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Charge screening effect in metallic carbon nanotubes

K. Sasaki*
Department of Physics, Tohoku University, Sendai 980-8578, Japan
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The charge screening effect in metallic carbon nanotubes is investigated in a model including the one-
dimensional long-range Coulomb interaction. It is pointed out that an external charge which is being fixed
spatially is screened by internal electrons so that the resulting object becomes electrically neutral. We found
that the screening length is given by about the diameter of a nanotube.
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I. INTRODUCTION

Recently carbon nanotubes1 ~CNTs! have attracted much
attention from various points of view. Especially their uniq
mechanical, electrical, chemical properties have stimula
many people’s interest in the analysis of CNTs.2,3 They have
exceptional strength and stability, and they can exhibit eit
metallic or semiconducting properties depending on the
ameter and helicity.4,5 Due to their small size, properties o
CNT’s should be governed by the law of quantum mech
ics. Therefore it is quite important to understand the quan
behavior of electrons in CNT’s.

However in a low-energy region (,104 K), we do not
have to examine all electrons in the system but low-ene
excitations near the Fermi level. The low energy excitatio
at half-filling move along the tubule axis because the circu
ference degree of freedom~an excitation in the compactifie
direction! is frozen by a wide energy gap (;104 K). Hence
this system can be described as a~111!-dimensional system
Furthermore, in the case of metallic CNT’s, the system
scribing small fluctuations around the Fermi points is equi
lent to the two components ‘‘massless’’ fermions in 111
dimensions. This allows us to analyze the low-energy ex
tations with sufficient accuracy by means of a technique
quantum field theory.

Quantum-mechanical behavior of the ‘‘massless’’ ferm
ons in metallic CNT’s is governed by many kinds
interactions.6–9Among others the Coulomb interaction is th
most important interaction and drives the system into
strongly correlated system. The purpose of this paper i
investigate how the Coulomb interaction plays the role wh
the system is perturbed. Particularly we try to answer
following basic question. ‘‘What is happening when we p
an external charge on a metallic carbon nanotube?’’ The
ternal charge which we consider in this paper, is extern
fixed spinless particle. This is thought to be a charged im
rity in a metallic nanotube.10 To answer the above questio
we investigate the charging energy and charge scree
effect.11–13

This paper is composed as follows. A model Hamiltoni
for the low-energy excitations in metallic nanotubes is co
structed in Sec. II. In Sec. III, we rewrite the kinetic Ham
tonian in terms of current operators. Then we examine
Hamiltonian including the long-range Coulomb interacti
and analyze some effects of the Coulomb interaction
charging energy and charge screening effect in Sec. IV
0163-1829/2002/65~19!/195412~12!/$20.00 65 1954
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Sec. V we consider the gate-electron interaction to show
effect of the long-range Coulomb interaction against an
ternal perturbation. Conclusion and discussion are given
Sec. VI. An other type of the Coulomb potential8 is consid-
ered in Appendix A. We give an alternative simple derivati
to obtain main results using the spin-charge separation
Appendix B.

II. THE HAMILTONIAN

Low-energy excitations in metallic carbon nanotubes c
sist of four independent fermion fields. Their quanta a
spin-up (↑) and -down (↓) electrons in theK andK8 Fermi
points. We denote these fields as

C i5S cL,i

cR,i
D , i P~↑,↓ !3~K,K8!, ~1!

where i is a label for the four fermions and these fermio
are expressed byCK↑,CK↓,CK↑8

,CK↓8
, respectively. For ex-

ample, the fieldCK↑ expresses the spin-up electron field
the K Fermi point. Hereafter we usei as an element of the
set: S5$K↑ ,K↓ ,K↑8 ,K↓8%[(↑,↓)3(K,K8) as in Eq. ~1!.
Each fermion field consists of two-component spinor, wh
we namecL,i andcR,i . This two-component structure is du
to the specific lattice structure of the graphite sheet.14 The
subscriptsL andR denote left-handed component and righ
handed component, respectively. The left and right are
fined by the eigenvalue of the matrixg5(5s3) ands3 is the
z component of the Pauli spin matrix.

Time evolution of these fields is governed by the comp
cated Hamiltonian in realistic circumstances. For examp
tubes are not strict straight line but generally bend6 and the
end of a tube~cap! might mix the wave functions of differen
Fermi points.15 We restrict our attention to the most bas
and important interactions: kinetic interaction, on
dimensional long-range Coulomb interaction and ga
electron interaction with a simple boundary condition. T
kinetic term is

HF5(
i PS

C i
†hFC i5vF(

i PS
C i

†S Px 0

0 2Px
DC i , ~2!

wherePx5 i\]x is the momentum in the tubule axis dire
tion (5xP@0:L#[D) and vF is the Fermi velocity. It is
remarkable that the dispersion relation is linear due to
©2002 The American Physical Society12-1
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special band structure of thep electrons in the graphite
sheet. Therefore, we call these fermions ‘‘massless’’ fer
ons.

The one-dimensional long-range Coulomb interaction

HC5
e2

8pED

J~x!J~y!

Aux2yu21d2
dy, ~3!

where e is the electron charge andd in the denominator
denotes the diameter of a nanotube.J(x) stands for the sum
of each fermion charge densityJi(x)@[C i

†(x)C i(x)#,

J~x!5(
i PS

Ji~x!. ~4!

A comment is in order regarding introducing the cutoffd in
the Coulomb potential in Eq.~3!. When we write the Cou-
lomb interaction without the cutoff, it has an ultraviolet d
vergence in the limit ofx→y. To avoid the divergence, w
need to introduce a cutoff. It is appropriate to set it the
ameter of a tube because when two electrons on a nano
come from opposite sides of the tubule axis direction, th
repeal and pass each other. At the moment they appro
most, there is still a distance about the diameter of a na
tube to decrease the energy of such event. This is an orig
the cutoff. Similar kind of cutoff8 in the Coulomb potential is
derived from integrating out the circumference degree of
Coulomb interaction. Both potentials have the same beha
at long distance scaleux2yu>O(d). However there is a sig
nificant difference at short distance scaleux2yu,O(d).
Some detailed discussions about this potential are give
Appendix A.

We also include the effect of gate voltage on a nanotu
The interaction between the gate voltage and electrons i

HG5eVgJ~x!, ~5!

whereVg is a gate voltage that the massless fermions fee
should be noted that the gate voltage is not usually equ
lent to a voltage of the gate itself because of the capacita
of a substrate. We may consider the position dependent
voltageVg(x) as a model for an electrical contact or as
external perturbation to a nanotube. Response of the sy
against a local gate voltage is investigated in Sec. V.
comparing the system including the long-range Coulomb
teraction with the one excluding the interaction, we sh
how the long-range Coulomb interaction changes the
sponse to the local gate voltage.

The microscopic Hamiltonian density for this system is

H5HF1HC1HG . ~6!

We shall analyze this Hamiltonian without any approxim
tion. As for the screening of an external charged particle t
is being fixed on the surface of the metallic zigzag-ty
nanotubes and do not have a spin, we may neglect the
linear interactions,8 such as the backscattering processes,
cause the total charge sector~B6! decouples from these in
teractions.

Figure 1 shows a nanotube, the perturbations that we s
analyze in the present paper, and all relevant scale of
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system. The left inset~a! in Fig. 1 indicates a perturbation b
an external charge that has the charge densityJex(x). The
right inset~b! shows the interaction between a local gate~an
electrical contact! and a tube. Because we model the syst
as one-dimensional one, we should restrict our attention
the perturbation that has the radial symmetry as is show
both insets. However one may apply the model to a per
bation localized in radial direction providing the perturbati
is weak enough.13

III. QUANTIZATION OF ELECTRON

We have specified the Hamiltonian density that descri
the low-energy excitations in metallic nanotubes. In this s
tion we quantize the massless fermion fields and rewrite
kinetic Hamiltonian in terms of the bosonic curre
operators.16 The Coulomb interaction and gate-electron inte
action will be investigated in later sections.

The energy eigenfunctions of the first quantized kine
Hamiltonian are given by

hFcnS 1

0D 5encnS 1

0D , ~7!

hFcnS 0

1D 52encnS 0

1D , ~8!

cn~x!5
1

AL
e2 i (en /\vF)x, ~9!

whereen is the energy eigenvalues andL is the length of a
metallic nanotube. The energy eigenvalues are quantize
a boundary condition. Here we impose the periodic bound
condition on the wave functionscn(x1L)5cn(x). This
boundary condition yields the following energy spectra:

en5
2p\vF

L
n[Dn, ~10!

FIG. 1. The perturbations~external charge and gate-electron i
teraction! and all relevant scale of this system.
2-2
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CHARGE SCREENING EFFECT IN METALLIC CARBON . . . PHYSICAL REVIEW B65 195412
where D is an energy scale, which depends only on
length of a nanotube. In order to evaluate the numer
value of this energy we use the formula for the Fermi vel
ity

vF5
3ga

2\
;

c

343
, ~11!

where c is the speed of light,g (52.7eV) ~Ref. 5! is the
overlap~hopping! integral anda (51.42 Å) is the nearest
neighbor distance between two carbon atoms. For a sin
wall nanotube withL53 mm, D is about 1.2 meV.

Each massless fermion field can be decomposed into
left- and right-handed component field as

C i~x,t ![CL,i~x,t !1CR,i~x,t !, ~12!

where t is the time. The left- and right-handed compone
fields consist of the energy eigenfunctions and annihilat
operators of each quantum,

CL,i~x,t !5 (
nPZ

an
i cn~x!e2 i (en /\)tS 1

0D , ~13!

CR,i~x,t !5 (
nPZ

bn
i cn~x!e1 i (en /\)tS 0

1D , ~14!

wherean
i ,bn

j are independent fermionic annihilation oper
tors of the left-handed component of thei th fermion and the
right-handed component of thej th fermion satisfying the an
ticommutators

$an
i ,am

j †%5$bn
i ,bm

j †%5d i j dnm . ~15!

All of the other anticommutators vanish.
In 111 dimensions, it is possible to construct the fermi

Fock space by acting bosonic creation operators which
bilinear of the fermion operators on the vacuum. Because
Coulomb interaction consists of a product of the charge d
sity, it is very convenient to rewrite the kinetic termHF
(5rHF) using the bosonic charge density operators. For
purpose, it is useful to introduce the left and right currents
follows:

J~x!5JL~x!1JR~x!. ~16!

The left and right currents for each fermion, are defined

JL,i~x!5CL,i
† ~x!CL,i~x!,

JR,i~x!5CR,i
† ~x!CR,i~x!. ~17!

We expand these currents by the Fourier modes. We
with the left sector. The left current can be written as f
lows:

JL~x![(
i PS

JL,i~x!5 (
nPZ

j L
n 1

L
e2 i (2pnx/L), ~18!

where each components are given by
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n5(

i PS
j L,i
n , j L,i

n 5 (
mPZ

am
i†am1n

i , j L,i
0 [QL,i .

The Fourier componentj L,i
n ~current operators! satisfies the

following commutation relations on the fermion Fock spa
~current algebra!:

@ j L,i
n ,~ j L, j

m !†#5nd i j dnm , ~ j L,i
m !†5 j L,i

2m . ~19!

We proceed to consider the right sector in the same way.
current operators are

JR~x![(
i PS

JR,i~x!5 (
nPZ

j R
n 1

L
e1 i (2pnx/L), ~20!

j R
n5(

i
j R,i
n , j R,i

n 5 (
mPZ

bm1n
i† bm

i , j R,i
0 [QR,i .

They satisfy the bosonic commutation relations

@ j R,i
n ,~ j R, j

m !†#5nd i j dnm , ~ j R,i
m !†5 j R,i

2m . ~21!

The left chargeQL,i and right chargeQR,i are conserved
separately because the system is invariant under the fol
ing two independent global transformations of fermi
fields, CL,i→eiuL,iCL,i ,CR,i→eiuR,iCR,i . We must rewrite
the fermion Hamiltonian such that all the matrix elements
the same as the original fermion Hamiltonian by means
current algebra. It is well known that the following Hami
tonian has the same matrix element as the original ferm
Hamiltonian16,17

HF5D(
i PS

F S ^Qi&
21^Q5,i&

2

4
2

1

12D
1 (

n.0
$~ j L,i

n !† j L,i
n 1~ j R,i

n !† j R,i
n %G , ~22!

where theU(1) chargeQi and the chiral chargeQ5,i for each
massless fermion is defined by the summation and subt
tion between the left and right charges,

Qi5QL,i1QR,i , Q5,i5QL,i2QR,i . ~23!

The physical meaning of the chiral charge is spatial integ
tion of the electric current densityevF@JL(x)2JR(x)# in a
tube. This charge measures the left-right asymmetry of
vacuum and is defined by the difference of the left cha
and the right charge on the vacuum. Note that the vacu
energy in the last equation is nonvanishing, which is due
the finite-size effect of a nanotube. Here^O& means the
vacuum expectation value of an operator O. We have defi
the second quantized vacuum by filling the negative-ene
modes, leaving the positive-energy modes empty.

IV. LONG-RANGE COULOMB INTERACTION

The one-dimensional long-range Coulomb interaction
metallic nanotubes is given by the following potential form
2-3
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K. SASAKI PHYSICAL REVIEW B 65 195412
HC5E
D
HCdx5

e2

8pE E
D

J~x!J~y!

Aux2yu21d2
dxdy, ~24!

whered is the diameter of a nanotube and this is the trace
the pseudo-one-dimensional nature of carbon nanotubes
total Hamiltonian of this system consists of the kine
Hamiltonian and the Coulomb interaction. The kine
Hamiltonian is written in terms of the current operators as
shown in the preceding section. The Coulomb interaction
also be rewritten in terms of the current operators beca
total charge density in the Coulomb interaction is a sum
the left and right current operators,

J~x!5 (
nPZ

@~ j L
n!†1 j R

n #
1

L
e1 i (2pnx/L). ~25!

Hence, by replacingJ(x) by Eq. ~25! in the Coulomb inter-
action ~24!, we obtain

HC5
e2

8pL
V~0!S (

i PS
^Qi& D 2

1
e2

4pL (
n.0

V~n!@~ j L
n!†1 j R

n #

3@ j L
n1~ j R

n !†#. ~26!

We have introduced the Fourier components of the Coulo
potential as

V~n!52E
0

p

dx
cos~2nx!

Ax21S R

L
D 2

, ~27!

whereR is the circumference (R5pd) of a nanotube. The
Coulomb interaction is given by the sum of zero modeV(0)
and nonzero modesV(n). The nonzero Fourier mode (n
Þ0) can be approximated to the modified Bessel funct
V(n);2K0@2n(R/L)# quite well if R/L!1.

We can include external charges in the theory by rep
ing the total charge densityJ with the sum of the interna
chargeJ and externalc-number charge densityJex in the
Coulomb interaction

HC5
e2

8pE E
D

@J~x!1Jex~x!#@J~y!1Jex~y!#

Aux2yu21d2
dxdy.

~28!

It is straightforward to derive the corresponding express
in terms of current operators

HC5
e2

8pL
V~0!S (

i PS
^Qi&1JexD 2

1 (
n.0

bn@~ j L
n!†1 j R

n

1~ j ex
n !* #@ j L

n1~ j R
n !†1 j ex

n #, ~29!

where we introducebn[(e2/4pL)V(n) and define the Fou
rier components of the external charge as follows:

Jex~x!5
1

L (
nPZ

j ex
n e2 i (2pnx/L). ~30!
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Total charge of the external particle is given by the spa
integration of thec-number external charge density which
referred toQex ,

Qex[E
D

Jex~x!dx5 j ex
0 . ~31!

We finally obtain the long-range Coulomb interaction
terms of the current operators, which modifies the ene
spectra of the original kinetic Hamiltonian that we discuss
in the preceding section. Before we analyze the total Ham
tonian quantum mechanically, it is important to know t
order of magnitude of the long-range Coulomb interactio
Typical energy scale of the Coulomb interaction (bn) of this
system is strong as compared with the energy scale of
kinetic interaction. This is shown by the ratio of the ener
scale of the Coulomb interaction to the energy separation
the kinetic interaction

bn

D
5

a

p

c

vF
K0S 2n

R

L D , ~32!

wherea([e2/4p\c; 1
137) is the fine-structure constant. W

used the approximation formulaV(n);2K0@2n(R/L)# in
Eq. ~32!. The value of the ratio is more than 1 forn
<O(L/2R). Therefore this system is thought to be a strong
correlated system. So, we should first estimate the Coulo
energy scale of the physical quantities in this system. For
purpose, we treat the Coulomb interaction roughly in S
IV A. A detailed analysis of the system will be given in latte
section.

A. Order estimation

When an externally fixed particle with total chargeQex is
put on a metallic nanotube, the charge density of the part
may be modeled by thed function,

Jex~x!5Qexd~x2x0!, ~33!

where we put the particle atx0(P@0:L#). It can be thought
that this external charge distribution is a model for a charg
spinless impurity.

It is important to estimate the order of magnitude of t
energy that we need to put a fixed external charge on a
tallic nanotube. We simply neglect the interaction betwe
internal electrons and the external charge, so we set^J(x)&
50. In this case, we get

^HC&5
e2

8pE E
D

Jex~x!Jex~y!

Aux2yu21d2
dxdy5

e2

8p

1

d
Qex

2 .

~34!

Estimation of this value for a metallic nanotube withd
51.4 nm giveŝ HC&;515Qex

2 meV. As is discussed in the
following section, this energy is strongly modified by th
Coulomb interaction between internal electrons and the
ternal charge. The internal electrons move or rearrange
order to decrease the energy of the system. This means
the charge screening effect occurs.
2-4
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On the other hand, in an experiment concerning trans
on nanotubes, an electron flows from the electric contact
after some period it spreads uniformly in a nanotube. Th
we have

Jex~x!5Qex

1

L
. ~35!

In this case, the Coulomb self-energy is

^HC&5
e2

8p

1

L
lnFA11Sd

L
D2

11

A11Sd

L
D2

21
G Qex

2 ;
e2

4p

1

L
lnS 2L

d
DQex

2 .

~36!

For a metallic nanotube withd51.4 nm andL53.2 mm,
we obtain^HC&;3.8Qex

2 meV. It should be noticed that Eq
~36! is the same formula that is usually used in the analy
of the Coulomb blockade phenomena of a transport exp
ment of nanotubes. This energy is called ‘‘charging ene
(Ec)’’ and is not modified by the interaction with interna
charges due to its uniform distribution,

Ec[
e2

4p

1

L
lnS 2L

d D . ~37!

An experimental value of the charging energy for a meta
single-wall CNT withd11.4 nm andL53.2 mm in length is
aboutEc53.8 meV~Ref. 18! and is very close to the abov
estimation. This is a verification of the cutoff in the potent
of the Coulomb interaction.

B. Screening effect

We have so far considered the long-range Coulomb in
action very roughly. In this section we solve the syste
quantum mechanically and examine the charge screenin
fect. To investigate this effect, we shall compute the charg
energy and induced charge distribution by an exter
charge. We start with one massless fermion case. This
corresponds to an approximation that we only consider
system with one massless fermion, for example,CK↑. Four
massless fermions case~metallic nanotubes case! can be ob-
tained by straightforward extension of the one massless
mion case.

1. One fermion case

The total Hamiltonian is given by

H5DH S ^Q&21^Q5&
2

4
2

1

12D1 (
n.0

@~ j L
n!† j L

n1~ j R
n !† j R

n #J
1Ec~^Q&1Qex!

21 (
n.0

bn@~ j L
n!†1 j R

n1~ j ex
n !* #

3@ j L
n1~ j R

n !†1 j ex
n #, ~38!
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where we omit the subscripti because we consider one mas
less fermion case. The kinetic term and the Coulomb te
can be combined as follows:

H5H02
D

12
1 (

n.0
Hn , ~39!

where

H05
D

4
@^Q&21^Q5&

2#1Ec~^Q&1Qex!
2, ~40!

Hn5D@~ j L
n!† j L

n1~ j R
n !† j R

n #1bn@~ j L
n!†1 j R

n1~ j ex
n !* #

3@ j L
n1~ j R

n !†1 j ex
n #. ~41!

H0 is the zero mode Hamiltonian whose structure is sim
and is already diagonalized. Hereafter we choose the vac
with vanishingU(1) charge (̂Q&50) and the chiral charge
(^Q5&50) for simplicity. In this case we haveH05EcQex

2 .
We diagonalize the HamiltonianHn(nÞ0) using the Bogo-
liubov transformation of the current operators

S j̃ L
n

~ j̃ R
n !†D 5S coshtn sinhtn

sinhtn coshtn
D S j L

n

~ j R
n !†D , ~42!

where

sinh 2tn5
bn

En
, cosh 2tn5

1

En
~D1bn!,

En5DA11
2bn

D
.

The Bogoliubov transformed currents (j̃ L
n , j̃ R

n) satisfy the
same bosonic commutation relations as the original cur
operators~19! and ~21!,

@ j̃ L
n ,~ j̃ L

m!†#5@ j̃ R
n ,~ j̃ R

m!†#5ndnm . ~43!

After some calculations we diagonalizeHn as follows:

Hn5En@$~ j̃ L
n!†1gn~ j ex

n !* %~ j̃ L
n1gnj ex

n !1$~ j̃ R
n !†1gnj ex

n %

3$ j̃ R
n1gn~ j ex

n !* %1n#2Dn1bn

D2

En
2 ~ j ex

n !* j ex
n , ~44!

wheregn5sinh 2tn(coshtn2sinhtn). It is easy to find condi-
tions of the vacuumuvac1 ;Jex& in the presence of the exter
nal charges~‘‘vac1’’ in the ket denotes vacuum state for th
‘‘one’’ massless fermion!,

~ j̃ L
n1gnj ex

n !uvac1 ;Jex&50,

~ j̃ R
n1gn~ j ex

n !* !uvac1 ;Jex&50, n.0. ~45!

We estimate the energy change between the two va
2-5



al
-
e,

rn
on
e
e

er
th
es
d

n
c

tio

e

the
g
of

rd
e

me
ding
b

K. SASAKI PHYSICAL REVIEW B 65 195412
uvac1 ;0& ~without an external charge! and uvac1 ;Jex& ~with
an external charge!

dE5^vac1 ;JexuH~Jex!uvac1 ;Jex&2^vac1 ;0uH~0!uvac1 ;0&

5EcQex
2 1 (

n.0
bn

D2

En
2 ~ j ex

n !* j ex
n

5EcQex
2 1 (

n.0

bn

11
2bn

D

~ j ex
n !* j ex

n , ~46!

where H(Jex) denotes the Hamiltonian with the extern
charge distributionJex . If we neglect the Coulomb interac
tion between the internal charges and the external charg
in the preceding section, the charging energy is given by

EcQex
2 1 (

n.0
bn~ j ex

n !* j ex
n . ~47!

Comparing this with the exact result~46! one can recognize
the difference between these results. The effect of inte
charge redistribution enters in the denominator of sec
term in Eq. ~46!. Therefore if the energy separation of th
kinetic spectrum is huge compared with the Coulomb int
action,

bn

D
!1, ~48!

the effect of rearrangement of the internal electrons is v
small so that the charging energy is hardly modified from
previous order estimation. However for metallic nanotub
the situation is completely different as we have mentione
Eq. ~32!.

Next, let us consider the rearrangement of the inter
electrons. This rearrangement can be shown in the expe
tion value of the charge density operator,

J~x!5 (
nPZ

~~ j L
n!†1 j R

n !
1

L
e1 i (2pnx/L)

5
Q

L
1 (

n.0
AD

En
@~ j̃ L

n!†1 j̃ R
n #

1

L
e1 i2pnx/(L)

1 (
n.0

AD

En
@ j̃ L

n1~ j̃ R
n !†#

1

L
e2 i (2pnx/L). ~49!

The expectation value can be calculated using the defini
of the vacuum in the presence of the external charge~45!,
19541
as

al
d

r-

y
e
,

at

al
ta-

n

^J~x!&1[^vac1 ;JexuJ~x!uvac1 ;Jex&

5 (
n.0

AD

En
~22gn!

1

L

3@~ j ex
n !* e1 i (2pnx/L)1 j ex

n e2 i (2pnx/L)#

5 (
n.0

2

2bn

D

11
2bn

D

1

L

3@~ j ex
n !* e1 i (2pnx/L)1 j ex

n e2 i (2pnx/L)#. ~50!

For thed-function charge distribution~33!, we obtain

^J~x!&15Qex(
n.0

2

2bn

D

11
2bn

D

2

L
cosF2pn

L
~x2x0!G .

~51!

2. Two fermion case

Let us proceed to the two fermions case. Here we usi
5$1,2% instead of, for example,i 5$K↑ ,K↓% for simplicity.
Even in the two fermions case zero mode sector of
Hamiltonian is very simple and it gives only the chargin
energyEcQex

2 . We should diagonalize the nonzero modes
the Hamiltonian. This part is given as follows:

Hn5D@~ j L,1
n !† j L,1

n 1~ j R,1
n !† j R,1

n #1D@~ j L,2
n !† j L,2

n 1~ j R,2
n !† j R,2

n #

1bn@~ j L,1
n !†1 j R,1

n 1~ j L,2
n !†1 j R,2

n 1~ j ex
n !* #

3@ j L,1
n 1~ j R,1

n !†1 j L,2
n 1~ j R,2

n !†1 j ex
n #. ~52!

First we focus on the fermion labeled by 1. If we rega
j L,2
n 1( j R,2

n )†1 j ex
n as j ex

n in the previous analysis, we get th
following expression instead of Eq.~44!

Hn5En„$~ j̃ L,1
n !†1gn@~ j L,2

n !†1 j R,2
n 1~ j ex

n !* #%~ j̃ L,1
n 1gn@ j L,2

n

1~ j R,2
n !†1 j ex

n # !1$~ j̃ R,1
n !†1gn@ j L,2

n 1~ j R,2
n !†1 j ex

n #%

3$ j̃ R,1
n 1gn@~ j L,2

n !†1 j R,2
n 1~ j ex

n !* #%1n…2Dn

1D@~ j L,2
n !† j L,2

n 1~ j R,2
n !† j R,2

n #1bn

D2

En
2 @~ j L,2

n !†1 j R,2
n

1~ j ex
n !* #@ j L,2

n 1~ j R,2
n !†1 j ex

n #, ~53!

The last two lines in the above equation have almost sa
structure as the one that we have analyzed in the prece
section, Eq.~41!. However in the present case, the Coulom
interaction term is modified as follows:

bn→bn

D2

En
2

. ~54!
2-6
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We use the same method~Bogoliubov transformation! to
diagonalize this part of the Hamiltonian with rotation ang
sn which is different from the previous one (tn).

S j̃ L,2
n

~ j̃ R,2
n !†D 5S coshsn sinhsn

sinhsn coshsn
D S j L,2

n

~ j R,2
n !†D , ~55!

where

sinh 2sn5

bn

D2

En
2

Fn
,cosh 2tn5

1

Fn
S D1bn

D2

En
2D ,

Fn5DA11
2bn

D

D2

En
2
.

This transformation gives the result which is similar to E
~44!,

Fn@$~ j̃ L,2
n !†1dn~ j ex

n !* %~ j̃ L,2
n 1dnj ex

n !1$~ j̃ R,2
n !†1dnj ex

n %

3$ j̃ R,2
n 1dn~ j ex

n !* %1n#2Dn1bn

D2

En
2

D2

Fn
2 ~ j ex

n !* j ex
n ,

~56!

wheredn5sinh 2sn(coshsn2sinhsn). We define the vacuum
for the two fermion case with the external charge distrib
tion.

~ j̃ L,2
n 1dnj ex

n !uvac2 ;Jex&50,

$ j̃ R,2
n 1dn~ j ex

n !* %uvac2;Jex&50,

$ j̃ L,1
n 1gn@ j L,2

n 1~ j R,2
n !†1 j ex

n #%uvac2 ;Jex&50,

$ j̃ R,1
n 1gn@~ j L,2

n !†1 j R,2
n 1~ j ex

n !* #%uvac2 ;Jex&50.

From Eqs. ~53!, ~56! and the above definitions of th
vacuum, the energy change of the two vacuauvac2 ;0& and
uvac2 ;Jex& is evaluated as

dE5EcQex
2 1 (

n.0
bn

D2

En
2

D2

Fn
2 ~ j ex

n !* j ex
n

5EcQex
2 1 (

n.0

bn

112
2bn

D

~ j ex
n !* j ex

n .

~57!

We see that the effect of ‘‘two’’ fermions on the chargin
energy is the factor 2 in front of the 2bn /D in the denomi-
nator of second term. This means that the charging en
decreases more as compared with the one fermion case
the other hand, the internal electron charge density distr
tion becomes
19541
.

-

gy
On
u-

^J~x!&25 (
n.0

2

2
2bn

D

112
2bn

D

1

L
@~ j ex

n !* e1 i (2pnx/L)

1 j ex
n e2 i (2pnx/L)#. ~58!

It can be seen that the effect of the two fermions on
induced charge density is also the factor 2 in front of t
2bn /D terms.

3. Four fermion case

A Four fermion case can be analyzed by the same pro
dure as the two fermions case. The calculation is straight
ward but lengthy, so we shall omit it here. Instead, we g
an alternative simple derivation in Appendix. B. The form
las for the charging energy and induced internal charge d
sity are

dE5EcQex
2 1 (

n.0

bn

11
8bn

D

~ j ex
n !* j ex

n , ~59!

^J~x!&45 (
n.0

2

8bn

D

11
8bn

D

1

L
@~ j ex

n !* e1 i (2pnx/L)

1 j ex
n e2 i (2pnx/L)#, ~60!

where the subscript 4 of the vacuum expectation va
(^J(x)&4) indicates the vacuum of the four fermion cas
Notice that these equations can be obtained from the res
of the one fermion case by replacing the level spacing
follows:

D→ D

4
. ~61!

For thed-function charge distribution of the external char
~33!, we obtain

dE5FEc1 (
n.0

bn

11
8bn

D
GQex

2 , ~62!

^J~x!&45Qex(
n.0

2

8bn

D

11
8bn

D

2

L
cosS 2pn

L
~x2x0! D . ~63!

The numerical value of the above charging energy is ab
85Qex

2 meV for a metallic nanotube withd51.4 nm andL
53 mm. This value is to be compared with the previo
estimation of the Coulomb self-energy of the external cha
^HC&;515Qex

2 meV in Eq. ~34!. This indicates that many
internal electrons are influenced by the external charge
2-7
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rearranged. To confirm this we plot the expectation value
the internal charge density in Fig. 2.

Notice that the induced charge density spreads within
range ofO(d).13 This fact can be recognized by the follow
ing reason. In Eq.~63!, we may approximately regard th
summation overn by integral ofa[2n(R/L) if the length of
a nanotube is huge compared with the circumference (R/L
!1). This gives

QexE
01

`

2

8
a

p

c

vF
K0~a!

118
a

p

c

vF
K0~a!

1

R
cosS a

x2x0

d Dda. ~64!

Therefore a remaining typical length scale is the diamete
a nanotube. Therefore the length of the nanotubes has
small dependece on the screening effect. Off course,
screening length depends on the physical parameter suc
the coupling constant of the Coulomb interaction (a) and the
Fermi velocity. We also plot Eq.~51! of the one fermion
case. The equation corresponds to the week couplinga
→a/4) of the four fermion case. The screening length
related to a cutoff in the long-range Coulomb interactio
then if we take another type of cutoff, the screening len
depends on it.

Let us consider nanotubes having different diameters. F
ure 3 shows the induced charge distribution~63! for nano-
tubes with d50.7,1.4, and 2.1 nm. Here we suppose t
these nanotubes have the same lengthL53 mm. It should be
noted that the screening length is proportional to the dia
eter of a nanotube.

V. GATE-ELECTRON INTERACTION

In this section we consider the position dependent g
voltage and discuss the effect of the Coulomb interact
between the internal electrons in this system. The gate v
age is expanded in a Fourier series

FIG. 2. Position dependence of the induced charge density in
presence of an external spinless point particle~33! that has unit
chargeQex51. The screening length reaches severald ~diameter of
a nanotube!. The solid line is given by the formula of the fou
fermion case~63!, the dashed line is for the one fermion case~51!.
This dashed line corresponds to the week coupling case (a/4) of the
four fermion case. We usedd51.4 nm andL53 mm in these plots.
19541
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Vg~x!5g(
nPZ

vg
ne2 i (2pnx/L), ~65!

whereg has the dimension of voltage. In this case the ga
electron interaction consists of the zero mode and nonz
modes

HG5egvg
0Q1(

i PS
(
n.0

eg@vg
n~ j L,i

n !†1~vg
n!* j L,i

n #

1eg@vg
nj R,i

n 1~vg
n!* ~ j R,i

n !†#. ~66!

Let us concentrate on the nonzero modes of the one
mion case without an external charge. The Hamiltonian
the nonzero modes is rewritten as

Hn5En@$~ j̃ L
n!†1Gn~vg

n!* %~ j̃ L
n1Gnvg

n!1$~ j̃ R
n !†1Gnvg

n%

3$ j̃ R
n1Gn~vg

n!* %1n#2Dn22EnGn
2~vg

n!* vg
n , ~67!

where

Gn5
eg

En
AD

En
. ~68!

The above Hamiltonian gives us definitions of the vacuu

~ j̃ L
n1Gnvg

n!uvac1 ;Vg&50,

@ j̃ R
n1Gn~vg

n!* #uvac1 ;Vg&50, n.0. ~69!

With these definitions we compute the expectation value
the charge density operator. As a simple example, we u
local gate potential, which has the Gaussian form

Vg~x!;gAk

p
e2k(x2x0)2

, vg
n;e2p2n2/kL2

ei (2pnx0 /L),

~70!

he FIG. 3. Diameter dependence of the screening length. The s
of the length is given by nanometer unit. The solid line is ford
51.4 nm metallic nanotube, the dashed line is ford52.1 nm case,
and the dashed-dotted line is ford50.7 nm. We useL53 mm and
Qex51 in these plots.
2-8
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wherek decides the size of the local gate potential. Here
set k51/d2. This gives the induced charge density for t
four fermion case,

^J~x!&452 (
n.0

4
2eg

D

114
2bn

D

2

L
e2(R/L)2n2

cosS 2pn

L
~x2x0! D .

~71!

In order to see the effect of the long-range Coulomb inter
tion on the induced charge density, we plot this function w
the Coulomb interaction and without it (bn50) in Fig. 4.
The plots in Fig. 4 show that the long-range Coulomb int
action between the internal electrons significantly chan
the response of the system to the external perturbation.
effect of the Coulomb interaction on the induced charge d
sity appears in the denominator of the above result. It sho
be noted that the finite width of the local gate voltage ma
the effective range ofn in the summation small and the hig
frequency modes of the potential ineffective.

VI. DISCUSSION AND COMMENTS

In this paper we have analyzed the charge screening e
in metallic carbon nanotubes. The significance of our pres
work is as follows.

We modeled the Hamiltonian~6! describing the low-
energy excitations in metallic nanotubes and solved the
tem in the presence of the external charge and the local
voltage. It was found that when we put an external parti
on a metallic nanotube, the electric charge of the particl
screened by internal electrons due to the long-range C
lomb interaction between the particle and the internal e
trons. The Coulomb interaction is strong as compared w
the energy scale of the kinetic Hamiltonian~32!. This fact
makes the quantum-mechanical screening complete.

The screening length is given by about the diameter o
nanotube in regard to the long-range Coulomb potential~24!.
However the length depends on the cutoff in the potentia

FIG. 4. Position dependence of the induced charge density
the local gate voltage~70!. The solid line is given by the formula
~71! and the dashed line is given by the same formula howe
without the Coulomb interaction (bn50). We set 2eg/D51 for a
metallic nanotube withd51.4 nm andL53 mm.
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the Coulomb interaction~see Appendix A!, therefore it is
important to understand the short distance behavior of
potential to find more accurate value of the screening len
This is a nontrivial problem because the short distance c
responds to the high-energy region, hence we necess
examine other bands in addition to the linear bands. Anyw
the effective range of screening~about the diameter of a
nanotube or less than that! is very small compared with the
length of a nanotube, the end of a nanotube~cap! can be
thought to be ineffective to the screening phenomena.

The formula for the induced charge density in the pr
ence of a point particle is given by Eq.~63!. The summation
overn in this equation converges due to Eq.~32!. Due to this
an extra cutoff ofn is not necessary.14 In substance the sum
mation converges up ton;O(L/d). However, the high-
frequency modes@n.O(L/d)# of the long-range Coulomb
interaction might be influenced by the other bands that
not belong to the ‘‘massless’’ dispersion bands. We wo
like to make a quantitative analysis of these ‘‘massiv
bands in a future report.
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APPENDIX A

We may use another kind of the long-range Coulomb
tential which is derived from integrating out the circumfe
ence degree of the Coulomb interaction with a cutoffaz .8

The interaction is given by

HC5
e2

8pE E
D

J~x!V~x2y!J~y!dxdy ~A1!

with the potential

V~x!5
1

Auxu21d21az
2

2

p
KS d

Auxu21d21az
2D . ~A2!

K(z) is the complete elliptic integral of the first kind and th
cutoff az(;a) denotes the average distance between apz
electron and the nucleus. It should be noted that a new len
scale az in addition to L~length of a nanotube! and
d~diameter! is coming out. This scale modifies the behavi
of the potential at short distance (x→0) as is shown in
Fig. 5.

Hence Fourier components of the potential

V~n!5
2

pE0

p
22K0F2n

R

L
Asin2x1S az

d D 2Gdx ~A3!

are different from the previous oneV(n);2K0@2n(R/L)#.
We plot the induced charge density using Eq.~A3! in Fig. 6.
It can be seen that the screening length is about one-ha
the length of the diameter.

It is important to note that the effective range ofn sum-
mation in the formula of the induced charge density becom

y

r

2-9
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large compared with the Coulomb interaction in the te
Within this plot, the summation converges up ton
;O(L/paz). So, it is not clear whether the screening effe
can be recognized in the framework of the ‘‘low-energ
excitations. In order to answer such question, we introduc
regulator to examine if the high-frequency modes of the
tential give a significant contribution to the final result14

Here we take a simple regulator

reg~n!5
1

exp@n2n* #11
, ~A4!

wheren* ;O(L/d). We define the following induced charg
density:

^J~x!&4
reg[ (

n.0
2

reg~n!
8bn

D

11
8bn

D

2

L
cosS 2pn

L
~x2x0! D .

~A5!

FIG. 5. Position dependence of the Coulomb potentials. T
solid line is given by the formula~A1! and the dashed line is th
potential that we used in the text. Here we taked51.4 nm andaz

51.4 Å.

FIG. 6. Position dependence of the induced charge density b
external spinless point particle~33! with Qex51. The solid line is
given by the formula for the four fermion case~63!, the dashed line
is for the one fermion case~44!. The dotted-dashed line shows th
function in Eq.~A5! that is regularized by the function~A4! with
n* 53000;O(L/d). We use the Fourier components~A3! and take
az51.4(;a) Å, d51.4 nm andL53 mm in these plots.
19541
.

t

a
-

This function is also shown in Fig. 6. We see from this figu
that the induced charge density oscillates. This is due to
regulator and does not have any physical meaning. W
needs to be emphasized at this point is that the scree
effect arises from the contribution of the low-energy regi
n,n* . Thus it is concluded that the charge screening can
analyzed in the low-energy physics.

Let us consider nanotubes having different diameters. F
ure 7 shows the induced charge distribution for nanotu
with d50.7,1.4,2.1 nm by means of the Coulomb potent
~A2!. Here we suppose that these nanotubes have the s
lengthL51 mm. It should be noted that the screening leng
is proportional to the diameter of a nanotube. However
compared with the previous potential case~Fig. 3!, the diam-
eter dependence is rather weak.

APPENDIX B

Here we derive the final results, Eq.~59! and ~60!, using
the operator decomposition into spin and charge. First
consider the density operator forK Fermi point. We define
the following operators for theK point:

JL,CK
5JL,K↑1JL,K↓,

JL,SK
5JL,K↑2JL,K↓, ~B1!

where we omit spatial dependence of these operator for s
plicity andJL,CK

,JL,SK
express the charge and spin operat

of left-handed fermions in theK Fermi point. Similarly for
the right-handed sector atK Fermi point, we define

JR,CK
5JR,K↑1JR,K↓,

JR,SK
5JR,K↑2JR,K↓. ~B2!

The commutation relations between these operators ca
calculated by using the commutation relation of original o
erators (JL,i ,JR,i). For example, we obtain the following
commutation relation:

e

an

FIG. 7. Diameter dependence of the screening length. The s
of the length is given in nanometers. The solid line is ford
51.4 nm metallic nanotube, the dashed line is ford52.1 nm case,
and the dashed-dotted line is ford50.7 nm. We use the Fourie
components~A3! and takeaz51.4(;a) Å and L51 mm in these
plots.
2-10
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@JL,CK
~x!,JL,CK

~y!#52
i

2p
]xd~x2y!. ~B3!

For K8 Fermi point, similarly we define

JL,CK8
5JL,K↑8

1JL,K↓8
,JL,SK8

5JL,K↑8
2JL,K↓8

,

JR,CK8
5JR,K↑8

1JR,K↓8
,JR,SK8

5JR,K↑8
2JR,K↓8

.

Using above definitions of the density operators, we de
the symmetric and antisymmetric combination concern
two Fermi points using the above spin and charge opera
for the left-handed sector as follows:

JL,C1
5JL,CK

1JL,CK8
,JL,C2

5JL,CK
2JL,CK8

,

JL,S1
5JL,SK

1JL,SK8
,JL,S2

5JL,SK
2JL,SK8

.

Similarly for the right-handed sector

JR,C1
5JR,CK

1JR,CK8
,JR,C2

5JR,CK
2JR,CK8

,

JR,S1
5JR,SK

1JR,SK8
,JR,S2

5JR,SK
2JR,SK8

.

We get the following kinetic Hamiltonian in terms of thes
new density operators

HF5DFL

8ED
:JL,C1

~x!21JR,C1
~x!2:dx2

1

12G
1DFL

8ED
:JL,C2

~x!21JR,C2
~x!2:dx2

1

12G
1DFL

8ED
:JL,S1

~x!21JR,S1
~x!2:dx2

1

12G
1DFL

8ED
:JL,S2

~x!21JR,S2
~x!2:dx2

1

12G .
Let us define the following operator and this is actua
equivalent to the charge density operator,

JC1
5JL,C1

1JR,C1
, ~B4!

J~x!5JC1
~x!. ~B5!

Therefore we find that the total charge sector is decoup
from other operators and this is the famous spin and cha
separation in one-dimensional systems. The Coulomb in
action is written only by the total charge density. Hence
combine the kinetic term and the long-range Coulomb te
and defineC1 sector as follows:
,

19541
e
g
rs

d
ge
r-

e

HC1
[DFL

8ED
:JL,C1

~x!21JR,C1
~x!2:dx2

1

12G1
e2

8p

3E E
D

@JC1
~x!1Jex~x!#@JC1

~y!1Jex~y!#

Aux2yu21d2
dxdy.

~B6!

This Hamiltonian is very similar to the one fermion case t
we have analyzed. The current operator is defined in
same way as in the preceding section

JC1
~x!5 (

nPZ
@~ j L,C1

n !†1 j R,C1

n #
1

L
e1 i (2pnx/L). ~B7!

Notice that the commutation relation is modified

@JL,C1
~x!,JL,C1

~y!#54
i

2p
]xd~x2y!, ~B8!

and we obtain the current algebra

@ j L,C1

n ,~ j L,C1

m !†#54ndnm , ~B9!

@ j R,C1

n ,~ j R,C1

m !†#54ndnm . ~B10!

Analysis of the above Hamiltonian can be done simula
the one fermion case. We decompose it into zero mode
nonzero modes,

HC1
5H02

D

12
1 (

n.0
Hn , ~B11!

where

H05
D

16
@^Q&21^Q5&

2#1Ec~^Q&1Qex!
2 ~B12!

Hn5
D

4
@~ j L,C1

n !† j L,C1

n 1~ j R,C1

n !† j R,C1

n #1bn@~ j L,C1

n !†

1 j R,C1

n 1~ j ex
n !* #3@ j L,C1

n 1~ j R,C1

n !†1 j ex
n #. ~B13!

We can get this Hamiltonian by the following replacemen
the one fermion Hamiltonians~40! and ~41!, see also Eq
~61!,

D→ D

4
. ~B14!

Therefore formulas of the charging energy and indu
charge density for the four fermion case can be obtained
the above replacement in the equations, which was obta
in the analysis of the one fermion case.
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