PHYSICAL REVIEW B, VOLUME 65, 195411
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A confined system of noninteracting electrons, subject to the combined effect of a time-dependent potential
and different external chemical potentials, is considered. The current flowing through such a system is obtained
by using the adiabatic approximation in an iterative manner. A formula is derived for the charge pumped
through an unbiased systetall external chemical potentials are kept at the same Yyalueeproduces the
Brouwer formula for a two-terminal nanostructure. The formalism presented yields the effect of the chemical-
potential bias on the pumped charge on one hand, and the modification of the Landauer faimthagives
the current in response to a constant chemical-potential differémoaght about by the modulating potential
on the other. Corrections to the adiabatic approximation are derived and discussed.
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I. INTRODUCTION AND SUMMARY dependent scattering states. The formalism is based on an
iterative solution of those states, in the adiabatic approxima-

The flow of a dc current in response to a slowly varyingtion, in which the temporal derivative of the scattering po-
time-dependent potential operating onubiasedsystem is  tential (and the scattering stajeis the small parameter. The
termed “adiabatic charge pumpind.”This phenomenon, formal derivation is summarized in Sec. Il, where we obtain
considered in Ref. 2, has attracted recently muctfhe instantaneous current in the lowest-order adiabatic ap-
theoretical ** and experiment&l~7 interest. In general, Proximation. This current is averaged over a single period of
“adiabatic pumping” occurs when the charge transferregthe modulating potential. In this way we obtain the effect of
across a boundary during a single period of a certain moduhe chemical-potential bias on the pumped charge on one
lating potential is independent of the modulation frequencyhand, and the modification of the Landauer formula caused
The periodic potential should vary very slowly in time, such by the modulating potential on the other. We find an expres-
that its frequencyn is smaller than any characteristic energy Sion for the charge pumped through an unbiased syfsem
scale of the electron'S. The process is adiabatic when the Ed. (1) below], which is particularly useful in cases where
frequency is much smaller than the Wigner delay tifhas the modulating potential operates on the entire
long as the the modulating potential is very weak. For largefanostructuré; and is spatially dependent. The Appendix

strengths of this potential, the criterion for the adiabaticityincludes the derivation of the next order correction to the

becomes more delicatsee below current. _ _
Eighteen years ago, Thoulé¥sad shown, using the adia- We investigate the lowest-order expression for the current
batic approximation, that the ground state of an infinite onein Sec. lll, confining ourselves for simplicity to a system

dimensional(1D) system of noninteracting electrons subjectconnected to two reservoirs. Our results there can be sum-
to a slowly moving periodic potential can support a dc cur-marized as follows. In a two-terminal structure, the current
rent. Later theoretical investigations of quantum pumping irdveraged over a single periog, consists of two parts. The
confined nanostructures employed the result derived biirst, denoted byt p,y,, flows even when the system is unbi-
Brouwer® which gives the pumped charge in terms of theased (but is modified by the presence of the chemical-
time-dependent scattering matrix related to the modulatingotential difference To the lowest order in the adiabatic
potential. The derivation presented by Brouwer is based ogPproximation, that current reads

the analysis of Ref. 20, which, in turn, utilizes an expansion

in the amplitude of the modulating potential in the context of | _€ § ﬂf el — i[f (E)+£.(E)]
time-dependent scattering theory. Nevertheless, it is gener- ume Aq o7 JE! '

ally accepted that the formalism of Biker et al?® and the

resulting Brouwer formulla are vaﬁﬂevgn fo_r large ampli- XZ [(rm|V|rm>—(Im|V|Im)], (1)
tudes, as long as the adiabatic approximation holds. m

This paper is devoted, among other issues, to the explo- . i
ration of this point. We consider a spatially confined systemvherel andr deQPIe t/rLeTIeft a[‘? the right leads, respectively,
of noninteracting electrons, connected by leédnoted by ~ andf; ((E)=(el"~#1.0"eT+ 1)~ are the Fermi distributions
@) to electronic reservoirs which are kept at various chemi" the reservoirs connected to the left and right leads. In Eqg.
cal potentials,u, . The system is also subject to a slowly (1) |Bm)=xjn is the instantaneous scattering state at time
varying periodic potential. We derive an expression for theexcited by an incoming wave in channalof lead 8, andV
instantaneous current flowing in this system, using timeis the temporal derivative of the time-dependent scattering
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potential. Interestingly enough, the matrix element appearingependent states in terms of the temporal derivatives of the

in Eq. (1) can be written in terms of the instantaneous scatinstantaneous solutions. This necessitates that the character-

tering matrix, reproducing the Brouwer formifia. istic inverse time constant, 4,/ which describes the time
The second part of the current, denoted Iy, flows  dependence o¥, will be smaller than any characteristic en-

only when the system is biased, i.e;# u,. When this  ergy scale of the electrons. For a simple oscillatory potential,

current is integrated over a single periad,of the modulat- 7=27/w. As is shown in the Appendix, this expansion also

ing potential, one obtains the Landauer formula, modified byrequires that the amplitude of the modulating potenfiafill

the modulated potential in two way$;) The transmission be small.

coefficient is the instantaneous onE, averaged over a As in the usual scattering treatment, we denote the incom-

single period of the time-dependent potenti@l) there ap- ing wave with energyE in lead @ by w_,,, wheren is the

pears a correction to the Landauer expression, which is raransverse mode number. This wave is a solution of the free

lated to the temporal derivative of the modulating potentialHamiltonian

and the ensuing instantaneous scattering matrix. In the sim-

plest case in which the two leads are single-channel ones, [Ho(r) —E]Jw,(r)=0, (4)

| bias takes a particularly simple form,

e 1 dyt o
bias=—— § dtf dg T Tt
) Vo (rt)y=e Bty (r,1),

2 dt 6E
in which ¢! is the instantaneous Friedel phdse., the trans- B ~
mission phaseof the nanostructure. The first term in H@) Xan(F 1) =Won (1) + Xan(r,1). 5
yields the Landauer formula for the present case. The seconfla time dependence of the scattered wave function

term is a correction, being of higher order in the adiabatic- . e
approximation. The corrections to the adiabatic approximaX““(r’t)’ is expected to have the same ch_aractenstlc; time
tion are derived in the Appendix, and discussed in Sec. III,SC""!e "’?SV' For ?XamB'e’ Wheh the mOd”'a“”Q potential is
using a simple example. In particular we find that the validityoscillating in time, x contains all harmonics of the
regime of the adiabatic approximation is restricted by thefrequencyo.

strength of the modulating potential: The ratio of the second- The scattering solutio¥',, should satisfy the time-
order contribution to the first-order one involves the tempo-dependent Schdinger equation

ral derivative of the instantaneous Green function, which in W

turn, is proportional to the temporal derivative of the modu- iw

lating potential.(See also Ref. 23. ot
Inserting Eqs(5) into (6), using Eq.(4), we find

and is normalized such that it carries a unit flux. The scatter-
ing solution of the full Hamiltonian, excited by this incoming
}(H(E)—fr(E)), wave, can be written in the form

=H(r, )W n(r,1). (6)

Il. TIME-DEPENDENT SCATTERING THEORY IN THE
ADIABATIC APPROXIMATION &}an(r,t)
—i ,

GYE))  Yxan(r,t)=V(r,t)yw_ (r
In the first part of this section we solve for the time- (GHED ™ Xanlr D) =V(r,OWon(r) at

depgnde_nt scattering states iteratively, using the acyabatlc AQhere G! is the instantaneous Green function of the full
proximation. We then use those scattering states in the se¢;_. ... .
. . amiltonian, such that
ond part, to obtain the current. The formalism presente
below borrows from the derivations in Refs. 24 and 25, ex- (E—H(r,t))GYE;r,r')=8(r'—r). (8
tended to include the effect of a time-dependent scattering
potential. We now solve Eq(7), using the adiabatic approximation:
The temporal derivative appearing on the right-hand side of
A. Time-dependent scattering states that equation is regarded as a small correct@rorder 1f),
We consider a ballistic nanostructure of arbitrary geom-and _the equation Is solved_|terat|vel_y . The z_eroth order is just
) . the instantaneous scattering solution, which we denote by
etry, which consists of a nanostructure connected to several,
electronic reservoirs. This system is described by the HamilXan:
tonian

)

t W d/GtE;,,V’, _n/-
H(r,8)=Ho(r) +V(r 1), @ X W“”“”f MEEIOVIT, DWenlr) o

where the scattering potenti®(r,t) is assumed to be con- : . . .
fined in space, so that asymptotic behaviors of the scatterinahe Instantaneous ;catterlng S.tﬁfﬂq" IS the solution of the
mstantaneous Schdinger equation, with energg,

solutions can be defined unambiguously. This confined re-
gion is attached to leads, numbered by the indeand each E— )y -0 10

lead is connected to a reservoir having the chemical potential (E=H(r,0) Xan(1)=0. (10

M, . The HamiltonianH, consists of the kinetic energy. We Turning back to Eq(7), we replace the derivative term on
use the adiabatic approximation, expanding the timethe right-hand side by the temporal derivative of the instan-
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taneous scattering statg!, and multiply both sides of the Here, me is the outgoing wave in channei of lead 8 and
equation by the instantaneous Green function. Thesing s, is the matrix element of the instantaneous scattering

Egs. (5) and (9)], one finds that to first order in the time matrix. As a result, the current flowing into leglis given
derivative the scattering solution reads by

xan(r,t)=x2n(r)—if dr'GYE;r ) xn(r’), (1D Iﬁ(t)=ef:—§; fa(E)(ﬁaB—§ [ Shmanl?

in which x.,, is the time derivative of the instantaneous scat- " .

tering state. Hence, to first order in the adiabatic approxima- —2R(Sgm,an ,Bm,an)]) ' (16)
tion the time-dependent scattering states are given entirely in

terms of the instantaneoussolutions [namely, x',, and  with

G'(E;r,r")] of the problem at hand. One notes that the adia-

batic solution(11) of the scattering state is analogous to the U Y ‘¢ 17)
Thoules$® solution for the ground-state wave function in his Bm,an™ FX (") X an(T)- (
model. In the Appendix, we discuss the corrections to the

lowest-order adiabatic approximation. The result(16) for the time-dependent current entering into

lead B of the nanostructure holds for a general biased sys-
tem, whose various terminals have different chemical poten-
tials (as long as the time dependence of the periodic potential
Here we outline the derivation of the current in the scat-is slow enough It is therefore interesting to consider charge
tering states formalism, as developed, e.g., in Refs. 24—2@onservation, using that result. Indeed, summing @®)

One writes the field operator of the electrdin(r,t), interms ~ ©ver all leads, we obtain

of the scattering states as
dE d . )
% |B(t)=efﬂ% fa(E)af drxt,(N|2 (18

which shows that when the total current entering the system,

. LA . L >4l 5(1), is integrated over a single period of the modulating
neb B B\*)s

in which a,, destroys an electron incoming in channef ;Fotential, the result is zero, i.e., the charge per period is

B. The current

- dE R .
V0= [ 523 an®e Frar, (2

lead @. The .‘h‘?r”!a' average of the' latter opera_tors is give onserved. In deriving the resuft8) we have employed)
by the Fermi distributions of the various reservoirs, such th he unitarity of the instantaneous scattering matrix

= g S anSy = San,arny, @nd((ii) the following prop-

Bsm,a’n’

At A AN =1
(an(B)aarn (E') =27 S(E=E) Ganarn fulE), erty of the scattering matrix28

13

wheref ,(E) is the Fermi distribution in the reservoir con-
nected to thex lead. With these definitions, the thermal av-
erage of the current-density operator becomes

Z S anXam(1) = Xan(r). (19)

Equation(16) can be considered as a generalization of the

Xan( b Landauer formula, extended to include the effect of a time-

(i, t)>__~’f 2 Fa(BE)xan(r ) ———, dependent potential, in the adiabatic approximation. The new
(14) ingredient is the quantity ,, gm, EQ. (17). This quantity

can be expressed in terms of the temporal derivative of the

wheree stands for the negative electron charge. scattering potential,

It is convenient to evaluate this quantity whenap-
proaches» in lead B8 (which will be de_noted byr — ), U gl - IX gm(T) Ui et -
and then to integrate the current density over the cross sec- Bm,an JE (1,8 Xan(r)- (20)

tion of that lead(noting that the incoming and outgoing

waves are normalized to carry a unit fluxn so doing, we To prove this, we take the temporal derivative of Et0),
may take advantage of the asymptotic properties of the inand use Eq(8), to obtain

stantaneous quantitieg',, and G'(E), as documented in

Refs. 24 and 26 Kinln)= | G GBIV O, @D

GYE;rr")|wp= _> Wam(F) X (T ), We insert this expression into E(L7), and carry out one of
m the spatial integrations using
t - + ¢ t IX (1)
Xan(D i —oop= 5aBWan(r)+% Wim(NSgman- (19 J’ dr'GYE;r,r )xt,(r'")=— E (22)
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which follows directly by differentiating Eq(10) with re-  Differentiating this expression with respect to time and using
spect to the energy, and using E§) and the symmetry of Egs.(9) and(21) yields
the Green functiorG'(E;r,r')=G'(E;r’,r). This produces

the result(20). isf@m,an:f dr)(;;m(r)\'/(r,t))(;n(r). 29)
lIl. THE TWO-TERMINAL SYSTEM Note that this expression isot a matrix element. To turn it
Let us now confine ourselves to a nanostructure connecte! tg atl)n eﬁprﬁssmn involving matrix elements, we use Eq.
to two terminals, with lef(l) and right(r) leads. Then we can (19): by whic
use Eq(16) to write the current entering the system from the _ _ . .
left terminal in the form iS‘ﬁm’an=f AV Xm(1) 2 Sprm anXprm (1)
lglm!
0= 5o 3 [(E (NSl %0
=e| 5= - N .
! 27 fm LChy (ENLSrmm Then, multiplying bySg;, ., and summing ove and n
" N ; N yields
+m($m,ln Im,In_Sm,rnUIm,rn)]+(fI(E)+fr(E))
><9‘{(Stm,ln I*m,ln+$tm,rnul*m,rn)]' (23 En -Sth,anStB*m,an:_if ert;m(r)v(rit)Xth(r)'
An analogous expression holds foi(t). The net, average (32

current flowing in the system during a single period of the

. . . ne notes that this identity makes the expressiorl ,
modulating potential then consists of two parts, One notes that this identity makes the expressiorl fai,

Eq. (25) above, to be identical with the Brouweprmula, in

dt the case where the system is unbiased.

| = fﬁ—(||(t)—|r(t))=|bias+|pump, (24) In the simplest case where each of the leads is a single-

T channel one, the expression for the current takes a particu-
where the first] s, flows only when the system is biased, larly simple form. In this situation, the instantaneous scatter-
whereas the secondpump, iS established by the time- INg matrix becomes a 22 matrix, which can be
dependent potentigthough it is affected by the chemical- Parametrizedin the absence of a magnetic fipials
potential difference, when the latter is applietdsing Egs.

Taiat ot
(19) and(20), the pumped currenty,,, takes the form Sl R'e T 32
i Tt Rt —iat|"
dt [ dE TR
loump= € %7] > (W(E)+1(E)) Here, Tt and R! are the instantaneous transmission and re-

flection, respectively. The reflection phasé describes the
d Coren i C et asymmetry of the nanostructure. A finite time-dependent re-
X§ % - £(<le|V|le>_<er|V|er>) : flection phase is a necessary ingredient to obtain the pumped
current. Finally,y! is the transmissiofiFriede) phase. With
(25  the parametrization, Eq32), one finds, using Eq$29) and

For the biased current we find (31),
dt
dt f dE I _ t
e $ | S-(E -1 ED (280l =2 $ 7 e n@-refer
T 21 nm !
1/ 9 dyt Yt
‘Hﬁ(stm,ln |*m,|n_Stm,rn I*m,rn_slt'm,ln :‘m,ln _E(E (Rt_Tt W +a (Rt_Tt)E)
+SEm,rnUfm,rn)]' (26) 9 at
+ + — | R'—] .
The pumped part of the current,;,,, can be written in (h(E)+1(E)) JE ( R dt ] 33

terms of the temporal derivatives of the instantaneous scat-: . . .
tering matrix. In order to vindicate this statement, we starttrhe charge passing through the nanostructure during a single

from the asymptotic form for',,, Eq. (15), for the wave period of the potential, is then

going from leada into lead 3. Noting that Q= Quiast Qpump- (34)
_ _ N Here,
Wan(ram,ﬁ)zwanéaﬁ+(1—5aﬁ)§mz Whn,  (27)
e
—_ _ t
we conclude that Qbias_zﬂ é dtf dE[(f'(E) f(E)2T
t . t - d tdlﬂt
S an =17 g~ f dr X DV(TOW,(1). (28 + o2 (E) - HENT . (39
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It is seen that the first term here is just the Landauer formula,
with the transmission coefficient averaged over the temporal
period. The second term forms a correction to this result,
brought about by the modulating potential. The pumped-X,
charge is given by

e d tdcvt
qump_ - ﬂ § dtf dEE(fI(E)+fr(E))R W
(36)

(see Ref. § and it vanishes unlesg' is time dependent.
p

A. Example—the single-level quantum dot

It is seen that botlQ,,mpand the second term @y, are
determined by the temporal dependence of the phadesd
Jt, of the scattering matrix. Clearly, a comparison between
these two quantities is called for. Consider for simplicity
zero temperature. TherQ,,,, is given by the values of
R'da'/dt at E=Eg+ Sule, where Su is the chemical-
potential difference, anr denotes the Fermi level. On the }I<1 ?<2
other hand, the second term Qs IS given by
~fd E[—(5,u/e)(azf/aEZ)Tt(dzp‘/dt)], and hence should FIG._ 1. The periodic temporal evolution of the paramet§rs
be much smaller than the Landauer contribution. Neverthe@ndX; in the parameter plane.
less, it may be of interest to explore this term experimentally,
as it is related to the Friedel phase of the nanostructure. 0 _& fﬁ dthd_at

To further explore this point, we consider the following pump 9 dt
simple example: a quantum dot, with a single localized level,
coupled to two ideal 1D lead$.Adopting the tight-binding e sinka
description, we model the two leads connecting the quantum “ o fﬁ |E— o+ €X3(X, + X,)|2
dot to the electronic reservoirs by a 1D chains of sites, whose ko *0 o

X

on-site energies are assumed to vanish, and whose nearest- X[(X;—X,) (€0— Ep) + Ex(X, X — X, X,) 1,
neighbor transfer amplitudes are denoted-by. Thus the
energy of an electron of wave vectkrmoving on such a (40
chain is in which energies are measure in unitsJpfand
Ex= —2J coska, 3 I\ Jr\?
e ol e

wherea is the lattice constant. The localized level, of energy

€, is attached to the left-hand-side lead with matrix elemengre the time-dependent parameters of the system. Note that
—J;, and to the right-hand-side lead with matrix element these two parameters can be thought of as the “contact con-
—J, . The latter two quantities are assumed to vary slowly inductances” of the quantum dot. Now imagine those to vary
time, in a periodic way. Our formalism requires just thein time as follows: Initially, both are equal %;. ThenX; is
knowledge of the instantaneous scattering matrix of the syghcreased linearly in time until it reaches the vakig while

tem. For the case at hand, X, is being held fixed at the valu¢;. From that pointX; is
held fixed, whileX, increases linearly to the valu&, and so
[\ 2 JJ, on, see Fig. 1.
—1+| =] Mg 7 Mk It is quite straightforward to fin@Q,m, for such a cycle.
St= ) ' (38  One obtains
NINE J;
7 M — 14| 5] My e (%
qump:;fx dX(F(X;X1) —F(X;X3)), (42)
with '
with
M= 21J sinka (39 sinka(eg— Ex+E2Z)

- ikac 324 32y/3° F(X;Z2)= . . 43
Ex— eot€*3(32+ 3213 (X;2) i ept 64X 1 2)|? (
Let us consider first the pumped charge. At zero temperafhe resulting charge differs significantly from zero, and ap-

ture, it is given by proaches unityin units ofe) as long as the line of maximal
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Q of the modulating potentialand the ensuing temporal de-
rivatives of the instantaneous scattering solutioris the
process, we have obtained an alternative expression for the
pumped charge, Eq1), which gives it in terms of matrix
elements of the temporal derivative of the potential between
the instantaneous scattering states. It reproduces the widely
used Brouwer formula which gives the pumped charge in
terms of the instantaneous scattering matrix in the lowest
order of the adiabatic approximation. We have derived and
analyzed the effects of the modulating potential on the biased
current, and showed them to be quite small.

Our formalism allows for the possibility to systematically

X, obtain the corrections to the lowest-order adiabatic approxi-

5 10 15 20 mation. The result, EqA12), shows that the strength of the
FIG. 2. The pumped charg units ofe) as function ofX,, for modulating potenti_alv_cannot be arbitrarily strong: The
several values oX,, indicated on the figure. Helea= 7— 0.1, and second-qrder contribution to the current contains an “extra”
€o=—3J. factor ofV [as can be seen by using E&10) in Eq. (A12)]
as compared to the first-order contribution. The exact valid-
transmission in thex;-X, plane is well within the closed ity of the adiabatic approximation thus depends in a delicate
orbit forming the period.In the present model, that line is way on, e.g., the value d', or VGY/V. We hope to pursue
given by this point quantitatively in a future publication.
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Let us next consider the time average that appears in the
second term of the biased current, i.$T'dy'/dt. In our

example, this quantity becomes APPENDIX: CORRECTIONS TO THE ADIABATIC

APPROXIMATION

tdzﬁ‘_ 4 sirrka(Ex— €0) X X, (X, +X;) The results presented above have been obtained in the
jg dtT dt é dt IE — eg+ € 2X,+X,)[* adiabatic approximation, in which only first derivatives with
k%0 o (45) respect to time are kept. As stated above, this means that in
the iterative solution of Eq(7) only the first iteration has
On a symmetric periodic curve like that presented in Fig. lbeen maintained. Here we discuss the contribution of the
this integral vanishes. Hence, in such a symmetric configunext iteration. For the sake of simplicity, we carry out this
ration, there will be no deviation from the Landauer formulacalculation for an unbiased system with two single-channel
due to the temporal variation of the Friedel phase. One majeads.
conclude from this example that when the pumping orbit in  To second order in the temporal derivative, the scattering
the plane of the time-dependent parameters is not as simpéplution can be presented in the form
as the one considered above, there might be a small correc-
tion, related to the asymmetry of the orbit. _ .
X(r,t)=xt(r)—if dr/GHE; T, ) (Xe(r') +AX(r"),
IV. CONCLUDING REMARKS (A1)

The motivation for this work is mainly to examine the th
validity of the adiabatic approximation in calculating the
charge pumped quantum mechanically through a confined d
system of noninteracting electrons, and to study the effects of Axt(ry=—i f dr'— (GYE;r" ,r"x'(r"). (A2
a constant bias. To this end, we have derived the time- dt
dependent current generated when the system is subject to af ) ) e
slowly changing modulating potential, in addition to being 't follows that the quantity), Eq. (17), is now modified into
connected to reservoirs of different chemical potentials. Our 5
result is obtained as an expansion in the temporal derivatives Uge=Upg,+AUg,,
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U,ederX}a(r)}cL(r). 2m2 St*AUBa—ZJJdrfdr ( X;E( ))V( M)
t “t IGYE;r,r") ,
Auﬁazf drxy(NAXL(T). (A3) x| = VX )

As a result, we find that the current entering lgadonsists

of two parts, the leading order in the adiabatic approxima-
tion, I 5, which has been discussed above, and a correction,
Al z. Explicitly,

V(r,t)GYE;r,r')

I x (1)
2

><V(r t)X (r’ )1
Ta()=14(t)+Al (1),

V(r ) xg (n).

X(r)
dE t |2 tok +jjdr( JE?
|g<t>:ef o7 2 Ta(B)[dap|Sp,[*+ 2 R(SFU 50,
(A8)

. To obtain the last equality, we have made use of the relations
Al 4(t)= eJ 2 fW(E) —|U gl 2+ 2 (S, AU g 1.

2
(A4) 3" fd ( )G‘(E;r’,r), (A9)

Let us first verify that the correctiodl ; obeys charge
conservation over the entire period. To this end, we alpp  and
over B. Using Eq.(19), we have

Gt(E;r,r’)=f dryGY(E;r,r)V(ry H)GY(E;ry,r').
2, [Vl -2 R(S5.AU o)) (A10)
Both relations are obtained by taking derivatives of Egs.
jdrf dr’ [2 X;;(f)Xa r)X (r )X (r") and(10) with respect to the energy and the time.
Collecting all these terms, we obtain

(A5)

d .
=23 X (1) = GYE;r,r")x' (r’ ) .
(Xa( TR Xl AIB(t)——f dEf(E)J = (Xl V(DGY(E)
We can now employ the fact that the current should be con-
served upon integrating over the entire period, that is, when
expression(Ab) is inserted intafdt. Then we may integrate
the second term by parts. Consequently, using the ref4tion

+3V(HGYE)|x)- (A11)

It is satisfactory to note that, againpon integrating by parts
with respect to the ener@ythe energy integral includes the
derivative of the Fermi function. Hence, up to the second

2 v (f))( (r')=—23GYE:rr"), (A6) order in the adiabatic approximation, we find
~ Jf(E)
the two terms in Eq(A5) exactly cancel one another. ()= ﬂf “JeE [<Xﬁ|V|Xﬁ>+J(<Xﬁ|2V(t)G (E)
Let us now turn to the expression for the correctioy, )
Eq. (A4), and insert the condition in which the system is +V(t)G‘(E)|Xtﬁ>)]. (A12)
unbiased, i.e.f,(E)=f(E). Then, using Egs(19), (21), ) ) )
(22), and(A6), we find To estimate the relative magnitude of the correctiire sec-
ond term abovecompared to the leading-order ofibe first
(1 term therg, consider first the part including the second de-
2 |Uﬁa|2_ _zf drf dr’ ( Xﬁ ) V(r,t) rivative of the potential. Using Eq22), this part becomes
, Ixp(r)
. I (r") f _ X
><3(G‘<E;r,r'>>V<r'm)(—@E , drgg (V| === (A13

(A7) It follows that this correction will be smaller than the
leading-order term by a factor proportional tar,ldue to the
and extra temporal derivative, multiplied by the energy derivative
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of the instantaneous scattering state. The latter will includescattering solution is small on the scalewf 1/7, this cor-

the energy derivatives of the instantaneous transmission aréction will be small. The other second-order correction term
reflection amplitudegwhich appear iny'), and possibly a in Eq. (A12) has the factoiG' as compared to the leading
term proportional to the 1D density of states, i.e., the velocfirst order. This ternfcf. Eq.(A10)] has an extra factor of,

ity (coming, e.g., from the factoes*® which appear iny' of  and hence its smallness hinges on the smallness of the po-
our simple example discussed in Sec).lWe may conclude tential amplitude. Thus, the validity regime of the expression
that as long as the energy derivative of the instantaneoud) is restricted for small enough potential amplitudes.
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