PHYSICAL REVIEW B, VOLUME 65, 205125

Symmetry properties of the scattering path operator for arbitrary translationally invariant systems
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In order to optimize the efficiency of relativistic band-structure calculations for complex systems, one should
take full advantage of the magnetic space-group symmetry. Most important for the description of systems with
reduced symmetry using the Korringa-Kohn-Rostoker method of band-structure calculation, a general deriva-
tion of magnetic symmetry properties of the scattering path operator both in real and reciprocal space is
presented. In a straightforward way, this approach can be used to minimize the seEtimaoé to be sampled
for two- and three-dimensional numerical Brillouin-zone integration. Practical aspects of an implementation of
the very general scheme presented are discussed in detail.
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[. INTRODUCTION complex three-dimensional bulk systems as well as arbitrary
two-dimensional layer systems. Furthermore, it allows in a
Despite the strong increase of available computing powestraightforward way to deal with point defects or systems
during the last years, the demand for a quantitative theoretwith noncollinear spin structure. An important application of
cal description of increasingly complex electronic systemghis scheme is to find the minimal section of the Brillouin
such as multilayer and surface layer systems and noncofone to be sampled within a two- or three-dimensional
linear spin structures requires an ultimate optimization ofk-space integration. For this reason, the scheme can also be
computational methods? In order to accomplish this, it is exploited within conventionak-space band-structure meth-
indispensable to fully exploit the space-group symmetry of abds based on the variational principfe.
given solid-state system. Furthermore, the correct symmetry
of the system and its properties such as linear-response co- ||. THEORETICAL FRAMEWORK AND TECHNICAL
efficients are automatically preserved this way, indepen- DETAILS
dently from numerical artifacts. Corresponding symmetry
considerations for magnetic solids treated in a non- or scalar-
relativistic way require the use of magnetic spin-space In this section, the basic formalism of multiple-scattering
groups that have been discussed, for example, in detail biheory is shortly outlined. Most of the discussion is kept at
Sandratski? On the other hand, effects such as the orbitalan algebraic level and applies to the relativistic as well as the
magnetism, magneto-optical properties, or magnetocrystanronrelativistic version of this approach. Whenever it is nec-
line anisotropy of magnetically ordered systems can only b&ssary to be specific, we will deal with the more complex
described taking into account spin-orbit coupling. This com-relativistic treatment of a magnetic solid in the following.
plex situation, which is the central issue of this contribution, The primary step for electronic structure calculations on
leads to a considerable reduction of the symmetry of théhe basis of multiple-scattering theory is the partitioning of
system compared to its paramagnetic state. In addition, thde effective crystal potential into nonoverlappingatomic
remaining symmetry has to be described using not only concell potentialsv':®
ventional symmetry operators acting in real space but also
so-called magnetic symmetry operators, i.e., antiunitary V_E Vi (1)
combinations of space-group operators and time revérsal. 4 '
Systems with reduced symmetry such as complex surface .
layer systems and point defects are most conveniently dé=rom the scattering droperatort' corresponding to a single
scribed in terms of the single-particle Green's funcfion. isolated cell potentiaV/' at sitei,’
Within the widely used Korringa-Kohn-Rostoker Green’s- O i
function (KKR GF) method, the most time consuming step is t=Vi+VIG't, 2

in general the calculation of the scattering path operator US31d the free-particle Green's functi@®P, one can construct

ing k-space integration methofisin the past, there have thet operatorT of the whole crystal by introducing the scat-
been several efforts to minimize the section of the Brillouintering path orr operator7'! via the following definition**

zone to be sampled within a nonrelativistic or relativistic
band-structure calculation. However, these were either re- -~
stricted to a rather heuristic level or to relatively simple bulk T= Z . (©)
systems with specific symmetty° .

In the following, we present a general scheme to deriveThe operatorr! accounts for all possible scattering events
the magnetic asymme}ry properties of the scattering path opyetween cells andj and satisfies the following equations of
erator both in real anl space. Our method is applicable to motion?

A. Multiple-scattering theory
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o . ) B. Symmetry properties of the = matrix
=t +1GoY, (4) | o
i ndependently from the system under consideration, the
numerical cost of the KKR GF is usually dominated by the
computer time needed for the calculation of the scattering
=ti5ij +> kGO, (5)  path operatorr. For systems that possess a nontrivial mag-
k#] netic point-group symmetry such as bulk or surface layer
systems with a certain orientation of the magnetizateee
Starting from Eqgs(1)—(5), the single-particle Green’s func- below), the numerical effort can be substantially reduced by
tion can be shown to take on the following form in the rela- exploiting the symmetry relations for. Furthermore, by tak-
tivistic real-space spin representatitr? ing these relations into account, one ensures that the system
does not leave the subspace of proper symmetry during the
self-consistent field result cycle that could otherwise be ac-

G(r,r'E)= 2 Z\(r,E)7i , (E)Z)3 (1" E) cidentally provoked by numerical errors. In particular, this
AN means that equivalent atoms, i.e., atoms whose cell poten-
N N tials are connected to one another by a symmetry operation

_; {Z\(r,BE)J(r',BE)O(r' —r) of the Hamiltonian, keep this property during every step in

the calculation. As will be shown in the following,
_i_JiA(F,E)ZiAX(F/,E)(a(r —r")}8;.  (6) representation-independent symmetry relations fo'r the ;cat-
tering path operator can be derived. These follow immedi-
ately from the corresponding symmetry properties of the
HamiltonianH. If not otherwise stated, the considerations in
this section apply to the nonrelativistic as well as the relativ-
istic case.
If the unitary operatorU belongs to the symmetry group

In the previous equationZ, and J), are the regular and
irregular solutions, respectively, for the single-site Dirac
equation for the potential well at site The spin-angular
character of these functions is specified/by («, 1) with

and u the relativistic spin-orbit and magnetic quantum num- Lo : ; . e
bers, respectivell# The additional superscript in E¢6) in- of the Hamlltqn_la_mH in the H_|Ibert space of single-particle
. . . ; ._states, by definition this impliés
dicates the corresponding associated left-hand side solutions
to the Dirac equatiof’ Finally, 7 ,, is defined in the fol- H=UHU L. )
H 5
lowing way- For anantiunitary-symmetry operatot), we have
H=UHTU1, (10)

whereH™ denotes the Hermitian adjungated operator associ-
ated with the Hamiltoniail. Because the relatioH=H" is

not required to hold, the presence of a complex potential
does not change the following considerations. Any

. (X) .« . . _ .
with .JAl . the' relat|Y|st|c (left harld SEh?r'Ca' 'Bessel antiunitary-symmetry operatdd of the system can be de-
function: The integration volume far andr’ is confined to  composed according to:

the volumeQ'() of the cellsi andj, respectively. The real-
space lattice vectoR' is associated with the cill U=u't (11)

It is worth noting that there is an alternative representayith U’ a unitary operator and’ the antiunitary time-
tion of the single-particle Green’s-function in terms of the \g\arsal operatdr®

TKV=J;d%J§d%1X<mF—ﬁ»

XA(r,r)ja(p(r' =R))), (7)

so—c;alled s_tr.u_ctulrgl Green’s function mat@®{ with the fol- The largest symmetry group 6f is called magnetic space
lowing definition: group M of H.° To deal with the most complex situations,
o . we include also the nonsymmorphic space groups in our con-
Gl=t 17 1t 1g, (8)  siderations that contain symmetry operations that consist of

an operation followed by a nonprimitive translatiBrin real

where underlines denote matrices with respect to the basipace(screw and glide mirror operation¥’ In the following
functions labeled by the quantum numbets-(«,u) [see the operatiorlJ will tacitly include the nonprimitive transla-
Eqg. (7)]. Obviously, all symmetry properties ¢fand 7! to  tion P in the case of a nonsymmorphic space group if it is not
be presented below can straightforwardly be transferred texplicitly split off by writting PU. For the sake of simplicity,
G" via Eq.(8). we furthermore use the same symbols for the operations in

For the nonrelativistic case, the real-space spin represethe Hilbert space of single-particle states and the correspond-
tation of the crystal Green’s function and thend r matrices  ing operators in three-dimensional real space. Operators in
are completely analogous to the equations given abbdve.real space that correspond to antiunitary operators in Hilbert
Thus, all further steps that depend on the explicit represerspace implicitly exclude the time reversal operation.
tation of these quantities will be given only for the more Because the unitary operators form a subgréupf M,
complex situation in which a magnetically ordered system ighe latter group can be decomposedright cosetsof the
treated in a relativistic way. unitary operators:*8
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M=HU k:l,nAHUk, (12 For antiunitary operatorsP U, we have analogously

with n, the number of antiunitary operatots< in M. For PUtT(PU)?
certain magnetic space groupd, H is identical toM, i.e., —(PUL(PU) by
one has the special casg=0. The more complex and gen-

eral situation, in whichM contains unitary as well as anti- =(PUV/(PU) '+ PUVG (PU) HT
unitary symmetry elements, will be considered in the follow- it . " i " .
ing. In this case the order, of the subgroup of unitary =PUV(PU) "+ PUt(PU)" "G PUV'/(PU)

elements is half as large as the ordaf M, i.e., there are as
many unitary as antiunitary elements inM
(ny=n,=n/2).1° For that reason it is sufficient to restrict
the number of generating anti-unitary elemebt$ in Eq.
(12) to nx =1. In the case of a nonmagnetic system the cordn the second step, we use the fact that the product of two
responding restriction readst =0, because no antiunitary antiunitary operators yields a unitary operdtdfherefore,
operations have to be considered. the same implicit equations hold for andPUt (M (PU)~1

Due to the properties of the free Hamiltonidlf, the free  and we can identify
Green’s operato6° possesses fulD(3) symmetry(the en-

=V'+pPUtT(PU)1GOV"

=V'+V'GoPUtT(PU) L. (20)

ergy dependence of the Green’s operators will be suppressed t'=putM(pu)~1. (21)
Lr(;v?rigllosllowmg). Furthermore, it is invariant under time For the special case of a bulk crystal with three-dimensional

translational invariance, it is advantageous to separate the

GO=TGoT 1, (13 cell indexi into an indexn for the siteR" on the Bravais
lattice and an index to label a basis atom within a unit cell.

; , 0
The Dyson equation for the Green’s operaBf Thus, we have

— 0 0
G=G"+G"VG, (149 R—R+ e (22
implies that the symmetry properties bf and G are the
same as those of the effective potential

The cellular decomposition of the effective potential ac- ti=tha
cording to Eq.(1), together with Eqs(9) and (10), lead to ’

By definition, we may write

the following relations in terms of the unitary- and Fi = pimaB (23)
antiunitary- () symmetry operatétU of H:
For the corresponding lattice Fourier-transformeaperator,
v=(PU)VD(PU) 1, (15  we have
> vi=> Puvithpu) L, (16 (k)= 3] mabe KRR jm0ase iR,
i i n n
(24)

The sets{V'} and{PUV'(N(PU) '} both contain spatially R

disjoint potentials that cover the whole space. In the follow-With k a three-dimensional wave vector. In the last step,
ing, we make use of the fact that for atomic each céflere  translational invariance in three dimensions has been used.
is a celli’ with Fourier back transformation leads to

i _ i(t -1 1 S oSN Sm
Vi'=PUVM(pU)~L, (17) Tnm,aﬁz_fv PhrBR)eKR-RY (o5
Bz

\%
Because of the translational symmetry, this implies the fol- Bz

lowing relation between the corresponding position vectorwith Vg the volume of the first Brillouin zone. This com-

R andR' of cellsi andi’, respectively: mon choice for the unit cell of the reciprocal lattice facili-
tates the application of symmetry properties to be discussed
R =PUR. (18) below.

_ . _ To deal with the Brillouin-zone integral in E¢25), it is
For the single-site operatorst', we have from Eq(2) for  extremely useful to know the symmetry relation connecting

unitary operatorsP U the k-dependent- matricesr*#(k) and 7% #'(UK). Starting
PUL(PU) = PUVI(PU) 1+ PUVIG%(PU) ! from Egs.(4) and(21), one finds
—PUVi(PU) 1 B (UK =e KRRy eBut (26)
+PUV(PU) Go°PUt(PU) for a unitary operationU e M and
=V +Vi'GoPUL(PU) L, (19 B (UK =e WKRCRAY AaT— Ut (27)
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. 7 . . ZlJ,a’ﬁ’(EEH):ei(Ll—l)IZH(Ii'—IiJ)
. . . . ° Xe’iulzu();“*);ﬁ).gIlJ,aﬁ(EH)E*l
) Fo| B 1 ) (33
R*_lﬁl for a unitary operatorU e M and
~————=n . - . = » -—e ZIJ,a/B/(Ele)

FIG. 1. Orientation of lattice vectors in the layer geometry. :ei(ufl)gu(g{u,FEJ)e,quH(;a,);p)_ U TJIYBaT( _ IZH)Ufl
for an antiunitary operationU € M, as it shown in detail in (34)

the Appendix. In Egs(26) and(27), respectivelyJ denotes o . e

the matrix representation & in real space or spin-angular for anantiunitaryoperatot e M, with the vectorsy” being
space, respectivelisee the Appendix R*® are primitive primitive lattice vectors that depend only on the positions of

lattice vectors that only depend on the basis ateq) and  (he basis atoma. Concerning the operatots applied tok,
the symmetry operatioR U. it is important to note that these are restricted to rotations and

For an arbitrary layer system, we assume that threeMirror operations with their axes or mirror planes oriented
dimensional translational invariance is broken, while two-Perpendicular to the layer plane, respectively.

dimensional translational invariance with respect to the layer ) ) o _ _
plane is preserved. In this case, it is advantageous to separateC- Three- and two-dimensional Brillouin-zone integration

the cell indexi introduced before in a layer indéxan index Using Egs.(26) and (27) and (33) and (34), respectively,

v for the part of the lattice vector in the plane, and an indexhe efficiency of three- and two-dimensional Brillouin zone
a for the basis atonmn the layer While the two-dimensional integrations can be greatly improved. In the following, the
Bravais lattice specified by the lattice vectorsis assumed —generating antiunitary operator in the right coset decomposi-
to be the same for all atomic layers, the number and position indicated in Eq(12) will be denoted byU instead ofU
tions of basis atoms may be different in each layer. Thus, weor readability. As one can see from Eq87) and(34), the
have antiunitary operatol) in the bispinor space corresponds in
the three- or two-dimensional reciprocal space effectively to
the operationU with the inversionl. With the aid of Eq.
with R' the reference vector of the laygrandp® the site of (12 we can write for the set of orthogonal operatov$’

a basis atom in laydr(see Fig. 1 The reference vectoR' and7i" in reciprocal space that correspond to the gradps

L . o andH, respectively,
are usually chosen so as to minimize their ndiRY. By

R'=R'+ x"+p% (28

definition, we have M =H'U,, +H'10K (35
""" A
ti=thre (29 This set represents a group of oraerbecause of the prop-
erties ofl:
and
-1__

Tij — T'J,V/.L,D(ﬁ. (30) I =1 y (36)

In analogy to Eq(24), we define the two-dimensional Fou- Uk =10

rier transform of ther matrix with respect to the lattice in the fgop
layer plane as
k=1,...n%. (37

Pab(kp) =, 7Y rmabem i X", (31)  The symmetry grougg, of orderng representing the geo-

v metrical properties of the reciprocal lattice and the Brillouin
zone is identical with the holosymmetric point group of the
‘corresponding crystal systethBecause for any three- and
two-dimensional translationally invariant lattice the group
Sgz includes the inversioh the groupM' represents a sub-
1 o group ofSgz. Therefore, the following right coset decompo-
T'J*V“’“B=—f d2k7V @B (ke =x) (32 sition of Sz can be made:

Agz

ABZ
SBZ:MIU|:1’F{32MIS|. (38)

with IZH a two-dimensional wave vector. The reverse transfor
mation is accomplished by the two-dimensional Brillouin-
zone integraf

with Agz the area of the two-dimensional Brillouin zone of

the layer system. _ whereS, denote those, operators inSg; that are not in-
_In analogy to Egs.(26) and (27), one finds for the cluded in.M'. As for the decomposition of the magnetic
k-independent matrices"-*A(k) the symmetry relation  space group\M considered in Eq(12), there is a minimum
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numbernéz of generating e|emen& for SBZ- This number reducible part IBZ of the Brillouin zone, which will be de-
* * . . .
is obviouslv given by the relationa-=n(n..+1). noted b¥V|Bz andAjgz, respecnvely, in the folloyvmg. For a
The Brilli)gin zong is covered l:E;; app()lig;tion)of theop- magnetic system, the IBZ- 'S obte/uned by :_;1pp||cat|on of the
erators inM' to its so-called irreducible pattBZ) denoted identity E=S, together with theng, operationss, on the

. . corresponding Brillouin zone regio andAl;,, respec-
by V,sz and A,z for three- and two-dimensional systems, tively P 9 9ioNg; 8z €SP
respectively. For a nonmagnetic system with one atom per Using Eqs.(26) and (27), the three-dimensional Brillouin
unit cell the groupM’ coincides withSgz and one therefore  zone integration in Eq25) can be represented in the follow-
hasng,=0. This situation leads to the smallest possible ir-ing way:

nm,a’ﬁ’zvi | E 2 ) d3kZ“':3’(HJ§|E)e'wsl‘z('in_ém)—k 2 Ia’ﬁ"(EJQKSIZ)e'kaSlE(FEn_ﬁm)
Bz j=1,...) Ny |=0,..., n|’32 Vigz k=1,... nz
1 ) N . idppn_ pm_pa, pB
- 3 > d*kU! 7*A(Sk) Ui~ Lel SKR'-RT-RTERE
Vez j=1""., U |=o0,..., Ng7 Viez — T T
L3 U YTSR) TR I 10U GRS KR -R™-R™ + RE") (39

The site off-diagonat- matrix is needed, for instance, for self-consistent calculations of single impurities embedded in a host
crystal?® For a self-consistent calculation of a crystal system, one is only interested in the site-diagonal elements of the
matrix, i.e.,n=m and a= . In this case, Eq(39) can be further simplified because the exponential factors drop out:

Ui~ (40

2 (J* d3kzaa(§||2)+ 2 gkf . dskl-""“"T(SE)gk_l
n’

1=0,... Bz 1BZ k=1,... nx Visz

Obviously, the numerical Brillouin-zone integration in the previous equation can be compléedo the multiplication by
the matricedJ* andU! to save computer time.
For the two-dimensional Brillouin-zone integration in E§2), we have from Eqs(33) and(34)

1

! !
IIJ,V,uya B
Apz j=1

+ 3 “7'_|J,a’,8’(Uj’L"JkSIR’H)eiU_ijSlle(Iil +x" =R x*)

k=1,... nx
1 2)721 KU~ 1aiWk(R+ x"—RI= xk— x4+ xP)
= > > . AU ef(Sk) Ul el S kR xR -y
BZj=1,...| U 1=0 n. JAsz T -
..... Bz
e "on >~ : sitikalp el L v pd_ o AN
+ E HJHKIJI,B aT(§|k”)gk—1grleuglggk“(R xR =X xP) (42)
k=1,...n%
R

In the previous equation, it is convenient to use the auxiliary quanftitynstead ofr'”:
EIJ,aﬂ(EH):IIJ,aﬂ(EH)eikH(R‘LR'). (42)

Similar to the case of the three—dimensioﬁ%pace integration in Eq40), the expression on the right-hand side of the
previous equation is greatly simplified in the site-diagonal case:

2 , (fA* d2kz_||,mz(§||ZH)+ 2 *gka* d2kZ||a//a/’T(§|k’)gk—l) gj—l_
1=0,...) Ngz IBZ k=1,...| A IBZ

(43
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For the evaluation of electronic properties within the framework of the response theory, one is usually faced with the task
of performing Brillouin-zone integrations of products of two or even mematrices>*?° Also in this case, the symmetry
properties of ther matrix can be exploited to greatly improve the numerical efficiency. In the case of linear-response theory,
one finds for a three-dimensional problem

a3k 5 (k)% (K)

V_BZ Vez
1 ’ ’ . - ! ! . -
:V_' 2 2 j* d3ka{Aﬁ, (HJ§|k)T§”7\W(HJ§Ik)+ E TAA,(UJUkS' )TanW(UJUkslk)
Bzj=1...Mu|=0,...n}, Viez k=1,...n%
1 3 j Iy 1i—1 ' eV -1
= E 2 - d k(UlTaﬁ(S k)UJ )AA/(UJT'BCV(Sk)UI )AHA/II
j=l...ny =g, .., n’zVBZ Visz - - T
+ X (UITRTSRTR I (UITE TSRO TUR U (44)
k=1,...) nZ
For two dimensions, the corresponding expression is
1 A2 "B RyILA !
A_BZ Ay TAA’ ( H)TA"AW ( H)
1 2 Jaﬁ idp idp
ABZ 1 2 d kT (U Sk”)TAIIA//I (U Sk”)
i=1,... Ny |=o, ...,
+ X TP UITE kT (UTTRS k)
k=1,...] nx
1 2 pdN I 1i—1 [pih]] I\ 1i—1
= > d2k(UITeB(Sk)UI 1) 5\ (UIFHE2(S KUY o g
=1 U |=o,..., Nz ABZ Alzz - - - -
+ 2 (ngkEJl,ﬁ”a”T(SEu)gkflgj71)AA/(Ejgkz_lJ,a”B”T(SEu)gkflgj71)AHAW_ (45)
k=1,... nx
I
IIl. PRACTICAL ASPECTS

can be used in connection with spherical symmetric single-

site potential termgmuffin-tin and atomic sphere approxi-

mation but also in the full potential case. In the later case it
With the appropriate formalism at hand, the first step for &s implied that the choice for the geometrical shape of an

numerical implementation of a three- or two-dimensionalatomic cell does not lower the symmetry.

Brillouin-zone integration method is the determination of the  Using Egs.(9) and(10) and the explicit representation of

magnetic space group. In the following, we consider ex- inversion and rotation operators in bispinor spatee fol-
plicitly the case of a relativistic system described by a Diraclowing relation can be shown:
Hamiltonian of the following form:

A. Determination of the magnetic space group

oo 1 e Beri(r)==detU UBe((U™*r+p), (47)
H(r)=i—aV+§(,8—1)c +V(r)+BoBes(r), (46)

whereU here denotes the>33 matrix corresponding to the

with the scalar potentia¥ and the effective magnetic fiel!
in atomic Rydberg unit& The Dirac matricesr, «, and8
have their conventional fordf.As implied by the notation
for the spin-dependent potential term in E46), the follow-

proper or improper rotation contained in a specific unitary-
or antiunitary-symmetry operat&U and|5 the nonprimitive
translation vector corresponding to the operd®rin the
previous equation; holds for unitary and—for antiunitary

ing scheme is not restricted to collinear spin structures bubperations(see below. For the action of time reversal, we
can be applied to noncollinear ones as well. Furthermore, ihave the simple identity
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TH(=Ber) T 1=H(Bery). (48)

To find the various symmetry operatioksin M for a
given three-dimensional periodic system with a fixed atomic
and magnetic configuration use can be made of the fact that
the magnetic space-group of a crystal is a subgroup of the
ordinary space group combined with time rever§alAs a
consequence, the strategy to find the magnetic space group
operations is very similar as for the nonmagnetic situation.
First of all one notes that the possible unitary point opera-
tions that may occur have to be elements of the holosymmet- FIG. 2. Equivalent atoms for a system having the,@u struc-
ric point group of the corresponding crystal systftis is  ture and a collinear spin configuration with the magnetic moments
identical to Sgy in Eq. (38)]. The various holosymmetric Ppointing along thg001] and[111] axes, respectively.
point groups, which can be taken, for example, from Table

1.3n Ref. 22, are a subgroup either of the cubic graypmr screw operations with their axes parallelrtoare allowed.

the hexagonal grouPsp . The_ Eu_ler angles ¢, 3,7) Fhat All mirror or glide mirror planes have to be perpendicular to
correspond to the proper rotatiodsn Oy andDgy, are given .

in Table 2.1 of Ref. 22. These allow to set up the correspond®- In addition, the inversion may occur as a unitary element
ing transformation matrices in the relativisticA represen- 0f H. Concerning the antiunitary-symmetry operations, the
tation[see Eq(4.12 in Ref. 27). Here one should note that rotation and screw axes have to be perpendiculan,tahile
the active convention with fixed rotation axes is used bymirror and glide mirror planes must be parallelio
I3rad_ley and Crackneff? while t_he active temporary conven-  The restriction in Eq(49) obviously excludes many op-
tion is used by Rose. Accordingly, the order of the Euler gations that might be symmetry operations in the nonmag-
angles ha_lve to be reversed. To get the_ correspondinge i case. This may cause atoms to be inequivalent that are
3> 3-rotation matrices for real'—spac.e operations, one (.:alcufound to be equivalent when the magnetic configuration is
lates the transformation matricd$ in the nonrelativistic ignored as it is illustrated in Fig. 2 for a system having the
(I,r,n,) representatipn and trans_forms thg submatrix !for CuzAu structure. With all magnetic moments pointing along
I; éf _2% f_rrohrg ;F)ar:ﬁggglr(tac;)riggﬁ;%”&%?gg?gﬁ%&g; f[he[O(_)l] axis thewhite atom in the basis plane of the cub_e is
e . ) S inequivalent to the othawhite ones. For the moments point-
and Dg,, respectively, are obtained from combinations ofing along the[111] axis, on the other hand, althite atoms

the |nver?|on t’and‘ the v.ac;pus.propgrtrhot;axtlons. Thetnlgtr|x are equivalent. The corresponding space-group elements are
representing |e INVersianis given in the€A representation given in Table I. For further examples, see, e.g., Refs. 5,7,
by IAn/=(—1)'6x4 . Finally, all matrices representing an- and 28—30

tiunitary operations are obtained by combinations of time
reversalT and the various unitary operations. For theep-
resentation the matrix representationTofs given by T, ,/

With the unitary and antiunitary elements #ff deter-
mined one can construct the right coset decompositiofof
RPN , > according to Eq(12). As has been demonstrated for systems
=S(=1)*"%5,_ . with S, = «/| x| (see also Ref.)5 with one atom per unit célithe corresponding generating

Each of the limited number of point operatiodfound as antiunitary operatiorJ¥ can always be chosen to be a two-
described above has to be checked whether it maps the syfs- ) L . . -~
tem onto itself, i.e., to be a symmetry operation of the sys—OId_rOtat'on Ca, With its axis perpendicular ton followed .
tem. Eventually, it has to be combined with a subsequenli’y time reversal 'OZTCZL).' Eqr more complex systems, it
nonprimitive translatiorP in the case of a nonsymmorphic also could be a pure nonprimitive translatiei followed by

space group. FoU or PU, respectively, to be a symmetry {iMme reversal U=TPE). For most practical applications,
o e > however, using the right coset decomposition\df doesn’t
operation it is allowed to connect only sitBs =PUR' [see

Eq. (18] that ar ied by th me chemical elemen eem to offer much advantages. For that reason the simple
9. at are occupied by the same chemical eleme ecomposition of M into its subsets of unitary- and
(for a system with substitutional disorder, the elements occu:

pying these sites as well as their concentration have to be tqannumtary—symmetry operation¥ and (MNH), respec-

" . oA T:\'/ely, is used in the following.
same. In addition, the orientatioom of the moments as-

cribed to the atoms on sites &t andR'’, respectively, have

to be connected by TABLE I. Space-group elements for a system having theAOu

structure with the magnetic moments pointing along[0@l] axis
and the[111] axis.

mg’ =+ detU Umg, (49)

mroox] E. Coz. Ciy. Cip 1 07, Siy. Sy

as is implied by Eq(47).
P y q( 7 TCyy, TCZy, TCya, TCyy, Toy, Toy, Toga, Togp

For a system with a collinear spin configuration that has
all moments oriented along a common directionthis leads m||[111] E Cs1. Cap. |, Se1s Sax
to obvious restrictions concerning the possible symmetry op- TCop, TCoe, TCyt, Togp, Toue, Togs
erations. Among the unitary operations only rotations and
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B. Brillouin-zone integration Unfortunately, the situation is less favorable in the case of

An application of the symmetry considerations outlined® calculat.ion _of linear-response function;. As implied by Eq.
above depend to some extent on the integration scheme usé@®> application of the symmetry operations cannot be done
However, in all cases one has to keep in mind that forafter thek-space integration has been performed. Finding the
antiunitary-symmetry operations the time reversal leads to aRumber of nonvanishing integrals and storing the coefficients
additional inversion when dealing with the symmetry prop-for these seems to be more adequate. For the product of two
erties in reciprocal spadsee Eq(35)]. In the following, the  k-dependent- matrices to be integrated one has
three-dimensional case is considered. The two-dimensional
one can be dealt with in an analogous way.

Use of the tetrahedron integration metfbtf implies that By Bl k

. . . . TAN! (k) A//Am(k)
the various matrix elements of the scattering operator matrix

r are stored for the chosek mesh. For that reason it is

. vy ; = > UL, Uk U, Ul
helpful to find out first which elements have to vanish due to KR, AR =1y MaT AApTATACTAA
symmetric restrictions. From E¢40) one has for the site-
diagonalr matrix X748y (K TR (K)
Tnn,a/a/:i E j dgk + 2 D] Uj* Uj Uj*
TAn Vez o= o Jvis, (1 e MaTATAG T ATAGTAA
j j aa > X TA”?XH ( _)) TA”[/;\” (IZ) (53)
>< E E UJ[XA!/U{A*IAH! TA/IAW(§Ik) b™a e
ATA" J,]_ ,,,,, Ny
~ ik N Together with the special point method, this leads to a rea-
T > Ui AU am| Tampn(SK),  (50) sonably good compromise concerning efficiency and storage

requirements.
with the operationsS' creating the irreducible part of the
Brillouin zone IBZ out of the associated part with volume

V%, for which ak mesh has to be generated. Obviously, IV. SUMMARY
nn,aa

Taar vVanishes if all coefficients in square brackets vanish. |, order to increase both efficiency and reliability of elec-
For nonvanishing matrix elements, the coefficients may beronic band-structure calculations using the Green’s-function
stored. Because the number of the coefficients get quite larg@ethod, we have developed a general method to exploit the
for complex systems ora direction of the magnetization demagnetic space group symmetry of the scattering path opera-
viating from the globak axis, the application of the tetrahe- tor. As far as possible, our approach is formulated in terms of
dron integration method may be prohibitive. abstract operators so as to ensure its applicability both to
As an alternative to the tetrahedron integration method, aonrelativistic and relativistic arbitrary two- and three-
sampling over a regular mesh bfpoints may be don& In  dimensional systems. In particular, a systematic and general
this case a regular mesh spanning the full Brillouin zone igvay to optimize the efficiency of the two- and three-

set up first. The number df points is reduced then by keep- @mensmna_l Brllloumjzone integration is presented.. In addi-
. - ) tion the various practical aspects of an implementation of the
ing only k points not connected by a symmetry operation toapproach presented were discussed in detail.

another one and accounting for a skipped point by increasing
the weight of the kept one. In contrast to the nonmagnetic
case, the property of an antiunitary operation, as expressed,
for example, in Eq(35), has to be explicitly accounted for
when considering the equivalence of two mesh points. This
leads finally to the simple expression for the site-diaganal For the scattering path operatarfrom Eqgs.(4) and(21)
matrix we derive the following relations in terms of thenitary-
symmetry operatoPU of H:

APPENDIX: MAGNETIC SPACE GROUP SYMMETRY
AND 7 MATRIX

"o

Inn,a a = 2 g]zgn,aagj—l

i ne’a" T PU7I(PU) 1=PUt §;(PU) 1+ PUIGY, Hi(PU)~1
+ > U, (8 ~(PU) i(PU) 2, 7I(PU)

with =t +t'G%>, PUXI(PU)L (A1)
K#i

=2 wigr(K). (52) o _
k and analogously for thantiunitary operationP U,
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PUAT(PU) t=(PUA (PU)™ YT
=|PUts;(PU)!

;
+PUUGY, H(Pu)t
k#]

:PUtiT(Sij(PU)il

+> PUAT(PU)IGOPUL(PU) !
KZ |

=t"'5,,+ > PUXT(PU)T1Go.
k#j
(A2)

Therefore, the same implicit equations hold #r " and 7'
or 7'T, respectively, and we can identify, as in the caseiof
Eq. (21),

71 =puri(Pu)t (A3)
for unitary PU and
71" =purif(pu)? (A4)

for antiunitary P U.

In the following, we consider explicitly only the unitary
or antiunitary magnetic point-group operatdras part of a
symmetry operatoPU of H while the action ofP is implic-
itly taken into account using EqA5) (see below.

From Egs.(18) and(22), we derive for the action oP U

onR!

Ii“=PuﬁizP(U§“+U5a)=uﬁ“+|§a+5a’=ﬁn/+,(3a’,)
A5

where R* represents a primitive lattice vector that depends

only on a.
For the unitary operatdd, we have from Eq(24)

7B (UK) =3 71ma’ B g IUKRT-RT)
n
— E Tnm,a’ﬁ’e—imfl(ﬁ”—ﬁm)
n

rent Il i —1lpn’ _ pm’
Ernm,aﬁelkg (R" —R™)

n’

_ e—iulz(li“—li'g)pUTa,B(E)(pU)—l, (AB)

where in the last step, use has been made of E&3)
and (A5). For anti-unitary U, we have analogously from
Eqg. (A4)
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Ta/B/(HIZ) 2 ma’ B o~ iUK(R"~R™)

nm,a’ﬁ’e—ilzu’l(lin—lim)

= T

n’m’,a’ﬁ’efif(linyflim')

I
\d

T

PUTmn,BaT( PU)—le—ilzu_fl(lin,—lim,)

I
\7

p UTmn,ﬁaTeiE(FE”—FEm)( PU) —1e—ig|2(|i“—|iﬁ)

Il
oM

—e UE-RIpyLfar(—K)(PU)"L (A7)

In the following, we consider a layer system with two-
dimensional translational invariance as introduced in
Sec. Il A. For the action of the symmetry operatihh
of the Hamiltonian in real space, we derive in analogy with
Eq. (A5)

PUR'+ x"+p%)

SUR U =R 50, (A9)
with the primitive in-plane lattice vecto;}“ that depends

only on the basis atona. For )?”', we use the following
definition:

X" =Ux"+(U-1)R'+ x°. (A9)

Let U represent a proper rotation with its axis perpendicular
to the layer plane or a mirror operation with the mirror plane
perpendicular to the layer plane aRda possible nonprimi-
tive translation parallel to the layer plane.

For unitary U, we have from Eqs(31) and(A3)

TIJ,a'ﬁ'(HEH) — 2 T|J,V/.L,a’ﬁ’e*ikﬁnufl();”—);l")
v

=> Al u e’ B =ik U (" —x*)
!
14

— @il (U-D)K|(R' =R o= iUk (x*~xP)
% z PUTIJ,V,U.,aﬁ( P U) *le*”zu();’)*);#)
14

= ¢l (U= DK(R'-R) =1Lk~ x*) py 719,28 Kp)

X(PU)™ %, (A10)

where in the second step, use has been made a8 For
antiunitary U, we have analogously from E¢A4)
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TIJ,a’ﬁ’(!EH):E TlJ,m,a/ﬁ’e—ifuufl(;v_);u)
14

:2 TlJ’Vr#/’arﬁre_”zuufl();y’_);,ur)
V,
— @i (U-Dk(R'=R%) =ik (x*~x#)
x>, PUAhurBat(py)~le KX x*)
14
= gl (U-DK|(R' ~R) g iUk (x*~ XA p | 1 Bat

X(—kp(PU)~L (A1)

In the following, we apply the results concerning symmetry
properties of scattering path operators to the special case of

the relativistic spin-angular representation.
For the action of the operatd on the regulafleft-hand
solutionsj{*), one can shot3*

(rlUlja)=22 Upraia(n),
A/

GXIUIN =2 j5(NUxs, (A12)
AI

with U the matrix representation &f. It is important to note

that within a specific representation, antiunitary operators
can be decomposed uniquely in a unitary part and the opera-

tion of complex conjugatiofiIn our formalism, operator ma-

tricesU in spin-angular space are always to be understood as

the representatives of the correspondimgtary partsof the
operatorsJ.
Using Eq.(7), we have from EqstA3) and (A4)

PHYSICAL REVIEW B65 205125

TX"A',=J@i,d%fw,d%'ji(p(r*—ﬁ“))
X[PU(PU)"Y(r,r)ja (p(r'—=RI"))
=f _d3rf d3r’
o' o)l ATAM

> i(p(r=RY)

XU (F)U Gy (P = R)

1

= 2 UAA”Ti/{”A”/UX”A' (A13)
AIIA//I
for unitary U and analogously,
A T _ 1
TIAJ\’ = 2 UAA” T]/{rrAmUAuAr (A14)

ATAM™

for antiunitaryU. As one notes, the nonprimitive translation
P does not appear explicitly in the previous two equations. It

is rather incorporated in the relation betwd@fi) andR'' (")
according to Eq(A5).

Using Egs.(A13) and(A14), Egs.(A6), (A7), (A10), and
(A11) can be formulated in the spin-angular representation

P (UK =e WKRROY By L, (ALS)
8 (UR) e EFIY T Ru L, (AL
P Uk
:ei(u_l)lzu(ﬁl_ﬁJ)e_iulz"();a_);ﬁ)UTIJ,aﬁ(EH)U—l’
(AL7)
A8 (U= ei(Li—l)lZH(li'_ﬁJ)e—quH();a_);ﬁ)g.Jl,BaT

X (—kput, (A18)
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