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Adiabatic transport in nanostructures
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A confined system of noninteracting electrons, subject to the combined effect of a time-dependent potential
and different external chemical potentials, is considered. The current flowing through such a system is obtained
by using the adiabatic approximation in an iterative manner. A formula is derived for the charge pumped
through an unbiased system~all external chemical potentials are kept at the same value!; it reproduces the
Brouwer formula for a two-terminal nanostructure. The formalism presented yields the effect of the chemical-
potential bias on the pumped charge on one hand, and the modification of the Landauer formula~which gives
the current in response to a constant chemical-potential difference! brought about by the modulating potential
on the other. Corrections to the adiabatic approximation are derived and discussed.
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I. INTRODUCTION AND SUMMARY

The flow of a dc current in response to a slowly varyi
time-dependent potential operating on anunbiasedsystem is
termed ‘‘adiabatic charge pumping.’’1 This phenomenon
considered in Ref. 2, has attracted recently mu
theoretical3–14 and experimental15–17 interest. In general
‘‘adiabatic pumping’’ occurs when the charge transferr
across a boundary during a single period of a certain mo
lating potential is independent of the modulation frequen
The periodic potential should vary very slowly in time, su
that its frequencyv is smaller than any characteristic ener
scale of the electrons.15 The process is adiabatic when th
frequency is much smaller than the Wigner delay time,18 as
long as the the modulating potential is very weak. For lar
strengths of this potential, the criterion for the adiabatic
becomes more delicate~see below!.

Eighteen years ago, Thouless19 had shown, using the adia
batic approximation, that the ground state of an infinite o
dimensional~1D! system of noninteracting electrons subje
to a slowly moving periodic potential can support a dc c
rent. Later theoretical investigations of quantum pumping
confined nanostructures employed the result derived
Brouwer,3 which gives the pumped charge in terms of t
time-dependent scattering matrix related to the modula
potential. The derivation presented by Brouwer is based
the analysis of Ref. 20, which, in turn, utilizes an expans
in the amplitude of the modulating potential in the context
time-dependent scattering theory. Nevertheless, it is ge
ally accepted that the formalism of Bu¨ttiker et al.20 and the
resulting Brouwer formula are valid21 even for large ampli-
tudes, as long as the adiabatic approximation holds.

This paper is devoted, among other issues, to the ex
ration of this point. We consider a spatially confined syst
of noninteracting electrons, connected by leads~denoted by
a) to electronic reservoirs which are kept at various che
cal potentials,ma . The system is also subject to a slow
varying periodic potential. We derive an expression for
instantaneous current flowing in this system, using tim
0163-1829/2002/65~19!/195411~8!/$20.00 65 1954
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dependent scattering states. The formalism is based o
iterative solution of those states, in the adiabatic approxim
tion, in which the temporal derivative of the scattering p
tential ~and the scattering states! is the small parameter. Th
formal derivation is summarized in Sec. II, where we obta
the instantaneous current in the lowest-order adiabatic
proximation. This current is averaged over a single period
the modulating potential. In this way we obtain the effect
the chemical-potential bias on the pumped charge on
hand, and the modification of the Landauer formula cau
by the modulating potential on the other. We find an expr
sion for the charge pumped through an unbiased system@see
Eq. ~1! below#, which is particularly useful in cases wher
the modulating potential operates on the ent
nanostructure,22 and is spatially dependent. The Append
includes the derivation of the next order correction to t
current.

We investigate the lowest-order expression for the curr
in Sec. III, confining ourselves for simplicity to a syste
connected to two reservoirs. Our results there can be s
marized as follows. In a two-terminal structure, the curre
averaged over a single period,t, consists of two parts. The
first, denoted byI pump, flows even when the system is unb
ased ~but is modified by the presence of the chemic
potential difference!. To the lowest order in the adiabati
approximation, that current reads

I pump5
e

4p R dt

t E dES 2
]

]E
@ f l~E!1 f r~E!# D

3(
m

@^rmuV̇urm&2^ lmuV̇u lm&#, ~1!

wherel andr denote the left and the right leads, respective
and f l ,r(E)[(e(E2m l ,r )/kBT11)21 are the Fermi distributions
in the reservoirs connected to the left and right leads. In
~1!, ubm&[xbm

t is the instantaneous scattering state at timt,

excited by an incoming wave in channelm of leadb, andV̇
is the temporal derivative of the time-dependent scatter
©2002 The American Physical Society11-1
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potential. Interestingly enough, the matrix element appea
in Eq. ~1! can be written in terms of the instantaneous sc
tering matrix, reproducing the Brouwer formula.3

The second part of the current, denoted byI bias, flows
only when the system is biased, i.e.,m lÞm r . When this
current is integrated over a single period,t, of the modulat-
ing potential, one obtains the Landauer formula, modified
the modulated potential in two ways:~i! The transmission
coefficient is the instantaneous one,Tt, averaged over a
single period of the time-dependent potential;~ii ! there ap-
pears a correction to the Landauer expression, which is
lated to the temporal derivative of the modulating poten
and the ensuing instantaneous scattering matrix. In the
plest case in which the two leads are single-channel o
I bias takes a particularly simple form,

I bias5
e

tp R dtE dEFTt1
1

2
Tt

dc t

dt

]

]EG~ f l~E!2 f r~E!!,

~2!

in which c t is the instantaneous Friedel phase~i.e., the trans-
mission phase! of the nanostructure. The first term in Eq.~2!
yields the Landauer formula for the present case. The sec
term is a correction, being of higher order in the adiaba
approximation. The corrections to the adiabatic approxim
tion are derived in the Appendix, and discussed in Sec.
using a simple example. In particular we find that the valid
regime of the adiabatic approximation is restricted by
strength of the modulating potential: The ratio of the seco
order contribution to the first-order one involves the temp
ral derivative of the instantaneous Green function, which
turn, is proportional to the temporal derivative of the mod
lating potential.~See also Ref. 23.!

II. TIME-DEPENDENT SCATTERING THEORY IN THE
ADIABATIC APPROXIMATION

In the first part of this section we solve for the tim
dependent scattering states iteratively, using the adiabatic
proximation. We then use those scattering states in the
ond part, to obtain the current. The formalism presen
below borrows from the derivations in Refs. 24 and 25,
tended to include the effect of a time-dependent scatte
potential.

A. Time-dependent scattering states

We consider a ballistic nanostructure of arbitrary geo
etry, which consists of a nanostructure connected to sev
electronic reservoirs. This system is described by the Ha
tonian

H~r ,t !5H0~r !1V~r ,t !, ~3!

where the scattering potentialV(r ,t) is assumed to be con
fined in space, so that asymptotic behaviors of the scatte
solutions can be defined unambiguously. This confined
gion is attached to leads, numbered by the indexa, and each
lead is connected to a reservoir having the chemical pote
ma . The HamiltonianH0 consists of the kinetic energy. W
use the adiabatic approximation, expanding the tim
19541
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dependent states in terms of the temporal derivatives of
instantaneous solutions. This necessitates that the chara
istic inverse time constant, 1/t, which describes the time
dependence ofV, will be smaller than any characteristic en
ergy scale of the electrons. For a simple oscillatory poten
t52p/v. As is shown in the Appendix, this expansion al
requires that the amplitude of the modulating potentialV will
be small.

As in the usual scattering treatment, we denote the inco
ing wave with energyE in lead a by wan

2 , wheren is the
transverse mode number. This wave is a solution of the
Hamiltonian

@H0~r !2E#wan
2 ~r !50, ~4!

and is normalized such that it carries a unit flux. The scat
ing solution of the full Hamiltonian, excited by this incomin
wave, can be written in the form

Can~r ,t !5e2 iEtxan~r ,t !,

xan~r ,t !5wan
2 ~r !1x̃an~r ,t !. ~5!

The time dependence of the scattered wave funct
x̃an(r ,t), is expected to have the same characteristic ti
scale asV. For example, when the modulating potential
oscillating in time, x̃ contains all harmonics of the
frequencyv.

The scattering solutionCan should satisfy the time-
dependent Schro¨dinger equation

i
]Can~r ,t !

]t
5H~r ,t !Can~r ,t !. ~6!

Inserting Eqs.~5! into ~6!, using Eq.~4!, we find

~Gt~E!!21x̃an~r ,t !5V~r ,t !wan
2 ~r !2 i

]x̃an~r ,t !

]t
, ~7!

where Gt is the instantaneous Green function of the f
Hamiltonian, such that

~E2H~r ,t !!Gt~E;r ,r 8!5d~r 82r !. ~8!

We now solve Eq.~7!, using the adiabatic approximation
The temporal derivative appearing on the right-hand side
that equation is regarded as a small correction~of order 1/t),
and the equation is solved iteratively. The zeroth order is
the instantaneous scattering solution, which we denote
xan

t ,

xan
t ~r !5wan

2 ~r !1E dr 8Gt~E;r ,r 8!V~r 8,t !wan
2 ~r 8!.

~9!

The instantaneous scattering statexan
t is the solution of the

instantaneous Schro¨dinger equation, with energyE,

~E2H~r ,t !!xan
t ~r !50. ~10!

Turning back to Eq.~7!, we replace the derivative term o
the right-hand side by the temporal derivative of the inst
1-2
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ADIABATIC TRANSPORT IN NANOSTRUCTURES PHYSICAL REVIEW B65 195411
taneous scattering state,x t, and multiply both sides of the
equation by the instantaneous Green function. Then@using
Eqs. ~5! and ~9!#, one finds that to first order in the tim
derivative the scattering solution reads

xan~r ,t !5xan
t ~r !2 i E dr 8Gt~E;r ,r 8!ẋan

t ~r 8!, ~11!

in which ẋan
t is the time derivative of the instantaneous sc

tering state. Hence, to first order in the adiabatic approxim
tion the time-dependent scattering states are given entire
terms of the instantaneoussolutions @namely, xam

t and
Gt(E;r ,r 8)# of the problem at hand. One notes that the ad
batic solution~11! of the scattering state is analogous to t
Thouless19 solution for the ground-state wave function in h
model. In the Appendix, we discuss the corrections to
lowest-order adiabatic approximation.

B. The current

Here we outline the derivation of the current in the sc
tering states formalism, as developed, e.g., in Refs. 24–

One writes the field operator of the electron,Ĉ(r ,t), in terms
of the scattering states as

Ĉ~r ,t !5E dE

2p (
a

âan~E!e2 iEtxan~r ,t !, ~12!

in which âan destroys an electron incoming in channeln of
leada. The thermal average of the latter operators is giv
by the Fermi distributions of the various reservoirs, such t

^âan
† ~E!âa8n8~E8!&52pd~E2E8!dan,a8n8 f a~E!,

~13!

where f a(E) is the Fermi distribution in the reservoir con
nected to thea lead. With these definitions, the thermal a
erage of the current-density operator becomes

^ j ~r ,t !&5
e

m
IE dE

2p (
a

f a~E!xan* ~r ,t !
]xan~r ,t !

]r
,

~14!

wheree stands for the negative electron charge.
It is convenient to evaluate this quantity whenr ap-

proaches̀ in lead b ~which will be denoted byr→`b),
and then to integrate the current density over the cross
tion of that lead~noting that the incoming and outgoin
waves are normalized to carry a unit flux!. In so doing, we
may take advantage of the asymptotic properties of the
stantaneous quantitiesxan

t and Gt(E), as documented in
Refs. 24 and 26,

Gt~E;r ,r 8!ur→`b52 i(
m

wbm
1 ~r !xbm

t ~r 8!,

xan
t ~r !ur→`b5dabwan

2 ~r !1(
m

wbm
1 ~r !Sbm,an

t . ~15!
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Here,wbm
1 is the outgoing wave in channelm of leadb and

Sbm,an
t is the matrix element of the instantaneous scatter

matrix. As a result, the current flowing into leadb is given
by

I b~ t !5eE dE

2p (
an

f a~E!S dab2(
m

@ uSbm,an
t u2

22 R~Sbm,an
t Ubm,an* !# D , ~16!

with

Ubm,an5E drxbm
t ~r !ẋan

t ~r !. ~17!

The result~16! for the time-dependent current entering in
lead b of the nanostructure holds for a general biased s
tem, whose various terminals have different chemical pot
tials ~as long as the time dependence of the periodic poten
is slow enough!. It is therefore interesting to consider charg
conservation, using that result. Indeed, summing Eq.~16!
over all leads, we obtain

(
b

I b~ t !5eE dE

2p (
an

f a~E!
d

dtE dr uxan
t ~r !u2, ~18!

which shows that when the total current entering the syst
(bI b(t), is integrated over a single period of the modulati
potential, the result is zero, i.e., the charge per period
conserved. In deriving the result~18! we have employed~i!
the unitarity of the instantaneous scattering matr
(bmSbm,an

t* Sbm,a8n8
t

5dan,a8n8 , and ~ii ! the following prop-
erty of the scattering matrix:24,26

(
bm

Sbm,an
t* xbm

t ~r !5xan
t* ~r !. ~19!

Equation~16! can be considered as a generalization of
Landauer formula, extended to include the effect of a tim
dependent potential, in the adiabatic approximation. The n
ingredient is the quantityUan,bm , Eq. ~17!. This quantity
can be expressed in terms of the temporal derivative of
scattering potential,

Ubm,an5E dr S 2
]xbm

t ~r !

]E D V̇~r ,t !xan
t ~r !. ~20!

To prove this, we take the temporal derivative of Eq.~10!,
and use Eq.~8!, to obtain

ẋan
t ~r !5E dr 8Gt~E;r ,r 8!V̇~r 8,t !xan

t ~r 8!. ~21!

We insert this expression into Eq.~17!, and carry out one of
the spatial integrations using

E dr 8Gt~E;r ,r 8!xan
t ~r 8!52

]xan
t ~r !

]E
, ~22!
1-3
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which follows directly by differentiating Eq.~10! with re-
spect to the energy, and using Eq.~8! and the symmetry of
the Green functionGt(E;r ,r 8)5Gt(E;r 8,r ). This produces
the result~20!.

III. THE TWO-TERMINAL SYSTEM

Let us now confine ourselves to a nanostructure conne
to two terminals, with left~l! and right~r! leads. Then we can
use Eq.~16! to write the current entering the system from t
left terminal in the form

I l~ t !5eE dE

2p (
nm

@~ f l~E!2 f r~E!!@ uSrm,ln
t u2

1R~Slm,ln
t Ulm,ln* 2Slm,rn

t Ulm,rn* !#1~ f l~E!1 f r~E!!

3R~Slm,ln
t Ulm,ln* 1Slm,rn

t Ulm,rn* !#. ~23!

An analogous expression holds forI r(t). The net, average
current flowing in the system during a single period of t
modulating potential then consists of two parts,

I 5 R dt

t
~ I l~ t !2I r~ t !!5I bias1I pump, ~24!

where the first,I bias, flows only when the system is biase
whereas the second,I pump, is established by the time
dependent potential~though it is affected by the chemica
potential difference, when the latter is applied!. Using Eqs.
~19! and ~20!, the pumped current,I pump, takes the form

I pump5e R dt

t E dE

2p
~ f l~E!1 f r~E!!

3
1

2 (
m

F2
]

]E
~^x lm

t uV̇ux lm
t &2^x rm

t uV̇ux rm
t &!G .

~25!

For the biased current we find

I bias5e R dt

t E dE

2p
~ f l~E!2 f r~E!!(

nm
@2uSrm,ln

t u2

1R~Slm,ln
t Ulm,ln* 2Slm,rn

t Ulm,rn* 2Srm,ln
t Urm,ln*

1Srm,rn
t Urm,rn* !#. ~26!

The pumped part of the current,I pump, can be written in
terms of the temporal derivatives of the instantaneous s
tering matrix. In order to vindicate this statement, we st
from the asymptotic form forxan

t , Eq. ~15!, for the wave
going from leada into leadb. Noting that

wan
2 ~r→`,b!5wan

2 dab1~12dab!(
m

wbm
1 , ~27!

we conclude that

Sbm,an
t 512dab2 i E drxbm

t ~r !V~r ,t !wan
2 ~r !. ~28!
19541
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Differentiating this expression with respect to time and us
Eqs.~9! and ~21! yields

iṠbm,an
t 5E drxbm

t ~r !V̇~r ,t !xan
t ~r !. ~29!

Note that this expression isnot a matrix element. To turn it
into an expression involving matrix elements, we use E
~19!, by which

iṠbm,an
t 5E dr V̇~r ,t !xbm

t ~r ! (
b8m8

Sb8m8,an
t xb8m8

t* ~r !.

~30!

Then, multiplying bySbm,an
t* and summing overa and n

yields

(
an

Ṡbm,an
t Sbm,an

t* 52 i E drxbm
t* ~r !V̇~r ,t !xbm

t ~r !.

~31!

One notes that this identity makes the expression forI pump,
Eq. ~25! above, to be identical with the Brouwer3 formula, in
the case where the system is unbiased.

In the simplest case where each of the leads is a sin
channel one, the expression for the current takes a par
larly simple form. In this situation, the instantaneous scat
ing matrix becomes a 232 matrix, which can be
parametrized~in the absence of a magnetic field! as

St5eic tFARteia t
iATt

iATt ARte2 ia tG . ~32!

Here, Tt and Rt are the instantaneous transmission and
flection, respectively. The reflection phasea t describes the
asymmetry of the nanostructure. A finite time-dependent
flection phase is a necessary ingredient to obtain the pum
current. Finally,c t is the transmission~Friedel! phase. With
the parametrization, Eq.~32!, one finds, using Eqs.~29! and
~31!,

I 5
e

2p R dt

t E dEH ~ f l~E!2 f r~E!!F2Tt

2
1

2 S ]

]E S ~Rt2Tt!
dc t

dt D1
d

dt S ~Rt2Tt!
]c t

]E D D G
1~ f l~E!1 f r~E!!

]

]E S Rt
da t

dt D J . ~33!

The charge passing through the nanostructure during a si
period of the potential,Q, is then

Q5Qbias1Qpump. ~34!

Here,

Qbias5
e

2p R dtE dEF ~ f l~E!2 f r~E!!2Tt

1
]

]E
~ f l~E!2 f r~E!!Tt

dc t

dt G . ~35!
1-4
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It is seen that the first term here is just the Landauer form
with the transmission coefficient averaged over the temp
period. The second term forms a correction to this res
brought about by the modulating potential. The pump
charge is given by

Qpump52
e

2p R dtE dE
]

]E
~ f l~E!1 f r~E!!Rt

da t

dt
~36!

~see Ref. 6!, and it vanishes unlessa t is time dependent.

A. Example—the single-level quantum dot

It is seen that bothQpump and the second term ofQbias are
determined by the temporal dependence of the phases,a t and
c t, of the scattering matrix. Clearly, a comparison betwe
these two quantities is called for. Consider for simplic
zero temperature. Then,Qpump is given by the values o
Rtda t/dt at E5EF6dm/e, where dm is the chemical-
potential difference, andEF denotes the Fermi level. On th
other hand, the second term inQbias is given by
;*dE@2(dm/e)(]2f /]E2)Tt(dc t/dt)#, and hence should
be much smaller than the Landauer contribution. Nevert
less, it may be of interest to explore this term experimenta
as it is related to the Friedel phase of the nanostructure.

To further explore this point, we consider the followin
simple example: a quantum dot, with a single localized lev
coupled to two ideal 1D leads.27 Adopting the tight-binding
description, we model the two leads connecting the quan
dot to the electronic reservoirs by a 1D chains of sites, wh
on-site energies are assumed to vanish, and whose nea
neighbor transfer amplitudes are denoted by2J. Thus the
energy of an electron of wave vectork moving on such a
chain is

Ek522J coska, ~37!

wherea is the lattice constant. The localized level, of ener
e0, is attached to the left-hand-side lead with matrix elem
2Jl , and to the right-hand-side lead with matrix eleme
2Jr . The latter two quantities are assumed to vary slowly
time, in a periodic way. Our formalism requires just t
knowledge of the instantaneous scattering matrix of the s
tem. For the case at hand,

St5F 211S Jl

J D 2

Mk

JlJr

J
Mk

JlJr

J
Mk 211S Jr

J D 2

Mk

G , ~38!

with

Mk5
2iJ sinka

Ek2e01eika~Jl
21Jr

2!/J
. ~39!

Let us consider first the pumped charge. At zero tempe
ture, it is given by
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Qpump5
e

2p R dtRt
da t

dt

5
e

2p R dt
sinka

uEk2e01eika~Xl1Xr !u2

3@~Ẋl2Ẋr !~e02Ek!1Ek~XrẊl2XlẊr !#,

~40!

in which energies are measure in units ofJ, and

Xl[S Jl

J D 2

, Xr[S Jr

J D 2

~41!

are the time-dependent parameters of the system. Note
these two parameters can be thought of as the ‘‘contact c
ductances’’ of the quantum dot. Now imagine those to va
in time as follows: Initially, both are equal toX1. ThenXl is
increased linearly in time until it reaches the valueX2, while
Xr is being held fixed at the valueX1. From that point,Xl is
held fixed, whileXr increases linearly to the valueX2, and so
on, see Fig. 1.

It is quite straightforward to findQpump for such a cycle.
One obtains

Qpump5
e

pEX1

X2
dX~F~X;X1!2F~X;X2!!, ~42!

with

F~X;Z!5
sinka~e02Ek1EkZ!

uEk2e01eika~X1Z!u2
. ~43!

The resulting charge differs significantly from zero, and a
proaches unity~in units ofe) as long as the line of maxima

FIG. 1. The periodic temporal evolution of the parametersXl

andXr in the parameter plane.
1-5
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transmission in theXl-Xr plane is well within the closed
orbit forming the period.9 In the present model, that line i
given by

Xl1Xr52
Ek2e0

Ek
. ~44!

We will elaborate on this point, which is exemplified in Fi
2, in a future publication.28 For the parameters used to pr
duce the results shown in Fig. 2, the maximal transmiss
line is contained within the pumping contour whenX150
~see Fig. 1!, while for higherX1 values the pumping contou
shifts away from the maximal transmission line.

Let us next consider the time average that appears in
second term of the biased current, i.e.,rTtdc t/dt. In our
example, this quantity becomes

R dtTt
dc t

dt
52 R dt

4 sin3ka~Ek2e0!XlXr~Ẋl1Ẋr !

uEk2e01eika~Xl1Xr !u4
.

~45!

On a symmetric periodic curve like that presented in Fig
this integral vanishes. Hence, in such a symmetric confi
ration, there will be no deviation from the Landauer formu
due to the temporal variation of the Friedel phase. One m
conclude from this example that when the pumping orbit
the plane of the time-dependent parameters is not as sim
as the one considered above, there might be a small co
tion, related to the asymmetry of the orbit.

IV. CONCLUDING REMARKS

The motivation for this work is mainly to examine th
validity of the adiabatic approximation in calculating th
charge pumped quantum mechanically through a confi
system of noninteracting electrons, and to study the effect
a constant bias. To this end, we have derived the tim
dependent current generated when the system is subjec
slowly changing modulating potential, in addition to bein
connected to reservoirs of different chemical potentials. O
result is obtained as an expansion in the temporal derivat

FIG. 2. The pumped charge~in units ofe) as function ofX2, for
several values ofX1, indicated on the figure. Hereka5p20.1, and
e0523J.
19541
n

he

1
-

y

le
c-

d
of
-

o a

r
es

of the modulating potential~and the ensuing temporal de
rivatives of the instantaneous scattering solutions!. In the
process, we have obtained an alternative expression for
pumped charge, Eq.~1!, which gives it in terms of matrix
elements of the temporal derivative of the potential betwe
the instantaneous scattering states. It reproduces the w
used Brouwer formula which gives the pumped charge
terms of the instantaneous scattering matrix in the low
order of the adiabatic approximation. We have derived a
analyzed the effects of the modulating potential on the bia
current, and showed them to be quite small.

Our formalism allows for the possibility to systematical
obtain the corrections to the lowest-order adiabatic appro
mation. The result, Eq.~A12!, shows that the strength of th
modulating potentialV cannot be arbitrarily strong: The
second-order contribution to the current contains an ‘‘ext
factor of V̇ @as can be seen by using Eq.~A10! in Eq. ~A12!#
as compared to the first-order contribution. The exact va
ity of the adiabatic approximation thus depends in a delic
way on, e.g., the value ofĠt, or V̈Gt/V̇. We hope to pursue
this point quantitatively in a future publication.
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APPENDIX: CORRECTIONS TO THE ADIABATIC
APPROXIMATION

The results presented above have been obtained in
adiabatic approximation, in which only first derivatives wi
respect to time are kept. As stated above, this means th
the iterative solution of Eq.~7! only the first iteration has
been maintained. Here we discuss the contribution of
next iteration. For the sake of simplicity, we carry out th
calculation for an unbiased system with two single-chan
leads.

To second order in the temporal derivative, the scatter
solution can be presented in the form

x~r ,t !5x t~r !2 i E dr 8Gt~E;r ,r 8!~ ẋa
t ~r 8!1Dẋa

t ~r 8!!,

~A1!

with

Dẋa
t ~r 8!52 i E dr 9

d

dt
~Gt~E;r 8,r 9!ẋa

t ~r 9!!. ~A2!

It follows that the quantityU, Eq. ~17!, is now modified into

Ũba5Uba1DUba ,
1-6
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Uba5E drxb
t ~r !ẋa

t ~r !,

DUba5E drxb
t ~r !Dẋa

t ~r !. ~A3!

As a result, we find that the current entering leadb consists
of two parts, the leading order in the adiabatic approxim
tion, I b , which has been discussed above, and a correc
DI b . Explicitly,

Ĩ b~ t !5I b~ t !1DI b~ t !,

I b~ t !5eE dE

2p (
a

f a~E!@dab2uSba
t u212 R~Sba

t* Uba!#,

DI b~ t !5eE dE

2p (
a

f a~E!@2uUbau212 R~Sba
t* DUba!#.

~A4!

Let us first verify that the correctionDI b obeys charge
conservation over the entire period. To this end, we sumDI b
over b. Using Eq.~19!, we have

(
b

@ uUbau222 R~Sba
t* DUba!#

5E drE dr 8F(
b

xb
t ~r !ẋa

t ~r !xb
t* ~r 8!ẋa

t* ~r 8!

22 IS xa
t* ~r !

d

dt
Gt~E;r ,r 8!ẋa

t ~r 8! D G . ~A5!

We can now employ the fact that the current should be c
served upon integrating over the entire period, that is, w
expression~A5! is inserted intordt. Then we may integrate
the second term by parts. Consequently, using the relati24

(
a

xa
t ~r !xa

t* ~r 8!522 I Gt~E;r ,r 8!, ~A6!

the two terms in Eq.~A5! exactly cancel one another.
Let us now turn to the expression for the correctionDI b ,

Eq. ~A4!, and insert the condition in which the system
unbiased, i.e.,f a(E)5 f (E). Then, using Eqs.~19!, ~21!,
~22!, and~A6!, we find

(
a

uUbau2522E drE dr 8S ]xb
t ~r !

]E D V̇~r ,t !

3I~Gt~E;r ,r 8!!V̇~r 8,t !S ]xb
t* ~r 8!

]E D ,

~A7!

and
19541
-
n,

-
n

2 R (
a

Sba
t* DUba52 I E drE dr 8F S ]xb

t ~r !

]E D V̇~r ,t !

3S ]Gt~E;r ,r 8!

]E D V̇~r 8,t !xb
t* ~r 8!

1S ]2xb
t ~r !

]E2 D V̇~r ,t !Gt~E;r ,r 8!

3V̇~r 8,t !xb
t* ~r 8!G

1I E dr S ]2xb
t ~r !

]E2 D V̈~r ,t !xb
t* ~r !.

~A8!

To obtain the last equality, we have made use of the relati

]2xb
t ~r !

]E2
522E dr 8S ]xb

t ~r 8!

]E DGt~E;r 8,r !, ~A9!

and

Ġt~E;r ,r 8!5E dr1Gt~E;r ,r1!V̇~r1 ,t !Gt~E;r1 ,r 8!.

~A10!

Both relations are obtained by taking derivatives of Eqs.~8!
and ~10! with respect to the energy and the time.

Collecting all these terms, we obtain

DI b~ t !5
2e

p E dE f~E!I
]

]E
^xb

t uV̇~ t !Ġt~E!

1 1
2 V̈~ t !Gt~E!uxb

t &. ~A11!

It is satisfactory to note that, again~upon integrating by parts
with respect to the energy!, the energy integral includes th
derivative of the Fermi function. Hence, up to the seco
order in the adiabatic approximation, we find

Ĩ b~ t !5
e

2pE dES ] f ~E!

]eE D @^xb
t uV̇uxb

t &1I~^xb
t u2V̇~ t !Ġt~E!

1V̈~ t !Gt~E!uxb
t &!#. ~A12!

To estimate the relative magnitude of the correction~the sec-
ond term above! compared to the leading-order one~the first
term there!, consider first the part including the second d
rivative of the potential. Using Eq.~22!, this part becomes

E drxb
t* ~r !V̈~r ,t !S 2

]xb
t ~r !

]E D . ~A13!

It follows that this correction will be smaller than th
leading-order term by a factor proportional to 1/t, due to the
extra temporal derivative, multiplied by the energy derivati
1-7
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of the instantaneous scattering state. The latter will inclu
the energy derivatives of the instantaneous transmission
reflection amplitudes~which appear inx t), and possibly a
term proportional to the 1D density of states, i.e., the vel
ity ~coming, e.g., from the factorseika which appear inx t of
our simple example discussed in Sec. III!. We may conclude
that as long as the energy derivative of the instantane
B

rd

et

19541
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nd
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scattering solution is small on the scale ofv}1/t, this cor-
rection will be small. The other second-order correction te
in Eq. ~A12! has the factorĠt as compared to the leadin
first order. This term@cf. Eq. ~A10!# has an extra factor ofV̇,
and hence its smallness hinges on the smallness of the
tential amplitude. Thus, the validity regime of the express
~1! is restricted for small enough potential amplitudes.
an
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