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Single-spin dynamics and decoherence in a quantum dot via charge transport
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~Received 25 September 2001; published 14 May 2002!

We investigate the spin dynamics of a quantum dot with a spin-1
2 ground state in the Coulomb blockade

regime and in the presence of a magnetic rf field leading to electron spin resonance~ESR!. We show that by
coupling the dot to leads, spin properties on the dot can be accessed via the charge current in the stationary and
nonstationary limits. We present a microscopic derivation of the current and the master equation of the dot
using superoperators, including contributions to decoherence and energy shifts due to the tunnel coupling. We
give a detailed analysis of sequential and cotunneling currents, for linearly and circularly oscillating ESR
fields, applied in cw and pulsed modes. We show that the sequential tunneling current exhibits a spin satellite
peak whose linewidth gives a lower bound on the decoherence timeT2 of the spin-12 state on the dot. Similarly,
the spin decoherence can be accessed also in the cotunneling regime via ESR-induced spin flips. We show that
the conductance ratio of the spin satellite peak and the conventional peak due to sequential tunneling saturates
at the universal conductance ratio of 0.71 for strong ESR fields. We describe a double-dot setup which
generates spin-dependent tunneling and acts as a current pump~at zero bias! and as a spin inverter which
inverts the spin polarization of the current, even in a homogeneous magnetic field. We show that Rabi oscil-
lations of the dot spin induce coherent oscillations in the time-dependent current. These oscillations are
observable in the time-averaged current as function of ESR pulse duration, and they allow one to access the
spin coherence directly in the time domain. We analyze the measurement and readout process of the dot spin
via currents in spin-polarized leads and identify measurement time and efficiency by calculating the counting
statistics, noise, and the Fano factor. We point out that single spin dynamics can also be accessed with STM
techniques.

DOI: 10.1103/PhysRevB.65.195321 PACS number~s!: 73.63.Kv, 72.25.2b, 85.35.2p
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I. INTRODUCTION

The coherent control and manipulation of the electr
spin has become the focus of an increasing number
experiments.1–8 From measurements it has become evid
that the phase coherence of electron spins in semicondu
can be robust over unusually long times, exceeding hund
of nanoseconds.1 Thus, spins of electrons are suitable can
dates for applications in the field of spintronics, in particu
for quantum information processing.9–18 This has made it
desirable to understand in more detail the coherent beha
of single electron spins which are confined to nanostructu
such as quantum dots, molecules, or atoms, and to poin
ways of how to access the coherence time of a single
experimentally. It is the goal of this work to address th
issue and to propose and analyze transport scenarios in
ing a quantum dot attached to leads and with a spin-
ground state.

We first remind ourselves of some basic notions in s
dynamics. When the electron spin is exposed to an exte
magnetic field, this leads to a Zeeman splitting, and the s
dynamics is described by the standard Bloch equation19

These are characterized by two time scales: the~longitudinal!
relaxation timeT1 and the decoherence timeT2 ~transverse
relaxation!. The spin relaxation timeT1 describes the life-
time of an excited spin state, aligned along the external fi
and is classical in the sense that its definition does not
volve the concept of quantum superpositions. Such aT1 time
of a spin in a single quantum dot was measured recently
transport and was shown to be longer than a f
microseconds,7 in agreement with calculations.20 On the
other hand, the spin decoherence timeT2 gives the time over
0163-1829/2002/65~19!/195321~19!/$20.00 65 1953
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which a superposition of opposite spin states of a single e
tron remains coherent. Thus, coherent manipulations of e
tron spins, e.g., gate operations for quantum computat
must be performed faster thanT2. We note that typically
T2,T1.19 Thus, from the sole knowledge ofT1 no lower
bound forT2 follows. It is thus of fundamental interest t
investigate possibilities of how to gain access to the deco
ence timeT2 for a single spin confined to a quantum dot.

The loss of phase coherence of many but independ
spins is described by the dephasing time1 T2* , where inho-
mogeneities in the Zeeman terms lead to a further supp
sion of phase coherence for the ensemble but not necess
for an individual spin, thusT2* <T2. In recent experiments
T2* was measured in bulk GaAs by using ultrafast tim
resolved optical methods, yielding values forT2* exceeding
100 ns.1

However, the measurement of the decoherence timeT2
for a single spin has—to our knowledge—not been repor
yet ~although it is expected to be within experimental rea
given the known single-photon sensitivity!. A first step into
this direction are spin-echo measurements on an ensemb
spins, where dephasing due to inhomogeneities of the m
netic field is eliminated. Indeed, such measurements be
performed more than 30 years ago on P donors in Si,
portedT2 times up to 500ms.21 However, it appears desir
able to have a more direct method for single-spin meas
ments. To achieve this via direct coupling to the magne
moment of the spin is rather challenging due to the
tremely small magnetic moment, although it is believed to
within reach using cantilever techniques.22 Here we concen-
trate on a further approach based on transport measurem
The key idea is to exploit the Pauli principle which conne
spin and charge of the electron so intimately that all s
©2002 The American Physical Society21-1
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HANS-ANDREAS ENGEL AND DANIEL LOSS PHYSICAL REVIEW B65 195321
properties can be accessed via charge and charge cur
especially in the Coulomb blockade regime23 of a quantum
dot attached to leads. Indeed, concrete scenarios base
such a spin-to-charge conversion have been proposed in
past,9,11,24–26and it is our goal here to further elaborate
these concepts and to report on a variety of new results
have obtained.

There are two classes of spin decoherence contribut
we have to distinguish in the following. First, rare tunneli
events of electrons onto and off the dot change the spin s
on the dot and in this way contribute to the decoherence
the dot spin. We account for this decoherence microsc
cally in terms of a tunneling Hamiltonian. Second, there
intrinsic decoherence contributions from processes wh
persist even if the dot is completely isolated from the lea
This decoherence is taken into account phenomenologic
in the master equation developed in this work, with an
trinsic decoherence rateT2

21. The goal then is to show tha
this T2 time can be extracted via current measurements,
gardless of the microscopic processes leading toT2. Such a
phenomenological approach to intrinsic decoherence ma
the purpose of our considerations clearer and is applicab
different types of decoherence mechanisms, e.g., base
hyperfine and spin-orbit couplings. The microscopic study
such intrinsic decoherence, being an important subject in
own right, is not addressed in the present work.

The outline of this paper is as follows. In Sec. II, w
define the system of interest, a quantum dot with spin-
ground state in the Coulomb blockade regime tunnel coup
to leads and in the presence of an electron spin reson
~ESR! field. We derive the~generalized! master equation for
the low-energy dot states in the sequential and cotunne
regime by evaluating the tunnel coupling to the leads mic
scopically in order to obtain tunneling rates, decohere
rates, and energy~Stark! shifts. For this we need to includ
diagonal and off-diagonal matrix elements of the reduc
density operator. The stationary current through the dot
its dependence on the ESR field is discussed in Sec. III.
find a spin satellite peak in the sequential tunneling curre
whose linewidth as function of the ESR frequency give
lower bound for theT2 time. Thus, via the stationary curren
the T2 time can be accessed in a regime that is experim
tally accessible, as will be demonstrated by concrete num
cal examples. We show that the ratio of this satellite pe
and the main peak saturates at a universal conductance
for strong ESR fields. In Sec. IV, we extend our results to
even-to-odd transition, i.e., for the case where there is~on
average! one electron less on the dot. In Sec. V, we explai
mechanism for a spin-inverter device which inverts the s
polarization of the current passing through two dots coup
in series in the presence of a homogeneous magnetic fiel
Sec. VI, we consider rotating ESR fields which allows us
obtain the exact time evolution of the dot states and th
decay rates. In Sec. VII, the cotunneling current through
quantum dot away from the sequential tunneling peak is
cussed. We show that theT2 time can also be accessed in th
regime. Invoking spin-polarized leads, a readout proced
for the dot spin is proposed and analyzed in Sec. VIII, wh
counting statistics, noise, and the Fano factor are calcula
19532
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which allow us then to estimate the measurement time
Sec. IX, we discuss coherent Rabi oscillations of the dot s
and their occurrence in the time-dependent current. In S
X, we show that Rabi oscillations can also be observed in
time-averaged current if pulsed ESR fields are applied.
Sec. XI, we point out that our results also apply to scann
tunneling microscopy~STM! devices, and we finally con
clude in Sec. XII.

II. QUANTUM DOT IN ESR FIELD

A. Model Hamiltonian

We consider a quantum dot in the Coulomb blocka
regime,23 which has a spin-12 ground state. The dot is as
sumed to be tunnel coupled to two Fermi-liquid leadsl 51,
2, at chemical potentialsm l . We start from the full Hamil-
tonian

H5H lead1Hdot1HESR~ t !1HT , ~1!

which describes leads, dot, ESR field, and the tunnel c
pling between leads and dot, respectively. For the leads
take H lead5( lkse lkclks

† clks , whereclks
† creates an electron

in lead l with orbital statek, spin s, and energye lk . We
describe the coupling with the standard tunnel Hamiltoni

HT5 (
lpks

t lp
s clks

† dps1H.c., ~2!

with tunneling amplitudet lp
s and wheredps

† creates an elec
tron on the dot in orbital statep. In Eq. ~1!, Hdot is time
independent and includes charging and interaction ener
of the electrons on the dot and coupling to a static magn
field Bz in z direction. The dot spin is coupled to a magne
ESR field,Bx(t)5Bx

0cos(vt), linearly oscillating in thex di-
rection with frequencyv, thus HESR52 1

2 gmBBx(t)sx .
Such an oscillating field produces Rabi spin flips when
frequency is tuned to resonance,v5Dz , as shown below.
Then, the total Zeeman coupling of the dot spin is

2
1

2
gmBB~ t !•s52

1

2
Dzsz2

1

2
Dxcos~vt !sx , ~3!

with electrong factor g, Bohr magnetonmB , and Pauli ma-
trices s i . We have definedDx5gmBBx

0 and the Zeeman
splitting Dz5gmBBz . Ideally, we assume that the Zeema
splitting of the leadsDz

leads is different fromDz , andDz
leads

!«F , where«F is the Fermi energy, such that the effects
the fieldsBz and Bx(t) on the leads are negligible~see be-
low!. Such a situation can be achieved by using material
different g factors5 and/or with local magnetic fields (Bx or
Bz).

We are neglecting photon-assisted tunneling~PAT!
processes,23,27 in which oscillating electric potentials of th
leads provide additional energy to electrons tunneling o
the dot. We note that PAT contributions to the current can
distinguished from ESR effects since the former contrib
tions do not show resonant behavior as a function ofBz
and/orv, and they lead to several satellite peaks instead
one as for ESR effects~see below!. Further, if one avoids
1-2
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SINGLE-SPIN DYNAMICS AND DECOHERENCE IN A . . . PHYSICAL REVIEW B65 195321
electrical rf components parallel to the current, i.e., along
axis lead-dot-lead, no potential oscillations are produced,
thus PAT effects are excluded. Finally, electric rf fields c
be avoided altogether, using a setup as in Ref. 28. There
oscillating current induced in a superconducting wire~via an
rf source! generates only a magnetic rf component in t
near-field region,29 with an the electric component that
negligibly small for v!vp , where vp is the plasma fre-
quency. Finally, for transport and ESR experiments in qu
tum Hall samples with and without quantum dots we refer
Refs. 30 and 31.

B. Dot spectrum and energetics

The electronic states of the quantum dot can be assu
as follows. For an odd numberN of electrons on a dot with
antiferromagnetic filling, the dot has a spin-1

2 ground state.
The topmost~excess! electron can be either in the sp
ground stateu↑& (sz eigenstate! or in the excited stateu↓&
~see Fig. 1!. This assumption is automatically satisfied ifN

FIG. 1. Quantum dot coupled to~unpolarized! leadsl 51, 2 with
chemical potentialsm l . The sequential tunneling regimeES.m1

.ES2Dz.m2 ~for E↑50) shown here corresponds to the satell
peak in the sequential tunneling current; cf. Sec. III A and III B a
Figs. 2 and 3. Here,ES (ET1

) are the singlet~triplet! levels and the
Zeeman splitting isDz5gmBBz.kT. ~a! If the dot is initially in the
spin ground stateu↑&, sequential tunneling is blocked by energ
conservation.~b! If the dot spin is excited by an ESR field~Rabi
flip!, spin-up electrons can tunnel from lead 1 onto the dot, form
a singlet. Then, spin-up or -down electrons can tunnel into lead
19532
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51. Otherwise, to obtain antiferromagnetic filling, Hund
rule must not apply. This can be achieved by breaking
orbital degeneracy on the dot, e.g., by using asymmetric
shaped dots or an appropriate magnetic fieldBz .32 For an
additional electron on the dot, we assume forN11 the
ground state to be the singletuS&5(u↑↓&2u↓↑&)/A2; i.e., the
triplet stateuT1&5u↑↑& has higher energy, which again ca
be achieved by tuningBz .32 The energyEm of the dot, in-
cluding charging energy, is defined byHdotum&5Emum&.

We shall give a brief overview of the energetics involv
in tunneling through quantum dots in the Coulomb blocka
regime23 and in the presence of the Zeeman splitting and
ESR field. For simplicity, we assume that there is
electron-electron interaction on the dot apart from the cl
sical charging effect.~Our work is not restricted to such a
assumption, since we only require a spin-1

2 ground state and
a large enough singlet-triplet spacing on the dot.! The total
ground-state energy of a dot with antiferromagnetic filling

U~N!5 (
k51

N

«k
s1EC

N , ~4!

for N electrons on the dot. Here, the single-particle energy
the kth electron,«k

s5«k1(21)kDz/2, contains orbital and
Zeeman energy contributions. The charging energy isEC

N

5(Ne2QG)2/2C, with gate chargeQG , and dot capacitance
C. It is convenient to define the chemical potential of the d
mdot(N11)5U(N11)2U(N), which is the energy re-
quired for an electron of leadl to tunnel onto the dot, which
containsN electrons initially, i.e., tunneling onto the dot oc
curs for m l.mdot.

33 In the Coulomb blockade regime,kT
!e2/C (k: Boltzmann constant!, no sequential tunneling
current flows through the dot if the chemical potentials of d
and leads are such thatmdot(N),m1 , m2,mdot(N11).
However, in the sequential tunneling regimem1.mdot(N
11).m2, single electrons tunnel from lead 1 onto the d
and then on into lead 2, producing a sequential tunne
current.

In the presence of an ESR field, these concepts mus
extended. Excitations of the dot states must be taken
account, since now the energy of the dot changes in time
to Bx(t). A full analytical description of the current flow is
derived in the following sections based on a time-depend
master equation. Here, we just intend to give a qualitat
picture to provide some intuition for the underlying physic
mechanism~it will not be needed later on!. We define a time-
dependent chemical potential of the dot, given as the ene
required to add an electron at timet. We consider the two
chemical potentialsmdot

s for initial spin-1
2 dot stateus&, i.e.,

DS↑5mdot
↑ (N11)5ES2E↑ and DS↓5mdot

↑ (N11)5ES

2E↓ , which simplify to DS↑5ES , and DS↓5ES2Dz , re-
spectively, forE↑50. Note that themdot

s is loweredif the dot
is excited into stateu↓&, since the Zeeman energyDz has
already been provided by a Rabi spin flip due to the E
field. Therefore, we can identify the regimeDS↑.m1.DS↓
.m2, where a sequential tunneling current will flow throug
the dot only after exciting the dot spin by a spin flip~see Fig.
1!. In other words, the dot can be opened and closed via

g
.

1-3
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ESR field, which thus allows one to modulate the curre
This ~dynamical! dependence of the current on the dot sp
can be exploited to measure theT2 time and the Rabi oscil-
lations of the dot spin,25 as we will explain in detail in the
following.

C. Systematic treatment of sequential tunneling

The electronic states on a quantum dot interact with th
environment~heat bath!, in particular with the Fermi leads
which provide and take up electrons. The state of the co
bined system, dot and environment, is given by the full d
sity matrix r(t). The states of interest are the electron
states on the dot, described by the reduced density matr
the dot,rD5TrBr. Here, TrB is the trace taken over the lead
~environment!, averaging over the~unobserved! degrees of
freedom of the environment. The diagonal elementsrn
5^nurDun& of the density matrix of the dot describe the o
cupation probabilities of the dot levels, withHdotun&
5Enun&. The off-diagonal elementsrnm5^nurDum&5rmn*
describe the coherence and the phase of superpositions o
states.

The tunnel couplingHT between leads and dot is switche
on att50. Prior to this, the dot and leads are assumed to
uncorrelated such that the full initial density matrix facto
izes asr(0)5rD(0)rB

0 , whererB
0 is the density matrix of

the leads in thermal equilibrium atm1, 2, and at temperature
T. Next we derive the master equation for the reduced d
sity matrix rD by making use of the superoperat
formalism.34 In the following, we set\51. Starting from the
von Neumann equationṙ52 i @H,r# for the full density ma-
trix and using standard manipulations,34 one finds the time
evolution of the reduced density matrix

ṙD~ t !52 i @Hdot1HESR~ t !,rD~ t !#2E
0

t

dt8M ~ t,t8!rD~ t8!,

~5!

M ~ t,t8!5TrBLT~Te2 i *
t8
t

dt9QL(t9)!LTrB
0, ~6!

with time orderingT and the Liouville operators defined b
L(t)X5@H(t),X#, LTX5@HT ,X#, and equivalently forLdot,
L lead, andLESR(t). The projectors are defined asQ512P
andPX5rB

0TrBX. The kernelM @Eq. ~6!# is a superoperato
describing processes involving tunneling of electrons to
from the leads. We consider here only sequential tunne
processes and refer for a discussion of cotunneling contr
tions to Secs. II F and VII. Thus, we work in Born approx
mation by retaining only the terms in lowest order ofLT ;
i.e., we replaceL by L05L2LT in Eq. ~6!. For further evalu-
ation of M, it is self-consistent~see below! to neglect the
effect of the ESR field,LESR(t); i.e., we replaceL0 by Ldot
1L lead in M. This removes explicitly the time dependence
M, making it time translation invariant,M (t,t8)5M (t2t8).
We find thatM (t) decays on a time scaletc;1/kT, i.e., the
correlations induced in the leads byHT decay rapidly. Since
this decay is typically much faster than the Rabi flips p
duced by the ESR field,tc!1/Dx , we may indeed neglec
19532
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the contribution ofLESR(t) to M. With these approximations
Eq. ~5! becomes in the interaction picture

ṙD
I ~ t !52 iL ESR

I ~ t !rD
I ~ t !2E

0

t

dtM I~t!rD
I ~ t2t!. ~7!

The rapid decay ofM (t) also justifies the Markovian as
sumption that the system has no memory about its past,
that ṙD(t) depends only onrD(t) and not onrD(t2t). This
approximation is performed in the interaction picture,
keep track of the dynamical phase of the off-diagonal e
ments ofrD . Systematically we proceed as follows. Sin
the integrand in Eq.~7! only contributes for smallt, we may
expand the integrand int, M (t)rD

I (t2t)5M (t)@rD
I (t)

2tṙD
I (t)1O(t2)#. We then replaceṙD

I (t) in the integrand
by using Eq.~7! iteratively. However, sinceM (t);O(LT

2),

we can neglect the part ofṙD
I (t) which is O(LT

2), since it
corresponds to a higher-order term in our Born approxim
tion. The remaining part ofṙD

I (t) results fromLESR, which
can also be disregarded since, in the integrand, the ESR
only acts on the time scaletc!1/Dx . We then extend the
upper integration limit in Eq.~7! to `, with negligible con-
tributions due to the decay ofM (t). Therefore, the second
term in Eq. ~7! becomes2$*0

`dtM I(t)%rD
I (t). Next, we

evaluate the matrix elementsMbcunm5^bu(M un&^mu)uc& ex-
plicitly in the interaction picture, which yields35

2E
0

`

dtMbcunm
I ~t!5dbcdnmS Wcn2dbn(

k
WknD

2~12dnm!dbndmc

3F idenm1
1

2 (
k

~Wkn1Wkm!G ,
~8!

with the ratesW ~see below! and energy shiftsdenm ~Stark
shifts!. These shifts are small; e.g., the one betweenu↓& and
u↑& is given by

de↓↑5
1

2p (
l

PE
0

`

de f l~e!S g l
↑

e2DS↓
2

g l
↓

e2DS↑
D , ~9!

and similarly for deS↓ and deS↑ . For um l2DSsu.kT, the
energy shift becomes

de↓↑5(
l

S g l
↓

2p
lnU DS↑

m l2DS↑
U2 g l

↑

2p
lnU DS↓

m l2DS↓
U D , ~10!

which, for g l
↑5g l

↓ , reduces to de↓↑'( l(g l /2p)ln@uml

2DS↓u/uml2DS↑u# and, thus, to a small correctionude↓↑u
&g ln(Dz/kT), for Dm,Dz .

The sequential tunneling rates in Eq.~8! are

WS↓5(
l

WS↓
l , WS↓

l 5g l
↑ f l~DS↓!, ~11!
1-4
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W↓S5(
l

W↓S
l , W↓S

l 5g l
↑@12 f l~DS↓!#, ~12!

with the Fermi function f l(DS↓)5@11e(DS↓2m l )/kT#21 of
lead l. The ratesWS↑ , W↑S , WS↑

l , and W↑S
l are defined

analogously as functions ofg l
↓ and f l(DS↑), and Wnn50.

The transition rates

g l
↑52pn↑ut l

↑u2, g l
↓52pn↓ut l

↓u2 ~13!

consist of~possibly! spin-dependent densities of statesn↑,↓
at the Fermi energy and tunneling amplitudet l

↑,↓ . ~Spin-
dependent densities of states are considered in Sec. VII
spin readout.! For later convenience, we define fors5↑,↓

gs5~g1
s1g2

s!/2, g5~g↑1g↓!/2. ~14!

D. Master equation

So far we have considered only coupling to an enviro
ment consisting of Fermi leads. However, the electronic
states are affected also by intrinsic degrees of freedom s
as hyperfine coupling, spin-orbit interaction, or spin-phon
coupling, which lead to intrinsic spin relaxation and decoh
ence. Treating such couplings microscopically is beyond
present scope~see, e.g., Ref. 20!. Thus, we treat these cou
plings phenomenologically by introducing correspondi
rates in the master equation. First, the spinrelaxation rates
W↑↓ and W↓↑ describe processes in which the dot spin
flipped. We can assumeW↑↓@W↓↑ , for Dz.kT ~consistent
with detailed balance,W↑↓ /W↓↑5eDz /kT). These relaxation
processes correspond to the phenomenological rateT1
5W↑↓1W↓↑ ; see also Sec. II E. Second, the rate 1/T2 de-
scribes the intrinsicdecoherenceof the spin on the dot,
which is present even in the absence of coupling to the le
This type of decoherence destroys the information about
relative phase in a superposition ofu↑& and u↓&, without
changing the populations of the opposite spin states.
mally, this leads to a decay of the off-diagonal matrix e
ment r↓↑ . Including the decoherence contribution ofHT
@Eqs.~8! and ~11!#, the total spin decoherence rate is

V↓↑5
WS↑1WS↓

2
1

1

T2
; ~15!

i.e., electrons tunneling onto the dot further destroy spin
herence on the dot~see Sec. II E for an interpretation!.

With the above results, we obtain from Eq.~5! the master
equation of the dot,

ṙ↑52~W↓↑1WS↑!r↑1W↑↓r↓1W↑SrS

2Dxcos~vt !Im@r↓↑#, ~16!

ṙ↓5W↓↑r↑2~W↑↓1WS↓!r↓1W↓SrS1Dxcos~vt !Im@r↓↑#,

~17!

ṙS5WS↑r↑1WS↓r↓2~W↑S1W↓S!rS , ~18!
19532
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ṙ↓↑52 iDzr↓↑1 i
Dx

2
cos~vt !~r↑2r↓!2V↓↑r↓↑ , ~19!

ṙS↑52 iDS↑rS↑2VS↑rS↑ , ~20!

ṙS↓52 iDS↓rS↓2VS↓rS↓ . ~21!

Here, the time evolution of the matrix elementsrnm
5^nurDum& of the density matrix of the dot is described fo
the statesun&5u↑&, u↓&, uS&; e.g., for the diagonal elemen
we write r↑5^↑urDu↑&, for the off-diagonal element,rS↑
5^SurDu↑&, etc. The rateWmn describes transitions from
stateun& to um&. Equations~16!–~18! are rate equations with
gain and loss terms, up to the contributions from the E
field. Then, the population of, say, stateu↑& is changed by
dr↑ after timedt by the following contributions@Eq. ~16!#.
The populationr↑ is increased when the dot is previously
stateuS& ~with probabilityrS), and a spin↓ electron tunnels
out of the dot with probabilityW↑Sdt. However, the popula-
tion r↑ is decreased when the system was already in s
u↑&, and a spin↓ electron tunnels onto the dot with probab
ity WS↑dt. The spin-flip ratesW↑↓ and W↓↑ enter Eq.~16!
analogously. In the absence of an ESR field, the off-diago
elements@Eqs. ~19!–~21!# of the density matrix decouple
from the diagonal ones and decay with the decoherence r
Vnm5Vmn .

In the presence of an ESR field, the diagonal@Eqs. ~16!
and ~17!# and the off-diagonal@Eq. ~19!# matrix elements
become coupled by the term proportional toDx . This cou-
pling of populations (r↑ andr↓! and coherence (r↓↑) shows
the coherent nature of Rabi spin flips and makes it appa
that we are studying a resonant process, which requires
we takeHESR fully into account.

The currentI 25e^dq/dt& from the dot into lead 2 is de
fined by the number of chargesdq that accumulate in lead 2
after timedt. With probabilityrS , the dot is in stateuS& and
a chargee will tunnel into lead 2 with probability (W↑S

2

1W↓S
2 )dt. However, if the dot is in stateu↑& or u↓&, a charge

may tunnel from lead 2 onto the dot, reducing the numbe
charges in lead 2. Thus, in total we obtain for the curren
lead 2

I 25e~W↑S
2 1W↓S

2 !rS2eWS↑
2 r↑2eWS↓

2 r↓ . ~22!

The current in lead 1,I 1, is obtained analogously and i
given by Eq.~22! after changing sign and replacing the ind
2 by 1. We show in Sec. III thatI 15I 2 in the stationary limit,
due to charge conservation.

Finally we note that Eqs.~20! and~21!, which describe a
superposition of an odd and an even number of electrons
the dot, decouple from Eqs.~16!–~19! and are thus not of
relevance for our considerations. Further, since the coup
to the leads is switched on only att50, initially the number
of particles on the dot is well defined. ThereforerS↑ andrS↓
vanish att50 and at all later times, as seen from Eqs.~20!
and ~21!. In particular, no superposition of a state with a
even and a state with an odd number of electrons on the
is produced by the coupling to the leads, since this wo
require a coherent superposition of corresponding state
1-5
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the leads; however, for times larger thantc ~which is typi-
cally the case!, we can safely neglect any coherence in t
Fermi-liquid leads.

E. Decoherence and measurement process

We elucidate the connection between spin decohere
and measurement, first in the absence of leads and ESR
We consider a coherent superpositionau↑&1bu↓& as the ini-
tial state of the dot. This pure state corresponds to the
duced density matrix r↑(0)5uau2, r↓(0)5ubu2, and
r↓↑(0)5a* b, and the master equation contains only t
rates W↑↓ , W↓↑ , and V↓↑51/T2. The off-diagonal terms
r↓↑5r↑↓* , decay with the decoherence timeT2 , r↓↑(t)
5e2t/T22 i tDzr↓↑(0), while the diagonal terms~occupation
probabilities! decay with the spin relaxation timeT15(W↑↓
1W↓↑)21 andr↓(t)5r↓

eq1e2t/T1@r↓(0)2r↓
eq# toward their

stationary valuer↓
eq5W↓↑ /(W↑↓1W↓↑) andr↑512r↓ . In

total, for T2,T1, we can picture the decay ofrD as

S uau2 ab*

a* b ubu2 D→
T2 S uau2 0

0 ubu2D→
T1 S r↑

eq 0

0 r↓
eqD ; ~23!

i.e., the off-diagonal terms vanish first on the time scaleT2,
and then the diagonal ones equilibrate on the time scaleT1.

As shown in Sec. II C, when electrons tunnel onto the d
the decoherence rateV↓↑ @Eq. ~15!# and thus the decay of th
off-diagonal elements are increased further. We note now
formal equivalence to the quantum measurement proces~in
thesz basis!, where the dot spin is projected ontou↑& or u↓&,
and thus the off-diagonal matrix elements vanish. This p
jection can be understood as a decoherence process.
versely, we can consider the decoherence due to tunnelin
a measurement performed by the tunneling electrons.
note that this process is aweakmeasurement in the following
sense. The electrons in the leads attempt to tunnel on the
but only with small probability}WSs are these attempts suc
cessful. Thus, the currentI, which carries away the informa
tion of the dot state to the observer, is formed by these s
cessful electrons, while the unsuccessful electrons are
detected. Another way to say this is that a given elect
from the lead has only a small probability}WSs to ‘‘mea-
sure’’ ~i.e., decohere! the dot state.

F. Cotunneling contribution to the sequential tunneling regime

We work in the sequential tunneling regime, defined
m1.DS↓.m2. One can see that higher-order—
cotunneling—contributions can be neglected23,24 for
g l,Dz ,kT, andDm,Dz, the regime of interest here. Mos
importantly, the cotunneling contributions toV↓↑ are of the
order g l

2/Dz ~see Sec. VII!; i.e., they are suppressed com
pared to the sequential tunneling contributions by a facto
g l /Dz ('531025 for the parameters of Fig. 3!. Formally,
the cotunneling contributions to the master equation can
absorbed intoT1 and T2. For a discussion of cotunnelin
currents away from the sequential tunneling resonance
Sec. VII.
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III. STATIONARY CURRENT

We now consider the stationary currentI in the presence
of a continuous-wave~cw! ESR field. Therefore we calculat
the stationary solutionr(t→`) of the master equation@Eqs.
~16!–~21!#. We will apply the rotating-wave approximatio
~RWA!,36 where only the leading frequency contributions
HESR are retained. Higher-order contributions would inclu
the simultaneous absorption of two photons and the emis
of another photon. In lowest order, only single photons c
be absorbed or emitted, producing a spin flip on the dot.
perform this approximation, we writeDxcos(vt)51

2Dx(e
ivt

1e2ivt); i.e., we decompose the linearly oscillating magne
field into a superposition of a clockwise and an anticlockw
rotating field. Integrating Eqs.~16!, ~17!, and~19!, one finds
that forv'Dz , the anticlockwise rotating field leads to rap
idly oscillating terms in the integrands, which nearly avera
to zero. Therefore, we retain only the clockwise rotati
field, which is given by the term proportional toeivt ~see
also Sec. VI!. Note that since only one field component co
tributes, the field amplitude is halved. This leads to the
riod TV of one Rabi oscillation,

TV5
4p

Dx
. ~24!

The RWA is valid forDx , V↓↑ , uDz2vu!v ~see, e.g., Ref.
37! and is well justified for the parameters considered he
In the stationary case and using the RWA, the dependenc
r↑ andr↓ @Eqs.~16! and~17!# on r↓↑ is eliminated, leading
to the effective spin-flip rate

Wv5
Dx

2

8

V↓↑
~v2Dz!

21V↓↑
2

, ~25!

which is a Lorentzian as a function ofv with maximum
Wv

max5Dx
2/8V↓↑ at resonancev5Dz .

Now it is straightforward to find the stationary solution
the effective rate equations forr↑ , r↓ andrS ,

r↑5h@W↑SWS↓1~W↑↓1Wv!~W↑S1W↓S!#, ~26!

r↓5h@W↓SWS↑1~W↓↑1Wv!~W↑S1W↓S!#, ~27!

rS5h@WS↑WS↓1WS↑~W↑↓1Wv!1WS↓~W↓↑1Wv!#,
~28!

where the normalization factorh is such that(nrn51. We
see from Eqs.~26!–~28! that the effective spin-flip rates ar
W↑↓1Wv and W↓↑1Wv ; i.e., the ESR field flips up and
down spin with equal rateWv .

We can now calculate the spin-↑ polarized current in lead
2, I 2

↑5eW↓S
2 rS2eWS↓

2 r↓ @cf. Eq. ~22!#. The result is dis-
played in Eq.~A1! in the Appendix. The spin-↓ polarized
currentI 2

↓ is obtained from Eq.~A1! by interchanging↑ with
↓ in the numerator~the denominator remains unaffected b
such an interchange!. The currents in lead 1,I 1

↑,↓ , are ob-
tained from the formulas forI 2

↑,↓ by changing sign and inter
changing indices 1 with 2. Note that generallyI 1

↑ÞI 2
↑ , since

the ESR field generates spin flips on the dot, and thus
1-6
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spin on the dot is not a conserved quantity. However,
stationary charge currentI l5(sI l

s is the same in both leads
I 5I 15I 2, due to charge conservation.

A. Spin satellite peak

In this subsection we discuss the stationary currenI
through the dot, in particular, its behavior as function ofm
5(m11m2)/2 or, equivalently, as a function of the gate vo
ageVg . We will see that an additional sequential tunneli
peak~satellite peak! will appear due to the ESR field. Befor
explicit evaluation of the current, we briefly describe th
situation in qualitative terms. We assume a large Zeem
splitting Dz.Dm,kT, with applied biasDm5m12m2.0. If
the potentials are such thatm1.DS↑.m2—i.e., the chemical
potential of the dot~relative to the ground stateu↑&) is be-
tween the chemical potentials of the leads—the state of
dot changes betweenu↑& anduS& due to sequential tunnelin
events, leading to the standard sequential tunneling pea
I (m) at m'DS↑ .

However, we also have to consider the regimeDS↑.m1
.DS↓.m2, as shown in Fig. 1. Without an ESR field, th
dot relaxes into its ground stateu↑& ~sinceW↓↑!W↑↓), and
the sequential tunneling current through the dot is bloc
since the chemical potentialDS↑ of the dot is higher than
those of the leads. However, if an ESR field generates R
spin flips~on the dot only!, the current flows through the do
involving the stateu↓&, sinceDS↓ is lower thanm1. There-
fore, a sequential tunneling current appears also for gate v
agesVg corresponding toDS↓ ; i.e., I (m) exhibits a spin
satellite peak due to the ESR field atm'DS↓ . This new peak
is shifted away from the main peak byDz ~Fig. 2!. The
presence of such a satellite peak and its sensitivity to cha
in Bz allows identification of spin effects.38 Further, we note
that via the position of the peak inI (v), I (Bz), or I (m), the
Zeeman splitting and also theg factor of a single dot can be
measured. Such a measurement could provide a useful
nique to studyg-factor-modulated materials, where theg fac-
tor can be controlled by shifting the equilibrium position
the electrons in the dot from one layer to another by elec
cal gating.11 Note that measurement of the peak positi
would also allow to access the Stark shifts@Eq. ~9!#. We
consider now the analytic expression for the currentI, as
given in Eq.~A1!, for the regime of the spin satellite peak.
this regime, DS↑2m15DS↓1Dz2m22Dm.Dz2Dm'Dz

.kT, and thusf l(DS↑)50, WS↑
l 50, andW↑S

l 5g l
↓ . For sim-

plicity, we considerg l5g l
↑5g l

↓ here ~cf. the Appendix for
pumping due tog l

↑Þg l
↓). The expression for the stationar

current@Eq. ~A1!# considerably simplifies to

I ~v,m!52e~W↓↑1Wv!g1g2@ f 1~DS↓!2 f 2~DS↓!#

3$~2g2W↑↓2Wv!@g1f 1~DS↓!1g2f 2~DS↓!#

14g~W↑↓1W↓↑12Wv!%21. ~29!

For a plot of I vs v and m and some explanations of it
characteristics, see Fig. 2.
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B. Spin decoherence timeT2

Around the spin satellite peak, it is possible to meas
Wv via the current and thereby access the spin decoher
time of the spin-12 state on the dot. For this, we identify
regime where the Rabi spin flips on the dot become
bottleneck for electron transport through the quantum
such that the current becomes proportional to the spin-
rate Wv . For kT,Dm and Wv

max,max$W↑↓ ,g1% we obtain
for the stationary current@Eq. ~29!#

I ~v!5
2eg1g2~W↓↑1Wv!

g1~g11g2!1W↑↓~g112g2!
; ~30!

see Fig. 3. We have usedW↓↑,W↑↓ here. In the linear re-
sponse regimekT.Dm and for Wv

max,max$W↑↓ ,gf1(DS↓
1Dm/2)%, the current is

I ~v!5
eg1g2~W↓↑1Wv!Dm

2~g11g2!kTh~T!
cosh22S DS↓2m

2kT D . ~31!

The currentI (m) shows the standard sequential tunneli
peak shape, determined by the usual cosh dependenc
temperature, which is slightly modified by

h~T!52W↑↓1~2g2W↑↓! f 1~DS↓1Dm/2!. ~32!

FIG. 2. The stationary currentI @Eq. ~A1!# vs m5(m11m2)/2
and ESR frequencyv. We takeT570 mK, Dm/e56 mV, Bz

50.5 T, g52, T151 ms, T25100 ns,g1553106 s21, andg2

55g1, i.e., Dz510kT and Dm5kT. The width of the sequentia
tunneling peaks inI (m) is determined by the temperature; see E
~31!. ~a! The currentI (m,v) shows a spin satellite peak nearm
5ES2Dz ~for E↑50) due to the ESR field. Note that the sp
satellite peak is slightly shifted from this position@see Eq.~35!#,
which is indicated by the line atES2Dz ~light gray line! in ~a!.
Here,Bx

051.4 G, i.e.,Wv
max5g1 at resonance andm5DS↓ . ~b! The

currentI (m) for Wv50 ~dotted line!, g1/5 ~solid line!, g1 ~dashed
line!, and 9g1 ~dash-dotted line!. The position of the spin satellite
peak as function ofWv is shown as black dots and the connecti
solid line.
1-7
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Most importantly, the currentI (v) of the satellite peak@Eqs.
~30! and~31!# is proportional to the spin-flip rateWv . Thus,
I (v) or, equivalently,I (Bz) has a Lorentzian shape wit
resonance peak atv5Dz of width 2V↓↑ . SinceV↓↑>1/T2,
this width provides a lower bound on theintrinsic spin de-
coherence timeT2 of a single dot spin. For weak tunnelin
g1,2/T2, this bound saturates; i.e., the width 2V↓↑ becomes
2/T2. Note that the current also shows resonant behavior
Dm50 andg l

↑Þg l
↓ @Eq. ~A2!#; i.e., a lower bound forT2

can also be measured via a current due to pumping.
We point out the similarity of our proposal to ES

spectroscopy,19 where absorption or emission linewidths
the ESR field provide information on decoherence. In c
trast to these techniques, we are considering here linewi
in resonance of the current, which allows us to access e
single spins, since very low currents can be measured a
rately.

For Eqs.~30! and~31! we have assumed thatWv is small
compared to the tunneling or the spin relaxation rates. Th
fore, we have neglected the contributions ofWv in the de-
nominator of these expressions. To take these contribut
into account, we note thatWv /(a1Wv) as a function ofv
is still a Lorentzian, but with an increased widthw
52V↓↑A11Wv

max/a. Therefore, the currentI (v) has the
linewidth

w52V↓↑A11
Wv

max~3g114g2!

g1~g11g2!1W↑↓~g112g2!
, ~33!

for kT,Dm @Eq. ~30!#, and

w52V↓↑A11Wv
max@42 f 1~DS↓1Dm/2!#/h~T!, ~34!

for kT.Dm @Eq. ~31!#. Since the linewidth is increased b
this correction, the inverse linewidth is still a lower boun
for T2.

C. Universal conductance ratio

For increasingWv , the satellite peak in the currentI (m)
increases while the main peak decreases, as shown in
2~b!. Further, as function ofkT, the peak is slightly shifted
Explicitly, for g l

↑5g l
↓ and Dz.Dm, kT, we find from Eq.

~29! the position of the satellite peak:

FIG. 3. The stationary currentI (v) @Eq. ~30!# for kT,Dm,
Bz50.5 T, Bx

050.45 G, T151 ms, T25100 ns, g155
3106 s21, andg255g1, i.e., satisfyingWv

max,g1,1/T2. Here, the
linewidth gives a lower bound for the intrinsic spin decoheren
timeT2 ~shown schematically by the arrow!, while it becomes equa
to 2/T2 for Bx

050.08 G andWv
max!g1553105 s21!2/T2, where

I (v5Dz)'1.5 fA.
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mESR5DS↓2
kT

2
lnH W↑↓/21W↓↑13Wv/21g

W↑↓1W↓↑12Wv
J . ~35!

The position of the main peak is

m05DS↑1
kT

2
lnH W↑↓12W↓↑13Wv12g

W↑↓1W↓↑12Wv12g J . ~36!

An experimentally accessible quantity is the ratio of the t
current peaks or, equivalently~for linear responseDm
,kT), the ratio of the conductances r (Wv)
5I (mESR)/I (m0)5G(mESR)/G(m0). For this, we evaluate
the stationary current at the gate voltages defined by E
~35! and ~36!, and find, forDm,kT andW↑↓,Wv ,

r ~Wv!5

2WvS 11A11
Wv

2Wv12g D 2

4AWvA3Wv12g1~7Wv12g!
; ~37!

see Fig. 4. On the one hand, for small spin-flip rates,Wv

,g, the ratio r is 4Wv /g; i.e., at ESR resonance,r (Bx
0)

5(gmBBx
0)2/(2V↓↑g). If the tunneling rates and field

strengths are known, this provides a further method for m
suring a lower bound of the single-spin decoherence tim
On the other hand, this peak ratio@Eq. ~37!# can be used to
measure the ratioWv /g, useful for estimating the additiona
peak broadening due to other limiting processes, as discu
in Sec. III B; cf. Eqs.~33! and~34!. It is noteworthy that the
ratio r saturates forWv@g at the universal conductance
ratio

r 05
512A6

714A3
'0.71. ~38!

For a larger bias, but stillDm,Dz , and forWv@g, the ratio
becomes

r 0S Dm

kT D5
~A31A2eDm/2kT!2g11~A21A3eDm/2kT!2g2

~21A3eDm/2kT!2g11~A312eDm/2kT!2g2

.

~39!

For g15g2, the numerical value ofr 0 remains 0.71 for all
valuesDm. Generally,r 0 is between 2/3~for g1@g2) and
3/4 ~for g1!g2), wherer 0 takes these extremal values fo
Dm.kT.

Note that the current at the satellite peak is never lar
than at the main peak. This asymmetry is best explaine
the limit Dm.kT, when the ratio becomesr 0(`)5(2g1
13g2)/(3g114g2). Since Wv.g, the Rabi spin flips

e

FIG. 4. The current ratior of the main and the satellite peak a
a function of the effective spin-flip rateWv @Eq. ~37!#. The dashed
line shows the saturation ofr for Wv@g at the universal conduc
tance ratior 0'0.71 @Eq. ~38!#.
1-8
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equilibrate the populationsr↑ and r↓ . Thus, the stationary
populations of the states arerS5hWin , and r↑5r↓
5hWout, whereh51/(Win12Wout) is a normalization fac-
tor, hESR at the satellite peak, andh0 at the main peak. The
ratesWin(out) include all processes of electrons tunneling in
~out of! the dot. Note that at the satellite peakm5mESR, a
spin-up electron tunneling from lead 1 is the only proce
where an electron tunnels onto the dot, i.e.,Win(mESR)5g1,
whereas at the main peakm5m0, the only tunnel process ou
of the dot is an electron with spin down into the right lea
i.e., Wout(m0)5g2. At the satellite peak, both spin-up an
-down electrons can tunnel from the dot to lead 2; thus,
current is given by I (mESR)52g2rS52g1g2hESR, with
hESR51/(3g114g2). At the main peak, electrons can tunn
from lead 1 onto the dot, and the current isI (m0)5g1(r↑
1r↓)52g1g2h0, with h051/(2g113g2). Thus, the con-
ductance ratio is given asr 05hESR/h0, and we immediately
obtain r 0(`) in accordance with Eq.~39!. Therefore, the
reason forr 0,1 is that at the satellite peak three out of fo
tunnel processes contribute toWout, and thushESR,h0,
while only one contributes at the main peak.

IV. EVEN-TO-ODD SEQUENTIAL TUNNELING

Up to now we have considered sequential tunneling c
rents with odd-to-even transitions of the number of electr
on the dot. Now we consider a different filling on the do
with even-to-odd transitions. The state withN even is uS̄&
~involving different orbital states as foruS&), and the states
with N11 are u↑& and u↓&. This system can be describe
with the same formalism as before, but with the tunnel
ratesWS̄↓5( lWS̄↓

l , W↓S̄5( lW↓S̄
l ,

WS̄↓
l

5g l
↓@12 f l~D↓S̄!#, W↓S̄

l
5g l

↓ f l~D↓S̄!, ~40!

and with WS̄↑ , W↑S̄ , WS̄↑
l , and W↑S̄

l defined analogously
The master equation of this system is given by Eqs.~16!–
~21! upon replacing the subscriptsS by S̄. SinceW↓S̄ de-
scribes an electron tunneling onto the dot, whereasW↓S de-

FIG. 5. ~a! Setup for measuringT2, with m1.E↓.m2 ~for ES̄

50). A lower-lying state occupied by a singlet~corresponding to

stateuS̄&) illustrates the antiferromagnetic filling of the dot.~b! Dot
which should act as spin filter, allowing only spin↑ to pass. How-
ever, in the setup~b!, the singlet-triplet spacingET̄1

2ES̄ is too
small compared toDm5m12m2. Here, if the initial dot state isu↑&
~shown in gray!, an electron with spin↓ from a lower-lying state
can tunnel onto the right dot, leaving a triplet on the dot~black!,
thus the spin filter does not operate properly. This problem dis
pears if the number of electrons on the dot can be reduced dow
zero.
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scribes an electron tunneling out of the dot, the station
current through the dot is given by Eq.~22! after changing its
sign and replacing the subscripts, resulting in

I 252e~W↑S̄
2

1W↓S̄
2

!r S̄1eWS̄↑
2

r↑1eWS̄↓
2

r↓ . ~41!

By comparing Eqs.~11! and~12! with Eq. ~40! and Eq.~22!
with Eq. ~41!, we find that the formulas for the current a
modified by the replacementsf l(DS↓)→@12 f l(D↓S̄)#, g l

↑

→g l
↓ , I l

↑→2I l
↓ , and analogously for opposite spins. F

completeness, we give in the Appendix the formula for t
stationary currentI 2

↓ @Eq. ~A3!#, which is obtained by apply-
ing the above replacements to Eq.~A1!. In Sec. III B we
have identified the regime of the spin satellite peak, wh
can be used to measure the decoherence timeT2. For the
setup considered here, an analogous regime ism1.D↓S̄
.m2.D↑S̄ ; see Fig. 5~a!. The current at the spin satellit
peak is then given by Eqs.~30! and~31! in the corresponding
regimes, after interchangingg1 with g2, replacing f 1→(1
2 f 1) andDS↓→D↓S̄ .

For antiferromagnetic filling of the dot, one can u
particle-hole symmetry to show that the two cases, odd
even and even-to-odd transitions, are equivalent. Indeed
tunneling from, say, a spin↑ electron from the dot into the
lead,u↑&→uS̄&, can be regarded as a spin↑ hole which tun-
nels from the lead onto the dot, which was initially occupi
by a spin↓ hole and now forms a hole singlet, i.e.,u↓h&
→uSh&. With this picture in mind, above modifications be
come obvious.

V. SPIN INVERTER

In this section we describe a setup with which sp
dependent tunnelingg l

↓Þg l
↑ can be achieved. Alternatively

spin-polarized leads~see Sec. VIII for details! or spin-
dependent tunneling barriers could be used. This se
shown in Fig. 6, consist of two dots, ‘‘dot 1’’ and ‘‘dot 2,’
which are coupled in series with interdot tunneling amplitu
tDD . Dot 2 acts as a spin filter24 and is coupled to the lead
with tunneling amplitudetDL2

. We write the Zeeman splitting

Dz
d , the energyEn

d of stateun&, and the chemical potentia

p-
to
1-9
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DSs
d with an index for dotd51,2. We assume that dot

remains unaffected by the ESR field, which can be achiev
e.g., by applyingBx and/or Bz locally or with different g
factors for dot 1 and dot 2. This assumption is taken i
account by choosingDz

1'” Dz
2 .

A. Spin filter

We briefly review the concept of using a quantum dot
spin filter,24 as it is important for the description of the sp
inverter. If the dot is initially in stateu↑&, only a spin↓
electron can tunnel onto the dot, forming a singlet. M
importantly, the Zeeman splitting in the dot should be su
thatDz.DS↓2m2. This ensures proper operation of the sp
filter: because of energy conservation, only the electron w
spin ↓ can tunnel from the dot to the lead, leaving the d
always in stateu↑& after an electron has passed. Therefo
the sequential tunneling current is spin↓ polarized. There is
a small spin-↑ cotunneling current, however, which is su
pressed by a factor24 g max$kT,Dm%/(ET1

2ES)
2. Note that for

efficient spin filtering, it is favorable to have the singlet sta
uS& as ground state with an even number of electrons on
dot, since the denominator of the suppression factor can
come large, i.e.,ET1

2ES.Dz . Otherwise, if the triplet state

uT1&5u↑↑& is the ground state, only spin-↑ sequential tun-
neling current can flow through the dot. However, the spin↓
cotunneling current involves the triplet stateuT0&5(u↑↓&
1u↓↑&)/A2, and the suppression factor is given
gmax$kT,Dm%/(Dz)

2; i.e., the cotunneling current is not sup
pressed efficiently.39

B. Implementation of the spin inverter

For implementation of the spin inverter, the Zeeman sp
ting in dot 2 should be such thatDz

2.DS↓
1 2m2, ensuring that

dot 2 acts as a spin filter. The coupling of dot 2 to the le
shall be strong such that electrons escape rapidly from d
into lead 2. This leads to resonant tunneling with resona
width G252pn↓utDL2

u2. We requireG2,DS↑
2 2m2, i.e., that

the broadened level of dot 2 be abovem2. This excludes
contributions from electrons tunneling from lead 2 onto d
2, as shown in Ref. 40.

We calculate the ratesĝ↑ andĝ↓ for tunneling from dot 1
via dot 2 into lead 2 in aT-matrix approach.41,40 We use the
tunnel HamiltonianHT5HDD1HDL2

, whereHDD describes

tunneling from dot 1 to dot 2 andHDL2
from dot 2 to lead 2.

The transition rates areWf i52pu^ f uT(« i)u i &u2d(« f2« i),
where lead 2 is initially at equilibrium and with theT matrix

T~« i !5 lim
h→10

HT(
n50

` S 1

« i1 ih2Hdot2H lead
HTD n

. ~42!

We take the leading order inHDD and sum up the contribu
tions from all orders inHDL2

. We then integrate over the fina
states in lead 2 and obtain the Breit-Wigner transition rate
an electron with spin↓ to tunnel from dot 1 to lead 2 via th
resonant levelES

2 of dot 2,
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ĝ↓5
utDDu2G2

~DS↑
1 2DS↑

2 !21~G2/2!2
. ~43!

In the spin filter regime considered here, dot 2 is always
stateu↑&. Thus, tunneling of an electron with spin↑ would
involve the triplet levelET1

on dot 2, which is out of reso-

nance, and thusĝ↑ is suppressed to zero~up to cotunneling
contributions, see Sec. II F!. The state of dot 1 and the cu
rent through the setup is again described by the master e
tion @Eqs. ~16!–~21!# with the tunneling ratesWS↓

2 5W↓S
2

5WS↑
2 50 andW↑S

2 5ĝ↓. Thus, we can use all previous re

sults for one dot in Sec. III A, but withg2
↓→ĝ↓, g2

↑→0, and
f 2(DS↑)50. Note that even for zero biasDm50, a pumping
current flows from lead 1 via the dots 1 and 2 to lead 2;
Eq. ~A2! and the Appendix.42 We point out that this setup
~see Fig. 6! acts as aspin inverter; i.e., only spin-↑ electrons
are taken as input~lead 1!, while the output~lead 2! consists
of spin-↓ electrons. In particular, the spin inverter does n
require a change in the direction of the external magn
field.25

VI. ROTATING ESR FIELDS

It is interesting to studyrotating magnetic fields in addi-
tion to linearly oscillating fields as studied above. With r
tating fields, it is possible to calculate the time evolution
the density matrix of the dot exactly. In particular, the s
tionary solution of the master equation is obtained in a c
trolled approach and no rotating wave approximation is n
essary. However, rotating fields are experimentally m
difficult to produce than linearly oscillating fields.

We consider a clockwise rotating field with amplitud
B'

0 , described by

HESR52
1

4
D'@sxcos~vt !2sysin~vt !#, ~44!

whereD'52gmBB'
0 . Thus, forDx5D' we have chosen the

amplitude of the rotating field to be only half the amplitud
of the linearly oscillating field, since both lead to the sam
effective spin-flip rateWv . Using Eq.~5! we immediately
obtain the master equation, which is given by Eqs.~16!–~21!
after the following replacements. The last terms in Eqs.~16!
and~17! become7(D'/2) Im@eivtr↓↑#, respectively. Equa-
tion ~19! is replaced by

ṙ↓↑52 iDzr↓↑1 i
D'

4
e2 ivt~r↑2r↓!2V↓↑r↓↑ . ~45!

We transform to the rotating frameu↑& r5eivt/2u↑& and u↓& r

5e2 ivt/2u↓& such thatr↓↑5e2 ivtr↓↑
r . This transformation

removes the time dependence of the coefficients in the m
ter equation, which we shall now write asṙD

r 5MrD
r . The

equations forṙS↑
r andṙS↓

r decouple and we write the remain
ing part of the superoperatorM as matrix in the basis
$r↑

r ,r↓
r ,rS

r ,Re@r↓↑
r #,Im@r↓↑

r #%,
1-10



SINGLE-SPIN DYNAMICS AND DECOHERENCE IN A . . . PHYSICAL REVIEW B65 195321
M5S 2~W↓↑1WS↑! W↑↓ W↑S 0 2D'/2

W↓↑ 2~W↑↓1WS↓! W↓S 0 D'/2

WS↑ WS↓ 2~W↑S1W↓S! 0 0

0 0 0 2V↓↑ ~Dz2v!

D'/4 2D'/4 0 2~Dz2v! 2V↓↑

D . ~46!
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The master equation can now be solved exactly by calcu
ing the eigenvaluesl i of M. Since the total probability is
conserved,(nṙn505(nmMnmrm , where n is summed
over the diagonal elements andm over diagonal and off-
diagonal elements ofrD . By considering linearly indepen
dent initial conditions forrD , we see that(nMnm50, for
every m. Thus, adding up the rows inM for the diagonal
elements ofrD gives zero, which is satisfied explicitly b
adding the first three rows in Eq.~46!. Therefore,M does
not have full row rank and there is an eigenvaluel050 with
eigenspace describing the stationary solution. The eigen
ues ofM are

H 0,2V↓↑ ,23W,2
1

2
~SW1V↓↑6A~SW2V↓↑!22D'

2 !J ,

~47!

with SW5W1W↑↓1W↓↑ and where we have considere
W5WS↑5WS↓5W↑S5W↓S and resonanceDz5v for sim-
plicity. If all l i are different, the time evolution of the den
sity matrix is rD(t)5( icie

l i tri .43 The decay of the contri-
bution of the eigenvectorsri is exponential and generally a
decay ratesl i are involved. Further, we see from the last tw
eigenvalues in Eq.~47! that the decay rates ofrD may be a
nontrivial function of the rates involved in the master equ
tion. This should be kept in mind when one uses tim
dependent ensemble properties, i.e.,rD(t), to measure intrin-
sic rates, e.g.,T1 andT2. We point out that the presence o
very small decay rates does not necessarily prevent a d
of the initial conditions. If, say, the tunneling rates a
smaller than the spin relaxation rate,W!W↑↓ , it would be
interesting to study a density matrix which is described a
linear combination of the eigenvector with eigenvalu
23W @Eq. ~47!# and the stationary solutionr0, i.e., rD(t)
5r01ce23Wtr3W , where the decay rate 3W is independent
of W↑↓ . However, such an initial condition always contai
contributions from stateuS& such that, in particular, it is no
possible to construct an initial spin-1

2 state which would de-
cay only with the slow rate 3W.

The ~exact! stationary solution of the master equation c
be readily obtained from Eq.~46!. By eliminatingr↓↑

r from
the coupled equations, we obtain the effective spin-flip ra

Wv5
D'

2

8

V↓↑
~v2Dz!

21V↓↑
2

, ~48!

which is equivalent to Eq.~25!. Thus, all the results for the
stationary currents from Sec. III apply and are exact for
case of rotating magnetic fields.
19532
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VII. COTUNNELING

We now consider the cotunneling regime44–46 DS↑ , DS↓
.m1 , m2@E↓ , E↑ , where the number of electrons on th
dot is odd; thus the state on the dot is described byu↑& and
u↓&. The leading-order tunnel processes is now the tunne
of electrons from leadl onto the dot, forming a virtual state
un&, followed by tunneling into leadl 8. The spin state on the
dot changess→s8. This process is called elastic cotunne
ing for s5s8 and inelastic cotunneling forsÞs8. Note that
in the absence of an ESR field, the dot relaxes into its s
ground state and no inelastic cotunneling processes, exc
the dot spin, occur forDm,Dz . However, if an ESR field is
present, the dot spin can be excited by spin flips. Then,
elastic cotunneling processes, which relax the dot spin,
occur. These processes either contribute to transport or
duce a particle-hole excitation in lead 1 or 2@see Figs. 7~b!
and 7~c!#.

These cotunneling rates are calculated in a ‘‘golden ru
approach,24 which is known to be consistent with a micro
scopic derivation,46

Ws8s
l 8 l

52pn2E de f l~e!@12 f l8~e2Ds8s!#U(
n

t l 8s8nt lsn*

Dns2e U2

,

~49!

where the possible spin dependence ofn has been absorbe
into t, Ds8s5Es82Es is the change of Zeeman energy o
the dot, andDns5En2Es is the energy cost of the virtua
intermediate state. Here,t lsn are the tunneling amplitudes
wheret l↓S5t l

↑ has already been introduced in Eq.~13!. The
cotunneling current through the dot can be calculated
summing up the contributing tunneling rates, as we ha
done for Eq.~22!,

I CT5e(
ss8

~Ws8s
21

2Ws8s
12

!rs . ~50!

We point out that by treating the cotunneling processes w
golden rule rates, only classically allowed dot states are c
sidered. Thus, the number of charges on the dot is fixed
no charge can temporarily accumulate as for sequential
neling. In particular, we have neglected quantum charge fl
tuations on the dot. Therefore, within our master equat
approach for cotunneling, the charge currents in both le
are equal,I 1(t)5I 2(t). This equality is valid for ‘‘coarse-
grained’’ expectation values of the current~and other physi-
cal observables!. In this approximation, one smoothens o
the quantum fluctuations by averaging over the short-ti
behavior; i.e., one considers only the behavior on time sc
1-11
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larger than the lifetime 1/(DSs2m) of the virtual states on
the dot. However, when the charge imbalance due to
virtual states is taken into account in a microscopic tre
ment, one can find pronounced peaks in the noiseS(v) for
uvu corresponding to the virtual energy cost, as was show
Ref. 47.

The inelastic cotunneling provides spin relaxation p
cesses in addition to those contributing toT1, totaling in

W↑↓
CT5W↑↓1( l l 8W↑↓

l 8 l . For processes withl 85 l , particle-
hole excitations are produced in leadl. We are interested in
the regimeDm,Dz , where~inelastic! cotunneling does no
excite the dot spin, i.e.,W↓↑

CT5W↓↑ . In analogy to Eq.~15!,
we take a phenomenological total spin decoherence rate

V↓↑
CT5

1

T2
1

1

2 (
l l 8ss8

Ws8s
l 8 l , ~51!

where all spin relaxation and tunneling processes are ta
into account. The master equation for the dot in the cot
neling regime and in the presence of a linearly polariz
ESR field becomes

ṙ↑52W↓↑
CTr↑1W↑↓

CTr↓2Dxcos~vt ! Im@r↓↑#, ~52!

ṙ↓5W↓↑
CTr↑2W↑↓

CTr↓1Dxcos~vt ! Im@r↓↑#, ~53!

ṙ↓↑52 iDzr↓↑1 i
Dx

2
cos~vt !~r↑2r↓!2V↓↑

CTr↓↑ . ~54!

Note that away from the sequential tunneling regime,
master equation becomes much simpler while the formu
for the rates are more involved.

For the time-averaged current we evaluate the station
solution of the master equation in the rotating wave appro
mation~see Sec. III! for linearly or exactly~see Sec. VI! for
circularly polarized ESR fields. This yields an effective sp
flip rateWv @Eqs.~25! and~48!, respectively# and eliminates
Eq. ~54!. We obtain

r↓5
Wv1W↓↑

2Wv1W↓↑1W↑↓1(
l l 8

W↑↓
l 8 l

~55!
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and r↑512r↓ . We consider the case close to a sequen
tunneling resonance~but still in the cotunneling regime!,
DSs2m l,ET1

2ES , such that the virtual energy cost of a
intermediate triplet state is much higher than that for a s
glet state. Since (ET1

2Es2m)/(ES2Es2m),1, with m

5(m11m2)/2, we have to consider only cotunneling pr
cesses involving stateuS& in Eq. ~49!. For Dm, kT,DSs

2m,ET1
2ES , the relevant elastic rates are

Wss
21 5

g1g2

2p

Dm

~DSs2m!2
. ~56!

The inelastic rates are, for lead indicesl, l 851, 2,

W↑↓
l 8 l5

g1g2

2p

Dz1~ l 82 l !Dm

~DS↓2m!~DS↓1Dz2m!
~57!

'
Dz1~ l 82 l !Dm

Dm
W↓↓

21 , ~58!

where Eq.~58! is valid for Dz,DS↓2m. Note that forDm
,Dz the inelastic rates can be much larger~by a factor of
Dz /Dm) than the elastic ones, while their contribution to t
current,W↑↓

212W↑↓
1252W↓↓

21 , is of the same order as for th
elastic rates.

For Wv
max,W↑↓,W↑↓

21, we obtain the cotunneling curren
from Eqs.~50! and ~55!–~57!,

I CT5
e

2p

Dmg1g2

~DS↑2m!2
1eWv

Dm

4Dz
F32

DS↓2m

DS↑2m
1

Dz

DS↓2mG
~59!

'
e

2p

Dmg1g2

~DS↑2m!2
1eWv

Dm

2Dz
. ~60!

The first term in Eq.~59! results from elastic cotunneling
with spin ground stateu↑& on the dot. The second term rep
resents the increased current if the spin is flipped into s
u↓& before cotunneling occurs, since then both elastic a
1-12
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inelastic cotunneling processes contribute to the current.
current I CT is proportional toWv , up to a constant back
ground and thus shows, as a function ofv, a resonant peak a
v5Dz of width 2V↓↑ . Thus, the intrinsic spin decoherenc
time T2 is accessible in the cotunneling current as well as
the sequential tunneling~see Sec. III B!. Generally, the co-
tunneling current is much smaller than the sequential tun
ing current, and thus it might seem more difficult to detectT2
in the cotunneling regime. However, since the current a
the decoherence rate due to tunneling are proportional tog2,
the small currents can be compensated by choosing m
transparent tunnel barriers, i.e., largerg. Then, the current
and the decoherence rate in the cotunneling regime can
come comparable to the sequential tunneling values give
Sec. III B. For illustration we give the following estimate
For Bz51 T, Bx

052 G, g52, g15g2553109 s21, T1

51 ms, T25100 ns,DS↓2m5Dz , andDm5Dz/5, the co-
tunneling current as a function of the ESR frequencyv is
0.17 pA away from resonance and exhibits a resonance p
of I CT

max50.31 pA, with half-widthV↓↑
CT53.413107 s21.

VIII. SPIN READOUT WITH SPIN-POLARIZED LEADS

An electron spin on a quantum dot can be used as a si
spin memory ~or as a quantum bit for quantum
computation11! if the spin state of the quantum dot can
measured. It was shown that a quantum dot connecte
fully spin-polarized leads,Dz

leads.«F.Dz , can be used for
reading the spin state of the quantum dot via the cha
current.24 Such a situation can be realized with magne
semiconductors~with effectiveg factors exceeding 100!5 or
in the quantum Hall regime where spin-polarized edge st
are coupled to a quantum dot.48 If the spin polarization
in both leads is↑, no electron with spin↓ can be provided
or taken by the leads~sincen↓50), and the ratesWS↑ and
W↑S vanish. Thus, if the dot is initially in stateu↑&, no
electron can tunnel onto the dot~the formation of the triplet
is forbidden by energy conservation! and I 50, up to negli-
gible cotunneling contributions. However, if the dot
in stateu↓&, a current can flow via the sequential tunneli

In the stationary regime and forDz.kT, the current be-
comes blocked due to spin relaxation (W↑↓). However, this
blocking can be removed by the ESR field producing s
flips on the dot~with rateWv). For Wv,W↑↓ , this compe-
tition leads again to a stationary current with resonant str
ture,

I ~v!5e~W↓↑1Wv!
g1g2

g2W↑↓1~g11g2!W↓↑
, ~61!

from which V↓↑ ~and 1/T2) can be measured. Note that th
relaxation rateW↑↓ is rather small; thus only small ESR
fields can be used, which leads to small currents.
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A. Counting statistics and signal-to-noise ratio

We analyze now the time dynamics of the readout of a
spin via spin-polarized currents. The goal is to obtain the
counting statistics and to characterize a measurement
tmeas for the spin readout. While we have considered on
averaged currents so far, we now need to keep track of
number of electronsq which have accumulated in lead
sincet50.49 The time evolution ofrD(q,t), now charge de-
pendent, is described by Eqs.~16!–~21!, but with replace-
mentsW↓S

2 rS(q)→W↓S
2 rS(q21) in Eq. ~17! andWS↓

2 r↓(q)
→WS↓

2 r↓(q11) in Eq. ~18!. Next, we consider the distribu
tion function Pi(q,t)5(nrn(q,t) that q charges have accu
mulated in lead 2 after timet when the dot was in stateu i & at
t50. For a meaningful measurement of the dot spin,
spin-flip timesW↑↓

21 , W↓↑
21 and 1/Dx must be smaller than

tmeas and are neglected. Equations~16!–~21! then decouple
except Eqs.~17! and~18!, which we solve forr↑51 and for
r↓51 at t50. The general solution follows by linear com
bination. First, if the dot is initially in stateu↑&, no charges
tunnel through the dot, and thusP↑(q,t)5dq0. Second, for
the initial stateu↓&, we considerkT,Dm and equal rates
WS↓

1 5W↓S
2 5W. We relabel the density matrixr↓(q)

→rm52q andrS(q)→rm52q11, and Eqs.~17! and ~18! be-
come

ṙm5W~rm212rm!, ~62!

with solution rm(t)5(Wt)me2Wt/m! ~Poissonian distribu-
tion!. We obtain the counting statistics

P↓~q,t !5
~Wt!2qe2Wt

~2q!! S 11
Wt

2q11D . ~63!

Experimentally,P↓(q,t) can be determined by time serie
measurements or by using an array of independent dots~see
Sec. IX A!. The inverse signal-to-noise ratio is defined as
Fano factor,50,51 which we calculate as

F↓~ t !5
^dq~ t !2&

^q~ t !&
5

1

2
1

322e22Wt~4Wt11!2e24Wt

4~2Wt211e22Wt!
,

~64!

with F↓ decreasing monotonically fromF↓(0)51 to F↓(t
→`)5 1

2 . Note that for dot spinu↑&, only weak cotunneling
occurs with Fano factorF↑51.46

If we are interested in the current and noise for long tim
t.W21, we can follow the steps used in Ref. 52. We d
couple the differential equations with respect toq by taking
the inverse Fourier transformrD(k)5(qe2 ikqrD(q). Note
that, for k50, we recover the density matrixrD5rD(k
50), where the accumulated charge is not taken into
count. The probabilityP↓(q,t) is then approximated by a
Gaussian wave packet inq space with group velocityI /e
5WS↓

1 W↓S
2 /(WS↓

1 1W↓S
2 ) and widthA2F(I /e)t, and

F5
~WS↓

1 !21~W↓S
2 !2

~WS↓
1 1W↓S

2 !2
~65!
1-13
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is the Fano factor.52 However, within this approximation
valid for Wt.1, we cannot access the short-time behav
where only a few electrons have tunneled through the
which is of importance for the readout process conside
here.

B. Measurement time

Using the counting statistics, we can now quantify t
measurement efficiency. If, after timetmeas, some charges
q.0 have tunneled through the dot, the initial state of
dot wasu↓& with probability 1@assuming that single charge
can be detected via a single electron transistor~SET! ~Ref.
51!#. However, if no charges were detected (q50), the ini-
tial state of the spin memory wasu↑& with probability

12P↓~0,t !512
WS↓

1 e2W↓S
2 t2W↓S

2 e2WS↓
1 t

WS↓
1 2W↓S

2
, ~66!

which reduces to 12e2Wt(11Wt), for equal rates. Thus
roughly speaking, we find thattmeas*2W21, as expected
while the Fano factor is 0.5,F↓&0.72. If, more generally,
the threshold for detection is atm charges,m>1, Eq.~66! is
replaced by 12(q50

m21P↓(q,t).
We insert now realistic numbers to obtain an estimate

the fastest possible measurement time which can be achi
with this setup. For a fast spin readout, the tunneling ra
and the current through the dot should be large, limited
the fact that the conductance of the dot should not exceed
single-channel conductancee2/h. In the linear response re
gime and for a small biasDm/e, the current is I
5eg↑Dm/8kT,(Dm/e)(e2/h) for g1

↑5g2
↑ . Thus, the tun-

neling rates are limited by g↑,8kT/h51.76
31011(T/K) s21. For W5g↑51.2531010 s21 ~corre-
sponding tokT,Dm and a currentI 51 nA) andm51, the
spin state can be determined with more than 95% probab
for a measurement time oftmeas5400 ps and with more than
99.99% probability fortmeas51 ns.53

IX. RABI OSCILLATIONS OF A SINGLE SPIN
IN THE TIME DOMAIN

A. Observing Rabi oscillations via current

The ESR field generates coherent Rabi oscillations of
dot spin, leading to oscillations inrD(t). Since the time-
dependent currentsI (t) in the leads are given by the popu
lationsrn(t) @Eq. ~22!#, current measurements give access
these Rabi oscillations. First, we consider a dot coupled
unpolarized leads in the regime of the spin satellite peak~see
Fig. 1 and Sec. III A!. For kT,Dm, the current in lead 2 is
I 2(t)5e(g2

↑1g2
↓)rS(t); i.e., rS is directly accessible via

measurement ofI 2(t).54 Further, forg1
↑5g1

↓ , the current in
lead 1 isI 1(t)5eg1(r↓2rS), which gives access tor↓(t), if
the ratio g1 /g2 is known. We calculate the oscillations o
I 1,2(t) explicitly by numerical integration of the master equ
tion @Eqs.~16!–~19!#; see Fig. 8~b!.

The measurement ofrD can be refined by using the sp
readout setup with spin-polarized leads~Sec. VIII!. For kT
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,Dm, the current isI 1(t)5I 1
↑(t)5eg1

↑r↓(t) in lead 1 and
I 2(t)5I 2

↑(t)5eg2
↑rS(t) in lead 2.54 Thus, the time depen

dence ofr↓ and rS ~and also ofr↑512r↓2rS) can be
directly measured via the currentsI 1,2; see Fig. 8~a!.

Note that the electrons which tunnel onto the dot decoh
the spin state on the dot~see Sec. II E!. Thus, to observe
Rabi oscillations in I 1,2(t) experimentally, the Rabi fre-
quency Dx must be larger than the coupling to the lea
WS↓ ; otherwise, the strong decoherence~equivalent to a con-
tinuous measurement! suppresses the Rabi oscillations~Zeno
effect; see Sec. IX C!. Then, however, only very few elec
trons tunnel per Rabi oscillation period through the dot.
overcome the limitations of such a weak current signal a
to obtain I 1,2(t) experimentally, an ensemble average is
quired.

There are two possibilities to obtain averages: nam
using many dots or performing a time series measurem
First, many independent dots can be measured simu
neously by arranging the dots in parallel to increase the t
current. For example, an array~ensemble! of dots and leads
could be produced with standard techniques for defin
nanostructures or self-assembled, or chemically synthes
dots could be placed within an insulating barrier betwe
two electrodes. Second, time series measurement ov
single dot can be performed. For this, the procedure of p
paring the dot to the desired initial state—applying an E
field and measuring the current—has to be repeated m
times ~see Sec. VIII A for counting statistics of the reado
process!. Then, assuming ergodicity, the current average
all these individual measurements corresponds to
ensemble-averaged value.

B. Decoherence in the time domain

In Fig. 8, we plot the numerical solution of Eqs.~16!–
~21!, showing the coherent oscillations ofrD and I l , for ~a!
spin-polarized and~b! unpolarized leads. The decay of the
oscillations is dominated by the spin decoherence rateV↓↑ .
Since this decay can be measured via the current,V↓↑ ~and
1/T2) can be accessed directly in the time domain~see also
Sec. X, Ref. 55 and Fig. 9!.

C. Zeno effect

When the rate for electrons tunneling onto the dot,WSs ,
is increased, the coherent oscillations ofr↑ , r↓ become sup-
pressed@see inset of Fig. 8~a!#. This suppression is caused b
the increased spin decoherence rateV↓↑ @Eq. ~15!# and can
be interpreted as a continuous strong measurement of the
spin, performed by an increased number of charges tunne
onto the dot. This suppression of coherent oscillations
known as the Zeno effect.56 Since it is visible inrD , it can
be observed via the currentsI 1,2(t).

X. PULSED ESR AND RABI OSCILLATIONS

We now show that it is possible to observe the coher
Rabi oscillations of a single electron spin even without t
requirement of measuring time-resolved currents. This
be achieved by applying ESR pulses of lengthtp and by
measuring time-averaged currents~over arbitrarily long
1-14
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times!. Then, the time-averaged currentĪ (tp) as function of
tp gives access to the time evolution of the spin state on
dot for both polarized and unpolarized leads.57 In particular,
since arbitrarily long times, and thus a large number of el
trons, can be used to measureĪ , the required experimenta
setups are significantly simpler compared to setups wh
aim at measuring time-dependent currents with high res
tion.

We assume a rectangular envelope for the ESR pulse
lengthtp and repetition timet r ~thustp,t r). The time when
no ESR field is present,t r2tp , should be long enough suc
that the dot can relax into its ground stateu↑&; i.e., at the
beginning of the next pulse, we haver↑51. We calculate
Ī (tp) by numerical integration of the master equation@Eqs.
~16!–~19!# and by subsequently averaging the~time-
dependent! current @Eq. ~22!# over the time interval@0,t r #.
The results are shown in Fig. 9~b! for unpolarized leads a
the spin satellite peak~see Sec. III A! and in Fig. 9~c! for
spin-polarized leads in the regime for spin readout~see Sec.
VIII !. In both cases,Ī (tp) as a function of pulse lengthtp
shows the Rabi oscillations of the dot spin; i.e., the R
oscillations can be observed in the time domain even with
time-resolved measurements.

FIG. 8. Rabi oscillations of the electron spin on the dot in t
time domain. We consider the regime at the spin satellite pe
DS↑.m1.DS↓.m2, ~see Fig. 1!, and take T151 ms, T2

5300 ns,Dx55WS↓ ~corresponding toBx
0510 G for g52), and

r↑51 at t50. During the time span shown here, fewer than th
electrons have tunneled through the dot on average. Here, the
decoherence is dominated by the tunneling process, i.e.,WS↓
@1/T2. ~a! Spin-polarized leads with the only nonvanishing tunn
ratesWS↓5W↓S543107 s21. The Rabi oscillations show up inr↑
~dotted line!, r↓ ~dashed line!, andrS ~solid line!, which is directly
visible in the current, sinceI 1

↑(t)}r↓ and I 2
↑(t)}rS , for kT,Dm.

In the inset, we show the case of large tunneling,WS↓5W↓S

5109 s21@Dx . As a consequence of the Zeno effect~see Sec.
IX C!, the Rabi oscillations are suppressed. Further,r↓ andrS are
indistinguishable sinceu↓& and uS& equilibrate rapidly due to the
increased tunneling.~b! The time-dependent currents in unpolariz
leads,I 1(t)5eg1(r↓2rS) and I 2(t)52eg2rS , for kT,Dm, and
g l

↑5g l
↓543107 s21, for l 51,2.
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In addition to the exact numerical evaluation of the mas
equation~see Fig. 9!, we now give an approximate analytica
expression forĪ (tp). We first consider the case of unpola
ized leads at the spin satellite peak~Sec. III A!; for the case
of spin-polarized leads, see below. For this, we need
evaluate the time average of Eq.~22!. For kT,Dm, we get

Ī ~ tp!5e~g2
↑1g2

↓!
1

t r
E

0

tr
dtrS~ t !. ~67!

First, we consider timest with 0<t<tp , for which an ESR
field is present, andrD oscillates with Rabi frequencyDx
@see Fig. 9~a! for t<200 ns#. Qualitatively speaking, when
rS(t) is integrated in Eq.~67! up to tp , the oscillating con-
tribution averages nearly to zero, and we obtain a ba

k,

e
pin

l

FIG. 9. Single-spin Rabi oscillations in the currentĪ (tp) gener-
ated by ESR pulses of lengthtp . Here,Dm.kT, Rabi frequency
Dx543108 s21 ~corresponding tog52 and Bx

0520 G), g152
3107 s21, g255g1 , T151 ms, andT25150 ns.~a! Evolution
of the density matrix for unpolarized leads where a pulse of len
tp5200 ns is switched on att50, obtained by numerical integra
tion of the master equation@Eqs. ~16!–~19!#. ~b! Time-averaged

currentĪ (tp) ~solid line! for unpolarized leads and a pulse repetitio
time t r5500 ns. We also show the current whereg1 and g2 are
increased by a factor of 1.5~dotted line! and 2~dash-dotted line!.

~c! Time-averaged currentĪ (tp) ~solid line! for spin-polarized leads,
g1

↑523107s21, g2
↑55g1

↑ , g1,2
↓ 50. The pulse repetition timet r

510 ms is chosen larger thanT1. Again, we show the current fo
tunneling ratesg1,2

↑ increased by a factor of 1.5~dotted line! and 2
~dash-dotted line!. Note that in this figuretp,T1; i.e., most elec-
trons tunnel through the dot after the pulse is switched off, thus
linear background is negligibly small.
1-15
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ground contributionĪ 0 approximately proportional toe(g2
↑

1g2
↓)tp /t r , i.e., linear intp , in agreement with Fig. 9~b!.

For experiments, this linearity ofĪ 0 provides a first check
that t r is sufficiently long such that the dot has indeed
laxed into its ground state before the next pulse is appl
We also give an upper bound forĪ 0 by using the inequality
rS<rS

max5WS↓ /(WS↓1WS↑1W↑S). This is seen as follows
For rS(t).rS

max, we would haveṙS(t),0, and thusrS(t8)
.rS

max, for all 0<t8<t, which would be in contradiction to
the initial conditionrS(0)50, hence indeedrS(t)<rS

max.

From Eq. ~67!, we then obtainĪ 0,e min$g1
↑ ,g2

↑1g2
↓%tp /tr .

Note that for pulse lengthstp , over which the dot spin
evolves coherently,tpg1

↑&1. Thus, by comparing the uppe
bound with Eq.~68!, we see that forg1

↑,g2 the background

current Ī 0 never becomes dominant.
Second, we considertp<t<t r ; i.e., the ESR field is

switched off, and the dot state relaxes into its ground s
u↑&. Making the reasonable assumption that the tunnel p
cesses dominate the spin relaxation,g.W↑↓ , we neglect
W↑↓ here. We then calculate the contribution fort>tp to the
integral in Eq.~67! analytically and obtain

Ī ~ tp!2 Ī 0~ tp!5
e

tr

g2
↑1g2

↓

g1
↓1g2

↓ @r↓~ tp!1rS~ tp!#}12r↑~ tp!.

~68!

We now give a physical explanation for Eq.~68!. We
consider different tunneling events~after the pulse is
switched off! and their contributions to the curren
* tp

tr dtrS(t). Since we assume that att r the dot has relaxed

into its ground stateu↑& and thusrS(t r)5r↓(t r)50, it is
sufficient to consider only one pulse and to extend the up
integration limit to infinity. For the populationr↓(tp) of state
u↓&, the only allowed transition isu↓&→uS& ~neglecting again
the intrinsic spin relaxation rateW↑↓). Thus, eventually this
populationr↓ will be transfered torS and thus to the current
Note that sequences withuS&→u↓& contribute to the curren
at a later time again, since the only possible decay into
ground stateu↑& involves uS&. Therefore, concerning curren
contributions, we introduce the effective populationr I5r↓
1rS , which is the probability that at some later time a
electron can still tunnel from the dot to lead 2. Thisr I decays
to stateu↑& with the rategS5g1

↓1g2
↓ , i.e., with the rate for

the processuS&→u↑&. In total, integrating overrS(t) for t
.tp yields *0

`dtr I(tp)e2gSt5@r↓(tp)1rS(tp)#/gS , and
with Eq. ~67! we immediately recover Eq.~68!, as expected

Next, we consider the case for spin-polarized leads. H
no spin relaxation process due to tunneling occurs and
dot spin can only relax via intrinsic spin flips, given by th
rate W↑↓ ~corresponding to the relaxation timeT1; we ne-
glectW↓↑ for W↓↑!W↑↓). Thus, we now consider the relax
ation rateW↑↓ instead ofgS . The relaxation occurs only
from u↓& to u↑&; i.e., the roles ofuS& andu↓& are interchanged
compared to the case for unpolarized leads considered ab
The above argument now applies analogously by conside
the ~spin-polarized! current in lead 1,I 1

↑(t)5eg1
↑r↓(t). We

obtain
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g1
↑

W↑↓
@12r↑~ tp!#, ~69!

with equality fortp!T1. We point out that forg1
↑@1/T1, the

~total! decoherence of the dot spin occurs much faster t
its ~intrinsic! relaxation. Then pulse lengthstp , for which
Rabi oscillations can be observed, are limited, 1/tp*V↓↑
.g1

↑@W↑↓ . In this case, the current contribution fort<tp

can be neglected since it is suppressed by a factor
tpW↑↓!1 compared to the contribution fort>tp @Eq. ~69!#;
see Fig. 9~c!. Note that for spin-polarized leads, the rela
ation timeW↑↓

21 is usually much longer than for unpolarize
leads,gS

21 ; thus the required pulse repetition timet r.W↑↓
21

might become very long. However, if one chooses a pu
repetition timet r5c/g, for c.1, and with the relevant re
laxation rate g, the current is proportional to
(1/t r)*0

`dte2gt51/c, i.e., independent ofg. Thus, roughly
speaking, the slow relaxation rate in the case of sp
polarized leads has no influence on the attainable maxim
current since the decay fromrS andr↓ is much slower and
thus per pulse there are more electrons passing the dot.

To conclude, we would like to emphasize again that
Rabi oscillations of the dot spin can be observed directly
the time domain by using pulsed ESR and measuring tim
averaged currents~see Fig. 9!. Observing Rabi oscillations
also allows one to determineT2 in the time domain; see Sec
IX B.55

XI. STM TECHNIQUES AND ESR

So far, we have considered a quantum dot coupled
leads. In this section, we would like to note that our descr
tion applies to more general structures showing Coulo
blockade behavior, such as Au nanoparticles58 or C60
molecules,59 which has been observed with STM technique
This justifies that instead of a quantum dot, we now consi
a localized surface state or an atom, molecule, or nano
ticle adsorbed on a substrate. This particle can then
probed with the STM tip by measuring the tunnel curre
through the particle. The current arises from electrons t
neling from the STM tip onto the particle and further tunne
ing, possibly through an insulating overlayer, into the bulk
the substrate.

In standard STM theory, the tunneling from the STM t
to the sample is treated pertubatively.60 Evaluation of the
golden rule matrix element, in the simplest model of a on
dimensional tunnel barrier, gives a tunneling amplitud
which is dominated by an exponential decay of the electro
wave function into the barrier; thust l

s}e2kd @cf. Eq. ~13!#,
with k5A2mf, tip-particle distanced, and barrier heightf
~roughly given by the work function of the tip and sample!.
In particular, the perturbative description of STM is equiv
lent to our treatment of the tunneling Hamiltonian in fir
~sequential tunneling! order. Therefore, if the particle of in
terest shows Coulomb blockade behavior and has a sp1

2

ground state, the master equation@Eqs. ~16!–~21!# applies.
Thus, using an ESR field, coherent Rabi oscillations and
T2 time of the spin state of the particle can be accessed
1-16
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the current. Further, if spin-polarized tips and/or substra
are available~spin-polarized STM!, such a particle can act a
single spin memory with readout via current. Note that
tunneling rates from the STM tip into the particle can
controlled by changing the distanced; thus the total decoher
enceV↓↑ @Eq. ~15!#, containing tunneling contributions, ca
be varied. This allows one, e.g., to vary the current linewi
2V↓↑ ~Sec. III B! and to suppress the Rabi spin flips f
strong decoherence~Zeno effect, Sec. IX C!. One apparent
restriction of atomic or molecular systems is that it is dif
cult to apply a gate voltage to the particle, shifting its ene
levels. However, the same effect can be achieved if the Fe
energies in the STM tip and the substrate can be shifted, s
as by varying electron densities.

XII. DISCUSSION

We have shown how the single-spin dynamics of quant
dots can be accessed by current measurements. We hav
rived and analyzed coupled master equations of a quan
dot, which is tunnel coupled to leads, in the presence of
ESR field. The current through the dot in the sequential t
neling regime shows a new resonance peak~satellite peak!
whose linewidth provides a lower bound on the single-s
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decoherence timeT2. We have shown that also the cotunne
ing current has a resonant current contribution, giving acc
to T2. The coherent Rabi oscillations of the dot spin can
observed by charge measurements, since they lead to o
lations in the time-dependent current and in the tim
averaged current as function of ESR pulse length. We h
shown how the ESR field can pump current through a do
zero bias if spin-dependent tunneling or a spin inverter
available. We have discussed the concept of measurin
single spin via charge in detail. We have identified the m
surement time of the dot spin via spin-polarized leads.
nally, we have noted that the concepts presented here ar
only valid for quantum dots but also for ‘‘real’’ atoms o
molecules if they are contacted with an STM tip.
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APPENDIX: STATIONARY CURRENT

Here, we give the various formulas for the stationary current through the dot in the sequential tunneling regime an
presence of an ESR field. We have calculated the current by evaluating the stationary solution of the master equation~Sec. III!
and with Eq.~22!. For odd-to-even sequential tunneling, the spin↑ polarized current in lead 2 is

I 2
↑5eg2

↑S g1
↑(

l ,l 8
~21! lg l 8

↓ f l~DS↓! f l 8~DS↑!1(
l

2Wv1W↑↓1W↓↑
2

$~21! lg1
↑ f l~DS↓!1g l

↓@ f 2~DS↓!2 f l~DS↑!#%

2(
l

W↑↓2W↓↑
2

$~21! lg1
↑ f l~DS↓!1g l

↓@ f 2~DS↓!1 f l~DS↑!22 f 2~DS↓! f l~DS↑!#% D
3S (

l ,l 8
g l

↑g l 8
↓ $12@12 f l~DS↓!#@12 f l 8~DS↑!#%1 (

l ,sÞs8
~Wv1Ws8s!$g l

s1g l
s8@12 f l~DSs!#% D 21

. ~A1!

The spin-↓ polarized currentI 2
↓ is obtained from Eq.~A1! by exchanging all↑ and ↓ in the numerator~the denominator

remains unaffected by such an exchange!. The currents in lead 1,I 1
↑,↓ , are obtained from the formulas forI 2

↑,↓ by exchanging
indices 1 and 2 and by a global change of sign. The charge current isI l5(sI l

s and is equal in both leads,I 5I 15I 2, due to
charge conservation. For large Zeeman splitting,Dz.Dm,kT, and around the spin satellite peak,m1.DS↓.m2 ~see Sec.
III A !, we havef l(DS↑)50, and the current is

I 5e~Wv1W↓↑!@~g1
↑g2

↑1g1
↑g2

↓! f 1~DS↓!2~g1
↓g2

↑1g1
↑g2

↑! f 2~DS↓!#$~2g↓2W↑↓2Wv!@g1
↑ f 1~DS↓!1g2

↑ f 2~DS↓!#

12~W↑↓1W↓↑12Wv!~g↓1g↑!%21, ~A2!

for which we have given special cases in Eqs.~29!, ~30!, and~31!. Note that even at zero biasDm50, i.e., f 15 f 2, a current
can be pumped through the dot, while the ESR field provides the required energy by exciting the spin state on the do25 This
requires spin-dependent tunneling rates, which break the symmetry between lead 1 and 2 and which determine the d
the current, sgn(g1

↑g2
↓2g1

↓g2
↑) @Eq. ~A2!#.

For completeness, we also give the results for even-to-odd sequential tunneling, as discussed in Sec. IV. By app
replacements given in Sec. IV to Eq.~A1!, we obtain the spin-↓ polarized stationary current in lead 2,
1-17
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I 2
↓5eg2

↓S g1
↓(

l ,l 8
~21! lg l 8

↑ f l~D↓S̄!@12 f l 8~D↑S̄!#1(
l

2Wv1W↑↓1W↓↑
2

$~21! lg1
↓ f l~D↓S̄!1g l

↑@ f 2~D↓S̄!2 f l~D↑S̄!#%

2(
l

W↑↓2W↓↑
2

$~21! lg1
↓ f l~D↓S̄!2g l

↑@ f 2~D↓S̄!1 f l~D↑S̄!22 f 2~D↓S̄! f l~D↑S̄!#% D
3S (

l ,l 8
g l

↓g l 8
↑ $12 f l~D↓S̄! f l 8~D↑S̄!%1 (

l ,sÞs8
~Wv1Ws8s!$g l

s81g l
s f l~DsS̄!% D 21

. ~A3!
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