right-hand side of Eq.~20!,
we obtain

I coh5
1

4 U(k
gk* Ck,k

(1)U2

2(
k,p

gk* gpVk2pCk,k
(1)Cp,p

(1)Ck,p
(3)2F]xk2p~v!

]v G
v52Ek2Ep

,

~21!

wherexq(v) is the partial screening function defined by E
~C10!. The first term on the right-hand side of Eq.~21! rep-
resents the intensity of the coherent emission evaluated
the BCS-like mean-field theory. On the other hand, the s
ond term on the right-hand side of Eq.~21! reflects the col-
lective phase fluctuation effect associated with the center
mass motion ofe-h pairs.

D. The Bethe-Salpeter equation
for e-h pair-correlation function

Next, let us consider the 232 matrix correlation function
Gk,p(t) defined by Eq.~19b!. The Fourier transform of
Gk,p(t) satisfies the following BS equation:

FGp,k~v!~vt012Ekt3!2(
k8

Vk2k8Gp,k8~v!

3~Ck,k8
(0)2t21 iCk,k8

(3)2t1!G
j ,m

5^F j
0†~p!Fm

0 ~k!&0 , ~22!

wherej ,m51,2. This BS equation is obtained by linearizin
the equation of motion forGk,p(t). The second term on th
left-hand side of Eq.~22! expresses the stronge-h pair cor-
relation, where the vertex part proportional toCk,p

(0)2 reflects
the state-filling effect and the part proportional toCk,p

(3)2

arises from thee-h pair correlation. The stronge-h pair cor-
relation gives a significant contribution to thee-h pair re-
combination with nonzero center-of-mass momentum, an
give rise to the sharp excitonic structures in the luminesce
spectrum, which are not obtained with the BCS-like me
field theory.

As shown in Appendix C, the expectation value on t
right-hand side of Eq.~22! can be evaluated by the GRPA
Substituting Eq.~B1! into the expectation value on the righ
hand side of Eq.~22!, we obtain

^F j
0†~p!Fm

0 ~k!&05dp,k~t01t2! j ,m

2 1
2 ~t3! j ,m^Fp2k†~k!t3Fp2k~k!&0 .

~23!

Here we used the identity tr$t1Gq(k,k,v)%
5^Fp2k†(k)t1Fp2k(k)&050, whereGq(k,k,v) is defined
by Eq. ~C1!. The second term on the right-hand side of E
20520
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~23! reflects the collective phase fluctuation frome-h BCS
state similar to the Anderson mode in superconductiv
From Eq.~C9b!, we find that Eq.~23! turn out to be written
as follows:

^F j
0†~p!Fm

0 ~k!&05dp,k~t01t2! j ,m2
Ck,p

(3)2Vk2p
s

Ek1Ep
~t3! j ,m .

~24!

Here we introduced the quasistatically screened Coulo
potential defined by

Vk2p
s 5Vk2p$112xk2p~2Ek2Ep!%, ~25!

wherexq(v) is the partial screening function30 defined by
Eq. ~C10!.

E. Screening effect

In the present analysis, we incorporate the screening
fect by the quasistatic RPA.28 The BCS-like gap equation Eq
~9! is written as

zk5S k2

2m*
1Eg2m D 22(

p
Vk2p

s vp
21(

q
$Vq

s2Vq%,

~26a!

Dk524(
p

Vk2p
s upvp . ~26b!

Here, the second term on the right-hand side of Eq.~26a!
represents the screened exchange effect, the third term b
the Coulomb-hole effect. On the other hand, the BS equa
~22! is written as

Gp,k~v!~vt012Ekt3!2(
k8

Vk2k8
s Gp,k8~v!~Ck,k8

(0)2t2

1 iCk,k8
(3)2t1!5dp,k~t01t2!2t3

Ck,p
(3)2Vk2p

s

Ek1Ep
. ~27!

In the present analysis, we employ the tractable exp
sion for the dielectric function given by the single-plasmo
pole approximation,30 which is known to produce relatively
good self-energy corrections.31,32 In the single-plasmon-pole
approximation, the dielectric function is given by

ek
21~z!5e0

21S 11
vpl

2

z22vk
2D , ~28!

where vpl5@4pne2/(e0m* )#1/2 is the plasma frequency
andn is thee-h pair density. The dispersion of the effectiv
plasmon mode is chosen as,30

vk
25vpl

2 S 11
k2

kTF
2 D 1Geff

2 , ~29!

where kTF5$16m* e2/(pe0)%1/2(6p2n)1/6 is the Thomas-
Fermi wave number, and the effective gap
4-5
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Geff52min
k

Ek ~30!

is set to the minimum excitation energy of a pair of t
Bogoliubov quasiparticles. The partial screening funct
and its derivative take the following simple forms:

xk~v!5
vpl

2

2vk
S 1

v2vk
D ,

~31!
]xk~v!

]v
52

vpl
2

2vk
S 1

v2vk
D 2

.

III. NUMERICAL ANALYSIS

In the following analysis, we use the units where the e
citon binding energy (Eex) and the exciton Bohr radius (aB)
equal unity. As a measure of thee-h density, we employ the
dimensionless mean interparticle distancer s5^r &/aB
5@3/(4pn)#1/3, wheren is thee-h density.

A. The band-gap renormalization

Before going into details of the numerical results for t
luminescence spectra, we first discuss the band-gap re
malization~self-energy correction! arising from the electron
~hole! exchange interaction. This effect plays an importa
role in several optical phenomena in high-densitye-h sys-
tems, such as the laser oscillation and the mirrorless op
bistability31,33 in semiconductors. In the present analysis,
iteratively solve the BCS-like gap equation~26! for a fixed
value of quasichemical potentialm. The band-gap reduction
is then evaluated bydEg5zk502Eg1m. In each step of
iteration, we need to calculate thee-h density and the effec
tive gap Geff to evaluate the quasistatically screened C
lomb interaction defined by Eq.~25!.

Figure 1 shows the calculateddEg as a function ofr s ; as
a reference, we also show the results obtained by solving
~26! with Dk50 and by the phenomenological Vashish

FIG. 1. The BGR as a function ofr s . The present theory give
the solid line and the theory of Vashishtaet al.34 gives the dashed
dotted line. The dashed line shows the result given by solving
~26! with Dk50. The open diamonds, triangles, and squares re
sent the experimental results for 233 nm ZnO thin film,24 55 nm
ZnO thin film,23 and bulk CuCl,25 respectively.
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Kalia formula.34 Much attention should be paid to the dras
difference between the present theory and other results e
cially in high e-h densities~small r s). This large band-gap
reduction arises from the BCS-like gap formation; as d
cussed in Ref. 35, the result obtained by solving Eq.~26!
with Dk50 shows almost the same behavior as that of R
34.

We also show in Fig. 1 the experimental results for bu
CuCl ~Ref. 25! and ZnO thin film.23,24In Ref. 25, the data for
dEg are obtained by analyzing the threshold pump-light
tensity of the plasma emission for various pump-light fr
quencies. In Refs. 23 and 24, the data fordEg are obtained
by analyzing the low-energy tail of the luminescence a
absorption spectra for various pump-light intensities;
sample thickness is 55 nm in Ref. 23 and that in Ref. 24
233 nm. In Fig. 1, material parameters are used to evalu
the binding energy and the Bohr radius of a 1S exciton;
those values for CuCl areEex5213 meV~Ref. 36! and aB
50.7 nm ~Ref. 37!, and those for ZnO areEex559 meV
~Ref. 38! andaB51.8 nm~Ref. 39!.

We find an excellent agreement between the pres
theory and the experimental data for bulk CuCl and Z
satisfying the weak confinement condition. We should n
that no adjustable parameters are introduced in the the
and that the universal behavior is found except for stro
confinement samples, i.e., the data for different materials
the same theoretical line. This excellent agreement in Fig
indicates that the BCS-like energy gap is formed in the
experiments and plays an important role in the high-den
e-h systems.

The importance of the macroscopic coherence gener
by the Coulomb interaction was also pointed out in the se
conductor Bloch equation,21 which is very useful to analyze
various ultrafast optical phenomena including the opti
Stark effect.40 The results obtained by the present theory
consistent with these studies where the BCS-like mean-fi
theory is employed. On the other hand, the BGR has ex
sively been discussed by using GW approximation41 where
the self-energy is calculated by the electron propagator~G!
and the screened Coulomb interaction~W!, by the variational
analysis for the effective Wannier equation,42 and by calcu-
lating the exchange and correlation energies.34,43These theo-
ries agree with the experimental data for indirect band-g
materials34 and the semiconductor quantum wires consist
of the III-V materials.41 The present analysis reveals that t
macroscopic coherence generation plays an important
and the conventional theories break down in materials w
large exciton binding energy.

We comment that the considerable deviation with the
perimental data of Ref. 23 arises from the finite-size eff
and from the complex sample geometry. In fact, the sam
that was used in the experiment consists of many s
assembled crystallites grown on the sapphire substrat
shown in the atomic-force microscopy image in Ref. 23.

B. The e-h pair correlation and the BCS-like
energy-gap formation

The BCS-like energy-gap formation makes a significa
contribution not merely to the band-gap reduction but also
the several remarkable characteristics of luminescence s

q.
e-
4-6
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tra as will be discussed in Sec. III C. We discuss in t
subsection the BCS-like energy-gap formation by analyz
the r s dependence of the Bogoliubov quasiparticle ene
Ek . As shown in the upper graph of Fig. 2,Ek is character-
ized by Geff and kmin ; hereGeff is defined by Eq.~30! and
kmin is the momentum at which 2Ek equalsGeff . These quan-
tities are measures of the BCS-BEC crossover that is
main subject of the present study. In lowe-h densities,Ek
shows the parabolic dispersion withGeff51 ~the exciton
binding energy! and kmin50. In high e-h densities,Ek ex-
hibits the mexican-hat shape dispersion withGeff and kmin
equaling the BCS-like energy gap and the quasi-Fermi m
mentum, respectively.

We show in the lower graph of Fig. 2 the calculatedGeff
and k min as a function ofr s . We find thatkmin.0 for r s
&5, andGeff considerably different from the exciton bindin
energy forr s&10. These results indicate that the system is
the e-h BCS state forr s&5, where the electrons and hole
are in Fermi degeneracy because of the Pauli exclusion p
ciple and the BCS-like energy gap is formed at the qua
Fermi level as shown in the upper graph of Fig. 2. On
contrary, thee-h pairs behave as excitons forr s*10, and the
crossover betweene-h Cooper pairs and excitons are foun
in 5&r s&10; these results are consistent with those in S
III A.

We also find that the strong screening effect considera
reducesGeff for r s,2. However, this behavior does not im
ply that thee-h pair correlation is absent in highe-h densi-

FIG. 2. The upper graph shows the dispersion relation of
single-quasiparticle energy for~a! r s517, ~b! r s55.2, ~c! r s53.0,
and~d! r s52.2, and the definition ofkmin andGeff for r s52.2. The
lower graph depictskmin andGeff as a function ofr s .
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ties; in fact, the coherent emission from thee-h BCS state is
found even in highe-h densities as will be discussed in Se
III C. This result is found only for sufficiently low tempera
tures, and the finite temperature effects will be discussed
forthcoming paper.27 Recently, the authors have shown th
even in very high densities, thee-h pair correlation is en-
hanced by a strong photoexcitation and the BCS-like g
extraordinarily grows with increasing pump-light intensity.44

This result suggests a possibility of decisive experimen
observation ofe-h BCS state under strong photoexcitation

Figure 3 illustrates thee-h pair wave functionck ~Refs.
6,8,28,29,31! with zero center-of-mass momentum for va
ous r s . The functional shape ofck also reflects the BCS
BEC crossover. Forr s*10, the wave function is a Lorentz
ian that is the same as that of a 1S exciton. Forr s&10, the
wave function deforms because of the quasi-Fermi surf
formation, andck has a maximum point with nonzero mo
mentum that equalskmin in r s&5. We also find that the nor
malized wave functionck /An (n is thee-h density! is nearly
independent ofr s for r s*10, and it abruptly reduces forr s
&10. This reduction indicates that, in highe-h densities, the
high quasi-Fermi level formation reduces the fraction of t
e-h pairs that contribute to thee-h Cooper pair formation.
As shown in Secs. III C and III D, this reduction of the no
malized wave function leads to the saturation of the pe
intensities of luminescence spectra.

C. Luminescence spectra

We are now in a position to discuss the luminescen
spectra for variouse-h densities. In the present theory, th
luminescence spectra are calculated using Eq.~16! by nu-
merically solving the BS equation~27!. We should remark
that the singularity-removal method40,45 is inappropriate be-
cause the singular points of the correlation function cons
erably depend on thee-h density. We therefore evaluate th
eigenvalues and eigenvectors of the stability matrix7,46 of the
BS kernel to obtain the numerical solution of Eq.~27!. This
approach enforces us to deal with a giant matrix~about
300033000 in dimension! to obtain good overall accuracy
We employ dynamical memory allocation and deallocat
in FORTRAN 90 to effectively use the memory space
computers.

e

FIG. 3. The wave function of ane-h pair with zero center-of-
mass momentum for variousr s .
4-7
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T. J. INAGAKI AND M. AIHARA PHYSICAL REVIEW B 65 205204
Figures 4~a! shows the luminescence spectra obtained
the present theory. As a reference, we also show in Figs.~b!
and 5~a! the luminescence spectra given by the GRPA ana
sis and by the BCS-like mean-field analysis, respectively
the GRPA analysis, we solve Eq.~27! by neglecting the sec
ond term on the left-hand side; in the BCS-like the me
field theory, we solve Eq.~27! by neglecting the second term
on both sides. In Figs. 4 and 5, the exciton decay constag
is chosen to be 0.03, which gives the sufficient resolution
each spectral components.

In the highe-h density (r s51.1), the present theory give
a broad emission band with large band-gap renormaliza
below the coherent emission line atv2Eg.0.8. We find a

FIG. 4. The luminescence spectra for variousr s given ~a! by the
present theory, and~b! by the GRPA.

FIG. 5. ~a! The luminescence spectra for variousr s given by the
BCS-like mean-field theory.~b! and ~c! show the enlarged figure
above the quasichemical potential forr s51.1 andr s51.5, respec-
tively. The solid line, the dashed line, and the dashed-dotted line
results given by the present theory, GRPA analysis, and the B
like mean-field theory, respectively.
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sharp peaked structure at the high-frequency edge of
broad emission band; this structure originates from the
gular behavior of the density of states associated with
BCS-like gap formation at the quasi-Fermi level. Th
peaked structure is strongly pronounced in the present th
because the stronge-h pair correlation described by the se
ond term on the right-hand side of Eq.~27! is considered in
the present numerical calculation. We also find that the lo
energy edge of the broad emission band in Fig. 4~a! does not
exhibit the ordinary square-root shape. This behavior ar
from the reduction of the oscillator strength ofe-h pairs at
the renormalized band edge due to the localization of
oscillator strength at the peaked structure mentioned ab
As clearly shown in Figs. 5~b! and 5~c!, the present theory
predicts a weak emission line above the coherent emis
line that originates from the collective phase fluctuation fro
the e-h BCS state. This component arises from the seco
term on the right-hand side of Eq.~27!; therefore this struc-
ture is also found in the GRPA analysis but missing in t
BCS-like mean-field analysis. We should remark that el
trons and holes are excited above the quasichemical pote
by the collective phase fluctuation even at zero temperat

As shown in the spectra forr s51.5 and r s52.2, the
present theory shows that the broad emission band inr s
51.1 splits into the broad and the sharp spectral compon
as thee-h density decreases. With further decrease in thee-h
density, the broad spectral component atv2Eg,22 sharp-
ens and is assigned to theP line; the sharp component atv
2Eg.21.7 is assigned to theP2 line. TheP line originates
from the radiative exciton recombination accompanied
the dissociation of another exciton; theP2 line originates
from the radiative exciton recombination accompanied
the excitation of another exciton from 1S to 2S state. TheP2
line is obtained by solving the BS equation that considers
stronge-h pair correlation; it should be remarked that neith
the GRPA analysis nor the BCS-like mean-field analy
gives theP2 line. We find for r s,1.5 the peak intensity of
the coherent emission andP2 lines saturate and weaken wit
increasinge-h density, and similar saturation is observed
the GaAs and CdSe quantum dot systems.47 As discussed in
Sec. III B, this behavior arises from the quasi-Fermi surfa
formation, so that conventional theories based on the in
acting Boson model, on the BCS-like mean-field theory, a
on the two-electrons and two-holes model48 cannot explain
this saturation.

As discussed in Sec. III A, we find a reduction of th
renormalized band edge as thee-h density decreases. With
increasinge-h density, small redshifts in the coherent em
sion,P andP2 lines are found, and this behavior is consiste
with the experimental result in Ref. 49; the dependence
each spectral position one-h density will be discussed in
detail in Sec. III D.

As shown in the spectra forr s55.2, 9.0, and 17 in Fig.
4~a!, the present theory also describes very well the lo
density properties of luminescence spectra. Namely, the
tensities of the coherent emission andP2 lines show the
linear and the quadratic density dependences, respecti
and the coherent emission prevails over any other spe
components in the low-density limit. Forr s*5, the coherent

re
S-
4-8
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emission line atv2Eg521 is regarded as the exciton lu
minescence~Ex! line from the e-h BCS state whose line
width is determined only by its decay rateg as shown in Eq.
~19a!.

Now, let us compare the calculated spectra with exp
mental results. Figure 6 depicts the luminescence spe
given by the present theory and by the experiment for Z
thin film with thickness 1.3mm at T577 K.26 In Fig. 6~a!,
the exciton decay constant is chosen asg50.1. We find that
the following properties of the experimental results are w
described by the present theory. In the high-density stat
broad emission band appears below the Ex line, and the
tensity of the broad band is stronger than that of the Ex li
As thee-h density decreases, the intensity of the broad b
superlinearly reduces, and it splits intoP andP2 lines. With
further decrease in thee-h density, the intensity of theP line
becomes weak and the Ex line predominates over theP2
line. Unlike conventional two-electrons and two-hol
model,48 the present many-body theory first enables us
simultaneously evaluate the line-shape and the spectral p
tion for variouse-h densities.

D. The luminescence intensity and the spectral position
as functions of thee-h density

We discuss the dependence of the luminescence inte
on thee-h density. Figure 7 depicts the peak intensity of t
coherent emission,P, P2, andP3 lines as a function of the
normalized densityn. The P3 line arises from the exciton
recombination accompanied by the excitation of another
citon from 1S to 3S state; this spectral component is to
weak to be found in Fig. 4~a!. As discussed in Sec. III C, th
coherent emission~luminescence from the exciton BE
state! predominates in low-density states; with increas
e-h density, theP2 line superlinearly grows and it prevail
for n*1.531022 (r s&4). For n&1.531022, the peak in-
tensity of P2-line quadratically depends onn because it
arises from the exciton-exciton interaction, while the pe
intensity of the coherent emission linearly depends onn.

FIG. 6. Comparison between~a! the present theory and~b! the
experiment for ZnO thin film at 77 K~from Ref. 26!. Here Ex
stands for the free exciton emission.
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These lines saturate forn*1.531022 because of the many
body effect. That is,e-h pairs considerably overlap with eac
other and the fermionic nature of electrons and holes
comes significant. Thee-h pairing is therefore restricted nea
the quasi-Fermi level, which results in the saturation of
coherent emission and theP line.

We show in Fig. 8 ther s dependence of the spectral p
sition of each spectral component. In low densitiesr s
*10), the calculated spectral positions of the coherent em
sion, P2 and P3 lines are given byv2Eg521, 22
2(1/22) and 221(1/32), respectively, as expected. In th
present theory, the coherent emission andP2 line show weak
redshift for 3&r s&10; this behavior was experimentally ob
served in Ref. 49. With further increase in thee-h density, all
the spectral components show the blueshift forr s&3 be-
cause of the state-filling effect.

IV. CONCLUSION

We have presented a many-body theory of luminesce
spectra for high-densitye-h systems, which is applicable
throughout the whole densities including thee-h BCS state
in very highe-h density and the excitonic BEC state in rel
tively low e-h density. The analysis is based on the BCS-li
pairing theory combined with the BS equation for thee-h

FIG. 7. The density dependence of the peak intensities of
coherent exciton emission~Ex!, P2 , P3, andP lines.

FIG. 8. Ther s dependence of the spectral position of the coh
ent exciton emission~Ex!, P2 , P3, andP lines.
4-9
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T. J. INAGAKI AND M. AIHARA PHYSICAL REVIEW B 65 205204
pair-correlation function. This approach first allows us
evaluate the optical spectra by considering the Fermio
nature of electrons and holes and the Bosonic nature
bound e-h pairs. The calculated luminescence spectra
the renormalized band-gap agree very well with experime
as mentioned in Sec. III.

We have clarified the crossover between thee-h BCS
state and the excitonic BEC from a unified viewpoint.
particular, we find that the broad emission band from thee-h
BCS state splits into two spectral components with decre
ing e-h density; these spectral components correspond to
P andP2 lines in low densities. This behavior well explain
the experiment for ZnO thin film in the weak confineme
condition.26 In addition, we have calculated the deviation
linear ~quadratic! density dependence of the intensity of c
herent emission (P2) line in the wide density range. It shoul
be noted that this deviation of density dependence as we
the blueshift of theP andP2 lines cannot be explained wit
the simple two-exciton~two-exciton and two-hole! model,
and the present many-body theory makes it possible to in
porate these effects arising from the simultaneously inter
ing manye-h pairs. These results are important not only
basic physics but also in applied research areas becaus
ultraviolet laser emission for theP line in ZnO thin films was
realized at room temperatures.22 Our analytical method and
obtained results will also stimulate renewed interest in
BCS-BEC crossover problem in a variety of physical co
texts such as the high-Tc superconductivity where the cohe
ence length is the same order as the main interpar
distance.

Finally, we should pay attention to the important obser
tion that the calculated large band-gap reduction in high d
sities arises not only from the usual electron/hole excha
interaction but also from the BCS-like energy-gap formatio
Whereas no adjustable parameters are introduced in
present theory, the calculated result shows excellent ag
ment with experiments and shows the universal behavior
bulk CuCl ~Ref. 25! and ZnO~Ref. 24! thin film in the weak
confinement condition. This fact indicates that the sponta
ously generated macroscopic quantum state is actually
erated in highly photoexcited semiconductors.24,25
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APPENDIX A: THE SEMICONDUCTOR
ANDERSON-RICKAYZEN EQUATION

In this paper, we consider a collective phase fluctuat
associated with the center-of-mass motion ofe-h pairs by the
generalized random-phase approximation.20 For this purpose,
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we calculate the semiconductor version of the Anders
Rickayzen equation~SCARE!, which is the linearized equa
tion of motion for the bilinear products of the Bogoliubo
quasiparticle operators,

C0
q~k!5ak

†aq1k5
1
2 @F0

q~k!1F3
q~k!#,

C1
q~k!5ak

†b2q2k
† 5 1

2 @F1
q~k!1 iF2

q~k!#,

C2
q~k!5b2kaq1k5

1
2 @F1

q~k!2 iF2
q~k!#,

C3
q~k!5b2kb2q2k

† 5 1
2 @F0

q~k!2F3
q~k!#. ~A1!

Here thej 50,3 and j 51,2 components ofC j
q(k) describe

the density and phase fluctuation from thee-h BCS state,
respectively. The SCARE is written as follows:

@C0
q†~k!,H#52~Ek1q2Ek!C0

q†~k!, ~A2a!

@C1
q†~k!,H#5~Ek1q1Ek!C1

q†~k!

1Ck,k1q
(3) Vq(

p
Cp,p1q

(3) @C1
q†~p!2C2

q†~p!#,

~A2b!

@C2
q†~k!,H#52~Ek1q1Ek!C2

q†~k!

1Ck,k1q
(3) Vq(

p
Cp,p1q

(3) @C1
q†~p!2C2

q†~p!#,

~A2c!

@C3
q†~k!,H#5~Ek1q2Ek!C3

q†~k!, ~A2d!

where we only keep the terms that give the leading con
bution in theq→0 limit. In deriving the SCARE, we replace
the products ofC ’s by their expectation values with respe
to the ground state in the full equations of motion forC ’s.
Equations~A2a! and~A2d! show thatC j

q(k) ( j 50,3), is an
eigenoperator with eigenvalues (21) j 11(Ek1q2Ek), and
C j

q(k) ( j 51,2) describes the scattering of excitations th
are already present in the initial state. Equation~A2! indi-
cates thatC j

q(k) with j 50,3 andqÞ0 is irrelevant at zero
temperature because no Bogoliubov quasiparticles are
ated byC j

q(k) with j 50,3 andqÞ0. In Ref. 20, these op-
erators are called unphysical because all the physical s
satisfy

C j
q†~k!uphys&50, ~A3!

for j 50,3. The absence of these operators in the pre
theory is confirmed by Eqs.~19a! and ~20!.

APPENDIX B: EVALUATION OF Eq. „20…

In this Appendix, we evaluate the intensity of the cohere
emission,I coh, given in Eq.~20!. For this purpose, we us
the following operator identity:
4-10
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Fm
0†~p!Fn

0~k!52 1
4 tr~tmtrtnts!Fs

p2k†~k!Fr
p2k~k!

1 1
2 dp,ktr~tmtntr!Fr

0~p!12dk,pdn,0Fm
0 ~p!.

~B1!

Substituting Eq.~B1! into the second term on the right-han
side of Eq.~19c!, we obtain

(
j 51

2

(
k,p

gk* gp$Kk, j
† ^F j

0†~k!F3
0~p!&0Kp,31c.c.%

52
1

8 (
k,p

gk* gpˆi ^@F2
k2p†~p!,F3

k2p~p!#&0~Ck,k
(1)2Cp,p

(1)!

1^@F1
k2p†~p!,F0

k2p~p!#&0~Ck,k
(1)1Cp,p

(1)!

1 i ^$F2
k2p†~p!,F0

k2p~p!%&0~Ck,k
(2)Cp,p

(1)2Ck,k
(1)Cp,p

(2)!

1^$F3
k2p†~p!,F1

k2p~p!%&0~Ck,k
(2)Cp,p

(1)1Ck,k
(1)Cp,p

(2)!‰50,

~B2!

where we used the fact thatF j
q(p) ( j 50,3) is the eigenop-

erator and

@F j
q†~k!,Fm

q ~k!#50 ~B3!

for j 50,3 andm51,2.
Therefore, we obtain the following expression for E

~19c!:

I coh5
1

2 (
k,p

gk* gpKk,3
† ^F3

0†~k!F3
0~p!&0Kp,3

5
1

8 (
k,p

gk* gpCk,k
(1)Cp,p

(1)H 2dk,p

1 (
j 51,2

^F j
p2k†~k!F j

p2k~k!&0J , ~B4!

where we used Eq.~B1! to obtain the last expression for Eq
~B4!.

APPENDIX C: EVALUATION OF ŠFpÀk†
„k…tµFpÀk

„k…‹0

In this Appendix, we calculatêFq†(k)tmFq(p)&0 for m
50,3 with the generalized RPA. We first introduce the tw
particle Green function by

i @Gq~k,p,t !# j ,m5^TF j
q†~k,t !Fm

q ~p,0!&0 , ~C1!

whereT stands for chronological ordering. The expectati
value is expressed by the equal-time limit of the Green fu
tion,

^Fp2k†~k!tmFp2k~k!&05 i lim
t→d

tr$tmGp2k~k,k,t !%

5 i E
2`

` dv
2p e2 ivdtr$tmGp2k~k,k,v!%,

~C2!
20520
.

-

-

whered is the infinitesimal positive number, andGq(k,p,v)
is the Fourier transform ofGq(k,p,t).

The equation of motion forGq(k,p,t) is obtained by the
SCARE, Eqs.~A2!, and the result is written as follows:

S i
]

]t
t02«k

qt2DGq~k,p,t !1 iCk,k1q
(3)

3~t11 i t2!Vq(
k8

Ck8,k81q
(3) Gq~k8,p,t !52dk,pt2 ,

~C3!

where«k
q5Ek1q1Ek . We can analytically solve Eq.~C3! by

introducing the auxiliary function defined by

hq†~p,t !5Vq(
k

Ck,k1q
(3) e2

†Gq~k,p,t !, ~C4!

wheree15(1,0) ande25(0,1). Using an identitiy,t11 i t2

52e1^ e2
† , we find that the solution of Eq.~C3! is written as

follows:

Gq~k,p,v!52dk,pt2S vt01«k
qt2

v22~«k
q!2 D

12Vq~v!Ck,k1q
(3) Cp,p1q

(3) S vt01«k
qt2

v22~«k
q!2 D

3~t11 i t2!S vt21«p
qt0

v22~«p
q!2 D , ~C5a!

whereVq(v)5Vq /@11VqPq(v)# is the screened Coulom
potential given by the polarization functionPq(v),

Pq~v!522(
k

«k
qCk,k1q

(3)2

v22~«k
q!2

. ~C5b!

Substituting Eqs.~C5a! into right-hand side of Eq.~C2!,
we obtain

^Fp2k†~k!t0Fp2k~k!&0

5212i E
2`

` dv

p
Vk2p~v!Ck,p

(3)2 v21~Ek1Ep!
2

$v22~Ek1Ep!
2%2

,

~C6a!

^Fp2k†~k!t3Fp2k~k!&052i E
2`

` dv

p

Vk2p~v!Ck,p
(3)2

v22~Ek1Ep!
2

.

~C6b!

In Eqs. ~C6!, the integral with respect tov is calculated
by introducing the spectral-weight function of dielectr
function Bq(v) given by

Bq~v!52 i $eq
21~v2 id!2eq

21~v1 id!%. ~C7!

The dielectric function,eq(v)511VqPq(v), satisfies the
dispersion relation,
4-11
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1

eq~v!
512E

0

`dz

p

zBq~z!

v22z2
. ~C8!

We can evaluate the integral with respect tov in Eq. ~C6!
using Eq.~C8!, and the result is

^Fp2k†~k!t0Fp2k~k!&0

5228Ck,p
(3)2Vk2pF]xk2p~v!

]v G
v52Ek2Ep

, ~C9a!
-

,
.

.

n

d

ex

20520
^Fp2k†~k!t3Fp2k~k!&0

5
2Vk2pCk,p

(3)2

Ek1Ep
@112xk2p~2Ek2Ep!#, ~C9b!

wherexq(v) is the partial screening function30 defined by

xq~v!5E
0

` dz

2p

Bq~z!

z2v
. ~C10!
J.
.
o-

-
ture

ev.
.

an,

n
v.

ev.

.

.
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