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Charge screening effect in metallic carbon nanotubes
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The charge screening effect in metallic carbon nanotubes is investigated in a model including the one-
dimensional long-range Coulomb interaction. It is pointed out that an external charge which is being fixed
spatially is screened by internal electrons so that the resulting object becomes electrically neutral. We found
that the screening length is given by about the diameter of a nanotube.
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[. INTRODUCTION Sec. V we consider the gate-electron interaction to show the
effect of the long-range Coulomb interaction against an ex-
Recently carbon nanotuble€CNTSs) have attracted much ternal perturbation. Conclusion and discussion are given in
attention from various points of view. Especially their unique Sec. V1. An other type of the Coulomb potentié consid-
mechanical, electrical, chemical properties have stimulateg@red in Appendix A. We give an alternative simple derivation
many people’s interest in the analysis of CN'fsThey have o obtain main results using the spin-charge separation in
exceptional strength and stability, and they can exhibit eitheAppendix B.
metallic or semiconducting properties depending on the di-
ameter and helicit§®> Due to their small size, properties of Il. THE HAMILTONIAN
CNT'’s should be governed by the law of quantum mechan-

ics. Therefore it is quite important to understand the quantum. Low-energy excitations in mgtalllg carbon ngnotubes con-
behavior of electrons in CNT's. sist of four independent fermion fields. Their quanta are

However in a low-energy region<(10* K), we do not spin-up (1) and -down () electrons in th&k andK’ Fermi

have to examine all electrons in the system but Iow-energ}pomts' We denote these fields as

excitations near the Fermi level. The low energy excitations y

at half-filling move along the tubule axis because the circum- v, :( ') e (T, X (KK, (1)
ference degree of freedofan excitation in the compactified Rii

direction is frozen by a wide energy ga&(loél K). Hence wherei is a label for the four fermions and these fermions

this system can be described ad & 1)-dimensional system. : )
Furthermore, in the case of metallic CNT's, the system de™ © expressed bWKT’\PKL’\PKT’\PKL’ respectively. For ex

scribing small fluctuations around the Fermi points is equiva@mPple, the fieldV, . expresses the spin-up electron field in
lent to the two components “massless” fermions i1  the K Fermi point. Hereafter we useas an element of the
dimensions. This allows us to analyze the low-energy exciset: S={K; ,K ,K{ ,Ki}E(T,L)x(K,K’) as in Eq. ().
tations with sufficient accuracy by means of a technique irEach fermion field consists of two-component spinor, which
quantum field theory. we nameys_; andyg ;. This two-component structure is due

Quantum-mechanical behavior of the “massless” fermi-to the specific lattice structure of the graphite sHédthe
ons in metallic CNT's is governed by many kinds of subscriptsL andR denote left-handed component and right-
interaction®~® Among others the Coulomb interaction is the handed component, respectively. The left and right are de-
most important interaction and drives the system into &ined by the eigenvalue of the matriX(= o3) andoj is the
strongly correlated system. The purpose of this paper is ta component of the Pauli spin matrix.
investigate how the Coulomb interaction plays the role when Time evolution of these fields is governed by the compli-
the system is perturbed. Particularly we try to answer theated Hamiltonian in realistic circumstances. For example,
following basic question. “What is happening when we puttubes are not strict straight line but generally Beadd the
an external charge on a metallic carbon nanotube?” The exend of a tubeécap might mix the wave functions of different
ternal charge which we consider in this paper, is externallyFermi pointst> We restrict our attention to the most basic
fixed spinless particle. This is thought to be a charged impuand important interactions: kinetic interaction, one-
rity in a metallic nanotub&” To answer the above question dimensional long-range Coulomb interaction and gate-
we investigate the charging energy and charge screeninglectron interaction with a simple boundary condition. The
effect 13 kinetic term is

This paper is composed as follows. A model Hamiltonian
for the low-energy excitations in metallic nanotubes is con- t + Px
structed in Sec. Il. In Sec. Ill, we rewrite the kinetic Hamil- HFZES v hF‘I'i:”FES Wi 0 -P i, (@
tonian in terms of current operators. Then we examine the X
Hamiltonian including the long-range Coulomb interactionwhere P,=i%4d, is the momentum in the tubule axis direc-
and analyze some effects of the Coulomb interaction ortion (=xe[0:L]=D) andvg is the Fermi velocity. It is
charging energy and charge screening effect in Sec. IV. Imemarkable that the dispersion relation is linear due to the
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special band structure of the electrons in the graphite L
sheet. Therefore, we call these fermions “massless” fermi- )
ons. :
The one-dimensional long-range Coulomb interaction is
& Iy k 'io “éld
He=g— f sy, ®
87 Jp/|x—y|?+d
where e is the electron charge and in the denominator (a) ) r (b) o I
denotes the diameter of a nanotubéx) stands for the sum I
of each fermion charge densiﬂy(x)[z\lff(x)\lfi(x)], i ‘ ¥ 3 L ( n
Joz(x) =6(z — z v
I =2, J(x). (4 e=(®) = 8(z = 20) T
ieS
A comment is in order regardlng |ntroduc|ng the cutofin FIG. 1. The perturbation&xternal Charge and gate-electron in-

the Coulomb potential in Eq3). When we write the Cou- teraction and all relevant scale of this system.
lomb interaction without the cutoff, it has an ultraviolet di-
vergence in the limit ok—y. To avoid the divergence, we system. The leftinsef) in Fig. 1 indicates a perturbation by
need to introduce a cutoff. It is appropriate to set it the di-an external charge that has the charge denkiffx). The
ameter of a tube because when two electrons on a nanotulight inset(b) shows the interaction between a local gate
come from opposite sides of the tubule axis direction, theyelectrical contagtand a tube. Because we model the system
repeal and pass each other. At the moment they approaé$ one-dimensional one, we should restrict our attention to
most, there is still a distance about the diameter of a nandhe perturbation that has the radial symmetry as is shown in
tube to decrease the energy of such event. This is an origin &foth insets. However one may apply the model to a pertur-
the cutoff. Similar kind of cutoffin the Coulomb potential is  bation localized in radial direction providing the perturbation
derived from integrating out the circumference degree of thdés weak enough’
Coulomb interaction. Both potentials have the same behavior
at long distance scale—y|=0(d). However there is a sig-
nificant difference at short distance scdbe—y|<O(d).
Some detailed discussions about this potential are given in We have specified the Hamiltonian density that describes
Appendix A. the low-energy excitations in metallic nanotubes. In this sec-
We also include the effect of gate voltage on a nanotubetion we quantize the massless fermion fields and rewrite the
The interaction between the gate voltage and electrons is kinetic Hamiltonian in terms of the bosonic current
operators? The Coulomb interaction and gate-electron inter-
He=eVgd(x), (5 action will be investigated in later sections.

whereV is a gate voltage that the massless fermions feel. It The energy eigenfunctions of the first quantized kinetic
should be noted that the gate voltage is not usually equivaHamiltonian are given by
lent to a voltage of the gate itself because of the capacitance
of a substrate. We may consider the position dependent gate 1 1
voltageVy(x) as a model for an electrical contact or as an hFl!fn(o) :Enl;[fn<0>! (7)
external perturbation to a nanotube. Response of the system
against a local gate voltage is investigated in Sec. V. By
comparing the system including the long-range Coulomb in- 0 0
teraction with the one excluding the interaction, we show hFl//n(l) = —€n¢n< 1)7 8
how the long-range Coulomb interaction changes the re-
sponse to the local gate voltage.

The microscopic Hamiltonian density for this system is

Ill. QUANTIZATION OF ELECTRON

1
lﬂn(X) — e—l(en/ﬁv,:)x’ (9)
H=H|:+H0+HG. (6) VL

We shall analyze this Hamiltonian without any approxima-Where6n is the energy eigenvalues ahds the length of a

tion. As for the screening of an external charged particle thaf,o5|jic nanotube. The energy eigenvalues are quantized by
is being fixed on the surface of the metallic zigzag-type, 1)o,ngary condition. Here we impose the periodic boundary
nanotubes and do not have a spin, we may neglect the no

. . ) ; Qondition on the wave functiongr,(x+L) = ¢,(x). This
linear interactiong,such as the backscattering processes, beboundary condition yields the following energy spectra:
cause the total charge sec{®6) decouples from these in-
teractions.

Figure 1 shows a nanotube, the perturbations that we shall € = 2mhue
analyze in the present paper, and all relevant scale of this n

3 n=An, (10
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where A is an energy scale, which depends only on the o 0 n i o
length of a nanotube. In order to evaluate the numerical JLZE Iiis JL,i:mEZ 8mamins JLi=QLi-

value of this energy we use the formula for the Fermi veloc-
ity The Fourier componernit’ ; (current operatojssatisfies the

3 following commutation relations on the fermion Fock space

ya ¢ (11)  (current algebra

UFTon T 343

i mH_ s im o iom
wherec is the speed of lighty (=2.7eV) (Ref. § is the L (e 1= dam, (GC)'=00i (19

overlap (hopping integral anda (=1.42 A) is the nearest- \we proceed to consider the right sector in the same way. The
neighbor distance between two carbon atoms. For a singlewyrrent operators are

wall nanotube withL=3 um, A is about 1.2 meV.

Each massless fermion field can be decomposed into the 1
left- and right-handed component field as ‘JR(X)EES Jri(X)= EZ jQEe“(Z””X"‘), (20
le ne
Wi(x, )=V i(x,t)+WPri(Xt), (12
wheret is the time. The left- and right-handed component JR=2 ki JRi= 2 b bl JRi=Qri-
fields consist of the energy eigenfunctions and annihilation ! mez
operators of each quantum, They satisfy the bosonic commutation relations
q’L,i(Xat):Z ainlpn(x)ei(en/ﬁ)t( 3), (13) [jg,iv(jg,j)-r]:n&jénma (jg,i)‘r:jlg,rin' (21)
neZ

The left chargeQ, ; and right chargeQg; are conserved
0 separately because the system is invariant under the follow-
Vri(x,t)= >, b‘nz//n(x)e*‘(fn’ﬁ)t( ) (14 ing two independent global transformations of fermion
’ nez 1 fields, ¥ j—e'Liw | Wp,—e' Rivg;. We must rewrite
the fermion Hamiltonian such that all the matrix elements are

i J . . . . . _ e i - .
wherea, by, are independent fermionic annihilation opera- e same as the original fermion Hamiltonian by means of
tors of the left-handed component of e fermion and the ¢, rent algebra. It is well known that the following Hamil-

right-handed component of thjéh fermion satisfying the an-  opjan has the same matrix element as the original fermion
ticommutators Hamiltoniart®*’

{an.am}={by.by}=0"6nm. (19 (<Qi>2+<Q5,i>2 _ i)

HF:AES 4 12

All of the other anticommutators vanish.

In 1+ 1 dimensions, it is possible to construct the fermion
Fock space by acting bosonic creation operators which are + 2 (G T+ (R TR
bilinear of the fermion operators on the vacuum. Because the iSo VIR IR RIT IR

Coulomb interaction consists of a product of the charge den- )
sity, it is very convenient to rewrite the kinetic term. ~ Where thel (1) chargeQ; and the chiral charg®s; for each

(=$H;) using the bosonic charge density operators. For thighassless fermion is defined by the summation and subtrac-
purpose, it is useful to introduce the left and right currents adion between the left and right charges,

follows:
Qi=Qi*+Qri, Qs5;=QL;—Qrgii- (23

JOO =100+ Ir(X). (16) The physical meaning of the chiral charge is spatial integra-

The left and right currents for each fermion, are defined astion of the electric current densitgv e[ J_(x) —Jr(X)] in a
tube. This charge measures the left-right asymmetry of the

: (22

J. i(x):\]fI (0P (%), vacuum and is defined by the difference of the left charge
’ ' ' and the right charge on the vacuum. Note that the vacuum
Jri(X) =Tk () Vgi(x). (17)  energy in the last equation is nonvanishing, which is due to

the finite-size effect of a nanotube. He(®) means the
We expand these currents by the Fourier modes. We stavacuum expectation value of an operator O. We have defined
with the left sector. The left current can be written as fol-the second quantized vacuum by filling the negative-energy
lows: modes, leaving the positive-energy modes empty.

1
JL(X)E;S ‘JLJ(X):;Z JEEe |(27-rnle)7 (18) IV. LONG-RANGE COULOMB INTERACTION

The one-dimensional long-range Coulomb interaction in
where each components are given by metallic nanotubes is given by the following potential form:
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e2 J)I(y) Total charge of the external particle is given by the spatial
chf Hcdx=§f f ——=——dxdy, (24) integration of thec-number external charge density which is
D D

VIx=y|*+d? referred toQsy,

whered is the diameter of a nanotube and this is the trace of
the pseudo-one-dimensional nature of carbon nanotubes. The Qefo Jex(x)dx:jgx. (31
total Hamiltonian of this system consists of the kinetic b
Hamiltonian and the Coulomb interaction. The Kkinetic
Hamiltonian is written in terms of the current operators as is _ e
shown in the preceding section. The Coulomb interaction calfms of the current operators, Wh'Ch. modifies th? energy
also be rewritten in terms of the current operators becausg’eCtra of the_ or|g|na_l kinetic Hamiltonian that we dlscussgd
total charge density in the Coulomb interaction is a sum of! the preceding section. 'Before' we gnalyze the total Hamil-
the left and right current operators, tonian quantum mechanically, it is important to know f[he
order of magnitude of the long-range Coulomb interaction.
1 Typical energy scale of the Coulomb interactigy,) of this
Jx)=2 [(jHT+jR]-eti@miL) (25)  system is strong as compared with the energy scale of the
neZ L kinetic interaction. This is shown by the ratio of the energy
scale of the Coulomb interaction to the energy separation of
the kinetic interaction

We finally obtain the long-range Coulomb interaction in

Hence, by replacind(x) by Eq. (25) in the Coulomb inter-
action (24), we obtain

e2

? 62 syt sn &ZziK (2[1—) (32)
Hc:mv(o)(§s<‘?i> g & VLD R AT woe ol L)

wherea(=e?/4mhc~ 135) is the fine-structure constant. We

n - n T
XLUc+(R)')- (26) used the approximation formule(n)~2Kg[2n(R/L)] in
We have introduced the Fourier components of the CoulomiFd: (32). The value of the ratio is more than 1 for
potential as <O(L/2R). Therefore this system is thought to be a strongly
correlated system. So, we should first estimate the Coulomb
. cog2nx) energy scale of the physical quantities in this system. For this
V(n)zzf dx——, (27) purpose, we treat the Coulomb interaction roughly in Sec.
0 R\ 2 IV A. A detailed analysis of the system will be given in latter
X2+ | — section.
whereR is the circumferenceR= 7d) of a nanotube. The A. Order estimation

Coulomb interaction is given by the sum of zero mad®) When an externally fixed particle with total char@e, is

and nonzero mode¥(n). The nonzero Fourier moden(  ,t on a metallic nanotube, the charge density of the particle
#0) can be approximated to the modified Bessel func'uor]mIy be modeled by thé function

V(n)~2Ky[2n(R/L)] quite well if R/L<1.

~ We can include externa}l charges in the theory .by replac- Jox(X) = Qaxd(X—Xo), (33
ing the total charge density with the sum of the internal _

chargeJ and externalc-number charge density,, in the ~ where we put the particle a(e[0:L]). It can be thought

Coulomb interaction that this external charge distribution is a model for a charged
spinless impurity.
e? [I(X)+ Iy (X)[I(Y) +Iex(Y) ] It is important to estimate the order of magnitude of the
Hc=gj fD Ty @ dxdy. energy that we need to put a fixed external charge on a me-

28) tallic nanotube. We simply neglect the interaction between
internal electrons and the external charge, so we Xet))
It is straightforward to derive the corresponding expression=0. In this case, we get

in terms of current operators
2 2
e Jex(X)Jex(y) e 1
’ <Hc>=ﬁf f — 7 =g g Qe

o 2 227 dxdy
=—— - imT+jn VIx—y|?+d?
Hc 87TLV<0>(§S<Q.>+JEX 2 Bl iR x=yl a
FOo* T+ GRT+ind, (299  Estimation of this value for a metallic nanotube with

=1.4 nm gives(Hc)~515Q2, meV. As is discussed in the
following section, this energy is strongly modified by the
Coulomb interaction between internal electrons and the ex-
1 ternal charge. The internal electrons move or rearrange in
Jed(X) = — 2 in g-i2mnxiL) (30) order to decrease the energy of the system. This means that
ex ]ex " H
L rez the charge screening effect occurs.

where we introduce8,= (e?/4=L)V(n) and define the Fou-
rier components of the external charge as follows:
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On the other hand, in an experiment concerning transposvhere we omit the subscripbecause we consider one mass-
on nanotubes, an electron flows from the electric contact anttss fermion case. The kinetic term and the Coulomb term
after some period it spreads uniformly in a nanotube. Theran be combined as follows:

we have
A
1 H=HO—1—2+E Hp, (39)
Jex(x):QexE- (39 n=0
where
In this case, the Coulomb self-energy is
A
d\2 HOZZ[<Q>2+<Q5>Z]+Ec(<Q>+Qex)zu (40)
1+|=] +1
ez 1 L 2 82 1 2L 2 inytin nytin Nyt qn HNY
(He)=g—In — Qex~ 57— M| 4| Qex: Ho=ALGD T+ GRRIF Bl (D iR T (o™ ]
1+(-] -1 X[+ (R +ied. (4D)

(36)  Hg is the zero mode Hamiltonian whose structure is simple
and is already diagonalized. Hereafter we choose the vacuum

For a metallic nanotube witd=1.4 nm andL.=3.2 um, ity vanishingU(1) charge (Q)=0) and the chiral charge

we obtain(Hc)~3.8Q2, meV. It should be noticed that Eq. _ T . _ 5
(36) is the same formula that is usually used in the analysi (Qg)=0) for simplicity. In this case we havelo=E,Qcy.

We diagonalize the HamiltoniaH,(n#0) using the Bogo-
of the Coulomb blockade phenomena of a transport eXPeric Lov transformation of the current operators

ment of nanotubes. This energy is called “charging energy
(E.)” and is not modified by the interaction with internal ~n . n
( it ) (coshtn smhtn)< il ) w
= y 4

charges due to its uniform distribution,

~ H H T
21 (oL 5N sinht, cosht,/\ (jR)
ECE E Eln( F) . (37) where

An experimental value of the charging energy for a metallic ) Bn 1
single-wall CNT withd+1.4 nm and_= 3.2 um in length is sinh Zt“:E_n’ cosh Ztn:|5_n(A+:3n)-
aboutE.=3.8 meV(Ref. 18 and is very close to the above
estimation. This is a verification of the cutoff in the potential 28
of the Coulomb interaction. E.=AA/1+ 21

n A

B. Screening effect The Bogoliubov transformed current§{(j5) satisfy the

We have so far considered the long-range Coulomb intersame bosonic commutation relations as the original current
action very roughly. In this section we solve the systemoperatorg19) and(21),
guantum mechanically and examine the charge screening ef-
fect. To invest?gate this effect, we_sh_all compute the charging G0.GMN=[78.0M=n8nm. (43)
energy and induced charge distribution by an external
charge. We start with one massless fermion case. This cagdter some calculations we diagonaligg, as follows:
corresponds to an approximation that we only consider the
system with one massless fermion, for examiig, . Four  H,=E.[{(TD) ™+ y(i0)* HT T+ yai ) +H{(TR T+ yni 0}
massless fermions cagmetallic nanotubes casean be ob-

tained by straightforward extension of the one massless fer- g

~ . A
X{JR-}- Vn(ng)*}+n]_An+Bn§(ng)*ng' (44)

mion case. 2
1. One fermion case where vy, = sinh 2,(cosht,—sinht,). It is easy to find condi-
The total Hamiltonian is given by tions of the vacuunivac; ;Je,) in the presence of the exter-
nal chargeg“vac,” in the ket denotes vacuum state for the
“ : less fermiop
<Q>2+<Q5>2 1 . - - - one mass
H:A[(T_l_z + 2 LAY+ GRR] o
(]L+ ')’nJex)|VaCl;Jex>:01

+EC(<Q>+Q9X)2+nZO Bn[(]E)T+Jg+(ng)*] ("]'g_l_ yn(jgx)*)|vaq.;‘]ex>:01 n>0_ (45)

XL+ (R T+ ied, (38) We estimate the energy change between the two vacua
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lvac;;0) (without an external chargend|vac;Je,0 (With  (J(x));=(vac,;Jed I(X)|VaC; ;Jey)
an external charge

A 1
=2 Ve (—2mL

SE=(vac;;Je H(Jey |vac ; Jey) — (vac ;0|H(0)|vac; ; 0) A>0
X[(jgx)*e+i(277nX/L)+jgxe—i(anX/L)]
AZ

:EcQ§X+ nZO Bn?(]gx)*lgx %

n A 1

=N
) IBn - | n>0 1+ fn

=EQit 2 — 55 (i iex, (46) | |

An X[(jgx)*e+|(217nx/L)+jgxefl(anx/L)]. (50)

For the s-function charge distributioii33), we obtain
where H(J.,) denotes the Hamiltonian with the external

charge distributionde,. If we neglect the Coulomb interac- %
tion between the internal charges and the external charge, as (300)1= Q0> — A Eco an(x—x )
in the preceding section, the charging energy is given by 17 exad 28, L L e
1+ A
(51
EcQext 2, Buliediex- (47)

2. Two fermion case

) L ) Let us proceed to the two fermions case. Here weiuse
Companng this with the exact resu#t6) one can recognize ={1,2 instead of, for examplé,={K,K,} for simplicity.
the difference between these results. The effect of interngt\ap, in the two fermions case zero mode sector of the
charge redistribution enters in the denominator of second,miltonian is very simple and it gives only the charging

E—;-rm.in Eq. (46). Thﬁrefore if the %ner_gﬁ/ iepgration gf_ the energyEcng. We should diagonalize the nonzero modes of
Inetic spectrum is huge compared with the Coulomb intersy, o |45 miltonian. This part is given as follows:

action,
Ho=ALG ) It (R TTRAHALGE DI 2+ (1R TR
%<1, (48) Bl LD HiRaT (T 2T+ iRt (0™ ]
X[]E,l"’(]B,l)T"'jE,z"'(jg,z)T"’jgx]- (52)

the effect of rearrangement of the internal electrons is veryirst we focus on the fermion labeled by 1. If we regard

small so that the charging energy is hardly modified from thg " +(ji )T+j1 asj? in the previous analysis, we get the
previous order estimation. However for metallic nanotubestojlowing expression instead of E¢44)

the situation is completely different as we have mentioned at
Eq. (32. H=E. (" )T+ N ytaan LenysqyAn o rin

Next, let us consider the rearrangement of the internal QUL 7l (L2 Hirat (o)™ UL mliL
electrons. This rearrangement can be shown in the expecta- 4 (j8 )T+ (% 1)+ {70 )T+ 5 [i" o+ (J) T +j0 ]}
tion value of the charge density operator, ’ ’ ’ ’

X{TRat vl 0D T+ iRt (180" IH+n)—An

1 . 2

— it Ny T A+i(2anx/L) . . . . A . .

I(x) gz (o) +JR)Le +A[(JE,2)TJE,z"'(]g,z)Tlg,z]"'ﬁn?[(lﬂ,z)u'lg,z
n

F(o)* T 2+ (o) T+igd, (53

A L ~ 1
2.y LD +TRI-et 2O . .
L 0 E, L The last two lines in the above equation have almost same
structure as the one that we have analyzed in the preceding

A L .1 section, Eq(41). However in the present case, the Coulomb
— iy (7= e i(2mnxL) ; . . o !
+r1§>:o V En[JL+(JR) Jpe e (49 interaction term is modified as follows:

AZ
The expectation value can be calculated using the definition Bn— Bn—;- (54)
E

of the vacuum in the presence of the external ch&geg n
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We use the same meth@Bogoliubov transformationto 28,
diagonalize this part of the Hamiltonian with rotation angle —~
s, which is different from the previous one,j. (I(X)),= 2 — ZB _[(Jex)* eti(2mnxiL)
- _ . 1+2—1"
its (coshsn smhsn)< L2 ) 55 A
(ro)t)  \sinhs,  coshsy /| (jp)")" o EmI), (58
where It can be seen that the effect of the two fermions on the
induced charge density is also the factor 2 in front of the
A2 2B,/A terms.
= 1 A2 -
sinh 25, = = cosh Zn_F_ A+,8n—2), 3. Four fermion case
n n Eq A Four fermion case can be analyzed by the same proce-
dure as the two fermions case. The calculation is straightfor-
28, A? ward but lengthy, so we shall omit it here. Instead, we give
Fo=A~\/1+ A 2 an alternative simple derivation in Appendix. B. The formu-
Ex las for the charging energy and induced internal charge den-
This transformation gives the result which is similar to Eq.s'ty are
E=EQect 2, g L (59
Fal{(07 2"+ 8u(i80* YT 2t nid (TR T+ Snied =
_ 2 A2
X{jg,z_l_5n(jgx)*}+n]_An+:8nEE(jgx*jng 88,
" A1
(56) <J(X)>4=2 _ _[(Jex)* +|(21TnXIL)
n>0 Sﬂn
where §,=sinh %(coshsn—si.nhsn). We define the vacuum 1+ A
for the two fermion case with the external charge distribu- _
tion. +joe L] (60)

where the subscript 4 of the vacuum expectation value
({J(x))4) indicates the vacuum of the four fermion case.
Notice that these equations can be obtained from the results

(77 2+ 8ni 80 vagy; Jen =0,

{Thot Sn(ie)* }vag;Je) =0, of the one fermion case by replacing the level spacing as
~ follows:
{1+ Yn[jE,2+(jg,z)T“‘jgx]HVaCz;Jex):O- A
{TRat vl (12 + iRt (160* THVagy:Jen =0. 4

From Egs. (53, (56) and the above definitions of the For the 6-function charge distribution of the external charge

vacuum, the energy change of the two vaguac,;0) and (33 we obtain
|vac;Jey is evaluated as

o E=| Bt 2, 8/3” Qex: (62)
OE=EQht 3, Pz oz (15" I2s T
86,
Qe 2 2fn“ex)*‘ex (0904= 0, - g5 %cos(zf"u—xg)). (63
- 1+

We see that the effect of “two” fermions on the charging The numerical value of the above charging energy is about
energy is the factor 2 in front of the@ /A in the denomi-  85Q%, meV for a metallic nanotube witd=1.4 nm andL
nator of second term. This means that the charging energy 3 um. This value is to be compared with the previous
decreases more as compared with the one fermion case. @stimation of the Coulomb self-energy of the external charge
the other hand, the internal electron charge density distribuH )~ 515Qex meV in Eq. (34). This indicates that many
tion becomes internal electrons are influenced by the external charge and
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FIG. 2. Position dependence of the induced charge density in the FIG. 3. Diameter dependence of the screening length. The scale
presence of an external spinless point partid@) that has unit  of the length is given by nanometer unit. The solid line is dor

chargeQ.,=1. The screening length reaches sevdr@liameter of ~ =1.4 nm metallic nanotube, the dashed line isder2.1 nm case,
a nanotubg The solid line is given by the formula of the four and the dashed-dotted line is fo= 0.7 nm. We usé. =3 um and
fermion casg63), the dashed line is for the one fermion c#5&). Qex=1 in these plots.

This dashed line corresponds to the week coupling cas® (of the

four fermion case. We uset=1.4 nm and.=3 um in these plots.

Vy(x)=g2, vge Zmb), (65)
rearranged. To confirm this we plot the expectation value of nez
the internal charge density in Fig. 2.

Notice that the induced charge density spreads within th
range ofO(d).*® This fact can be recognized by the follow-
ing reason. In Eq(63), we may approximately regard the
summation oven by integral ofa=2n(R/L) if the length of
a nanotgbe is huge compared with the circumfererii ( HG=egv8Q+2 E eg[vS(iE,NHvS)*JE,i
<1). This gives iesn>0

gvhereg has the dimension of voltage. In this case the gate-
electron interaction consists of the zero mode and nonzero
modes

ac +edugipi+(g)* (R (66)
8— —Kp(a)
°° T UE 1 X—Xq
Qexj - —cos(a . da. (64) Let us concentrate on the nonzero modes of the one fer-
0" R mion case without an external charge. The Hamiltonian for

1+8% S Ky (a) n exter
™ UF the nonzero modes is rewritten as

Therefore a remaining typical length scale is the diameter of et nx N N A N

a nanotube. Therefore the length of the nanotubes has only Hn=En[{(1))"+ Tn(vg)* }(j L+ Thvg) +{(jr) '+ g}

small dependece on the screening effect. Off course, the ~

screening length depends on the physical parameter such as X{Tr+Ta(vg)*}+n]—An—2E,T(vg)* vy, (67)

the coupling constant of the Coulomb interactiar) @nd the

Fermi velocity. We also plot Eq51) of the one fermion

case. The equation corresponds to the week coupling (

—al4) of the four fermion case. The screening length is _%g A (68)

related to a cutoff in the long-range Coulomb interaction, " E, VE,

then if we take another type of cutoff, the screening length

depends on it. The above Hamiltonian gives us definitions of the vacuum,
Let us consider nanotubes having different diameters. Fig-

ure 3 shows the induced charge distributi@®) for nano- (7 +Twylvag;Ve) =0,

tubes withd=0.7,1.4, and 2.1 nm. Here we suppose that

these nanotubes have the same lehgH8 um. It should be

noted that the screening length is proportional to the diam-

eter of a nanotube.

where

[TR+Th(vp*1lvac;Vg=0, n>0. (69)

With these definitions we compute the expectation value of
the charge density operator. As a simple example, we use a
V. GATE-ELECTRON INTERACTION local gate potential, which has the Gaussian form

In this section we consider the position dependent gate
voltage and discuss the effect of the Coulomb interaction Vv (X)Ng\ﬁe_k(x_xo)z o @~ 722k 2gi 2o L)
between the internal electrons in this system. The gate volt- ¢ T e '
age is expanded in a Fourier series (70
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the Coulomb interactior{see Appendix A therefore it is
important to understand the short distance behavior of the
potential to find more accurate value of the screening length.
This is a nontrivial problem because the short distance cor-
responds to the high-energy region, hence we necessarily
examine other bands in addition to the linear bands. Anyway
the effective range of screenin@bout the diameter of a
nanotube or less than thas very small compared with the
length of a nanotube, the end of a nanotuybap can be
thought to be ineffective to the screening phenomena.
7Y S no-Coulomb Vg(a:) ~ 7—9———26_ The formula for the induced charge density in the pres-
7d . . . . .
Sy P Y ence o_f a point parpcle is given by E(3). The summation
S overn in this equation converges due to £82). Due to this
FIG. 4. Position dependence of the induced charge density b €xtra cutoff ofn is not necessary. In substance the sum-
the local gate voltagé70). The solid line is given by the formula Mation converges up ta~O(L/d). However, the high-
(71) and the dashed line is given by the same formula howevefrequency modegn>O(L/d)] of the long-range Coulomb
without the Coulomb interactiond,=0). We set 2g/A=1 fora interaction might be influenced by the other bands that do
metallic nanotube witld=1.4 nm and.=3 pm. not belong to the “massless” dispersion bands. We would
like to make a quantitative analysis of these “massive”
wherek decides the size of the local gate potential. Here webands in a future report.
setk=1/d2. This gives the induced charge density for the
four fermion case, ACKNOWLEDGMENTS

(J(z)) [1/nm]
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A APPENDIX A

71
(7) We may use another kind of the long-range Coulomb po-

In order to see the effect of the long-range Coulomb interactential which is derived from integrating out the circumfer-
tion on the induced charge density, we plot this function withence degree of the Coulomb interaction with a cut{)ﬁs
the Coulomb interaction and without i3(=0) in Fig. 4. The interaction is given by

The plots in Fig. 4 show that the long-range Coulomb inter- )

action between the internal electrons significantly changes e

the response of the system to the external perturbation. The HC:EJ’ jDJ(x)V(x—y)J(y)dxdy (A1)
effect of the Coulomb interaction on the induced charge den-

sity appears in the denominator of the above result. It shoultvith the potential

be noted that the finite width of the local gate voltage makes
the effective range afi in the summation small and the high Vix) = 1 2 K

frequency modes of the potential ineffective. )= JIx[2+d2+ a2 - JIx[2+d?+ a2

K(2) is the complete elliptic integral of the first kind and the

cutoff a,(~a) denotes the average distance betweerpa 2
In this paper we have analyzed the charge screening effeetectron and the nucleus. It should be noted that a new length

in metallic carbon nanotubes. The significance of our preserdcale a, in addition to L(length of a nanotube and

work is as follows. d(diametey is coming out. This scale modifies the behavior
We modeled the Hamiltoniari6) describing the low- of the potential at short distancex--0) as is shown in

energy excitations in metallic nanotubes and solved the sysig. 5.

tem in the presence of the external charge and the local gate Hence Fourier components of the potential

on a metallic nanotube, the electric charge of the particle is m

screened by internal electrons due to the long-range Cou- V(”)=;J072K0

trons. The Coulomb interaction is strong as compared wittare different from the previous oné(n)~2Ky[2n(R/L)].

the energy scale of the kinetic Hamiltoni&B2). This fact = We plot the induced charge density using E&3) in Fig. 6.

. (A2)

VI. DISCUSSION AND COMMENTS

dx (A3)

voltage. It was found that when we put an external particle
R /. a,\’
2np Sirex+ g
lomb interaction between the particle and the internal elec-

makes the quantum-mechanical screening complete. It can be seen that the screening length is about one-half of
The screening length is given by about the diameter of dhe length of the diameter.
nanotube in regard to the long-range Coulomb pote(@il It is important to note that the effective range rofum-

However the length depends on the cutoff in the potential omation in the formula of the induced charge density becomes
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FIG. 5. Position dependence of the Coulomb potentials. The FIG. 7. Diameter dependence of the screening length. The scale
solid line is given by the formul#A1) and the dashed line is the of the length is given in nanometers. The solid line is fbr
potential that we used in the text. Here we takel1l.4 nm anda, =1.4 nm metallic nanotube, the dashed line isdet2.1 nm case,
=1.4A. and the dashed-dotted line is fde=0.7 nm. We use the Fourier

componentgA3) and takea,=1.4(~a) A andL=1 um in these
large compared with the Coulomb interaction in the text.plots.
Within this plot, the summation converges up 1o
~O(L/ma,). So, it is not clear whether the screening effectThis function is also shown in Fig. 6. We see from this figure
can be recognized in the framework of the “low-energy” that the induced charge density oscillates. This is due to the
excitations. In order to answer such question, we introduce tegulator and does not have any physical meaning. What
regulator to examine if the high-frequency modes of the poneeds to be emphasized at this point is that the screening
tential give a significant contribution to the final restfit. effect arises from the contribution of the low-energy region

Here we take a simple regulator n<n*. Thus it is concluded that the charge screening can be
analyzed in the low-energy physics.

1 Let us consider nanotubes having different diameters. Fig-

regn)= m' (A4)  yre 7 shows the induced charge distribution for nanotubes

with d=0.7,1.4,2.1 nm by means of the Coulomb potential
wheren* ~O(L/d). We define the following induced charge (A2). Here we suppose that these nanotubes have the same

density: lengthL=1 um. It should be noted that the screening length
is proportional to the diameter of a nanotube. However as
regn) % compared with the previous potential c4B&y. 3), the diam-
3 reg_ 2 A 27N eter dependence is rather weak.
< (X) 4 — 813n LCO L (X XO) .
1+ APPENDIX B
(A5) Here we derive the final results, EG9) and (60), using

the operator decomposition into spin and charge. First we
consider the density operator f& Fermi point. We define
the following operators for th& point:

Jie = Jik, Tk,

JLse= Ik, 7k, (B1)

where we omit spatial dependence of these operator for sim-
plicity and JLcdLs, express the charge and spin operators
of left-handed fermions in th& Fermi point. Similarly for

the right-handed sector & Fermi point, we define

e T (J(z))5® Joa(z) = 8(z) |
1.6 L L . L L L L L L L L flf/d

-3 2.5 -2 -1.5 -1 -0.5 D 0.5 1 1.5 2 2.5 3

Jrc, = IrK, TIRK,:
FIG. 6. Position dependence of the induced charge density by an
external spinless point particl@3) with Q.,=1. The solid line is JR,SK:JR,KT_JR,KL- (B2)
given by the formula for the four fermion ca&3), the dashed line
is for the one fermion cas@l4). The dotted-dashed line shows the The commutation relations between these operators can be

function in Eq.(A5) that is regularized by the functiof4) with calculated by using the commutation relation of original op-
n* =3000~O(L/d). We use the Fourier componeris3) and take  erators (_;,Jg;). For example, we obtain the following
a,=1.4(~a) A, d=1.4 nm and.=3 um in these plots. commutation relation:
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L 1] ¢€?
[ILc (X I e (V)= 2 (95(X y). (B3) HC+EA{§J’ e, (024 Ire, (0% dx— 351+ g~
D
For K’ Fermi point, similarly we define f J, [Je, () +3e(0)][ e, (¥) +Iex¥)]
dxdy.
Juee =k Tk s, = duk = Ik Vix=y[?+d?
(B6)

Jre,.=Idrk'TIrkIrs,=Jrk' — IRk’

RGO mREGTIRKPIRSO TERIG ERE This Hamiltonian is very similar to the one fermion case that

Using above definitions of the density operators, we definave have analyzed. The current operator is defined in the
the symmetric and antisymmetric combination concerningsame way as in the preceding section

two Fermi points using the above spin and charge operators 1

for the left-handed sector as follows: JC+(X): E [P e )T+jgc+]re+i(2ﬂrrnx/L)_ (B7)

J =J +J. ¢, =J —JLc., . ) . -
LCy LG TG L C LG PGk Notice that the commutation relation is modified

Jus, =Jdis tisdis =Jdis — I s, § 5 8
J X),J 4 a S(x— B8
Similarly for the right-handed sector e, ( Le. )= (x=y

and we obtain the current algebra
Jrc, =JIrc,tIrcIre =Jrc, " IRCy g

[jrlj,C+ 7(ern,C+)T]:4n5nma (B9)
Jrs, =Irs, T Irs Jdrs =Irs, ~ IR s, -
in im 1=
We get the following kinetic Hamiltonian in terms of these lirc, »(Rre,) ' 1=4N00m. (810
new density operators Analysis of the above Hamiltonian can be done simular to
L 1 the one fermion case. We decompose it into zero mode and
He=A —f e, 0%+ Irc, (X)2dx— nonzero modes,
8Jp T 12
L 1 He,= +E Hp, (B11)
+A J Jlc (02+Ige (X)%dx— — n>0
8Jp 12
. where
+A-Lf JLs. (X)%+Igs ()2%d ! A
= : X X)<dx— —
18)o S RS 12 Ho=1[(Q)%+(Qs)?]+Ec((Q)+Qen?  (B12)
+A-Ef s (X2 +Igs (X)Zdx— —|. A gin 0 \tin n ot
18Jp "S- 'S 12| Ho=7[0Lc, ) iLe, T(re,) Tre I+ Bil(iLc,)

Let us define the following operator and this is actually

in in in in tfo;n
equivalent to the charge density operator, +lR,C++(Jex)*]x[1LvC++(JR10+) tied- (B13)

We can get this Hamiltonian by the following replacement in

Jo, =die, tre, (B4) the one fermion Hamiltonian&0) and (41), see also Eq.
61),
30=Jc. (). B5) (Y
A
Therefore we find that the total charge sector is decoupled A—>Z. (B14)

from other operators and this is the famous spin and charge
separation in one-dimensional systems. The Coulomb inteffherefore formulas of the charging energy and induced

action is written only by the total charge density. Hence wecharge density for the four fermion case can be obtained by
combine the kinetic term and the long-range Coulomb ternthe above replacement in the equations, which was obtained

and defineC, sector as follows: in the analysis of the one fermion case.
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