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Analytical theory of resonance diffraction and transformation of light polarization
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This paper presents an analytical theory of resonance diffraction in the conical mount. The resonance is
caused by plasmon polariton excitation via diffraction from a high reflecting shallow grating. The dependence
of polarization, intensity, and phase of specular and resonance waves on the parameters of the problem is
presented in explicit form and examined for arbitrary polarization of the incident wave as a function of the
angle of incidence and the grating period, orientation and depth. The results obtained enable us to indicate
gratings with specific properties, for instance, gratings, ensuring transformation of arbitrarily polarized incident
wave into the linearly polarized specular wave. The properties of two-dimensional transformation matrix
relating polarization amplitudes of the incident and the specular reflected waves are analyzed. It is shown that
the transformation matrix is antisymmetric~in accordance with the reciprocity theorem! for an arbitrary grating
profile in the main approximation. The comparison of the results obtained shows remarkable agreement~with-
out any parameters fitting!! with data of the polarization conversion experiments. Both concrete results and the
approach presented may be of use in constructing gratings with the predetermined parameters and, therefore, in
solving problems of designing optical devices selective with respect to the polarization, wavelength, and
orientation.

DOI: 10.1103/PhysRevB.65.195406 PACS number~s!: 42.25.2p
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I. INTRODUCTION

This work presents results of the simple analytical the
of Wood-type anomalies for diffraction in the general geo
etry ~see Refs. 1,2 and works cited therein! in connection
with the experimental work.3 In the work3 there was demon
strated that diffraction ofp-polarized laser radiation at a sha
low harmonic grating for some angles of incidenceu and
orientations of the grating leads to strong changes in po
ization of the specular reflected wave in comparison with
case of a flat surface. This effect is caused by the reson
excitation of the surface electromagnetic wave~SEW!, cf.
Refs. 4,5. In Ref. 3, the polarization conversion efficien
~PCE! was under investigation and in the next works6 both
the conversion efficiency and reflection coefficient were
vestigated both numerically and experimentally.

Here we show that computations for the problems d
cussed in these works can be fulfilled analytically and ra
cally simplified in comparison with Ref. 6 without the loss
accuracy. The analytical approach presented allows to
deepen our understanding of the problem as a whole,
especially to investigate carefully the dependence on par
eters. In addition to this we present results for more gen
problem, assuming that polarization of the incident wave
arbitrary. For this case we obtain the explicit form of t
corresponding transformation matrix and discuss its prop
ties. As a result we present general symmetry properties
formulate corresponding reciprocity theorem for thes→p
and p→s conversion. We also demonstrate some additio
unique properties of the resonance diffraction for special v
ues of parameters that may be used in optical devices de

The fact that light diffraction on the reflecting gratin
formed at high conducting~metal! surfaces may lead to grea
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changes in the properties of diffracted waves for some va
of parameters is well known from the famous Wood’s wor7

These effects are known in optics as Wood anomalies
were investigated theoretically in a number of works start
from Rayleigh’s one,8 see reviews in Refs. 4,5. To the re
views we may add the recent book9 where the reader will
find the necessary literature information. We emphasize h
two older works10,11 that made essential contribution to u
to-date understanding of the problem in whole.

Note that in the framework of explanation of the stim
lated scattering at the surface waves and the surface s
tures generation, there was developed rather simple ana
cal method for solving resonance diffraction problems
shallow grating, see, for instance Refs. 1,12. The follow
consideration is based on the results presented in Ref. 1

The crucial point for us is the fact that due to the res
nance with SEW the amplitude of the corresponding d
fracted order becomes great for rather shallow grat
~heighth to periodd ratio smaller than 1/10!. But for a shal-
low grating the analytical investigation gives accurate res
that may be presented in the explicit form. This allows
consider the problem in details in the cases of specific in
est.

The structure of the paper is as follows. In Sec. II, w
formulate the problem and present a brief summary of
necessary results, cf. Ref. 1. The main results are prese
in Secs. III and IV. In Sec. III A, we present transformatio
coefficients~TC! in the main approximation and discuss the
fast ~resonance! dependence on parameters of the proble
Next Sec. III B deals with TC symmetry properties. Secti
III C is devoted to investigation of the slow dependence
TC on the parameters and presents resonance TC va
Here we present also some interesting special cases o
©2002 The American Physical Society06-1
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resonance diffraction. The detailed investigation of the c
version efficiency and comparison with experimental d
are presented in Sec. IV. The conclusions are presente
Sec. V.

II. GENERAL SETUP

Let a plane electromagnetic monochromatic wave13

EW ~rW,z!5EW exp@ i ~kW trW1kzz!# ~1!

fall on a cosine profiled surface,14

z5z~rW !5a cos~gW rW ! ~2!

of a highly reflecting medium. HeregW [g(cosw,sinw) is the
grating ~2! wave vector (d52p/g is the grating period!,
2p,w<p presents azimuthal angle of the grating relat
to the incidence plane,kW t5k(sinu,0), kz5k cosu, k
52p/l, u denotes angle of incidence,z-axis is directed in-
ward the material~Fig. 1!, rW[(x,y). We assume the dielec
tric permittivity « to be high,u«u@1 and, consequently, th
surface impedancej51/A« to be small,uju!1. Supposing
the grating grooves depth to be small,a!l, d, we may use
Rayleigh’s hypothesis8 and represent the free space fie
EW(rW,z) as a sum of the incident wave and outgoing~and
evanescent! waves

EW~rW,z!5EW ~rW,z!1 (
j 52`

`

EW j~rW,z!. ~3!

Here

EW j~rW,z!5EW jexp@ i ~kW j t rW1kjzz!#, ~4!

kW j t5kW t1 jgW , kjz52Ak22kW j t
2 , Re~kjz!<0,

Im~kjz!<0, j 50,61,62, . . . . ~5!

The amplitudes of diffracted waves may be obtained fr
the Leontovich boundary condition at the surface~2!, see
details in Ref. 1. Resonance corresponds to sm
z-component value of some wave vector,

FIG. 1. Geometry of diffraction.
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ukW rt u'k, ukrzu!k, ~6!

andr th-order wave is close to SEW,~Fig. 2!. The resonance
in the order higher than the first one is weak for the harmo
grating, therefore, we suppose that the resonance cond
~6! may be fulfilled for r 561 ~separately or simulta-
neously!. In that case the result is as follows:

Erz522ir m r

Br̄@kW , HW #z

~Br1Br̄ !D
, r̄[2r ,

uEW rt u5ukrzErzu/ukW rt u!uErzu, r 561, ~7!

Br5b r1j1Aum r u2/b2r , A5~aW rkW !25b0
2k21~aW 0kW !2,

~8!

D5~1/Br11/Br̄ !
211Aum r u2/b0 , ~9!

EW 0t52EW t1 ikW ~m 1̄E1z2m1E1̄z!

[2EW t12kW um r u2D21@kW ,HW #z , E0z5~aW 0EW 0t!/b0 ,

~10!

where HW denotes magnetic field amplitude of the incide
wave and following designations are introduced:

m15m 1̄[m5ka/2, kW 5gW /k, aW j5kW j t /k,

b j52kjz /k, Re, Imb j>0, b05cosu. ~11!

Formulas ~7!–~10! describe both single resonance f
ub r u!ub r̄ u;1, r 561 and double degenerate geome
resonance forub r u'ub r̄ u!1.15 These particular expression
follow strictly from the more general results presented in
paper,1 @formulas ~3.12!, ~3.1!–~3.3! and ~3.6!, ~2.8!#, after
some algebraic manipulations. The resonance waves
grazing along the boundary and therefore are close to
eigenmodes of the highly conducting surface—SEW. T
last is evanescent wave with largez and the small tangentia
component of the electrical field, magnetic field is perpe
dicular to the propagation direction and parallel to t
boundary.

FIG. 2. Resonance in therth diffraction order.
6-2
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ANALYTICAL THEORY OF RESONANCE DIFFRACTION . . . PHYSICAL REVIEW B65 195406
The results presented are obtained in the main approx
tion. The latter means that we take into account scatte
processes up to the second order and neglect the higher
This leads to the quadratic terms in theBr corresponding to
the shift and broadening of the resonance. The procedur
solving the problem allows us to present the diffracted wa
amplitudes as fractions with numerator and denomina
that are series in the grating depth. The results prese
correspond to the first nonvanishing terms in the series
we shall see, the main approximation is sufficient in orde
compare the theoretical and the experimental results.

Note also that we neglect herej in comparison withb0
andb2r in Eqs.~7!–~10!. This allows to simplify and make
expressions more transparent, but it is not principal. The
merical results presented below take this terms into acco

For the single resonance case,ub r u!ub r̄ u, expressions~7!
may be simplified:

Erz522ir m r@kW ,HW #z /b̃ r , b̃ r[b r1j1Aum r u2~1/b0

11/b2r !, r 561. ~12!

From the last expression, it follows that resonance ce
lies at the point Im(b r)52j91Am2/ub2r u. At this point the
resonance wave amplitude achieves peak value

Erzupeak522ir m@kW ,HW #z /D, D5j81Am2/b0 . ~13!

Here and below prime8 and two primes9 denote the real and
imaginary parts of a quantity, respectively. The width of t
resonance in terms ofb r may be estimated asdb5j8
1Am2/b0, where the quadratic in the grating height ter
presents the broadening of the resonance.

uErzupeak depends nonmonotonically on the grating dep
and achieves maximum at

m5mopt[Aj8b0 /A, ~14!

and correspondingErz value equals

Erzumax52 iA j8

b0A
@kW ,HW #z . ~15!

The maximum excitation of the resonance wave cor
sponds to the extremes in the specular reflected wave,
cussed in the following sections.

III. RESONANCE POLARIZATION TRANSFORMATION

Let us decompose the vector amplitudes of incident
specular reflected wave intos- and p-polarization compo-
nents

EW 5 (
s561

EseWs, HW 5 (
s561

sE2seWs, ~16!

EW 05 (
s561

E0
seW0

s , HW 05 (
s561

sE0
2seW0

s . ~17!

Here eW 1, eW 2 and eW0
1 , eW0

2 are s- and p-polarization orts of
incident and specular waves correspondingly:
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eW 15eW0
1[eW y , eW 25@eW y ,kW #/k5b0eW x2a0eW z ,

eW0
25@eW y ,kW0#/k52b0eW x2a0eW z . ~18!

According to Eq.~10! the specular reflected wave polariz
tion amplitudes may be presented in the matrix form

E0
s5 (

s8561

R0
ss8Es8 ~19!

with transformation coefficients~TC!:

R0
1152112b0k2m2sin2~w!/D1O~j!,

R0
1252R0

215k2m2sin~2w!/D,

R0
225122k2m2cos2~w!/~b0D !1O~j!.

~20!

The terms61 in R0
22 , R0

11 correspond to Fresnel reflec
tion coefficients inuju!b0 limit.

Nondiagonal componentsR0
21 and R0

12 of the matrix
describe polarization conversion effect. Let us emphasize
equalityR0

2152R0
12 . It presents a direct corollary of reci

procity theorem formulated in the work16 for gratings with
arbitrary symmetric profile, see Ref. 17. The above presen
explicit expressions demonstrate this property for the cas
resonance diffraction at~co! sinusoidal grating. Note here
that from results of Ref. 1 it follows that antisymmetr
R0

2152R0
12 takes place in the main approximation fo

grating of arbitrary profile. It is caused by the fact that t
resonance wave amplitude is proportional to the resona
Fourier amplitudez r of the grating. In turn, specular reflec
tion coefficients contain terms proportional touz r u2. Other
grating Fourier amplitudeszn influence only the resonanc
shift and broadening that depend on theuznu2. Therefore,
these terms are invariant under the grating reflections and
equalityR0

2152R0
12 holds as approximate one.

Let us examine some general properties of the coefficie

R0
ss8 . They depend on parameters of the incident wa

~namely, the angle of incidenceu and wavelengthl), grating
orientationw, periodd and grooves depthh52a, and also

on the surface impedancej: R0
ss85R0

ss8(k,w,n,u,j),
wheren[km5ga/2. Note, that separate dependence on
wavelength takes place only if we take into account disp
sion, i.e.,j5j(l). If dispersion is negligible, then all TC
depend on the wavelength and grating period through
combinationk5l/d only.

Numerators in TC are quadratic in the small dimensio
less parameterkm5n and if the denominatorD is of the
order of unity~i.e., we are far away from the resonance! then
diagonal TCR0

ss are close to Fresnel values and nondiago
ones are small. As a consequence TC strongly depend on
values of propagating constantsb r , that allows to examine
their dependence on the parameters in two steps:~a! fast
dependence on parameters determiningb r ~neglecting slow
dependence on these parameters in other terms!, that allows
to determine the position of the resonance peculiarities
~b! examine the resonance values of TC as~slow! functions
of other parameters.
6-3
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A. TC fast „resonance… dependence

Let us first examine the fast dependence for some fi
grating depth. Ifw is not close to6p/2 value then TC ex-
tremes correspond to the single resonance. As it follows fr
the representation~20! the specular TC extremes correspo
to the minimum values of the denominatorD modulus, i.e.,
to the minimum values ofub̃ r u @and to the maximum value
of the corresponding resonance wave amplitudeErz , see Eq.
~7! or ~12!#. Taking into account that the real part ofb̃ r is
positively defined, but the imaginary one changes sign
may be found that TC achieve its extremes at the point

b r952j91~aW rkW !2m2/b2r9 .0, b r850. ~21!

The relation~21! defines the resonance surface inw, u, k
space, see Fig. 3. The surface depends on the grating gro
depth through dimensionless parameterm5ka/2, but this de-
pendence is weak@quadratic inm2 term in Eq.~21! corre-
sponds to nonlinear in the grating amplitude shift of the re
nance caused by scattering of resonance wave in the sec
order (2r ) wave#. Neglecting this small term we ca
represent condition~21! in the simplified explicit form

w56w~rk,u!,

w~rk,u![arccos@~cos2u2r 2k21j92!/~2rk sinu!#
~22!

that is convenient for comparison with the experimental da
Two signs in Eq.~22! correspond to the reflective symmet
~about the incidence plane! orientations of the grating. The
two corresponding resonance wavesEW r ~with the samer
value! are propagating symmetrically to the incidence pla
also. Figure 4 shows the resonance curves,@Eq. ~22!#, for r
51 ~solid line! andr 521 ~dashed line! order resonance. As
it is obvious, for a fixed angle of incidence it is possible
to four resonance waves, that correspond both to the diffe
grating orientation and diffraction order. If the incident ang
u,umin[arcsinuK2ku, K5A11j92, then the resonance i
impossible. In thek<K case, the two curves@Eq. ~22!# cor-
responding to the opposite sign diffraction orders, intersec

FIG. 3. Resonance curves@Eq. ~21!# for the different k in the
subregion 0<u<p/2, 0<w<p in the 11st ~a!, and21st, ~b!, reso-
nance. Bold lines correspond to the minimal/maximal values of
azimuthal anglewmin(k) for 11/21 resonance,K<k<AK211.
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the points w56p/2, u5ud(k)[arcsinAK22k2 ~point D
and symmetrical one, see Fig. 4!. In this particular case of
the grating grooves being parallel to the plane of inciden
~degenerated resonance!, one obtains the double61 reso-
nance, the different signs resonances merge and arise s
taneously.

Note here that besides the double resonance in the de
erated geometry in the first ordersr 561, there may exist
~for some combinations of parameters! other double reso-
nances as well. Namely, double resonance of the typem,
2n) with m,n51,2, . . . ~diffracted waves with numbersm
and2n are close to SEW, i.e.,bm , b2n are small simulta-
neously! occurs if ~1! degenerated case:n5m andw'p/2,

u'umm~k![arcsinAK22m2k2, uj9u<mk<K;

~2! nondegenerated case: nÞm and

u'umn~k![arcsinAK22mnk2,

w'wmn~k![arccosF ~m2n!k

2AK22mnk2G ,

that may take place foruj9u/Amn<k<2K/(m1n), 4mn
>(m2n)2j92.

Note the above-mentioned inequalities are not rigoro
that is caused by two facts: first of all, the resonance surf
position was treated with neglecting of them2 term, and
second, we neglected the resonance width~in terms of the
variableb r9 it is of the order ofdb r95j81(aW rkW )2m2/b0).18

For the harmonic grating double resonance formn>2
case are relatively weak, and will be discussed for perio
grating of general profile in forthcoming papers.

Proceeding with the first-order resonance, we see that
possible if K21<k<11K, K'11j92/2. From the both
possible casesr 561, it is sufficient to examine the caser
51, one may receive ther 521 case by transformation
w→p2w, see Fig. 3 and detailed analysis of the symme
properties in Sec. III B. Here exist three distinct cases
accordance with the grating period value. The first one c
responds to the large enough grating periodsk<K. In the
case the resonance grating azimuthw(k,u) changes mono-
tonically starting from zero value foru5umin(k) ~point M in
Fig. 4! up to wmax(k)'p2arccos(k/2) for u5p/2 ~point N
in Fig. 4!, passing the pointw5p/2 at u5ud(k) ~point D).
For r 521 the resonance grating azimuth, is monotonica
decreasing function with the minimal value,wmin(2k),

e

FIG. 4. Resonance curves forr 51 ~solid line! and r 521
~dashed line! order resonance fork50.751~a!, andk51.15 ~b!.
6-4
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wmin(2k)[w(2k,p/2)'arccos(k/2), see pointP in Fig.
4. The resonance wave propagates ‘‘forward,’’ i.e., the va
of a rx is positive. Hereafter, we restrict ourselves with t
positivew values, the negativew case strictly follows from
the reflective symmetry of the resonance curves relative
the w50 axis.

The second case corresponds to the subset of gra
with intermediate period,K,k,AK211'A2. In this case
w(k,u) is nonmonotonic function ofu. In the subregion
@umin(k),um(k)#, where um(k)[arcsinAk22K2, w(k,u)
decreases monotonically from p to wm(k)[p
2arccosA12K2/k2, and in the subregion (um(k),p/2) in-
creases up top2arccos(k/2), see Figs. 3 and 4. The curv
corresponding to thew minimal values for variousk is de-
fined by the parametric representationu5um(k), w
5wm(k), or in the explicit form

cosw52sinu/AK21sin2u, ~23!

and is shown in Fig. 3~a! by the bold line. The points of this
curve separate regions of the resonance curves correspo
to the ‘‘forward’’ (a1x.0 for u.um) or ‘‘backward’’ (a1x
,0 for u,um) propagation of the resonance wave.

The third case corresponds to the grating withk
.AK211. Herew(k,u) is monotonically decreasing func
tion of u, changing fromp to p2arccos(k/2). The reso-
nance wave propagates ‘‘backward.’’

The k'K region is the special one, because for this v
ues of k resonance occurs close to normal incidence,
thus both first-order diffracted waves withr 561 are close
to the resonance simultaneously. Double resonance for c
to normal incidence also presents the case of ‘‘degenera
resonance.

Let us underline that ‘‘backward’’ or ‘‘forward’’ propaga
tion of the resonance wave is independent on the reson
order sign, depending only on the grating period and
angle of incidence.

As one can see from the relations~22!, the resonance
surface possesses symmetries, connected first, with eq
lent grating positions relative to the incidence plane, a
second, with transition between the two resonances that
fer only by the sign of diffraction order. It is obvious tha
these geometric symmetries lead to some symmetry pro
ties of all diffracted wave amplitudes and TC@see, for in-
stance, Eq.~12! for resonance waves#.

B. Symmetry properties

Zero-order TC’s,@Eq. ~20!#, do not change under transfo
mationw→w1p. This transformation corresponds to thep
rotation of the grating and in the case of~co! sinusoidal
grating the latter is invariant under the transformation~the
grooves are mirror symmetric!. Other transformationsw
→p2w andw→2w do not change the diagonal TC’sR0

ss

and change the sign of the nondiagonal ones, or~taking into
account R0

1252R0
21 identity! transform R0

21↔R0
12 .

These simple transformation properties lead to definite
servable symmetry in intensity and phase of the reflec
waves.
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Let us introduce short notation for operators of mirr
reflection in the plane of incidenceĜy and in the perpendicu
lar plane Ĝx acting on a vector (a,b,c) according to
Ĝy(a,b,c)5(a,2b,c), Ĝx(a,b,c)5(2a,b,c) and on the
anglew as Ĝyw52w, Ĝxw5p2w. Thus, the operatorĜy
transforms resonance to the symmetric one about the p
of incidence without changing resonance orderr. On the
contrary, operatorĜx transformsr 5n resonance, occurring
at the anglew(rk,u), to r 85n̄52r resonance at the angl
w(2rk,u)5p2w(rk,u). Both transformations,Ĝy and
Ĝx , convert the initial resonance wave to another resona
one, propagating in the mirror symmetric direction relative
the incidence plane. But if in the first case the symme
resonances correspond to the same grating Fourier am
tude, for instance,z r , in the second case symmetry transfo
mation will change sign of the corresponding grating h
monic number fromr to r̄ . The TC symmetry properties ma
be written in the form

ĜtR0
ss8~w![R0

ss8~Ĝtw!5ss8R0
ss8~w!, t5x,y.

~24!

These transformations do not act on the incident wa
field. Therefore, for specular reflected wave amplitudes
obtains from Eq.~19!

ĜtE0
s~w![E0

s~Ĝtw!5s(
s8

s8R0
ss8~w!Es8. ~25!

In the case ofs- ~or p-! incident wave polarization the
intensity of the specular reflected waveI 05b0uEW 0u2

[b0(suE0
su2 is invariant under this transformation. But fo

arbitrary polarization of the incident wave it is not so, th
specularly reflected wave intensity changes under abo
mentioned transformations. These changes may be com
sated by some transformations of the incident wave. Nam
for this it is necessary to change polarization of the incid
wave into the ‘‘reflected’’ one. The latter means that we ha
to change the two-dimensional vector (EW 1,EW 2) by
(2EW 1,EW 2) or by (EW 1,2EW 2), that is equivalent to reflection
of the vectorEW in the xOz plane or the plane parallel to th
wave vectorkW and perpendicular to the plane of incidenc
respectfully. Denoting these transformations, acting on po
ization amplitudes, asL̂1 and L̂2:

L̂s8Es5ss8Es, ~26!

we may present the result of composed transformation
the form

~ L̂s9Ĝt!E0
s~w![(

s8
R0

ss8~Ĝtw!L̂s9Es8

5ss9(
s8

R0
ss8~w!Es85ss9E0

s~w!,

t5x,y. ~27!
6-5
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A. V. KATS AND I. S. SPEVAK PHYSICAL REVIEW B65 195406
From these relations it follows that composed transform
tions L̂Ĝ change only the sign of some (s- or p-! polarization
amplitude of the reflected wave and therefore does
change its intensity.

Note that this symmetry property is proved here for t
special case of~co! sinusoidal grating. The last possess
additional symmetry, namely, its grooves relief is mirr
symmetric. So here the question arises: what symmetry p
erties will remain for the asymmetric grating? Postponing
detailed answer to the forthcoming paper, we emphasize
that for the transformationL̂sĜy the invariance is exact an
for the other one,L̂sĜx , it is in any case valid in the main
approximation.

Noteworthy that symmetry properties discussed in t
section are additional toR0

2152R0
12 condition related to

the reciprocity.

C. Polarization of specular reflected wave

Let us continue investigating the single resonance c
According to Eqs.~16!–~20! the specular reflected wave am
plitude may be presented in the transparent and conven
form

EW 05EW 0
L1EW 0

F . ~28!

Here the first term presents the linearly polarized wave~for
any polarization of the incident wave!!,

EW 0
L5L~u,m,kW ,EW !~eW0

2b0sinw1eW 1cosw!. ~29!

The second term is equal to the field reflected by the
boundary with the reflection coefficientF(u,m,kW )

EW 0
F5F~u,m,kW !EW 0,f lat , EW 0,f lat5eW0

2E22eW 1E1. ~30!

The coefficientsL, F are ~in general! complex functions of
the parameters of the diffraction problem,

L52km2~b0D !21@EW ,kW #z , F5122m2A~b0D !21,

A5b0
2k21~aW 0kW !2. ~31!

In the resonance vicinity the specular reflected wave
elliptic polarized for arbitrary polarization of the inciden
wave~including linear polarization!. It is due to the fact that

transformation coefficientsR0
ss8 are complex numbers. Th

ellipticity level may be high in contrast with the case of a fl
boundary.19 The phase and amplitude of the reflected wa
undergoes rapid resonance changes with a variation in
angle of incidence, wavelength, period and grating orien
tion in the resonance surface vicinity~dependence on th
grating depth, in general, is slow!. Immediately on the reso

nance surface the TC’sR0
ss8 become real, and polarizatio

types ~linear, elliptical! of the reflected and incident wav
coincide, but polarization parameters are different. Howe
in the particular case of the grating with the optimal dep
Eq. ~14!, the specular reflected wave is linearly polarized
any case.20
19540
-

ot

s

p-
e
re

s

e.

nt

t

is

t
e
he
-

r,
,

Specifically, in the single resonance case for the grat
with m5mopt[Ab0j8/A, the resonance value ofF becomes
zero, that causes the linear polarization of the reflected w
for any polarization of the incident wave,

EW 0,res~aopt!5@~aW 0kW !eW 11~kW @aW 0kW #/k!eW0
2#

3@EW t ,kW #z /@a0~aW 1kW !2#. ~32!

Under these conditions the polarization of the incident wa
affects the amplitude of the reflected wave only, but does
affect its polarization. The polarization of the reflected wa
is determined by geometrical parameters only.

Realization of this regime requires that the resonance c
dition, defined by Eq.~22!, along with m5mopt , should
hold. These two equations involve four parameters, nam
u, w, k, N5km/Aj85pa/(Aj8d). Here, any two param-
eters may be defined as functions of the two remaining. T
results of examination of the system presented may be s
marized as follows. For a given values of the two parame
chosen, there may exist one or two solutions, or no one at
For instance, assigning wavelength and grating parame
~i.e., k andN are specified! one arrives at a conclusion tha
for small grating depth,

N,N0~k![
2k

11k2
or a,2dAj8k@p~11k2!#21,

~33!

solution does exist for anyk and is unique. For deeper gra
ings,N>N0(k), the results differ for the short- (k.A3) and
long-period gratings (k,A3). In the first case there are n
solutions, and in the second one there are two or none s
tions for N2,3A3/(4k) andN2.3A3/(4k), respectively.

Let us consider some special cases.
~1! If the incident wave is linearly polarized withEW tikW ,

then the diffraction under resonance conditions,@Eq. ~21!#, at
the grating with optimal depth,@Eq. ~14!#, leads to the total
suppression of specular reflection,

EW 0~aopt!50 for EW tikW , b1952j91b0j8/b29 .
~34!

This result was first obtained in the simplest geometry c
in Ref. 21 and observed experimentally in Ref. 22.

~2! In the case of arbitrary polarization of the incide
wave any special polarization component~in particular,s or
p) of the specular reflected wave can be totally suppresse
follows from Eq.~32! that suppression ofs ~or p) component
takes place if the orteW 1 ~or eW 2) multiplier vanishes. That
occurs at the appropriate grating orientation and amplitu
For instance, ifkW iaW 0 (w50,p) then

EW 0~a!52E1eW 12
m22mopt

2

m21mopt
2

E2eW0
2 , mopt5Ab0j8/k.

~35!
6-6
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For other grating orientation,kW'aW 0 (w56p/2) that corre-
sponds to the degenerated (1,21) resonance, one obtains th
expression similar to the previous one,

EW 0~a!5
m22m̃opt

2

m21m̃opt
2

E1eW 11E2eW0
2, m̃opt5k23/2Aj8/2.

~36!

It follows from Eq. ~20! that in these particular cases th

conversion coefficientsR0
ss̄ vanish, i.e. polarization conver

sion vanishes due to the symmetry. One of the polariza
components (s in the first case andp in the second one! does
not ‘‘feel’’ the grating and cannot be suppressed: the co
sponding TC’s are equal to71 ~or Fresnel valuesRs , Rp for
more precise calculations!. On the contrary, the second po
larization component vanishes for the grating withm5mopt

or m5m̃opt , respectively. Passing through the zero value
corresponding component undergoesp phase jump.

~3! One can produce the specular reflected wave with
ear polarization for any polarization of the incident one us
the grating with appropriate properties. Supposing reflec
wave to be linearly polarized we can introduce unit vec
mW 5mseW

11mpeW0
2 being perpendicular both to the wave ve

tor kW0 andEW 0 ~Fig. 1!. ConditionEW 0mW 50 is fulfilled for the
grating orientation anglew5w0,

tanw052ms /~b0mp!. ~37!

It is obvious that the last condition corresponds to the vec
mW projection ontoz50 plane being parallel to thekW , mW tikW .
In this case the specular wave amplitude is as follows:

EW 05S @mW kW0#

k
D S @EW mW #z

b0
D , mW tikW . ~38!

For the particular case withEW t being parallel tomW t ~for linear
polarization of the incident wave!, we obtainEW 050, that
coincides with the second point due tokW imW tiEW t .

Here a question arises, if it is possible to find the grat
parameters (k, N) and geometry of the resonance diffractio
(u, w) allowing one to make the specular reflected wa
being polarized under the conditionEW 0mW 50 for the arbitrary
vectormW , i.e., for the arbitrary value ofM5ms /mp? Besides
above-formulated conditions, here we have to consider
~37! as the additional restriction on the anglesu andw for a
given M value. Consider, for instance, the case with a fix
grating period and wavelength~or fixed k5l/d). Then, for
the case of long-period gratingk,1, there are two sets o
convenient parameters (u1 , w1 , m1 and u2 , w2 , m2) for
arbitrary M value, cosu1,k,cosu2, cosw1,0, cosw2.0,
M tanw1,2,0. For a short-period gratingk.1, their exists a
pair of convenient gratings only for sufficiently small valu
of uM u, uM u,M0(k), and there are no gratings ifuM u ex-
ceeds the critical valueM0(k). We do not present a rathe
complicated expression forM0(k), noting only that it pre-
sents the decreasing function that vanishes atk→2.23
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Thus, the harmonic diffraction grating under resonan
conditions may serve as a polarization and/or amplitu
transformation element. This element is fully described
terms of the transformation matrix with real elements.
special interest is the strong resonance effect of the polar
tion conversion. In the following section, we examine it
details and make comparison with experimental data.

IV. POLARIZATION CONVERSION

Let us examine the polarization conversion effect in d
tails, comparing results with the experimental ones in Ref
It is described by nondiagonal transformation matrix e
mentsR0

1252R0
21 . Let us introduce the quantity

r[uR0
21u2 ~39!

that presents PCE. For the fixed grating parameters~periodd
and depthh52a) and wavelengthl the r depends on the
angle of incidenceu and the grating azimuthal anglew. Fig-
ure 5 shows ther(u,w) dependence for the parameters of t
experiment3 ~the Ag grating, l50.6328 mm, «5216
10.71i , j50.00520.25i , d50.8425 mm, k50.751). As
one can see ther value becomes negligible away from th
resonance, that is caused by small grating depth,m!1. But
nearby the resonance curves@Eq. ~22! ~bold lines!# r in-
creases up to the values of the order of unity.

Let us examiner variation along the curves that corre
spond to the resonance in61st diffraction order~Fig. 4! for
some definite grating~period and depth are constant!. By
means of the approximate resonance condition~22!, one may
eliminate the angle of incidence and representr5r res(w) in
the form

FIG. 5. PCE dependence on the angle of incidence for differ
azimuthal anglesw. Here and in the following figures the param
eters«, l, andd coincide with ones of the experimental work.3 In
the 0<u<45°, 0<w<90° region the theoretical curves are ve
close to the experimental data. Underline the mirror symmetry r
tive to thew590° plane. The characteristic pointsM, D, P, andN
are the same as in Fig. 4.
6-7
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r res~w!5n4@j81B~w!n2#22sin22w, r 51, n[pa/d,
~40!

B~w!5
~k sin2w6Q cosw!2

@2j922k2cos 2w62kQ cosw#1/2
,

Q5@11j922k2sin2w#1/2. ~41!

Here upper sign (1) corresponds to the forward resonan
wave propagation, opposite~lower! sign corresponds to th
backward propagation. Remember that the lower case is
sible only for the grating with period satisfying the conditio
K,k,2K.

Equation~40! corresponds to the single11st diffraction
order resonance and presents approximate magnitude of
at the corresponding resonance curve~22! @for 21st reso-
nance one has to replaceB(w) in Eq. ~40! by B(p2w)].

In the vicinity of the double~degenerate! resonance
points,w56p/2, u5ud , the both first-order resonancesr
561 are to be taken into account simultaneously. In th
cases approximate proportionality of PCE to the sin22w holds
true with some more complicated coefficient~it differs from
the multipliern4@j81B(w)n2#22 values by a factor of 2!.

Thus, we obtain the explicit analytical expression for t
resonance value of the PCE dependence on the grating d
orientation, and period. These results allow us to unders
the physical meaning and role of all parameters influenc
the effect. They are in a very good accordance with the
perimental data, cf. Ref. 3~in spite of moderate smallness o
the surface impedance value,uju.0.25).

The dependencer res(w) for the parameters of the exper
ment, ~Ref. 3!, is presented in Fig. 6. In 0<w<p/2 region
the r res(w) does not differ essentially from the referen
function rmsin22w, where rm denotes maximum value o
r res(w) ~Fig. 6!. This property follows strictly from the rep
resentation ofr res(w), if one takes into account thatB(w)
@Eq. ~41!#, is a slow function in the region 0<w<p/2 and
moreover, enters denominator of the expression~40! with a
small multiplier n2. Note thatB(w) diverges for a specific
value of the resonance azimuthal anglew5wmax(k).p/2,
corresponding to the grazing incidence, see Eq.~41! and fig-
ure of B(w) in Ref. 24. As function of the grating depth th
PCE increases monotonically with depth increasing tha
illustrated by Fig. 7.

FIG. 6. Dependence of PCE on the azimuthal anglew along the
resonance curve, Eq.~22! for different grating depth. The crest
correspond to the experimental data~Ref. 3! for h555.4 nm.
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Equation ~40! describes saturation forn@Aj8. The de-
pendence obtained is in excellent agreement with the exp
mental results of Ref. 3 without any fitting of paramete
The only divergence is that the calculated resonance widt
smaller than the experimental one. This obstacle may
caused as by the rather large surface impedance value fo
at wavelength 0.63mm, uju.0.25, and also by the differ
ence of the impedance real part from the valuej850.005.25

Note that the resonance width in the main approximation
proportional toj81 f 1n2 with coefficient f 1 of the order of
unity. In general, it is represented as a series inn2 with
coefficients f n of the order of unity. Thus, forn2!j8 the
resonance width is stipulated by strict light absorption,
nonlinear in the grating depth broadening becomes esse
for n2>j8.

V. SUMMARY

In this work, the opportunities of the developed modifi
perturbation theory for investigation of the resonance diffr
tion at high reflecting surface are demonstrated. The
proach presented enables one to derive explicit analyt
expressions for the complex amplitudes of diffracted wa
and carry out the comprehensive investigation of their
pendence on the parameters of the problem. The result
calculations even in the lowest-order approximation are i
very good accordance with the experimental data; small
crepances are within the uncertainty bounds of the data.
sides the antisymmetry of the TC matrix, following from th
reciprocity theorem, we have found the additional symme
properties that were not discussed earlier and are esse
for the experimental data analysis. Detailed investigation
the polarization transformation effect~including the polariza-
tion conversion! is presented. In particular, the parameters
the resonance diffraction that allow one to produce the
early polarized specular reflected wave and to control its
larization direction in a wide range, are presented.

On the basis of the results obtained the effective calcu
tions may be performed in order to build the unique gratin
with the predetermined parameters. The results may be u
also in solving such problems as measurement, both the g
ing and the medium parameters with high accuracy.
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FIG. 7. Dependence of the maximal values of the PCE@Eq.
~40!# (w5p/4) on the grating depth. The crests correspond to
experimental data.3
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