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Analytical theory of resonance diffraction and transformation of light polarization
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This paper presents an analytical theory of resonance diffraction in the conical mount. The resonance is
caused by plasmon polariton excitation via diffraction from a high reflecting shallow grating. The dependence
of polarization, intensity, and phase of specular and resonance waves on the parameters of the problem is
presented in explicit form and examined for arbitrary polarization of the incident wave as a function of the
angle of incidence and the grating period, orientation and depth. The results obtained enable us to indicate
gratings with specific properties, for instance, gratings, ensuring transformation of arbitrarily polarized incident
wave into the linearly polarized specular wave. The properties of two-dimensional transformation matrix
relating polarization amplitudes of the incident and the specular reflected waves are analyzed. It is shown that
the transformation matrix is antisymmettia accordance with the reciprocity theorgfar an arbitrary grating
profile in the main approximation. The comparison of the results obtained shows remarkable agftegment
out any parameters fittinglvith data of the polarization conversion experiments. Both concrete results and the
approach presented may be of use in constructing gratings with the predetermined parameters and, therefore, in
solving problems of designing optical devices selective with respect to the polarization, wavelength, and

orientation.
DOI: 10.1103/PhysRevB.65.195406 PACS nuni®er42.25-p
[. INTRODUCTION changes in the properties of diffracted waves for some values

of parameters is well known from the famous Wood'’s work.

This work presents results of the simple analytical theoryThese effects are known in optics as Wood anomalies and
of Wood-type anomalies for diffraction in the general geom-were investigated theoretically in a number of works starting
etry (see Refs. 1,2 and works cited thedein connection from Rayleigh's oné see reviews in Refs. 4,5. To the re-
with the experimental worR.In the work there was demon- views we may add the recent bdowhere the reader will
strated that diffraction gb-polarized laser radiation at a shal- find the necessary literature information. We emphasize here
low harmonic grating for some angles of incidengéeand  two older works®!! that made essential contribution to up-
orientations of the grating leads to strong changes in polato-date understanding of the problem in whole.
ization of the specular reflected wave in comparison with the Note that in the framework of explanation of the stimu-
case of a flat surface. This effect is caused by the resonand¢ated scattering at the surface waves and the surface struc-
excitation of the surface electromagnetic wa\8EW), cf.  tures generation, there was developed rather simple analyti-
Refs. 4,5. In Ref. 3, the polarization conversion efficiencycal method for solving resonance diffraction problems for
(PCB was under investigation and in the next wdrketh  shallow grating, see, for instance Refs. 1,12. The following
the conversion efficiency and reflection coefficient were in-consideration is based on the results presented in Ref. 1.
vestigated both numerically and experimentally. The crucial point for us is the fact that due to the reso-

Here we show that computations for the problems disnance with SEW the amplitude of the corresponding dif-
cussed in these works can be fulfilled analytically and radifracted order becomes great for rather shallow grating
cally simplified in comparison with Ref. 6 without the loss of (heighth to periodd ratio smaller than 1/10 But for a shal-
accuracy. The analytical approach presented allows to usw grating the analytical investigation gives accurate results
deepen our understanding of the problem as a whole, anthat may be presented in the explicit form. This allows to
especially to investigate carefully the dependence on parantonsider the problem in details in the cases of specific inter-
eters. In addition to this we present results for more generagst.
problem, assuming that polarization of the incident wave is The structure of the paper is as follows. In Sec. Il, we
arbitrary. For this case we obtain the explicit form of theformulate the problem and present a brief summary of the
corresponding transformation matrix and discuss its propemecessary results, cf. Ref. 1. The main results are presented
ties. As a result we present general symmetry properties arid Secs. Ill and IV. In Sec. Il A, we present transformation
formulate corresponding reciprocity theorem for the:p coefficients(TC) in the main approximation and discuss their
and p—s conversion. We also demonstrate some additionafast (resonancedependence on parameters of the problem.
unique properties of the resonance diffraction for special valNext Sec. Ill B deals with TC symmetry properties. Section
ues of parameters that may be used in optical devices desighil C is devoted to investigation of the slow dependence of

The fact that light diffraction on the reflecting grating TC on the parameters and presents resonance TC values.
formed at high conductingmeta) surfaces may lead to great Here we present also some interesting special cases of the
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FIG. 1. Geometry of diffraction. FIG. 2. Resonance in theh diffraction order.
resonan iffraction. Th tailed investigation of th n- >
esonance diffractio e detailed investigation of the co K=k,  |k,|<k, (6)

version efficiency and comparison with experimental data
are presented in Sec. IV. The conclusions are presented andrth-order wave is close to SEWFig. 2). The resonance
Sec. V. in the order higher than the first one is weak for the harmonic
grating, therefore, we suppose that the resonance condition
Il. GENERAL SETUP (6) may be fulfiled for r==1 (separately or simulta-

) ) neously. In that case the result is as follows:
Let a plane electromagnetic monochromatic wave

> > . > A . BF[’:a |__i]Z __
E(r,z)=Eexdi(ks +Kk,2)] (1) E,=—-2iru,————, r=-r,
. . (B,+B;)D
fall on a cosine profiled surfacé,
- - |Ert|:|krzErz|/|krt|<|Erz|: r==1, (7)
z=/{(r)=acoggr) 2
- — 2 (2 °N2_ 2,2 C N2

of a highly reflecting medium. Herg=g(cose,sing) is the B =B+ &+ Alud™lBar,  A=(ari)®=Bor"+ (agr) 8
grating (2) wave vector §=2=/g is the grating period (8)

— 7<= presents azimuthal angle of the grating relative
to the incidence pIane,Etzk(sin 0,0), k,=kcos#, k
=2m/\, 6 denotes angle of incidenceaxis is directed in-
ward the materia(Fig. 1), r=(x,y). We assume the dielec-
tric permittivity £ to be high,||>1 and, consequently, the =—E+ 2| |?°D Y «x,H],, Eq,=(agEq)!Bo,
surface impedancé=1/\/s to be small,|£|<1. Supposing (10)
the grating grooves depth to be smalk\, d, we may use
Rayleigh's hypothesfsand represent the free space fieldwhere H denotes magnetic field amplitude of the incident
&(r,z) as a sum of the incident wave and outgoifand  wave and following designations are introduced:
evanescentwaves

D=(1/B,+1/By) *+A|u|% By, 9

Eor= — Ei+ik(puiEs,— uiEry)

) pi=p=p=ka2, k=glk, a;=Kj/k,
E(F,z)zﬁ(F,z)+j;x EJ(F,Z). (3 Bj=—kj,/k, Re,Im3;=0, Bo=cosh. (11)
Here Formulas (7)—(10) describe both single resonance for
|B/|<|Bd~1, r=+1 and double degenerate geometry
E;(r,2)=E;exdi(Kyr +k;,2)], (4  resonance fofB,|~|B:1<1.° These particular expressions

foIIOV\rllstrictIy from the more general results presented in the
A~ 32 2 paper, [formulas(3.12, (3.1)—(3.3 and (3.6), (2.9)], after
Kjp=kitig,  kz=—Vk*=kj,  Rekj,)=<O0, some algebraic manipulations. The resonance waves are

Im(kj,)<0, j=0+1,%2,.... (5) grazing along the boundary and therefore are close to the

eigenmodes of the highly conducting surface—SEW. The
The amplitudes of diffracted waves may be obtained fromlast is evanescent wave with largand the small tangential

the Leontovich boundary condition at the surfa@, see component of the electrical field, magnetic field is perpen-
details in Ref. 1. Resonance corresponds to smaltlicular to the propagation direction and parallel to the
z-component value of some wave vector, boundary.
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The results presented are obtained in the main approxima-
tion. The latter means that we take into account scattering
processes up to the second order and neglect the higher ones. & :[éy Kollk= — Boey— ape,. (18)
This leads to the quadratic terms in tBe corresponding to
the shift and broadening of the resonance. The procedure éfccording to Eq.(10) the specular reflected wave polariza-
solving the problem allows us to present the diffracted wavdion amplitudes may be presented in the matrix form
amplitudes as fractions with numerator and denominators
that are series in the grating depth. The results presented Eo— E Reo g’ (19)
correspond to the first nonvanishing terms in the series. As 0 0
we shall see, the main approximation is sufficient in order to

et=es=e,, e =[e, KI/k=PBoex— ace;,

o'=*1

compare the theoretical and the experimental results. with transformation coefficient€TC):

Note also that we neglect hegin comparison with3, it .
and 3, in Egs.(7)—(10). This allows to simplify and make Ro "= —1+2Bok’u?sir(¢)/D+0(§),
expressions more transparent, but it is not princi.pal. The nu- Ry~ =—R; " =«2u2sin(2¢)/D, (20)
merical results presented below take this terms into account. o -

For the single resonance cagg,|<| 3], expression$7) Ry =1-2k’u*coS(¢)/(BoD)+O(¢).

may be simplified:
. o 5 The terms=1 in Ry ~, Ry © correspond to Fresnel reflec-
Er,=—2ir u[x,H],/ B, IBrEIBr+§+A|Mr|2(1/IBO tion coefficients in/ &< B, limit.
- - + - .
+1By), r==1. (12) Nond|agone}l cpmponemﬁq and R, of the matr'|x
describe polarization conversion effect. Let us emphasize the

From the last expression, it follows that resonance centegqualityRy, "= —Ry . It presents a direct corollary of reci-
lies at the point Img,) = —5"+AM2/|/32r|_ At this point the  procity theorem formulated in the wofkfor gratings with
resonance wave amplitude achieves peak value arbitrary symmetric profile, see Ref. 17. The above presented

explicit expressions demonstrate this property for the case of

Erz|peak=—2iru[§,ﬁ]Z/A, A=¢ +Au?/By. (13)  resonance diffraction afco) sinusoidal grating. Note here

that from results of Ref. 1 it follows that antisymmetry
R, "=—R; ~ takes place in the main approximation for
grating of arbitrary profile. It is caused by the fact that the
resonance wave amplitude is proportional to the resonance
Fourier amplitudeZ, of the grating. In turn, specular reflec-
tion coefficients contain terms proportional fi|2. Other
grating Fourier amplitudeg, influence only the resonance
shift and broadening that depend on thig|2. Therefore,

Here and below primé and two primes denote the real and
imaginary parts of a quantity, respectively. The width of the
resonance in terms o8, may be estimated agp=¢’
+Au?l By, where the quadratic in the grating height term
presents the broadening of the resonance.

|E 2| peak depends nonmonotonically on the grating depth
and achieves maximum at

= fop= m' (14) these_ternlia_re in\J/rairiant under the grz_ating reflections and the
equalityR, "=—R,  holds as approximate one.
and corresponding;,, value equals Let us examine some general properties of the coefficients
& Rg”/ . They depend on parameters of the incident wave
Erzlmax=—1\ /_[;,ﬁ]z_ (15 (namely, the angle of incidenaeand wavelengtr), grating
BoA orientation¢, periodd and grooves depth=2a, and also

The maximum excitation of the resonance wave corre®n the surface impedancg: R3” =Rg” (x,¢,v,0,8),
sponds to the extremes in the specular reflected wave, digtherev=xu=ga/2. Note, that separate dependence on the

cussed in the following sections. wavelength takes place only if we take into account disper-
sion, i.e.,&=&(N\). If dispersion is negligible, then all TC
lIl. RESONANCE POLARIZATION TRANSEORMATION depend on the wavelength and grating period through the

combinationk=\/d only.

Let us decompose the vector amplitudes of incident and Numerators in TC are quadratic in the small dimension-
specular reflected wave int® and p-polarization compo- |ess parameteku = and if the denominatoD is of the
nents order of unity(i.e., we are far away from the resonapteen

diagonal TCR3” are close to Fresnel values and nondiagonal
E= > E%°, H= cE e’ (16)  ones are small. As a consequence TC strongly depend on the
o==*1 o==*1 values of propagating constangs, that allows to examine
their dependence on the parameters in two stépsfast
E _ £ H.— oE-787 an dependence on parameters determir‘;ﬁqgneglecting slow
0™ &1, TO0F0 0™ &, 70 For dependence on these parameters in other jetimest allows
L L to determine the position of the resonance peculiarities and
Heree®, e~ ande, , e, ares and p-polarization orts of  (b) examine the resonance values of TC(glsw) functions
incident and specular waves correspondingly: of other parameters.
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the points o=*+m/2, 0= 04(x)=arcsin/K?—«? (point D
FIG. 3. Resonance curvggq. (21)] for the different « in the ~ and symmetrical one, see Fig). 4n this particular case of
subregion & #<m/2, 0<p<m in the +1st(a), and—1st, (b), reso-  the grating grooves being parallel to the plane of incidence

nance. Bold lines correspond to the minimal/maximal values of thddegenerated resonanc@ne obtains the double1 reso-

azimuthal anglep () for +1/—1 resonancel < k< K?+1. nance, the different signs resonances merge and arise simul-
taneously.
A. TC fast (resonancé dependence Note here that besides the double resonance in the degen-

rated geometry in the first orderss =1, there may exist
for some combinations of parameteigther double reso-
sjances as well. Namely, double resonance of the type (
—n) with m,n=1,2, ... (diffracted waves with numbens
and —n are close to SEW, i.eB,, B_,, are small simulta-
neously occurs if(1) degenerated case=m and ¢~ 7/2,

Let us first examine the fast dependence for some fixe
grating depth. Ife is not close to* 7/2 value then TC ex-
tremes correspond to the single resonance. As it follows fro
the representatio(20) the specular TC extremes correspond
to the minimum values of the denominat@rmodulus, i.e.,

to the minimum values ofB,| [and to the maximum values

of the correspon.ding resonance wave amplitgde see Eq. O~ 0mm(K)Earcsim, &' <mi=<K:
(7) or (12)]. Taking into account that the real part gf is
positively defined, but the imaginary one changes sign, it2) nondegenerated case#m and

may be found that TC achieve its extremes at the point
0~ Hmn(K)Earcsin\/Kz— mn«?,

Bi=—&"+(ak)°u’IB3>0, B{=0. (21

(m—n)«
The relation(21) defines the resonance surfaceping, « Q= (Pmn(K)EarCCO%— ,
space, see Fig. 3. The surface depends on the grating grooves 2K —mnx

depth through dimensionless parameterka/2, but this de- o+ mav take place fote”|/ mn< x<2K/(m+n). 4mn
pendence is wealkguadratic inu? term in Eq.(21) corre- >(m—n))/2§"2. P €'l “ ( )

Sponds o nonlinear in th? grating amplitude Shiﬂ, of the reso- “\ote the above-mentioned inequalities are not rigorous,
nance caused by scattering of resonance wave in the seconfla i caused by two facts: first of all, the resonance surface

order () wave]. Neglecting this small term we can sition was treated with neglecting of the? term, and
represent conditiof21) in the simplified explicit form second, we neglected the resonance widthterms of the

o=+ o(r,0), variable 8! it is of the order of5B! = &' + (a, k)2u?l Bo) 18
For the harmonic grating double resonance fion=2
o(r ik, 0)=arccos(coL0—r2k2+ £2)/(2r k sin )] case are relatively weak, and will be discussed for periodic

(22) grating of general profile in forthcoming papers.

_ _ ) ) _ Proceeding with the first-order resonance, we see that it is
that is convenient for comparison with the experimental datapossible ifK —1<x<1+K, K~1+£"?/2. From the both

Two signs in Eq(22) correspond to the reflective symmetry possible cases= +1, it is sufficient to examine the case
(about the incidence plaperientations of the grating. The =1, one may receive the=—1 case by transformation
two corresponding resonance Wa\fé,s (with the samer o—m—¢, see Fig. 3 and detailed analysis of the symmetry
value are propagating symmetrically to the incidence planeproperties in Sec. Ill B. Here exist three distinct cases in
also. Figure 4 shows the resonance curyEs, (22)], for r accordance with the grating period value. The first one cor-
=1 (solid line) andr = — 1 (dashed lingorder resonance. As responds to the large enough grating periad@sK. In the

it is obvious, for a fixed angle of incidence it is possible upcase the resonance grating azimytfx,#) changes mono-
to four resonance waves, that correspond both to the differeribnically starting from zero value fadt= 6,,,;,(«) (pointM in
grating orientation and diffraction order. If the incident angleFig. 4) up to ¢,a.{ k)~ 7—arccos/2) for 6=u/2 (point N

6< Oin=arcsifK—«|, K=/1+¢£"?, then the resonance is in Fig. 4), passing the poing=/2 at = 6,4(«) (point D).
impossible. In thec<K case, the two curvd€q. (22)] cor-  Forr=—1 the resonance grating azimuth, is monotonically
responding to the opposite sign diffraction orders, intersect aecreasing function with the minimal valug,,(— ),
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omin(— k)= @(— K, wI2)~arccosk/2), see pointP in Fig. Let us introduce short notation for operators of mirror
4. The resonance wave propagates “forward,” i.e., the valueeflection in the plane of inciden(fby and in the perpendicu-
of ay is positive. Hereafter, we restrict ourselves with thejgr plane G, acting on a vector &,b,c) according to

positive ¢ values, the negative case strictly follows from éy(a,b,c)=(a,—b,c), éx(a,b,c)z(—a,b,c) and on the

the reflective symmetry of the resonance curves relative to A A .
the ¢=0 axis. angley asGyo=—¢, Gyp=m—¢. Thus, the operatoB,

The second case corresponds to the subset of gratm%c?ansfprms resonance to the symmetric one about the plane
with intermediate periodk < x< JKZ+ 1~ 2. In this case incidence W|th9ut changing resonance orderOn th.e
o(x,6) is nonmonotonic function of. In the subregion contrary, operato6, transformsr =n resonance, occurring

[ Omin(x),0m(k)], Where 6,,(x)=arcsin/x?—KZ2, ¢(x,0)  atthe anglep(rk,6), tor’=n=—r resonance at the angle
decreases monotonically froma7 to og(k)=w o(—rk,0)=7—o¢(rk,6). Both transformations,éy and
—arccos/1-K%«?, and in the subregionft,(«),m/2) in- & . convert the initial resonance wave to another resonance
creases up ter—arccosk/2), see Figs. 3 and 4. The curve gne, propagating in the mirror symmetric direction relative to
corresponding to the minimal values for various is de-  the incidence plane. But if in the first case the symmetric
fined by the parametric representatiof=6n(x), ¢  resonances correspond to the same grating Fourier ampli-

= ¢@m(x), or in the explicit form tude, for instancef,, in the second case symmetry transfor-
mation will change sign of the corresponding grating har-
— cinal K2 a2 .
cose=—sin o/ K+ sirfo, (23 monic number front to r. The TC symmetry properties may

and is shown in Fig. @) by the bold line. The points of this be written in the form

curve separate regions of the resonance curves corresponding - , "oa ,
to the “forward” (a,>0 for 6> 6,,) or “backward” (a;y GiRo” (9)=Rq” (Gip)=00'R” (9), t=Xy.
<0 for < 6,,) propagation of the resonance wave. (24)

The third case corresponds to the grating wikh These transformations do not act on the incident wave
>\KZ+1. Hereo(k,6) is monotonically decreasing func- field. Therefore, for specular reflected wave amplitudes one
tion of #, changing fromw to m—arccosk/2). The reso-  obtains from Eq(19)
nance wave propagates “backward.”

The k~K region is the special one, because for this val-
ues of k resonance occurs close to normal incidence, and
thus both first-order diffracted waves with= =1 are close
to the resonance simultaneously. Double resonance for close In the case ofs- (or p-) incident wave polarization the
to normal incidence also presents the case of “degenerateqniensity of the specular reflected wavk,= By|Eol|?

resonance. ) o . =B02,|EF|? is invariant under this transformation. But for

_ Let us underline that "backward” or *forward” propaga- g jitrary polarization of the incident wave it is not so, the

tion of the resonance wave is independent on the resonanggecjarly reflected wave intensity changes under above-

order sign, depending only on the grating period and thenentioned transformations. These changes may be compen-

angle of incidence. _ sated by some transformations of the incident wave. Namely,
As one can see from the relatioii82), the resonance ( ths it is necessary to change polarization of the incident

surface possesses symmetries, connected first, with equivgg e into the “reflected” one. The latter means that we have

lent grating positions relative to the incidence plane, an : . EEE
second, with transition between the two resonances that di 0 change the  two-dimensional vectoE(,E7) by

fer only by the sign of diffraction order. It is obvious that (~E E~) orby (E",—E"), thatis equivalent to reflection
these geometric symmetries lead to some symmetry prope@f the vectork in the xOz plane or the plane parallel to the
ties of all diffracted wave amplitudes and T&ee, for in-  wave vectork and perpendicular to the plane of incidence,
stance, Eq(12) for resonance wavés respectfully. Denoting these transformations, acting on polar-

ization amplitudes, ak* andL ~:

GES(9)=E§(Gie)=0>, o'RS" (¢)E”. (25

B. Symmetry properties .

Zero-order TC's[Eq. (20)], do not change under transfor- LT E?=00’E?, (26)
mation ¢— ¢+ 7. This transformation corresponds to the we may present the result of composed transformations in
rotation of the grating and in the case @o) sinusoidal the form

grating the latter is invariant under the transformatitme
grooves are mirror symmetjic Other transformationsp
—a— ¢ and ¢— — ¢ do not change the diagonal TGRy”

and change the sign of the nondiagonal onegtaking into
account R “=—R; " identity) transform Ry "R} . _ oo’ o' o

These simople transoformation properties Iead0 to de?inite ob- e (2,: Ro” (¢)B” =00 Eole),
servable symmetry in intensity and phase of the reflected

waves. t=x,y. (27

(L"GYES ()= R§” (Gio)L7'E”

195406-5



A. V. KATS AND I. S. SPEVAK PHYSICAL REVIEW B65 195406

From these relations it follows that composed transforma- Specifically, in the single resonance case for the grating

tionsLG change only the sign of some-(or p-) polarization ~ With = uqp=VBoé'/A, the resonance value gf becomes
amplitude of the reflected wave and therefore does noZero, that causes the linear polarization of the reflected wave

change its intensity. for any polarization of the incident wave,
Note that this symmetry property is proved here for the
special case ofco) sinusoidal grating. The last possesses EOres(aopt)Z[(5o;)é++(E[&ofz]/k)ég]
additional symmetry, namely, its grooves relief is mirror ’
symmetric. So here the question arises: what symmetry prop- X[ Ey, k] /[ ao(ayk)?]. (32

erties will remain for the asymmetric grating? Postponing the

detailed answer to the forthcoming paper, we emphasize heignder these conditions the polarization of the incident wave
that for the transformatioﬁ”éy the invariance is exact and affects the amplitude of the reflected wave only, but does not
for the other one[“G,, it is in any case valid in the main gffect its polarization. The_polarization of the reflected wave
approximation. is determined by geometrical parameters only.

Noteworthy that symmetry properties discussed in this Realization of this regime requires that the resonance con-
section are additional t&; “=—R; ~ condition related to dition, defined by Eq.(22), along with z=pup, should
the reciprocity. hold. These two equations involve four parameters, namely,
0, ¢, k, N=kul\J& =mal(€'d). Here, any two param-
eters may be defined as functions of the two remaining. The
results of examination of the system presented may be sum-

Let us continue investigating the single resonance casenarized as follows. For a given values of the two parameters
According to Eqs(16)—(20) the specular reflected wave am- chosen, there may exist one or two solutions, or no one at all.
plitude may be presented in the transparent and conveniefor instance, assigning wavelength and grating parameters
form (i.e., k andN are specifieflone arrives at a conclusion that

for small grating depth,

C. Polarization of specular reflected wave

Eo=E5+E}. (29)
Here the first term presents the linearly polarized wéwe 2k . S
any polarization of the incident wave! N<No(x)= 1+« or a<2dVE k{m(1+x?)] Y,

- e (33)
Eo=L(0,1,x,E) (e Bosing+e" cose). (29

; : lution does exist for any and is unique. For deeper grat-
The second term is equal to the field reflected by the flap®
boundarv with the refl qti N ici 0 r y ?ngs,NzNo(K), the results differ for the short«(>+/3) and
ounaary e reflection coefficieti( 6, i, ) long-period gratings €< +/3). In the first case there are no
solutions, and in the second one there are two or none solu-

=F_ NE = A E _atET*
Bo=7(0,p.k)Bofiar,  Bostar=€E —€"E". (30 ;1 for N2<3./3/(4k) andN?>3./3/(4k), respectively.

The coefficientsC, F are (in general complex functions of Let us consider some special cases.
the parameters of the diffraction problem, (1) If the incident wave is linearly polarized Witﬁtl\;?,
o then the diffraction under resonance conditigisy. (21)], at
L=2ku’(BoD) YE,k],, F=1—-2u’A(B,D) 1, the grating with optimal deptiEq. (14)], leads to the total

suppression of specular reflection,
A= B2k + (apr)>. (31)
- . Eo(@op)=0 for Elx, B1=—&"+pBo¢'IB3.
In the resonance vicinity the specular reflected wave is (34)
elliptic polarized for arbitrary polarization of the incident
wave (including linear polarization It is due to the fact that  This result was first obtained in the simplest geometry case
transformation coefficientag"' are complex numbers. The in Ref. 21 and observed experimentally in Ref. 22.
ellipticity level may be high in contrast with the case of aflat  (2) In the case of arbitrary polarization of the incident
boundary'® The phase and amplitude of the reflected wavewave any special polarization componéimt particular,s or
undergoes rapid resonance changes with a variation in thg) of the specular reflected wave can be totally suppressed. It
angle of incidence, wavelength, period and grating orientafollows from Eq.(32) that suppression &f(or p) component
tion in the resonance surface vicinitgependence on the takes place if the ore™ (or é*) multiplier vanishes. That
grating depth, in general, is slgwimmediately on the reso- occurs at the appropriate grating orientation and amplitude.
nance surface the TCBg‘” become real, and polarization For instance, if,ZH&O (¢=0,7) then
types (linear, elliptica) of the reflected and incident wave
coincide, but polarization parameters are different. However,

2_ .2
in the particular case of the grating V\.Iith. the optimal_dept.h, Eo(a): _E+§+_M2—'“;'“E—§a L Hopt= W/K_
Eq. (14), the specular reflected wave is linearly polarized in Mot Kopt

any case’ (35)
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For other grating orientations ag (¢ = * /2) that corre-
sponds to the degenerated-{1l,) resonance, one obtains the
expression similar to the previous one,

h A1
2 ~2 <
~ Mopt _ . o+ ~ _3 [ A \hl /| I\ N
Eo(a)——E +E” eo, Hopt= K &'2. - A4 N
s 36 LTS %ﬂgzﬁ/ﬁ AN fo
_ _ / 80
It follows from Eq. (20) that in these particular cases the P / J\dj ;7 / /
conversion coefficient®]” vanish, i.e. polarization conver- %4+ y H\( 7 7 7 5
sion vanishes due to the symmetry. One of the polarization | #H\g /7] 7 7 ] ] 5
v / / [ [ /]

componentsg in the first case and in the second onedoes 0 ]
not “feel” the grating and cannot be suppressed: the corre-
sponding TC’s are equal tg 1 (or Fresnel valueRs, R, for n
more precise calculationsOn the contrary, the second po- / I/ I/
larization component vanishes for the grating withr w oM 30 50 70 8 [deg]
or ,uzﬁopt, respectively. Passing through the zero value the
corresponding component undergaeghase jump. bl : He d he foll f b

( O can prodce the specular ected wave with InS2 /) SE e v e elowe e e s

g,

ear polarization for any polarization of the incident one usu”gt e 0= #=45°, 0<=<90° region the theoretical curves are very

the gl’?tlnbg vl\”th alpprop?rlatedpropertles tSungSIng :eﬂectteclose to the experimental data. Underline the mirror symmetry rela-
wave 1o be lneary polarized we can introduce unit vector, . , thep=90° plane. The characteristic poirts D, P, andN

m= mse +m e0 being perpendicular both to the wave vec- gre the same as in Fig. 4.
tor kg andE, (Fig. 1). ConditionE,m=0 is fulfilled for the

<
™~
\\
™~
I~
™~
I~
~
IS

FIG 5. PCE dependence on the angle of incidence for different

grating orientation angle = ¢, Thus, the harmonic diffraction grating under resonance
conditions may serve as a polarization and/or amplitude
tango=—mg/(Bomy). (37) transformation element. This element is fully described in

terms of the transformation matrix with real elements. Of
It is obvious that the last condition corresponds to the vectogpecial interest is the strong resonance effect of the polariza-
m projection ontoz=0 plane being parallel to the, mJ|x.  tion conversion. In the following section, we examine it in
In this case the specular wave amplitude is as follows: details and make comparison with experimental data.

IV. POLARIZATION CONVERSION

z _([rﬁlzo])([érﬁ]z
ok Bo

), my|| . (38

Let us examine the polarization conversion effect in de-
tails, comparing results with the experimental ones in Ref. 3.
It is described by nondiagonal transformation matrix ele-

mentsRy; ~=—R, ©. Let us introduce the quantity

For the particular case Wiﬂﬁt being parallel taﬁt (for linear
polarization of the incident wayewe obtainE,=0, that

coincides with the second point due &my| E, .
Here a question arises, if it is possible to find the grating =|R; "2 (39)
parameters£, N) and geometry of the resonance diffraction P 0

(0, ¢) allowing one to make the specular reflected wavey presents PCE. For the fixed grating paramefesodd
being polarlzed under the condltldﬁ],m 0 for the arbitrary  gng depthh=2a) and wavelength\ the p depends on the
vectorm, i.e., for the arbitrary value dfl = mg/m,? Besides angle of incidence and the grating azimuthal ange Fig-
above-formulated conditions, here we have to consider Edure 5 shows the (6, ¢) dependence for the parameters of the
(37) as the additional restriction on the angleand¢ fora  experiment (the Ag grating, A\=0.6328 um, ¢=—16
given M value. Consider, for instance, the case with a fixed+0.71, £€=0.005-0.25, d=0.8425um, «=0.751). As
grating period and wavelengfor fixed k=\/d). Then, for  one can see thp value becomes negligible away from the
the case of long-period grating<<l, there are two sets of resonance, that is caused by small grating dep#s,1. But
convenient parametersd{, ¢1, u; and 6,, ¢,, up) for  nearby the resonance curvgegq. (22) (bold lines] p in-
arbitrary M value, co9;<«<co0s6,, cosg;<0, c0osp,>0, creases up to the values of the order of unity.

M tang; ,<0. For a short-period grating> 1, their exists a Let us examinep variation along the curves that corre-
pair of convenient gratings only for sufficiently small values spond to the resonance i1st diffraction order(Fig. 4) for

of [M|, [IM|<My(«), and there are no gratings[i1| ex- some definite gratindperiod and depth are constanBy
ceeds the critical valudy(«). We do not present a rather means of the approximate resonance condit&#), one may
complicated expression favl(«), noting only that it pre- eliminate the angle of incidence and represeatp,.s(¢) in
sents the decreasing function that vanishes-at2 the form
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0.6 T T T =

Pred® 5 4 om 081
x 0.6

04r / i} 0.4]
0.2

02 - [ L .
0 50 100
0 A FIG. 7. Dependence of the maximal values of the FEHR.
30 60 90 ¢ [deg] (40)] (¢=/4) on the grating depth. The crests correspond to the

FIG. 6. Dependence of PCE on the azimuthal argkdong the experimental dat3.

resonance curve, Eq22) for different grating depth. The crests

correspond to the experimental déRef. 3 for h=55.4 nm. Equation(40) describes saturation for> \/? The de-

pendence obtained is in excellent agreement with the experi-
mental results of Ref. 3 without any fitting of parameters.

__Ar et 27— 2 — =
pres(9) = V& +B(9)v?] *sinf2e, r=1, wv=mald, The only divergence is that the calculated resonance width is

(40 smaller than the experimental one. This obstacle may be
2o ’ caused as by the rather large surface impedance value for Ag
B(g)= (ksinfe*Q cosp) at wavelength 0.63um, |£/=0.25, and also by the differ-
[— &"2— k2c0oS 20+ 2k Q cosp] M2’ ence of the impedance real part from the vaflie-0.005%°
. ) i Note that the resonance width in the main approximation is
Q=[1+¢&"%—k’sir’e]*2 (4)  proportional to&’ + f,»2 with coefficientf, of the order of

unity. In general, it is represented as a seriesyfnwith
coefficientsf,, of the order of unity. Thus, for?<¢’ the
resonance width is stipulated by strict light absorption, the
Ronlinear in the grating depth broadening becomes essential

Here upper sign {) corresponds to the forward resonance

sible only for the grating with period satisfying the condition for p2= ¢’
K< k<2K.
Equation(40) corresponds to the singhe 1st diffraction
order resonance and presents approximate magnitude of PCE V. SUMMARY
at the corresponding resonance cut@@) [for —1st reso- In this work, the opportunities of the developed modified
nance one has to replag¢) in Eq. (40) by B(7— ¢)]. perturbation theory for investigation of the resonance diffrac-

In the vicinity of the double(degenerate resonance tion at high reflecting surface are demonstrated. The ap-
points, =+ /2, 6= 04, the both first-order resonances proach presented enables one to derive explicit analytical
==1 are to be taken into account simultaneously. In thesgypressions for the complex amplitudes of diffracted waves
cases approximate proportionality of PCE to théinholds  and carry out the comprehensive investigation of their de-
true with some more complicated coefficidittdiffers from  hendence on the parameters of the problem. The results of
the multiplier »*[¢’ +B()»?] 2 values by a factor of 2 calculations even in the lowest-order approximation are in a

Thus, we obtain the explicit analytical expression for theyery good accordance with the experimental data; small dis-
resonance value of the PCE dependence on the grating depthepances are within the uncertainty bounds of the data. Be-
orientation, and period. These results allow us to understangjges the antisymmetry of the TC matrix, following from the
the physical meaning and role of all parameters influencingeciprocity theorem, we have found the additional symmetry
the effect. They are in a very good accordance with the exproperties that were not discussed earlier and are essential
perimental data, cf. Ref. @n spite of moderate smallness of for the experimental data analysis. Detailed investigation of
the surface impedance vallg|=0.25). the polarization transformation effe@hcluding the polariza-

The dependence<(¢) for the parameters of the experi- tion conversioiis presented. In particular, the parameters of
ment, (Ref. 3, is presented in Fig. 6. In9¢p<m/2 region  the resonance diffraction that allow one to produce the lin-
the p,s(¢) does not differ essentially from the reference early polarized specular reflected wave and to control its po-
function ppsinf2e, where p,, denotes maximum value of |arization direction in a wide range, are presented.
pres(¢) (Fig. 6). This property follows strictly from the rep-  On the basis of the results obtained the effective calcula-
resentation ofp.s(¢), if one takes into account th&(¢)  tions may be performed in order to build the unique gratings
[Eqg. (41)], is a slow function in the region9¢=<m/2 and  with the predetermined parameters. The results may be used
moreover, enters denominator of the express#f) with a  also in solving such problems as measurement, both the grat-
small multiplier »2. Note thatB(¢) diverges for a specific ing and the medium parameters with high accuracy.
value of the resonance azimuthal angle ¢,,.{ ) > 7/2,
corresponding to the grazing incidence, see (Bd) and fig-
ure of B(¢) in Ref. 24. As function of the grating depth the
PCE increases monotonically with depth increasing that is Authors are highly indebted to N. A. Balakhonova for her
illustrated by Fig. 7. kind assistance in numerical calculations and illustrations.
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