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Symmetry properties of the scattering path operator for arbitrary translationally invariant systems

T. Huhne and H. Ebert
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In order to optimize the efficiency of relativistic band-structure calculations for complex systems, one should
take full advantage of the magnetic space-group symmetry. Most important for the description of systems with
reduced symmetry using the Korringa-Kohn-Rostoker method of band-structure calculation, a general deriva-
tion of magnetic symmetry properties of the scattering path operator both in real and reciprocal space is

presented. In a straightforward way, this approach can be used to minimize the section ofkW space to be sampled
for two- and three-dimensional numerical Brillouin-zone integration. Practical aspects of an implementation of
the very general scheme presented are discussed in detail.

DOI: 10.1103/PhysRevB.65.205125 PACS number~s!: 71.15.Dx, 71.15.Rf
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I. INTRODUCTION

Despite the strong increase of available computing po
during the last years, the demand for a quantitative theo
cal description of increasingly complex electronic syste
such as multilayer and surface layer systems and non
linear spin structures requires an ultimate optimization
computational methods.1,2 In order to accomplish this, it is
indispensable to fully exploit the space-group symmetry o
given solid-state system. Furthermore, the correct symm
of the system and its properties such as linear-response
efficients are automatically preserved this way, indep
dently from numerical artifacts. Corresponding symme
considerations for magnetic solids treated in a non- or sca
relativistic way require the use of magnetic spin-spa
groups that have been discussed, for example, in detai
Sandratskii.3 On the other hand, effects such as the orb
magnetism, magneto-optical properties, or magnetocrys
line anisotropy of magnetically ordered systems can only
described taking into account spin-orbit coupling. This co
plex situation, which is the central issue of this contributio
leads to a considerable reduction of the symmetry of
system compared to its paramagnetic state. In addition,
remaining symmetry has to be described using not only c
ventional symmetry operators acting in real space but a
so-called magnetic symmetry operators, i.e., antiunit
combinations of space-group operators and time reversa4,5

Systems with reduced symmetry such as complex sur
layer systems and point defects are most conveniently
scribed in terms of the single-particle Green’s functio6

Within the widely used Korringa-Kohn-Rostoker Green
function~KKR GF! method, the most time consuming step
in general the calculation of the scattering path operator
ing kW -space integration methods.6 In the past, there have
been several efforts to minimize the section of the Brillou
zone to be sampled within a nonrelativistic or relativis
band-structure calculation. However, these were either
stricted to a rather heuristic level or to relatively simple bu
systems with specific symmetry.5,7–9

In the following, we present a general scheme to der
the magnetic asymmetry properties of the scattering path
erator both in real andkW space. Our method is applicable
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complex three-dimensional bulk systems as well as arbitr
two-dimensional layer systems. Furthermore, it allows in
straightforward way to deal with point defects or syste
with noncollinear spin structure. An important application
this scheme is to find the minimal section of the Brillou
zone to be sampled within a two- or three-dimensio
kW -space integration. For this reason, the scheme can als
exploited within conventionalkW -space band-structure meth
ods based on the variational principle.10

II. THEORETICAL FRAMEWORK AND TECHNICAL
DETAILS

A. Multiple-scattering theory

In this section, the basic formalism of multiple-scatteri
theory is shortly outlined. Most of the discussion is kept
an algebraic level and applies to the relativistic as well as
nonrelativistic version of this approach. Whenever it is ne
essary to be specific, we will deal with the more compl
relativistic treatment of a magnetic solid in the following.

The primary step for electronic structure calculations
the basis of multiple-scattering theory is the partitioning
the effective crystal potentialV into nonoverlappingatomic
cell potentialsVi :6

V5(
i

Vi . ~1!

From the scattering ort operatort i corresponding to a single
isolated cell potentialVi at sitei,6

t i5Vi1ViG0t i , ~2!

and the free-particle Green’s functionG0, one can construc
the t operatorT of the whole crystal by introducing the sca
tering path ort operatort i j via the following definition:11

T5(
i j

t i j . ~3!

The operatort i j accounts for all possible scattering even
between cellsi and j and satisfies the following equations o
motion:6
©2002 The American Physical Society25-1
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t i j 5t id i j 1t iG0(
kÞ i

tk j ~4!

5t id i j 1(
kÞ j

t ikG0t j . ~5!

Starting from Eqs.~1!–~5!, the single-particle Green’s func
tion can be shown to take on the following form in the re
tivistic real-space spin representation:12,13

G~rW,rW8,E!5 (
LL8

ZL
i ~rW,E!tLL8

i j
~E!ZL8

j 3
~rW8,E!

2(
L

$ZL
i ~rW,E!JL

i 3~rW8,E!Q~r 82r !

1JL
i ~rW,E!ZL

i 3~rW8,E!Q~r 2r 8!%d i j . ~6!

In the previous equation,ZL
i and JL

i are the regular and
irregular solutions, respectively, for the single-site Dir
equation for the potential well at sitei. The spin-angular
character of these functions is specified byL5(k,m) with k
andm the relativistic spin-orbit and magnetic quantum nu
bers, respectively.14 The additional superscript in Eq.~6! in-
dicates the corresponding associated left-hand side solu
to the Dirac equation.13 Finally, tLL8

i j is defined in the fol-
lowing way:6

tLL8
i j

5E
V i

d3r E
V j

d3r 8 j L
3~p~rW2RW i !!

3t i j ~rW,rW8! j L8~p~rW82RW j !!, ~7!

with j L
(3) the relativistic ~left-hand! spherical Besse

function.14 The integration volume forrW andrW8 is confined to
the volumeV i ( j ) of the cellsi and j, respectively. The real
space lattice vectorRW i is associated with the celli.

It is worth noting that there is an alternative represen
tion of the single-particle Green’s-function in terms of t
so-called structural Green’s function matrixGi j with the fol-
lowing definition:15

Gi j 5t i 21t i j t j 212t i 21d i j , ~8!

where underlines denote matrices with respect to the b
functions labeled by the quantum numbersL5(k,m) @see
Eq. ~7!#. Obviously, all symmetry properties oft i andt i j to
be presented below can straightforwardly be transferred
Gi j via Eq. ~8!.

For the nonrelativistic case, the real-space spin repre
tation of the crystal Green’s function and thet andt matrices
are completely analogous to the equations given abov16

Thus, all further steps that depend on the explicit repres
tation of these quantities will be given only for the mo
complex situation in which a magnetically ordered system
treated in a relativistic way.
20512
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B. Symmetry properties of thet matrix

Independently from the system under consideration,
numerical cost of the KKR GF is usually dominated by t
computer time needed for the calculation of the scatter
path operatort. For systems that possess a nontrivial ma
netic point-group symmetry such as bulk or surface la
systems with a certain orientation of the magnetization~see
below!, the numerical effort can be substantially reduced
exploiting the symmetry relations fort. Furthermore, by tak-
ing these relations into account, one ensures that the sy
does not leave the subspace of proper symmetry during
self-consistent field result cycle that could otherwise be
cidentally provoked by numerical errors. In particular, th
means that equivalent atoms, i.e., atoms whose cell po
tials are connected to one another by a symmetry opera
of the Hamiltonian, keep this property during every step
the calculation. As will be shown in the following
representation-independent symmetry relations for the s
tering path operatort can be derived. These follow immed
ately from the corresponding symmetry properties of
HamiltonianH. If not otherwise stated, the considerations
this section apply to the nonrelativistic as well as the rela
istic case.

If the unitary operatorU belongs to the symmetry grou
of the HamiltonianH in the Hilbert space of single-particl
states, by definition this implies4

H5UHU21. ~9!

For anantiunitary-symmetry operatorU, we have

H5UH†U21, ~10!

whereH† denotes the Hermitian adjungated operator ass
ated with the HamiltonianH. Because the relationH5H† is
not required to hold, the presence of a complex poten
does not change the following considerations. A
antiunitary-symmetry operatorU of the system can be de
composed according to:

U5U8T ~11!

with U8 a unitary operator andT the antiunitary time-
reversal operator.4,5

The largest symmetry group ofH is called magnetic spac
groupM of H.5 To deal with the most complex situation
we include also the nonsymmorphic space groups in our c
siderations that contain symmetry operations that consis
an operation followed by a nonprimitive translationP in real
space~screw and glide mirror operations!.17 In the following
the operationU will tacitly include the nonprimitive transla-
tion P in the case of a nonsymmorphic space group if it is n
explicitly split off by writting PU. For the sake of simplicity,
we furthermore use the same symbols for the operation
the Hilbert space of single-particle states and the correspo
ing operators in three-dimensional real space. Operator
real space that correspond to antiunitary operators in Hilb
space implicitly exclude the time reversal operation.

Because the unitary operators form a subgroupH of M,
the latter group can be decomposed inright cosetsof the
unitary operators:5,18
5-2
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M5Høk51,nA
HUk, ~12!

with nA the number of antiunitary operatorsUk in M. For
certain magnetic space groupsM, H is identical toM, i.e.,
one has the special casenA50. The more complex and gen
eral situation, in whichM contains unitary as well as ant
unitary symmetry elements, will be considered in the follo
ing. In this case the ordernU of the subgroupH of unitary
elements is half as large as the ordern of M, i.e., there are as
many unitary as antiunitary elements inM
(nU5nA5n/2).19 For that reason it is sufficient to restric
the number of generating anti-unitary elementsUk in Eq.
~12! to nA* 51. In the case of a nonmagnetic system the c
responding restriction readsnA* 50, because no antiunitar
operations have to be considered.

Due to the properties of the free HamiltonianH0, the free
Green’s operatorG0 possesses fullO(3) symmetry~the en-
ergy dependence of the Green’s operators will be suppre
in the following!. Furthermore, it is invariant under tim
reversal:13

G05TG0†T21. ~13!

The Dyson equation for the Green’s operatorG,20

G5G01G0VG, ~14!

implies that the symmetry properties ofH and G are the
same as those of the effective potentialV.

The cellular decomposition of the effective potential a
cording to Eq.~1!, together with Eqs.~9! and ~10!, lead to
the following relations in terms of the unitary- an
antiunitary- (†) symmetry operatorPU of H:

V5~PU!V(†)~PU!21, ~15!

(
i

Vi5(
i

PUVi (†)~PU!21. ~16!

The sets$Vi% and $PUVi (†)(PU)21% both contain spatially
disjoint potentials that cover the whole space. In the follo
ing, we make use of the fact that for atomic each celli there
is a cell i 8 with

Vi 85PUVi (†)~PU!21. ~17!

Because of the translational symmetry, this implies the
lowing relation between the corresponding position vect
RW i andRW i 8 of cells i and i 8, respectively:

RW i 85PURW i . ~18!

For the single-sitet operatorst i , we have from Eq.~2! for
unitary operatorsPU

PUti~PU!215PUVi~PU!211PUViG0t i~PU!21

5PUVi~PU!21

1PUVi~PU!21G0PUti~PU!21

5Vi 81Vi 8G0PUti~PU!21. ~19!
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For antiunitary operatorsPU, we have analogously

PUti†~PU!21

5~PUti~PU!21!†

5~PUVi~PU!211PUViG0t i~PU!21!†

5PUVi†~PU!211PUti†~PU!21G0PUVi†~PU!21

5Vi 81PUti†~PU!21G0Vi 8

5Vi 81Vi 8G0PUti†~PU!21. ~20!

In the second step, we use the fact that the product of
antiunitary operators yields a unitary operator.4 Therefore,
the same implicit equations hold fort i 8 andPUti (†)(PU)21

and we can identify

t i 85PUti (†)~PU!21. ~21!

For the special case of a bulk crystal with three-dimensio
translational invariance, it is advantageous to separate
cell index i into an indexn for the siteRW n on the Bravais
lattice and an indexa to label a basis atom within a unit cel
Thus, we have

RW i5RW n1rW a. ~22!

By definition, we may write

t i5tn,a,

t i j 5tnm,ab. ~23!

For the corresponding lattice Fourier-transformedt operator,
we have

tab~kW !5(
n

tnm,abe2 ikW (RW n2RW m)5(
n

tn0,abe2 ikWRW n
,

~24!

with kW a three-dimensional wave vector. In the last st
translational invariance in three dimensions has been u
Fourier back transformation leads to

tnm,ab5
1

VBZ
E

VBZ

d3ktab~kW !eikW (RW n2RW m), ~25!

with VBZ the volume of the first Brillouin zone. This com
mon choice for the unit cell of the reciprocal lattice faci
tates the application of symmetry properties to be discus
below.

To deal with the Brillouin-zone integral in Eq.~25!, it is
extremely useful to know the symmetry relation connect
the kW -dependentt matricestab(kW ) andta8b8(UkW ). Starting
from Eqs.~4! and ~21!, one finds

ta8b8~UkW !5e2 iUkW (RW a2RW b)U tab~kW !U21 ~26!

for a unitary operationUPM and

ta8b8~UkW !5e2 iUkW (RW a2RW b)U tbaT~2kW !U21 ~27!
5-3
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T. HUHNE AND H. EBERT PHYSICAL REVIEW B65 205125
for an antiunitary operationUPM, as it shown in detail in
the Appendix. In Eqs.~26! and~27!, respectively,U denotes
the matrix representation ofU in real space or spin-angula
space, respectively~see the Appendix!. RW a(b) are primitive
lattice vectors that only depend on the basis atoma(b) and
the symmetry operationPU.

For an arbitrary layer system, we assume that thr
dimensional translational invariance is broken, while tw
dimensional translational invariance with respect to the la
plane is preserved. In this case, it is advantageous to sep
the cell indexi introduced before in a layer indexI, an index
n for the part of the lattice vector in the plane, and an ind
a for the basis atomin the layer. While the two-dimensiona
Bravais lattice specified by the lattice vectorsxW n is assumed
to be the same for all atomic layers, the number and p
tions of basis atoms may be different in each layer. Thus,
have

RW i5RW I1xW n1rW a, ~28!

with RW I the reference vector of the layerI, andrW a the site of
a basis atom in layerI ~see Fig. 1!. The reference vectorsRW I

are usually chosen so as to minimize their normuRW I u. By
definition, we have

t i5t I ,n,a ~29!

and

t i j 5t IJ,nm,ab. ~30!

In analogy to Eq.~24!, we define the two-dimensional Fou
rier transform of thet matrix with respect to the lattice in th
layer plane as

t IJ,ab~kW i!5(
n

t IJ,nm,abe2 ikW i(x
W n2xW m), ~31!

with kW i a two-dimensional wave vector. The reverse trans
mation is accomplished by the two-dimensional Brilloui
zone integral21

t IJ,nm,ab5
1

ABZ
E

ABZ

d2kt IJ,ab~kW i!e
ikW i(x

W n2xW m), ~32!

with ABZ the area of the two-dimensional Brillouin zone
the layer system.

In analogy to Eqs.~26! and ~27!, one finds for the
kW -independentt matricest IJ,ab(kW i) the symmetry relation

FIG. 1. Orientation of lattice vectors in the layer geometry.
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t IJ,a8b8~UkW i!5ei (U21)kW i(R
W I2RW J)

3e2 iUkW i(x
W a2xW b)

•U t IJ,ab~kW i!U
21

~33!

for a unitary operatorUPM and

t IJ,a8b8~UkW i!

5ei (U21)kW i(R
W I2RW J)e2 iUkW i(x

W a2xW b)
•U tJI,baT~2kW i!U

21

~34!

for anantiunitaryoperatorUPM, with the vectorsxW a being
primitive lattice vectors that depend only on the positions
the basis atomsa. Concerning the operatorsU applied tokW i ,
it is important to note that these are restricted to rotations
mirror operations with their axes or mirror planes orient
perpendicular to the layer plane, respectively.

C. Three- and two-dimensional Brillouin-zone integration

Using Eqs.~26! and ~27! and ~33! and ~34!, respectively,
the efficiency of three- and two-dimensional Brillouin zon
integrations can be greatly improved. In the following, t
generating antiunitary operator in the right coset decomp
tion indicated in Eq.~12! will be denoted byŨ instead ofU
for readability. As one can see from Eqs.~27! and ~34!, the
antiunitary operatorŨ in the bispinor space corresponds
the three- or two-dimensional reciprocal space effectively
the operationIŨ with the inversionI. With the aid of Eq.
~12!, we can write for the set of orthogonal operatorsM8
andH8 in reciprocal space that correspond to the groupsM
andH, respectively,

M85H8øk51, . . . ,n
A*
H8IŨ k. ~35!

This set represents a group of ordern, because of the prop
erties ofI:

I 215I , ~36!

ŨkI 5IŨ k

for

k51, . . . ,nA* . ~37!

The symmetry groupSBZ of ordernBZ representing the geo
metrical properties of the reciprocal lattice and the Brillou
zone is identical with the holosymmetric point group of t
corresponding crystal system.22 Because for any three- an
two-dimensional translationally invariant lattice the gro
SBZ includes the inversionI, the groupM8 represents a sub
group ofSBZ . Therefore, the following right coset decomp
sition of SBZ can be made:

SBZ5M8ø l 51,n̄
BZ8 M8Sl , ~38!

whereSl denote thosen̄BZ8 operators inSBZ that are not in-
cluded in M8. As for the decomposition of the magnet
space groupM considered in Eq.~12!, there is a minimum
5-4
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numbernBZ8 of generating elementsSl for SBZ . This number

is obviously given by the relationnBZ5n(nBZ8 11).
The Brillouin zone is covered by application of then op-

erators inM8 to its so-called irreducible part~IBZ! denoted
by VIBZ and AIBZ for three- and two-dimensional system
respectively. For a nonmagnetic system with one atom
unit cell the groupM8 coincides withSBZ and one therefore
hasnBZ8 50. This situation leads to the smallest possible
20512
er

-

reducible part IBZ of the Brillouin zone, which will be de
noted byVIBZ* andAIBZ* , respectively, in the following. For a
magnetic system, the IBZ is obtained by application of t
identity E5S0 together with thenBZ8 operationsSl on the
corresponding Brillouin zone regionsVIBZ* andAIBZ* , respec-
tively.

Using Eqs.~26! and~27!, the three-dimensional Brillouin
zone integration in Eq.~25! can be represented in the follow
ing way:
a host
of the

he
tnm,a8b85
1

VBZ
(

j 51, . . . ,nU
(

l 50, . . . ,nBZ8
E

VIBZ*
d3kta8b8~U jSlkW !eiU jSlkW (RW n2RW m)1 (

k51, . . . ,nA*
ta8b8~U jŨkSlkW !eiU j ŨkSlkW (RW n2RW m)

5
1

VBZ
(

j 51, . . . ,nU
(

l 50, . . . ,nBZ8
E

VIBZ*
d3kU jtab~SlkW !U j 21eiU jSlkW (RW n2RW m2RW a1RW b)

1 (
k51, . . . ,nA*

U jŨktb9a9T~SlkW !Ũk21U j 21eiU j ŨkSlkW (RW n2RW m2RW a91RW b9). ~39!

The site off-diagonalt matrix is needed, for instance, for self-consistent calculations of single impurities embedded in
crystal.23 For a self-consistent calculation of a crystal system, one is only interested in the site-diagonal elementst
matrix, i.e.,n5m anda5b. In this case, Eq.~39! can be further simplified because the exponential factors drop out:

tnn,a8a85
1

VBZ
(

j 51, . . . ,nU

U jF (
l 50, . . . ,nBZ8

S EVIBZ*
d3ktaa~SlkW !1 (

k51, . . . ,nA*
ŨkE

VIBZ*
d3kta9a9T~SlkW !Ũk21D GU j 21. ~40!

Obviously, the numerical Brillouin-zone integration in the previous equation can be completedprior to the multiplication by
the matricesŨk andU j to save computer time.

For the two-dimensional Brillouin-zone integration in Eq.~32!, we have from Eqs.~33! and ~34!

t IJ,nm,a8b85
1

ABZ
(

j 51, . . . ,nU
(

l 50, . . . ,nBZ8
E

AIBZ*
d2kt̃ IJ,a8b8~U jSlkW i!e

iU jSlkW i(R
W I1xW n2RW J2xW m)

1 (
k51, . . . ,nA*

t̃ IJ,a8b8~U jŨkSlkW i!e
iU j ŨkSlkW i(R

W I1xW n2RW J2xW m)

5
1

ABZ
(

j 51, . . . ,nU
(

l 50, . . . ,nBZ8
E

AIBZ*
d2kU j t̃ IJ,ab~SlkW i!U

j 21eiU jSlkW i(R
W I1xW n2RW J2xW m2xW a1xW b)

1 (
k51, . . . ,nA*

U jŨkt̃JI,b9a9T~SlkW i!Ũ
k21U j 21eiU j ŨkSlkW i(R

W I1xW n2RW J2xW m2xW a91xW b9). ~41!

In the previous equation, it is convenient to use the auxiliary quantityt̃ IJ instead oft IJ:

t̃ IJ,ab~kW i!5t IJ,ab~kW i!e
ikW i(R

W J2RW I ). ~42!

Similar to the case of the three-dimensionalkW -space integration in Eq.~40!, the expression on the right-hand side of t
previous equation is greatly simplified in the site-diagonal case:

t II ,nn,a8a85
1

ABZ
(

j 51, . . . ,nU

U jF (
l 50, . . . ,nBZ8

S EAIBZ*
d2kt̃ II ,aa~SlkW i!1 (

k51, . . . ,nA*
ŨkE

AIBZ*
d2kt II a9a9T~SlkW i!Ũ

k21D GU j 21.

~43!
5-5
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For the evaluation of electronic properties within the framework of the response theory, one is usually faced with
of performing Brillouin-zone integrations of products of two or even moret matrices.24,25 Also in this case, the symmetr
properties of thet matrix can be exploited to greatly improve the numerical efficiency. In the case of linear-response
one finds for a three-dimensional problem

1

VBZ
E

VBZ

d3ktLL8
a8b8~kW !tL9L-

b8a8 ~kW !

5
1

VBZ
(

j 51, . . . ,nU
(

l 50, . . . ,nBZ8
E

VIBZ*
d3ktLL8

a8b8~U jSlkW !tL9L-
b8a8 ~U jSlkW !1 (

k51, . . . ,nA*
tLL8

a8b8~U jŨkSlkW !tL9L-
b8a8 ~U jŨkSlkW !

5 (
j 51, . . . ,nU

(
l 50, . . . ,nBZ8

1

VBZ
E

VIBZ*
d3k~U jtab~SlkW !U j 21!LL8~U jtba~SlkW !U j 21!L9L-

1 (
k51, . . . ,nA*

~U jŨktb9a9T~SlkW !Ũk21U j 21!LL8~U jŨkta9b9T~SlkW !Ũk21U j 21!L9L- . ~44!

For two dimensions, the corresponding expression is

1

ABZ
E

ABZ

d2kt̃LL8
IJ,a8b8~kW i!t̃L9L-

JI,b8a8~kW i!

5
1

ABZ
(

j 51, . . . ,nU
(

l 50, . . . ,nBZ8
E

AIBZ*
d2kt̃LL8

IJ,a8b8~U jSlkW i!t̃L9L-
JI,b8a8~U jSlkW i!

1 (
k51, . . . ,nA*

t̃LL8
IJ,a8b8~U jŨkSlkW i!t̃L9L-

JI,b8a8~U jŨkSlkW i!

5 (
j 51, . . . ,nU

(
l 50, . . . ,nBZ8

1

ABZ
E

AIBZ*
d2k~U j t̃ IJ,ab~SlkW i!U

j 21!LL8~U j t̃JI,ba~SlkW i!U
j 21!L9L-

1 (
k51, . . . ,nA*

~U jŨkt̃JI,b9a9T~SlkW i!Ũ
k21U j 21!LL8~U jŨkt̃ IJ,a9b9T~SlkW i!Ũ

k21U j 21!L9L- . ~45!
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III. PRACTICAL ASPECTS

A. Determination of the magnetic space group

With the appropriate formalism at hand, the first step fo
numerical implementation of a three- or two-dimension
Brillouin-zone integration method is the determination of t
magnetic space groupM. In the following, we consider ex
plicitly the case of a relativistic system described by a Di
Hamiltonian of the following form:

H~rW !5
c

i
aW ¹W 1

1

2
~b21!c21V~rW !1bsW BW e f f~rW !, ~46!

with the scalar potentialV and the effective magnetic fieldBW

in atomic Rydberg units.26 The Dirac matricessW , aW , andb
have their conventional form.14 As implied by the notation
for the spin-dependent potential term in Eq.~46!, the follow-
ing scheme is not restricted to collinear spin structures
can be applied to noncollinear ones as well. Furthermor
20512
a
l

c

ut
it

can be used in connection with spherical symmetric sing
site potential terms~muffin-tin and atomic sphere approx
mation! but also in the full potential case. In the later case
is implied that the choice for the geometrical shape of
atomic cell does not lower the symmetry.

Using Eqs.~9! and~10! and the explicit representation o
inversion and rotation operators in bispinor space,4 the fol-
lowing relation can be shown:

BW e f f~rW !56detU UBW e f f~U21rW1pW !, ~47!

whereU here denotes the 333 matrix corresponding to the
proper or improper rotation contained in a specific unita
or antiunitary-symmetry operatorPU andpW the nonprimitive
translation vector corresponding to the operatorP. In the
previous equation,1 holds for unitary and–for antiunitary
operations~see below!. For the action of time reversal, w
have the simple identity13
5-6
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TH~2BW e f f!T
215H~BW e f f!. ~48!

To find the various symmetry operationsU in M for a
given three-dimensional periodic system with a fixed atom
and magnetic configuration use can be made of the fact
the magnetic space-group of a crystal is a subgroup of
ordinary space group combined with time reversalT. As a
consequence, the strategy to find the magnetic space g
operations is very similar as for the nonmagnetic situati
First of all one notes that the possible unitary point ope
tions that may occur have to be elements of the holosymm
ric point group of the corresponding crystal system@this is
identical to SBZ in Eq. ~38!#. The various holosymmetric
point groups, which can be taken, for example, from Ta
1.3 in Ref. 22, are a subgroup either of the cubic groupOh or
the hexagonal groupD6h . The Euler angles (a,b,g) that
correspond to the proper rotationsU in Oh andD6h are given
in Table 2.1 of Ref. 22. These allow to set up the correspo
ing transformation matricesU in the relativisticL represen-
tation @see Eq.~4.12! in Ref. 27#. Here one should note tha
the active convention with fixed rotation axes is used
Bradley and Cracknell,22 while the active temporary conven
tion is used by Rose.27 Accordingly, the order of the Eule
angles have to be reversed. To get the correspon
333-rotation matrices for real-space operations, one ca
lates the transformation matricesU in the nonrelativistic
( l ,ml) representation and transforms the submatrix fol
5 l 851 from spherical to Cartesian coordinates~Sec. 15 in
Ref. 27!. The matrices representing improper rotations inOh
and D6h , respectively, are obtained from combinations
the inversion and the various proper rotations. The matrI
representing the inversionI is given in theL representation
by I LL85(21)ldLL8 . Finally, all matrices representing an
tiunitary operations are obtained by combinations of ti
reversalT and the various unitary operations. For theL rep-
resentation the matrix representation ofT is given byTLL8
5Sk(21)m11/2dm2m8 with Sk5k/uku ~see also Ref. 5!.

Each of the limited number of point operationsU found as
described above has to be checked whether it maps the
tem onto itself, i.e., to be a symmetry operation of the s
tem. Eventually, it has to be combined with a subsequ
nonprimitive translationP in the case of a nonsymmorph
space group. ForU or PU, respectively, to be a symmetr
operation it is allowed to connect only sitesRW i 85PURW i @see
Eq. ~18!# that are occupied by the same chemical elem
~for a system with substitutional disorder, the elements oc
pying these sites as well as their concentration have to be
same!. In addition, the orientationm̂ of the moments as
cribed to the atoms on sites atRW i andRW i 8, respectively, have
to be connected by

m̂RW i 856detU Um̂RW i, ~49!

as is implied by Eq.~47!.
For a system with a collinear spin configuration that h

all moments oriented along a common directionm̂, this leads
to obvious restrictions concerning the possible symmetry
erations. Among the unitary operations only rotations a
20512
c
at
e

up
.
-
t-

e

d-

y

ng
u-

f

e

ys-
-

nt

t
u-
he

s

-
d

screw operations with their axes parallel tom̂ are allowed.
All mirror or glide mirror planes have to be perpendicular

m̂. In addition, the inversion may occur as a unitary elem
of H. Concerning the antiunitary-symmetry operations,

rotation and screw axes have to be perpendicular tom̂, while

mirror and glide mirror planes must be parallel tom̂.
The restriction in Eq.~49! obviously excludes many op

erations that might be symmetry operations in the nonm
netic case. This may cause atoms to be inequivalent tha
found to be equivalent when the magnetic configuration
ignored as it is illustrated in Fig. 2 for a system having t
Cu3Au structure. With all magnetic moments pointing alon
the@001# axis thewhiteatom in the basis plane of the cube
inequivalent to the otherwhiteones. For the moments poin
ing along the@111# axis, on the other hand, allwhite atoms
are equivalent. The corresponding space-group elements
given in Table I. For further examples, see, e.g., Refs. 5
and 28–30.

With the unitary and antiunitary elements ofM deter-
mined one can construct the right coset decomposition ofM
according to Eq.~12!. As has been demonstrated for syste
with one atom per unit cell5 the corresponding generatin
antiunitary operationUk can always be chosen to be a tw
fold rotationC2' with its axis perpendicular tom̂ followed
by time reversal (U5TC2'). For more complex systems,
also could be a pure nonprimitive translationPE followed by
time reversal (U5TPE). For most practical applications
however, using the right coset decomposition ofM doesn’t
seem to offer much advantages. For that reason the sim
decomposition of M into its subsets of unitary- and
antiunitary-symmetry operationsH and (MùH), respec-
tively, is used in the following.

TABLE I. Space-group elements for a system having the Cu3Au
structure with the magnetic moments pointing along the@001# axis
and the@111# axis.

m̂i@001# E, C2z , C4z
1 , C4z

2 , I, sz , S4z
2 , S4z

1

TC2x , TC2y , TC2a , TC2b , Tsx , Tsy , Tsda , Tsdb

m̂i@111# E, C31
1 , C31

2 , I, S61
2 , S61

1

TC2b , TC2e , TC2 f , Tsdb , Tsde , Tsd f

FIG. 2. Equivalent atoms for a system having the Cu3Au struc-
ture and a collinear spin configuration with the magnetic mome
pointing along the@001# and @111# axes, respectively.
5-7
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B. Brillouin-zone integration

An application of the symmetry considerations outlin
above depend to some extent on the integration scheme u
However, in all cases one has to keep in mind that
antiunitary-symmetry operations the time reversal leads to
additional inversion when dealing with the symmetry pro
erties in reciprocal space@see Eq.~35!#. In the following, the
three-dimensional case is considered. The two-dimensi
one can be dealt with in an analogous way.

Use of the tetrahedron integration method31,32 implies that
the various matrix elements of the scattering operator ma
t are stored for the chosenkW mesh. For that reason it i
helpful to find out first which elements have to vanish due
symmetric restrictions. From Eq.~40! one has for the site
diagonalt matrix

tLL8
nn,a8a85

1

VBZ
(

l 50, . . . ,nBZ8
E

VIBZ*
d3k

3 (
L9L-

F (
j 51, . . . ,nU

ULL9
j UL8L-

j* GtL9L-
aa

~SlkW !

1F (
j 51, . . . ,nA

ŨLL9
j ŨL8L-

j* GtL-L9
a9a9 ~SlkW !, ~50!

with the operationsSl creating the irreducible part of th
Brillouin zone IBZ out of the associated part with volum
VIBZ* , for which a kW mesh has to be generated. Obvious
tLL8

nn,aa vanishes if all coefficients in square brackets vani
For nonvanishing matrix elements, the coefficients may
stored. Because the number of the coefficients get quite l
for complex systems or a direction of the magnetization
viating from the globalẑ axis, the application of the tetrahe
dron integration method may be prohibitive.

As an alternative to the tetrahedron integration metho
sampling over a regular mesh ofkW points may be done.33 In
this case a regular mesh spanning the full Brillouin zone
set up first. The number ofkW points is reduced then by keep
ing only kW points not connected by a symmetry operation
another one and accounting for a skipped point by increa
the weight of the kept one. In contrast to the nonmagn
case, the property of an antiunitary operation, as expres
for example, in Eq.~35!, has to be explicitly accounted fo
when considering the equivalence of two mesh points. T
leads finally to the simple expression for the site-diagonat
matrix

tnn,a8a85 (
j 51, . . . ,nU

U jt0
nn,aaU j 21

1 (
j 51, . . . ,nA

Ũ jt0
nn,a9a9TŨ j 21, ~51!

with

t0
nn,aa5(

kW
wkWt

aa~kW !. ~52!
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Unfortunately, the situation is less favorable in the case
a calculation of linear-response functions. As implied by E
~44!, application of the symmetry operations cannot be do
after thekW -space integration has been performed. Finding
number of nonvanishing integrals and storing the coefficie
for these seems to be more adequate. For the product of
kW -dependentt matrices to be integrated one has

tLL8
a8b8~kW !tL9L-

b8a8 ~kW !

5 (
LaLb

(
LcLd

F (
j 51, . . . ,nU

ULLa

j UL8Lb

j* UL9Lc

j UL-Ld

j* G
3tLaLb

ab ~kW !tLcLd

ba ~kW !

1F (
j 51, . . . ,nA

ŨLLa

j ŨL8Lb

j* ŨL9Lc

j ŨL-Ld

j* G
3tLbLa

b9a9 ~kW !tLdLc

a9b9 ~kW !. ~53!

Together with the special point method, this leads to a r
sonably good compromise concerning efficiency and stor
requirements.

IV. SUMMARY

In order to increase both efficiency and reliability of ele
tronic band-structure calculations using the Green’s-funct
method, we have developed a general method to exploit
magnetic space group symmetry of the scattering path op
tor. As far as possible, our approach is formulated in terms
abstract operators so as to ensure its applicability both
nonrelativistic and relativistic arbitrary two- and thre
dimensional systems. In particular, a systematic and gen
way to optimize the efficiency of the two- and thre
dimensional Brillouin-zone integration is presented. In ad
tion the various practical aspects of an implementation of
approach presented were discussed in detail.

APPENDIX: MAGNETIC SPACE GROUP SYMMETRY
AND t MATRIX

For the scattering path operatort, from Eqs.~4! and~21!
we derive the following relations in terms of theunitary-
symmetry operatorPU of H:

PUt i j ~PU!215PUtid i j ~PU!211PUtiG0(
kÞ i

tk j~PU!21

5t i 81t i 8G0(
kÞ i

PUtk j~PU!21 ~A1!

and analogously for theantiunitary operationPU,
5-8
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PUt j i †~PU!215~PUt j i ~PU!21!†

5S PUtjd j i ~PU!21

1PUtjG0(
kÞ j

tki~PU!21D †

5PUti†d i j ~PU!21

1(
kÞ j

PUtki†~PU!21G0PUtj~PU!21

5t i 8d i 8 j 81(
kÞ j

PUtki†~PU!21G0t j 8.

~A2!

Therefore, the same implicit equations hold fort i 8 j 8 andt i j

or t j i †, respectively, and we can identify, as in the case oft in
Eq. ~21!,

t i 8 j 85PUt i j ~PU!21 ~A3!

for unitary PU and

t i 8 j 85PUt j i †~PU!21 ~A4!

for antiunitary PU.
In the following, we consider explicitly only the unitar

or antiunitary magnetic point-group operatorU as part of a
symmetry operatorPU of H while the action ofP is implic-
itly taken into account using Eq.~A5! ~see below!.

From Eqs.~18! and ~22!, we derive for the action ofPU

on RW i

RW i 85PURW i5P~URW n1UrW a!5URW n1RW a1rW a85RW n81rW a8,
~A5!

whereRW a represents a primitive lattice vector that depen
only on a.

For the unitary operatorU, we have from Eq.~24!

ta8b8~UkW !5(
n

tnm,a8b8e2 iUkW (RW n2RW m)

5(
n

tnm,a8b8e2 ikWU21(RW n2RW m)

5(
n8

tn8m8,a8b8e2 ikWU21(RW n82RW m8)

5e2 iUkW (RW a2RW b)PUtab~kW !~PU!21, ~A6!

where in the last step, use has been made of Eqs.~A3!
and ~A5!. For anti-unitary U, we have analogously from
Eq. ~A4!
20512
s

ta8b8~UkW !5(
n

tnm,a8b8e2 iUkW (RW n2RW m)

5(
n

tnm,a8b8e2 ikWU21(RW n2RW m)

5(
n8

tn8m8,a8b8e2 ikW (RW n82RW m8)

5(
n8

PUtmn,ba†~PU!21e2 ikWU21(RW n82RW m8)

5(
n

PUtmn,ba†eikW (RW n2RW m)~PU!21e2 iUkW (RW a2RW b)

5e2 iUkW (RW a2RW b)PUtba†~2kW !~PU!21. ~A7!

In the following, we consider a layer system with two
dimensional translational invariance as introduced
Sec. II A. For the action of the symmetry operationU
of the Hamiltonian in real space, we derive in analogy w
Eq. ~A5!

PU~RW I1xW n1rW a!

5URW I1UxW n1xW a1rW a85RW I1xW n81rW a8, ~A8!

with the primitive in-plane lattice vectorxW a that depends
only on the basis atoma. For xW n8, we use the following
definition:

xW n85UxW n1~U21!RW I1xW a. ~A9!

Let U represent a proper rotation with its axis perpendicu
to the layer plane or a mirror operation with the mirror pla
perpendicular to the layer plane andP a possible nonprimi-
tive translation parallel to the layer plane.

For unitary U, we have from Eqs.~31! and ~A3!

t IJ,a8b8~UkW i!5(
n

t IJ,nm,a8b8e2 ikW iU
21(xW n2xW m)

5(
n8

t IJ,n8m8,a8b8e2 ikW iU
21(xW n82xW m8)

5ei (U21)kW i(R
W I2RW J)e2 iUkW i(x

W a2xW b)

3(
n

PUt IJ,nm,ab~PU!21e2 ikW i(x
W n2xW m)

5ei (U21)kW i(R
W I2RW J)e2 iUkW i(x

W a2xW b)PUt IJ,ab~kW i!

3~PU!21, ~A10!

where in the second step, use has been made of Eq.~A9!. For
antiunitary U, we have analogously from Eq.~A4!
5-9
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t IJ,a8b8~UkW i!5(
n

t IJ,nm,a8b8e2 ikW iU
21(xW n2xW m)

5(
n8

t IJ,n8m8,a8b8e2 ikW iU
21(xW n82xW m8)

5ei (U21)kW i(R
W I2RW J)e2 iUkW i(x

W a2xW b)

3(
n

PUtJI,mn,ba†~PU!21e2 ikW i(x
W n2xW m)

5ei (U21)kW i(R
W I2RW J)e2 iUkW i(x

W a2xW b)PUtJI,ba†

3~2kW i!~PU!21. ~A11!

In the following, we apply the results concerning symme
properties of scattering path operators to the special cas
the relativistic spin-angular representation.

For the action of the operatorU on the regular~left-hand!
solutionsj L

(3) , one can show24,34

^rWuUu j L&5(
L8

UL8L j L8~rW !,

^ j L
3uUurW&5(

L8
j L8

3
~rW !ULL8 , ~A12!

with U the matrix representation ofU. It is important to note
that within a specific representation, antiunitary operat
can be decomposed uniquely in a unitary part and the op
tion of complex conjugation.4 In our formalism, operator ma
tricesU in spin-angular space are always to be understoo
the representatives of the correspondingunitary partsof the
operatorsU.

Using Eq.~7!, we have from Eqs.~A3! and ~A4!
-

r

m

.

f
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tLL8
i 8 j 8 5E

Q i 8
d3r E

Q j 8
d3r 8 j L

3~p~rW2RW i 8!!

3@PUt i j ~PU!21#~rW,rW8! j L8~p~rW82RW j 8!!

5E
Q i

d3r E
Q j

d3r 8 (
L9L-

j L9
3

~p~rW2RW i !!

3ULL9t
i j ~rW,rW8!UL9L8

21 j L-~p~rW82RW j !!

5 (
L9L-

ULL9tL9L-
i j UL9L8

21 ~A13!

for unitary U and analogously,

tLL8
i 8 j 8 5 (

L9L-
ULL9tL9L-

j iT UL9L8
21 ~A14!

for antiunitaryU. As one notes, the nonprimitive translatio
P does not appear explicitly in the previous two equations
is rather incorporated in the relation betweenRW i ( j ) andRW i 8( j 8)

according to Eq.~A5!.
Using Eqs.~A13! and~A14!, Eqs.~A6!, ~A7!, ~A10!, and

~A11! can be formulated in the spin-angular representatio

ta8b8~UkW !5e2 iUkW (RW a2RW b)Utab~kW !U21, ~A15!

ta8b8~UkW !5e2 iUkW (RW a2RW b)UtbaT~2kW !U21, ~A16!

t IJ,a8b8~UkW i!

5ei (U21)kW i(R
W I2RW J)e2 iUkW i(x

W a2xW b)Ut IJ,ab~kW i!U
21,

~A17!

t IJ,a8b8~UkW i!5ei (U21)kW i(R
W I2RW J)e2 iUkW i(x

W a2xW b)UtJI,baT

3~2kW i!U
21. ~A18!
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10K. Knöpfle, L.M. Sandratskii, and J. Ku¨bler, J. Phys.: Condens
Matter 9, 7095~1997!.

11B.L. Gyorffy and M.J. Stott, inBand Structure Spectroscopy o
Metals and Alloys, edited by D.J. Fabian and L.M. Watson~Aca-
demic, New York, 1973!, p. 385.
s

12H. Ebert, habilitation thesis, University of Mu¨nchen, 1990.
13E. Tamura, Phys. Rev. B45, 3271~1992!.
14M.E. Rose, Relativistic Electron Theory~Wiley, New York,

1961!.
15R. Zeller, P.H. Dederichs, B. Ujfalussy, L. Szunyogh, and

Weinberger, Phys. Rev. B52, 8807~1995!.
16J.S. Faulkner and G.M. Stocks, Phys. Rev. B21, 3222~1980!.
17N. Ashcroft and N. Mermin,Solid State Physics~Saunders, Phila-

delphia, 1976!.
18J.Q. Chen,Group Representation Theory for Physicists~World

Scientific, Singapore, 1987!.
19P.R. Birss,Selected Topics in Solid State Physics~North-Holland,

Amsterdam, 1966!, Vol. III.
20E.N. Economou, Green’s Functions in Quantum Physic

~Springer-Verlag, New York, 1990!.
21P. Lang, Diploma thesis, Rheinisch-Westfa¨lische Technische

Hochschule Aachen, 1991.
22C.J. Bradley and A.P. Cracknell,The Mathematical Theory o

Symmetry in Solids~Clarendon, Oxford, 1972!.
5-10



M.

SYMMETRY PROPERTIES OF THE SCATTERING PATH . . . PHYSICAL REVIEW B65 205125
23I. Cabria, M. Deng, and H. Ebert, Phys. Rev. B62, 14 287~2000!.
24T. Huhne, Ph.D. thesis, University of Munich, 2000.
25M. Deng, H. Freyer, and H. Ebert, Solid State Commun.114, 365

~2000!.
26A.H. MacDonald and S.H. Vosko, J. Phys. C12, 2977~1979!.
27M.E. Rose,Elementary Theory of Angular Momentum~Wiley,

New York, 1961!.
28L.M. Sandratskii and J. Ku¨bler, J. Phys.: Condens. Matter9, 4897

~1997!.
20512
29S. Demuynck, L. Sandratskii, S. Cottenier, J. Meerschaut, and
Rots, J. Phys.: Condens. Matter12, 4629~2000!.

30K. Knöpfle and L.M. Sandratskii, Phys. Rev. B63, 014411
~2000!.

31P. Lambin and J.P. Vigneron, Phys. Rev. B29, 3430~1984!.
32A.F. Tatarchenko, Solid State Commun.76, 457 ~1990!.
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