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Electron-electron interactions, quantum Coulomb gap, and dynamical scaling
near integer quantum Hall transitions
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The effects of electron-electron interactions on tunneling into the bulk of a two-dimensional electron system
are studied near the integer quantum Hall transitions. Taking into account the dynamical screening of the
interactions in the critical conducting state, we show that the behavior of the tunneling density of states
~TDOS! is significantly altered at low energies from its noninteracting counterpart. For the long-range Cou-
lomb interaction, we demonstrate that the TDOS vanishes linearly at the Fermi level according to a quantum
Coulomb gap formn(v)5CQuvu/e4, with CQ a nonuniversal coefficient of a quantum-mechanical origin. In
the case of short-range or screened Coulomb interactions, the TDOS is found to follow a power lawuvua, with
a proportional to the bare interaction strength. Since short-range interactions are known to be irrelevant
perturbations at the noninteracting critical point, we predict that, upon scaling, the power law is smeared,
leading to a finite zero-bias TDOSn(v)/n(0)511(uvu/v0)g, whereg is a universal exponent determined by
the scaling dimension of short-ranged interactions. We also consider the case of quasi-one-dimensional~1D!
samples with edges, i.e., the long Hall bar geometry, and find that the TDOS becomes dependent on the Hall
conductance due to an altered boundary condition for diffusion. For short-range interactions, the TDOS of a
quasi-1D strip with edges is linear near the Fermi level, with a slope inversely proportional torxx in the
perturbative limit. These results are in qualitative agreement with the findings of bulk tunneling experiments.
We discuss recent developments in understanding the role played by electron-electron interactions at the
integer quantum Hall transitions and the implications of these results on the dynamical scaling of the transition
width. We argue that for long-range Coulomb interactions, the existence of the quantum Coulomb gap in the
quantum critical regime of the transition gives rise to the observed dynamical exponentz51.
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I. INTRODUCTION

A. Integer quantum Hall transitions and inadequacies
of the noninteracting electron theory

The physics of disorder and interaction in strong magn
fields is central to our understanding of the low-temperatu
quantum-mechanical behaviors of novel electronic materi
One of the most important physical phenomena under s
settings is the quantum Hall effect~QHE!.1,2 The QHE refers
to the low-temperature magnetotransport properties of h
mobility two-dimensional electron systems in a strong tra
verse magnetic field.1–3 The main part of the phenomenolog
can be summarized by~1! the existence of stable phases
matter, i.e., quantum Hall states, with vanishing dissipat
and integer or fractional quantized Hall conductances;
~2! the existence of continuous, zero-temperature phase
sitions between the quantum Hall states, which are often
ferred to as quantum Hall~plateau! transitions. The basic
physics in~1! for the spin-polarized incompressible quantu
Hall states and their low-energy excitations are w
understood.3,4 In contrast,~2! is yet an unresolved problem
which is the subject of this work.

In a nutshell,~2! is a metal-insulator transition problem o
the Anderson-Mott type in a two-dimensional~2D! disor-
dered system with strong time-reversal symmetry break
These transitions are generally believed to be prime
amples of continuous quantum phase transitions, i.e.,
amples of quantum critical phenomena.5,6 Although there are
reasons to suspect that the critical phenomena are univ
for both integer and fractional transitions,7–11 here we focus
0163-1829/2002/65~19!/195316~24!/$20.00 65 1953
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on the integer quantum Hall transitions~IQHT! in samples
with sufficiently strong disorder that fractional quantum H
states do not intervene. In this case, the transitions are
rectly between adjacent integer quantized Hall plateaus.
experimental data, reviewed in Ref. 5, can be summarize
follows: ~a! On either side of the transition the Hall condu
tivity sxy is quantized, and the dissipative conductivity h
the limit sxx→0 at zero temperature.~b! At the transition,
sxy is unquantized, andsxx remains finite at zero tempera
ture, so that the disordered quantum critical state is cond
ing. Thus the quantum phase transition is an unus
insulator-to-insulator transition with no intervening metal
phase; only the critical point itself has a finite conductan

In an experimental situation, the divergent length, i.e.,
critical singularity, is cut off by the presence of a finite leng
scale, giving rise to a finite transition width within whichsxy
deviates from the quantized values andsxx is nonzero. The
transition width, denoted asd* , follows the scaling form

d*

d0
;minF S L0

L D 1/n loc

,S T

T0
D 1/zTn loc

,S v

v0
D 1/zvn locG , ~1.1!

whereL, T, andv are the finite system size, the temperatu
and the measurement frequency in a specific experime
situation, andD0 , L0 , T0, and v0 are microscopic scales
The various exponents in Eq.~1.1! have the usual meaning
n loc is the static exponent of the single divergent length sc
the localization lengthj;d2n loc, whered is the distance to
the quantum critical point;zv is the dynamical exponent de
©2002 The American Physical Society16-1
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fining the length scale introduced by a finite frequencyLv

;v21/zv; and zT is the thermal exponent governing
temperature-dependent length scaleLT;T21/zT. In general,
zT andzv can be independent exponents,12 but zT5zv for a
generic quantum phase transition.5,6 The three scaling re
gimes in Eq.~1.1! have all been probed experimentally,13–16

as well as the regime in which the electric-field strength s
the cutoff.17 The critical exponents extracted from the expe
ments can be summarized asn loc52.360.1, 1/zvn loc50.41
60.04, and 1/zTn loc50.4260.04. Thus we havev/T scaling
with zT5zv51, which is in conformity with the dynamica
scaling description of a generic quantum phase transition

The phase structure of the IQHT appears to be consis
with that of the noninteracting theory of disordered 2D ele
trons in a strong magnetic field.18,19 In a single-particle de-
scription, all states are localized due to disorder, except
those at a single critical energyEc near the center of eac
disorder-broadened Landau level. The IQHT takes pl
when the Fermi levelEF of the 2D electron system and on
of the discrete set of the critical energyEc cross, i.e., when
d[uEF2Ecu approaches zero. Moreover, numerical calcu
tions based on the noninteracting theory give a localiza
length exponentn loc.2.3, which is remarkably close to th
experimental value.

However, our understanding of the IQHT is far from com
plete. It has become increasingly clear that the noninterac
theory, reviewed in Ref. 20, contradicts the experimen
findings in several ways. Three of these are as follows.~i!
Recent experimental work has shown that the tunneling d
sity of states~TDOS! vanishes linearly at the Fermi level,21

in sharp contrast to the finite density of states in the non
teracting theory.~ii ! It was pointed out recently that due t
the peculiar phase structure involving a set of extended st
that has a measure zero, the conductivitysxx in the nonin-
teracting theory is rigorously zero in the limit of large samp
size at all values of the magnetic field, including the critic
values, for any nonzero temperature.12 This is in direct con-
tradiction to the experimental observations.~iii ! The nonin-
teracting theory does not offer a correct description of
dynamical scaling behavior observed experimentally. T
dynamical exponent governing how the energy~temperature!
scale relates to the length scale for noninteracting electron
z5d52, which disagreeswith the experimentally obtained
values quoted above. In fact, the experimental findings
v/T scaling withzT5zv51 is in conformity with the dy-
namical scaling description of a generic quantum phase t
sition in which the Coulomb interaction is relevant a
scales to a finite value at the transition.22,23The failure of the
noninteracting theory highlighted by~i!–~iii ! puts serious
constraints on the ability of the free-electron model to e
plain the IQHT in real materials, and necessitates the inv
tigation of the effects of electronic interactions and their
terplay with disorder and localization.

B. Recent theoretical developments on the effects
of interactions and the focus of this work

A significant part of the recent theoretical studies on
role of Coulomb interactions near the IQHT has cente
19531
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around the three interconnected issues~i!–~iii ! raised
above.24,25,23,12,26–29There were also formal approaches
Pruisken and co-workers that aimed at extending the to
logical nonlinears-model description of the noninteractin
transition to include Coulomb interactions.30

The first quantitative study of the one-particle density
states~DOS! in the presence of Coulomb interactions w
carried out by Yang and MacDonald. Using a self-consist
Hartree-Fock~HF! approach, in which disorder was treate
exactly while the Coulomb interaction was treated by the
approximation, they found that the TDOS vanishes linea
at the Fermi level atall filling factors in the lowest Landau
level, even at the critical energy.24 The linear Coulomb gap
behavior, especially at the critical energy, is in sharp cont
to that expected of the noninteracting theory@see~i! above#,
and is in qualitative agreement with experimental findings21

In spite of the dramatic TDOS change due to Coulomb
teractions, however, Yang, MacDonald, and Huckest
found that the value of the localization length exponent a
the fractal dimension of the critical eigenstate wave fun
tions remain unchanged from the noninteracting theory,
does the qualitative behavior of the conductivity.25 It is im-
portant to emphasize a unique and important feature of
HF theory for the IQHT: thenoncritical suppression of the
single-particle DOS, i.e., it vanishes linearly at all fillin
fractions regardless of whether the system is at criticality
not.23

In order to understand the effects of Coulomb interactio
from the point of view of critical phenomena, Lee and Wa
carried out a stability analysis of the noninteracting fix
point ~NIFP!, which governs the noninteracting transition, b
numerical calculations of the perturbative renormalizatio
group ~RG! scaling dimensions for the interactions.23 They
found that interactions of sufficiently short range are pert
batively irrelevant at the NIFP, and scale to zero in t
asymptotic limit. The NIFP is therefore stable against su
screened interactions, and, as a result,n loc.2.3 andz52.
Wang et al. showed that, although short-range interactio
are irrelevant in the RG sense, they generate a nonzero
cal value for the dissipative conductance, and thus rem
the pathology~ii ! of the noninteracting theory and control th
temperature-scaling behavior ofsxx .12 They showed that in
the presence of irrelevant interactions, the scaling theory
transport properties becomes unconventional,v/T scaling
breaks down, and a third independent critical exponent,
thermal exponentzT in Eq. ~1.1!, emerges. The value ofzT is
set by the scaling dimension2a,0 of the interaction
strength through the finite temperature dephasing time in
critical regime,tf;T2p, wherep5112a/z, leading tozT
52z/(z12a). They argued that quantum critical scaling b
havior of this kind may be a generic feature of finit
temperature transport near quantum critical points, when
teractions are~dangerously! irrelevant.12

In contrast to short-range, model interactions, true lo
range Coulomb interactions are, on the other hand, foun
be relevant perturbations at the NIFP, making the la
unstable.23 Hence the true critical point must be interactin
corresponding to an interacting fixed point having a fin
interaction strength. This is consistent with the fact that
6-2
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ELECTRON-ELECTRON INTERACTIONS, QUANTUM . . . PHYSICAL REVIEW B65 195316
experimentally extracted dynamical exponentszT5zv51,
which are typical of the charge dynamics at quantum cr
cality controlled by Coulomb interactions.22 However, Lee
and Wang proposed that the fixed point in the theory wh
Coulomb interaction is treated via the HF approximati
may in fact be stable.31 They introduced the concept of a H
fixed point~HFFP!, and argued that it is the simplest possib
interacting fixed point of the IQHT. Correlation effects a
found to be marginal perturbations at the HFFP due to
linear Coulomb gap in the HF theory that degrades of the
dimensions of the residual interactions. They conjectu
that a change in the dynamical exponent~z! with no change
in the static one (n loc) can be due to the noncritical linea
suppression of the single-particle~tunneling! DOS induced
by Coulomb interactions. The HF theory, in particular t
HFFP of the plateau transition, presents itself as a conc
example. There are two important issues that must be
solved before this conjecture can be further substantiate

First, the theory of Coulomb gap was derived largely
the basis of classical physics.32 It applies directly to elec-
tronic systems with Fermi energy lying in an excitation g
such as semiconductors and insulators. Therefore it may
be completely surprising that a 2D Coulomb gap DOS ex
away from the transition regime where the electronic sta
are strongly localized and where the transport is domina
by variable range hopping in the presence of a 2D Coulo
gap.33 What is remarkably surprising is that the linearly va
ishing Coulomb gap is found to pertain to the critical regim
of the IQHT where the localization length is enormous
large and the conductivity finite. This behavior is unpre
edented, and it is natural to ask whether it is an artifact of
HF approximation that does not include the screening of
exchange interactions. Therefore, it is necessary to go
yond the HF theory in the critical conducting regime, a
study the behavior of the TDOS when the screening of C
lomb interactions is taken into account. In ordinary dis
dered metals in zero or weak magnetic fields, the dynam
screening of the Coulomb interactions by the diffusive m
tion of the electrons is known to be very important.34–36 It
leads tocritical corrections of the TDOS.37 The natural ques-
tion is whether the interplay between quantum diffusion a
Coulomb interaction at the IQHT leads to a linear Coulom
gap beyond the HF theory.

This is the focus of the present work. In a recent pape29

we reported our findings that the quantum diffusive mot
of the electrons, i.e., the diffusive dynamics, is too slow
effectively screen out the Coulomb singularity in the d
namical case. A nonperturbative resummation of the m
singular corrections in the long time limit to the TDOS giv
rise to a linearly vanishing TDOS for the critical conductin
state. This behavior, termed the quantum Coulomb gap,
be thought as the quantum-mechanical analog of the clas
Coulomb gap. It has a quantum origin and the slope of
gap is nonuniversal in contrast to the classical case. In
paper, we provide more physical and detailed theoret
derivations of the quantum Coulomb gap. We also study
TDOS behaviors for short-range interactions, both outs
the scaling regime where a nonuniversal power-law TDOS
found, and in the scaling regime where the power law
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smeared and a finite zero-bias TDOS recovered in ac
dance with the observation that short-range interactions
irrelevant perturbations in the RG sense. Interestingly, in
scaling regime, the change in the TDOS,dn(«), follows a
power law with a universal exponent determined by the sc
ing dimension of short-range interactions and the freque
exponentz52 in this case. In this paper we also address
issue of whether and how the bulk TDOS depends on
Hall conductance. To this end, we study the case of quasi
samples with edges, such as in the long Hall bar geome
and find that the TDOS becomes dependent of the Hall c
ductance due to an altered boundary condition for diffus
in a finite magnetic field. It vanishes linearly at the Fer
level with a slope that is inversely proportional to th
magnetic-field strength in the perturbative regime, in go
qualitative agreement with recent bulk tunnelin
experiments.21 These results will be summarized in Sec. I

The second issue has to do with the implications of
linear Coulomb gap on dynamical scaling. The linearly va
ishing DOS in two dimensions means that the avera
energy-level spacing scales with the length of system acc
ing to DE;1/L, leading to a dynamical scaling exponentz
51. However, one of the persistent mysteries rema
namely, it is not clear that this is the dynamical expone
measured by the transport experiments. The fact that qu
tum diffusion exists at the critical point of the transition im
plies a frequency-dependent length scaleLv

;@(dn/dm)\v#21/2 that is shorter than the dynamica
length scales derived from the single-particle sector. N
that the relevant DOS inLv is the thermodynamic DOS o
the compressibilitydn/dm.38 Although it is somewhat un-
necessary to associate a critical exponent with diffusion
value of zv52 is directly implied and should govern th
dynamics of diffusive transport in the asymptotic limit. In
recent attempt to substantiate our previous conjecture m
in Ref. 23, Huckestein and Backhaus26 evaluated the density
density response function near the IQHT within a tim
dependent HF approximation~TDHFA!, in an effort to deter-
mine zv from two-particle correlation functions. Thei
analysis giveszv51, but, under the compressibility sum ru
that relatesdn/dm to the static limit of the irreducible den
sity response function, it appears to have resulted from us
a linearly vanishingdn/dm in Lv . This result is at least
counterintuitive, sincedn/dm is expected to be smooth an
finite for a disordered system on general grounds. Moreo
a finite compressibility is necessary for observing the qu
tum Hall transition without the latter being interrupted b
incipient quantization plateaus. Ifdn/dm were indeed van-
ishing, the linear screening length would diverge and
screening properties of the critical state would be similar
those of an insulator. Recently, Yang, Wang, a
MacDonald27 pointed out that the controversial result may
a consequence of not accounting for the consistency of
exchange local fields and the disorder potential in
TDHFA used. Analyzing the charge redistribution followin
the insertion of an external test charge, they studied
screening properties in the long-wavelength limit of the se
consistent HF theory, and found that the thermodynam
DOS is finite in spite of the linearly vanishing tunnelin
6-3
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ZIQIANG WANG AND SHANHUI XIONG PHYSICAL REVIEW B 65 195316
DOS in the critical conducting state. Therefore the quest
of whether or how the vanishing single-particle DOS affe
the dynamics of transport near the quantum Hall criti
point remains open. We will discuss this issue in more de
in Sec. VI.

The main part of this paper is devoted to understand
how a linearly vanishing TDOS in two dimensions is like
so long as the conductivity is finite. A similar analysis in t
case of zero magnetic field was carried out recently
Kopietz39 in connection to the 2DB50 metal-insulator
transition.40 Our basic finding is that, in the presence of d
order, the Coulomb interaction is insufficiently screened
the quantum diffusive medium at finite frequencies. As
result, the single-particle DOS in the extended regime com
to resemble that in the localized regime, i.e., exhibiting
linear Coulomb gap, although the slope of the gap is diff
ent due to a different mechanism. After an understanding
the dynamics in the single-particle sector has been de
oped, we will turn to the important question of how th
depletion of single-particle DOS relates to the larger issue
dynamical scaling near quantum phase transitions in di
dered systems.

C. Interplay between disorder and interaction

At roughly the same time as the discovery of the inte
quantum Hall effect, there were some remarkable deve
ments in our understanding of quantum transport such
localization and metal-insulator transitions.41 The weak-
localization theory was developed as a perturbative appro
to study the effects of disorder and interactions. Early wo
by Altshuler and Aronov and Altshuler, Aronov, and Lee34

found several remarkable effects arising from the interplay
interaction and disorder:~1! the electron-electron scatterin
rate is enhanced due to the prolonged stay of electrons
one another;~2! there is a correction to conductivity comp
rable to the localization effect caused by quantum inter
ence; and~3! most dramatically, the TDOS is significantl
altered from its noninteracting counterpart near the Fe
energy.

For ordinary disordered metals, perturbative diagra
matic calculations show that in three dimensions the we
localization correction to the TDOS,n(v), is of the form
dn;Av, a result largely confirmed by experiments in t
early 1980s,34 wherev is measured from the Fermi energ
In two dimensions, for long-range Coulomb interaction,

dn52
1

8p2\D
ln~vt0!ln~vt1!, ~1.2!

indicating the possibility of a vanishingn(v) near the Fermi
energy asv→0. In Eq.~1.2!, D is the diffusion constant,t0
is the elastic scattering time, and, in terms of the inve
screening lengthk52pe2dn/dm, t1 is given by 1/t1
5t0(Dk2)2. Summations of all logarithmic terms ar
needed to find the limiting behavior. This was done first
Finkel’stein in a field-theoretic treatment of disorder a
19531
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interaction.42 Defining the dimensionless conductivityin
units of e2/\ via the Einstein relations5(dn/dm)D, it was
shown that

n~v!5n0e2(1/8p2s)ln(vt0)ln(vt1), ~1.3!

which is valid only for s@ ln(1/vt0) such that the weak
localization correction tos can be ignored. The conductivit
is given bys5n0D wheren0 is the finite density of states in
the self-consistent Born approximation~SCBA!. It should be
emphasized that Eq.~1.3! does not represent the asympto
behavior of the TDOS at small biasv, where the conductiv-
ity is strongly renormalized and becomes itself sc
dependent.42

The behavior ofn(v) in metallic systems should be con
trasted to the classical Coulomb gap behavior of the TD
in disordered insulators. Efros and Shklovskii32 ~ES! showed
that, when the long-range Coulomb interaction is u
screened, which is true in dielectric insulators, the sing
particle DOS exhibits a universal Coulomb gap behavior,

nES~v!5aduvud21/e2(d21), ~1.4!

whered53 and 2 is the dimensionality andad is a dimen-
sionless constant of order unity. Thus in the insulating
gime, one expects a linearly vanishing Coulomb gap in t
dimensions;nES5a2uvu. Since the long-range 1/r Coulomb
singularity is crucial in the derivation of the classical Co
lomb gap, it is only expected to be valid in the strong
localized regime where the screening of the interaction
weak and dielectriclike. In the quantum Hall effect, the lat
corresponds to the regions far away from the quantum H
transitions.

Perhaps less well known is that the same doub
logarithmic correction to the TDOS as given in Eq.~1.2! was
later derivedin the presence of a strong magnetic fieldby
Girvin, Jonson, and Lee35 and Houghton, Senna, and Ying.36

Diffusion in a strong magnetic field comes from the ‘‘skip
ping’’ of the semiclassical cyclotron orbits caused by imp
rity scattering.43 In the SCBA, the diffusion constant in Eq
~1.2! is given by D5 1

2 r c
2t0

21 , where the cyclotron radius
r c5(2N11)1/2l B , with l B the magnetic length andN the
Landau-level index. Note that in this case,D is proportional
to the field-dependent scattering rate 1/t0(B).@vc /t0(B
50)#1/2. In this work, we will derive the analog of Eq.~1.3!
in strong magnetic fields by a nonperturbative resumma
of the double-log divergences. Since the critical conducta
is finite and scale invariant at the IQHT, it is possible for
to derive the true asymptotic behavior of the TDOS in t
low-bias limit. We show that, in the presence of disord
Coulomb interaction is insufficiently screened by the 2
quantum diffusive medium at finite frequencies. As a res
the TDOS exhibits a linearly vanishing quantum Coulom
gap behavior.

D. Main results—quantum Coulomb gap in the TDOS

The main results can be explained physically in a sim
semiclassical picture. The electron-electron interactionv(r
2r 8) can be viewed as being mediated by a fluctuating
6-4
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ELECTRON-ELECTRON INTERACTIONS, QUANTUM . . . PHYSICAL REVIEW B65 195316
tential field F(r ) with a distribution P(F)
;e2(1/2)F(r )v21(r2r8)F(r8). At the crudest level, neglecting a
dynamical effects, the presence of a potential field direc
changes the energy levels of individual electrons and con

utes a phase delaye2 i *0
tdt8F[ rcl(t8)] to the single-electron

propagator, wherer cl(t8) is the classical trajectory. Such
semiclassical phase approximation was recently used in
context of composite fermions coupled to a fluctuating ga
field to studyedge tunneling.44,45Averaging theF field over
different trajectories as well as the random potentials,
obtain the averaged phase lapse

e2W(t)5^e2 i *0
tdt8F[ rcl(t8)]& ~1.5!

during a time interval (0,t). This phase delay can be viewe
as a Debye-Waller factor42 for the impurity-averaged single
particle Green’s function at a~tunneling! site r , G(t)
5^c(r ,t)c* (r ,0)&,

G~t!.G0~t!e2W(t), ~1.6!

whereG0(t);1/t is the counterpart ofG(t) in the absence
of interactions. Note thatG(t) no longer depends on th
coordinater after impurity averaging. The TDOS is given b

n~v!52
1

p
Im E dteivntG~t!u ivn→v1 ih . ~1.7!

Two factors, both resulting from the diffusive nature of t
electron motion in the presence of disorder, lead to the
vergence of the phase delayW(t) at large t, and subse-
quently to the vanishing of the single-particle DOS at t
Fermi-energy:~1! electrons stay longer in the vicinity of on
another at each encounter, and~2! the Coulomb potential is
not completely screened at finite times. Since we address
effects of interactions only up to a phase delay, this par
the physics presumably can be set aside from the res
performing a U~1! rotation.42,29,46

The specific form of the pseudogap in the TDOS depe
on the type of the interaction and on the scaling behavio
the interaction strength. We shall consider both long- a
short-range screened Coulomb interactions.

1. Long-range Coulomb interaction

In the case of a long-range Coulomb potential, the ph
delay diverges at long times asW(t); ln(t/t0)ln(t/t1). We
will show in detail that this double-log divergence rende
the t integral overe2W(t) convergent, thereby enabling a
expansion inv for n(v). In the asymptotic low-frequency
limit, this leads to a linearly vanishing TDOS at low tem
peratures:

n~v!5CQ\uvu/e4. ~1.8!

We shall refer to Eq.~1.8! as the 2Dquantum Coulomb gap
behavior. In contrast to the 2D classical Coulomb gap beh
ior given in Eq. ~1.4!, the coefficientCQ in the quantum
Coulomb gap is not a universal number, but rather a quan
of quantum-mechanical origin. It depends on microsco
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details of the sample such as the mobility. For largev, n(v)
crosses over to the perturbative diagrammatic result in str
magnetic fields.35,36

Since Coulomb interaction is a relevant perturbation at
NIFP, the true transition must be governed by an interact
fixed point where the Coulomb interaction strength is fini
Thus we expect that the quantum Coulomb gap to be the
asymptotic behavior of the TDOS at the integer quant
Hall transitions. Note that the Coulomb gap TDOS that
obtained for the critical conducting state at the IQHT
qualitatively different from those obtained in the clean cas47

and in a weak magnetic field.48

2. Short-range interactions—prescaling regime

For simplicity, we consider the case of ad-function inter-
action potentialv(r2r 8)5ud(r2r 8) as a prototype short
range interacting potential. Outside the scaling regime,
scale dependence of the interaction strengthu can be ig-
nored, i.e.,u can be treated as a constant or equivalently a
marginal perturbation. In this case, dynamical screening
the interaction leads to a weaker, single-logarithmic div
gence in the phase delayW(t); ln(t/t0). The integral of the
Debye-Waller factor is no longer convergent, such tha
power series expansion inv becomes singular. This is simi
lar to the situation encountered in the x-ray edge problem49

We find a pseudogap in the TDOS that takes the form o
power law,

n~v!.n0uvt0ua, ~1.9!

where the exponenta is nonuniversal and depends on th
interaction strength. It is well known that transport at t
quantum Hall transition in the noninteracting theory exhib
anomalous diffusion,50 i.e., the diffusion constantD
5D(q2/v);D0(q2v)h/2 whenD0q2.v, whereh is a criti-
cal exponent related to the multifractal dimensionD252
2h. We will show that taking into account the anomalo
diffusion, which has no effect in the Coulomb case, on
leads to a weakh dependence in the exponenta in Eq. ~1.9!.

3. Short-range interactions—scaling regime

Because short-range interactions are irrelevant pertu
tions at the NIFP,23 the strength of the effective interactionu
must scale to zero in the scaling regime according toueff
;uvx1 /z, where2x1.20.64 is the dimension of the in
teraction andz52 is the dynamic exponent at the stab
NIFP. This makes the phase delayW(t) converge in the
large-t limit. As a result, the power-law decay in Eq.~1.9! is
smeared, resulting in a finite zero-bias TDOS,

n~v!5n~0!F11S uvu
v0

D gG , ~1.10!

wherev0 is a frequency scale andg5x1 /z.0.32 is a uni-
versal exponent. This result leads to several interesting
dictions: ~a! For short-range interactions, the TDOS is fini
and nonuniversal at zero bias.~b! It can be shown that
n(0)!n0 if the bare interaction strength is strong, so sho
range interactions irrelevant in the RG sense can still lea
6-5
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strong density of states suppression at low bias.~c! Equation
~1.10! shows that the TDOS increases withv according to a
universalpower law with an initial cusp singularity for ou
value of g. These predictions can, in principle, be test
experimentally since the Coulomb interaction can be m
short ranged by placing a metallic screening gate~ground
plane! nearby.

4. Quasi-1D samples with edges

We also study whether and under what condition the b
TDOS depends on the Hall conductance. Thatn(v) in Eqs.
~1.8!–~1.10! does not depend onsxy is a direct consequenc
of the fact that transverse force does not affect the cha
spreading in the bulk of the sample. Thus any directsxy
dependence in tunneling must come from contributions at
boundary. It was shown by Khmel’nitskii and Yosefin51 and
by Xiong, Read, and Stone52 that, in the presence of edge
the Hall conductance enters measurable quantities eve
the perturbative limit. More recently, Shytov, Levitov, an
Halperin studied the problem ofedgetunneling into the frac-
tional quantum Hall state, where the Hall conductivity d
pendence of theI -V characteristics also arises from th
boundary condition at the tunneling edge.45

We considered a quasi-1D sample with its lengthL much
greater than its widthW, and with two reflecting edges. Thi
condition is realized experimentally in the long Hall bar g
ometry. The edge effect becomes prominent in such a li
since the boundary condition effectively changes the dif
sion constant fromD in two dimensions toD1D5D(1
1gH

2 ), wheregH5sxy /sxx is the Hall ratio. For the case o
d-function interaction, we find that the asymptotic TDO
becomes linear in an infinite strip with edges:

n~v!5suvu. ~1.11!

The slope of the linear gap is proportional to the inverse
the dissipative resistivitys;rxx

21 . In the high-field limit
where energy levels form Landau bands (vct0@1), the bare
value ofsxx in the SCBA at the center of the Landau leve
is proportional to the Landau indexN while the bare Hall
ratio is of order 1. The above result then implies that, in
perturbative regime where the localization correction to
conductivity is much smaller than the SCBA conductivi
the slope of the linear density of states is proportional toN or
1/B. Interestingly such a dependence was indeed observe
the high-field bulk tunneling experiments.21 It remains to be
seen whether the samples used in certain experimental s
can be qualified as being quasi-1D with edges, and whe
the presence of ground planes indeed make the Coul
interaction short ranged.

E. Organization of the paper

In Sec. II, we revisit the role of electronic interactions
the NIFP of the quantum Hall transition, and cast the res
of Lee and Wang23 for the RG dimensions of interactions i
an analysis of the level spacing in the Hartree-Fock the
In doing so, we make connections to the more conventio
scaling theory of localizationa la Wegner,53 and motivate the
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study of the single-particle DOS. We then proceed, in S
III, to formulate the effective-field theory and the semicla
sical phase approximation, and to derive the Debye-Wa
factor in Eq. ~1.6!. The bulk TDOS in two dimensions is
calculated in Sec. IV for various forms of interactions in t
perturbative and the scaling regimes. The results summar
in Eqs~1.8!–~1.10! are derived in this section. The effect o
the anomalous diffusion at the IQHT is also studied. Sect
V is devoted to the derivation of the TDOS in quasi-1
samples in the presence of edges@Eq. ~1.11!#. A summary
and discussions of the connection between the single-par
DOS and the dynamical scaling of the transition width a
given in Sec. VI. We argue that the existence of the quan
Coulomb gap in the quantum critical regime of the transiti
gives rise, through the interplay between quasiparticle de
rate and level spacing, to the experimentally observed
namical exponentz51.

II. ROLE OF INTERACTIONS—HARTREE-FOCK
ANALYSIS OF LEVEL SPACING

The Hamiltonian of interest describes interacting ele
trons moving in a two-dimensional random potential in t
presence of a magnetic field,

H5(
i

F 1

2m S pi1
e

c
AD 2

1V~r i !G1H int , ~2.1!

whereA is the external vector potential producing the stro
transverse magnetic field, andV(r ) is the one-body impurity
potential. The interacting part of the HamiltonianH int is
given by the two-body interaction potential:

H int5
1

2 (
iÞ j

v~r i2r j !, ~2.2!

v~r i2r j !5
u

ur i2r j up
. ~2.3!

Hereu andp control the strength and the range of the inte
action. The Coulomb potential corresponds tou5e2/e and
p51, and a short-distance cutoff can be introduced for
case ofp>4.

The noninteracting fixed point of the IQHT is obtained b
settingu50. The effects of interactions can be studied in t
framework of critical phenomena by analyzing the stabil
of the NIFP. Imagine starting with a system at the NIFP, a
adiabatically switching on the interactionu. One can ask
whether u is a relevant or irrelevant perturbation in th
renormalization-group sense by calculating the RG sca
dimension ofu. This has been done by Lee and Wang23

They analyzed the most singular contributions to the dis
dered averaged free-energy functional. Here we presen
alternative treatment54 from the point of view of the single-
particle DOS, and cast the result of Lee and Wang in term
the interaction induced corrections to the single-particle le
spacing.

For this purpose, it is convenient to use the exact eig
states approach55 at criticality. Consider a finite system o
6-6
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linear dimensionL, and two adjacent one-electron eige
states located on the two sides of the critical energyEc with
energyE1,Ec andE2.Ec and a separationv5E12E2. In
the noninteracting theory, the finite-size scaling behavior
the separation should follow that of the mean level spac
and scale withL according to

D12
0 5

1

n0Ld }
1

L2 , ~2.4!

wheren0 is the noncritical DOS in the noninteracting theor
Switching on the interactionu causes a mixing of the critica
eigenstates, which results in shifting of the single-parti
energy levels. The level spacing becomes

D125D12
0 1dD12, ~2.5!

wheredD12 is the level shift ofE2 due to the mixing with
level E1. The question we would like to ask is, in the lim
v→0 and the associated length scaleLv5(n0v)21/d→`,
how the interaction correction to the level spacingdD12
scales withL as we approach the thermodynamic limitL
,Lv→`. If it falls off faster than the mean level spacin
D12

0 ;1/L2 of the noninteracting system, the level statist
will be determined by that of the noninteracting eigensta
and unaffected by the interaction in the thermodynamic lim
Thus the interaction would be an irrelevant perturbation
the RG sense. On the other hand, ifdD12 falls off slower
than 1/L2, the level spacing will be dominated by th
interaction-induced level shifts as an increasing numbe
noninteracting eigenstates is mixed by the interaction w
increasing system sizeL. The interaction would therefore b
a relevant perturbation in this case, and the noninterac
a
ve

ou

s
ex
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fixed point would be unstable.
Let’s calculatedD12 perturbatively, which is sufficient for

the perturbative RG analysis. To first order in perturbat
theory we have

dD125P1^2uH intu2&, ~2.6!

whereP1 is a projection operator that keeps exclusively t
contribution from stateu1& to the level shift ofu2&. The fac-
torized interactionH int can be written as

H int5(
a

Sa
HFca

†ca , ~2.7!

whereSa
HF is precisely the Hartree-Fock self-energy corre

tion to the single particle stateua&5ca
† u0&,

Sa
HF5(

b

occ. E d2rd2r 8@ uca~r !u2ucb~r 8!u2

2ca~r !* ca~r 8!cb* ~r 8!cb~r !#v~r2r 8!. ~2.8!

Here the summation is over all occupied states. To disc
the average energy shift, it is necessary to study the diso
average of the self-energy at the fixed energyE2,

S25
1

n0L2 (
a

d~E22Ea!Sa , ~2.9!

wheren0 is the DOS per unit area for noninteracting ele
trons. Taking the disorder average of Eq.~2.6! and using Eqs.
~2.7!–~2.9!, we obtain the averaged level shifts,
dD125S 1

n0L2D 2E d2rd2r 8(
ab

@ uca~r !u2ucb~r 8!u22ca~r !* ca~r 8!cb* ~r 8!cb~r !#d~E12E22v!v~r2r 8!

5S 1

n0L2D 2E d2rd2r 8@OA~r2r 8!2OB~r2r 8!#v~r2r 8!. ~2.10!
tors,
uta-
de-

i-
he
lity
eak
In order calculate this quantity, we need to know the sc
ing behavior of the impurity-averaged products of four wa
functions denoted byOA and OB in Eq. ~2.10! in the limit
v→0. The latter are functions ofr2r 8, since the translation
symmetry is restored after impurity averaging.

It is instructive to follow Wegner’s symmetry
decomposition53,56,57and extract the orthogonal~eigen! scal-
ing variables under the RG. Consider the most general f
field operator in the unitary ensemble,

O45 (
abgd

vbd
agca* cbcg* cd[ (

abgd
vbd

agOag
bd , ~2.11!

where Oag
bd5Oga

db . The coefficientsv obeys the traceles
condition, corresponding to the subtraction of vacuum
pectations:
l-

r-

-

(
i

v id
ig5(

j
vb j

j g50. ~2.12!

There are two irreducible representations for these opera
a symmetric one and an antisymmetric one, under perm
tions of indices of the rank-2 tensor. We can therefore
composeO4 into independent scaling operators,

Oag
bd5 1

2 O11 1
2 O2 , O65Oag

bd6Oag
db . ~2.13!

The operatorsO1 and O2 , having independent scaling d
mensionsx6 , describe the eigenscaling directions of t
four-field operators under the RG. In the unitary universa
class of the metal-insulator transition, i.e., the cases of w
6-7
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ZIQIANG WANG AND SHANHUI XIONG PHYSICAL REVIEW B 65 195316
magnetic field and spin-flip scattering by magnetic impu
ties, x656A2e has been derived from perturbation theo
in 21e dimensions.56

At the IQHT, the RG dimensions ofO6 were determined
numerically by Lee and Wang,58,23 from the leading scaling
operators associated with the fusion products of four ferm
operators that are antisymmetric and symmetric under
mutations, respectively. The scaling dimension ofO2 is ob-
tained from the product of two ‘‘spin’’ operators58

x25x2s520.6060.02, ~2.14!

whereas that ofO1 is extracted from the leading scalin
operator fused by the product of two nearby dens
operators:23

x15x2r50.6560.04. ~2.15!

A general four-field operator involves contributions fro
both O2 and O1 , but its leading scaling behavior will b
dominated by that ofO2 , sinceO2 is much more relevan
than O1 . A good example58 is the ensemble averaged in
verse participation ratio introduced by Wegner53 P(2). Ex-
pressed in terms of a four-field operator, its scaling dim
sion, which is also known as the multifractal dimension
the eigenstatesD(2), is governed byx2 , i.e., D(2)5d
1x251.460.02, indicating strong amplitude fluctuations
the critical eigenstates at plateau transitions. Indeed, the
ponent h used by Chalker and Daniel50 to describe the
anomalous diffusion at the IQHT is given byh52x2 . The
scatter in the value ofx2 is most likely due to uncertaintie
involved in different numerical approaches. By the same
ken, one can show that the scaling behavior of the ultraso
attenuation, extensively studied in 21e dimensions near the
conventional metal-insulator transitions,59 is controlled by
O2 as well.

Now let us apply these results to the interaction-induc
level shifts in Eq.~2.10!. We will show that the density-
density correlation is, in contrast to the inverse participat
ratio and the anomalous diffusion coefficient, controlled
the symmetric operatorO1 with the scaling dimensionx1 .
Individually, operatorsOA and OB contain contributions
from both O2 and O1 . Their leading scaling behavior i
therefore dictated by that of the operatorO2 . We have

OA~r2r 8!;OB~r2r 8!;S ur 2r 8u
L D x2

~2.16!

for ur 2r 8/L!Lv . However, the combination ofOA2OB
has precisely the symmetry of the symmetric operatorO1 .
Thus

OA~r2r 8!2OB~r2r 8!;S ur 2r 8u
L D x1

. ~2.17!

We see that the scaling behavior of the interacting-indu
level shift is determined by the fusion product of two dens
operators in the symmetric representation. The absenc
pure powers ofur 2r 8u in Eqs.~2.16! and~2.17! comes from
the fact that bilinear field operators have dimensio
19531
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zero,58,23 consistent with the single-particle DOS being no
critical at the noninteracting critical point.

Substituting Eq.~2.17! into Eq. ~2.10! and carring out the
spatial integrals from a lattice cutoffa to the system sizeL,
we obtain

dD125
u

Lp Fc11c2S a

L D 21x12pG , ~2.18!

where c1 and c2 are nonuniversal constants. Note that f
p.21x1 , the integral depends on the lower cutoff and t
second term in Eq.~2.18! diverges asa→0 which must be
absorbed into the renormalized interaction. We are n
ready to determine the relevance of the interactions by c
paring the scale dependence ofdD12 to the mean level spac
ing of the noninteracting system for largeL. Defining the
scaling dimension of the interactionu according to

x5
d

d ln L F logS dD12

D12
0 D G , ~2.19!

we obtain, using Eq.~2.18! andD12
0 ;L22,

x5max~22p,2x1!. ~2.20!
The behavior ofx is shown in Fig. 1. Forp,2, the inter-

actions acquire a RG scaling dimensionx522p.0 and are
relevant. We can refer to these types of interactions as lo
range interactions.23 In this case, the interaction-induce
level shift becomes much larger than the mean level spa
of the critical eigenstates in the noninteracting theory
large system sizesL. For the Coulomb interaction,p51, u
has a RG scaling dimensionxCoul.51, and is therefore a
relevant perturbation. The resulting flow away from the NI
will lead to an interacting fixed point at which the effectiv
interaction strength is finite. Presumably, the simplest v
sion of the latter is the Hartree-Fock fixed point discussed
Sec. I. At the level of the Hartree-Fock theory, Eq.~2.18!
shows that the level spacing is entirely dominated by
Coulomb interaction-induced level shift that scales asL21 in
the thermodynamic limit, consistent with the linear Coulom
gap DOS found in numerical calculations.24

On the other hand, for all values ofp.2, we havex,0.
The interactions are irrelevant, and can be referred to
short-range interactions. The dipole-dipole interaction,

FIG. 1. The scaling dimensionx of the interaction strengthu in
a 1/r p potential as a function ofp. The interaction is relevant for
x.0 and irrelevant forx,0 in the RG sense.
6-8
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particular, havingp53, belongs to this class of interaction
The NIFP is therefore stable against short-range interacti
For screened Coulomb interaction with 2,p,21x1 the
RG dimension ofu is x522p, while for p.21x1 it is x
52x1 . In both cases the interaction scales to zero at
transition in the asymptotic limit, although it controls th
finite-temperature behavior of the conductances.12 From Eq.
~2.18!, it is clear that the interaction-induced mixing betwe
the critical eigenstates of the noninteracting theory o
leads to level shifts that are much smaller than the m
level spacing in the thermodynamic limit. Thus the zero-b
DOS must be finite in the asymptotic limit for short-ran
interactions. However, as we will demonstrate later in t
paper, even in this case the interactions lead to remark
properties of the TDOS in the prescaling regime, which m
have important experimental consequences.

III. FIELD THEORY FRAMEWORK
AND SEMICLASSICAL APPROXIMATION

To include the screening of the Coulomb interactions
the diffusive electrons in the calculation of the TDOS beyo
the Hartree-Fock theory, we will set up, in this section, t
effective field theory and the semiclassical approximation
order to derive the Debye-Waller factor in Eq.~1.6!.

A. General formalism

We consider the action for interacting electrons in a r
dom potential and a magnetic field described by the Ham
tonian in Eq.~2.1!,

S5E
0

b

dtd2rL, ~3.1!

where

L5c* @]t1H01V~r !#c

1
1

2E d2rc* ~r !c~r !v~r ,r 8!c* ~r 8!c~r 8!. ~3.2!

Here, once again,V(r ) is the random external potentia
v(r2r 8) is the electron-electron interaction, andH0
5(1/2m)(] i1 ieAi)

2, with A(r ) being the vector potentia
of a uniform external magnetic field perpendicular to the
plane. In Eq.~3.2!, c and c* are independent Grassman
fields. The electron single-particle Green’s function is d
fined as

G~r ,r ,t!5Z 21E D@c* #D@c#c~r ,0!c* ~r ,t!e2S,

~3.3!
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whereZ is the partition function expressed in terms of t
imaginary-time path integral:

Z5E D@c* #D@c#e2S. ~3.4!

The interaction between the electrons can be viewed as b
mediated by a fluctuating scalar fieldF in the Coulomb
gauge, for one can always rewrite the interaction term in
following way:

e2(1/2)*d2r*d2rc* (r )c(r )v(r ,r8)c* (r8)c(r8)

5E D@F#

3ei *d2rc* (r )F(r )c(r )2(1/2)*d2r*d2r8F(r )v21(r2r8)F(r8).

~3.5!

To perform the averaging over random potentials, we use
replica trick, calculateZ n, wheren is the number of replicas
and take the limitn→0 at the end. The ensemble-averag
single-particle Green’s function can be obtained according

^G~t!&5 lim
n→0

E D@F#E D@V#P@V#

3E D@c* #D@c#ca1
~r ,0!ca1

* ~r ,t!

3expH 2E
0

b

dt (
a50

n F E d2rca* ~r ,t!@]t1H01V

2 iFa~r ,t!#ca~r ,t!1E dr

3E dr 8Fa~r ,t!v21~r2r 8!Fa~r 8,t!G J . ~3.6!

In the above equation,P@V# is the distribution of the random
potential which is taken to be Gaussian white noise:P@V#

;e2(1/2g)V2(r ) for the short-range correlated impurities,a is
the replica index, anda1 represents an arbitrary replica cha
nel. As in the usual treatment of disordered systems, integ
ing overV(r ) in Eq. ~3.6! introduces a four-point interaction
term in the action that is local in space but nonlocal in tim
(g/2)(a(a8*d2r*0

bdt*0
bdt8uca(r ,t)u2uca8(r ,t8)u2. The

latter is usually decoupled by introducing an auxiliary fie
Qa,a8(t,t8) by way of the Hubbard-Stratonovic transform
tion:
e(g/2)*d2r*0
bdt*0

bdt8uca(r ,t)u2uca8(r ,t8)u25E D@Q#e2(1/2g)*d2r*0
bdt*0

bdt8Qaa8(t,t8)Qa8a(t8,t)1 i *d2r*0
bdt*0

bdt8ca* (t)Qaa8(t,t8)ca8(t8).

~3.7!

195316-9
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This quench-averaging process leads to the following re
cated action:

S~c* ,c,Q,F!5E d2rE
0

b

dtF E
0

b

dt8(
aa8

H ca* ~r ,t!$@]t

1H02Fa~t!#d~t2t8!daa8

2 iQa,a8~t,t8!%ca8~r ,t8!

1
1

2g
Qaa8~t,t8!Qa8a~t8t!J 1

1

2 (
a

3E d2r 8Fa~r ,t!v21~r ,r 8!Fa~r 8,t!G .

~3.8!

The impurity-averaged Green’s function in Eq.~3.6! be-
comes

^G~t!&5 lim
n→0

E D@F#E D@Q#E D@c* #D@c#ca1
~r ,0!

3ca1
* ~r ,t!e2S(c* ,c,Q,F). ~3.9!

The rest of this section proceeds as follows:~1! We integrate
out theQ field as well as thec field, and derive an effective
action in terms of theF field: Seff(F). The Green’s function
^G(r ,r 8;t)& can be expressed in terms of the averaged n
interacting electron Green’s function in the presence of
fluctuating potentialF, which we denote byḠ(F), weighted
by e2Seff(F). The effective actionSeff can be obtained system
atically in a power series ofF and 1/sxx . ~2! By appealing
to the semiclassical approximation for the slowly varyi
part of the F field, we argue that Ḡ(F)'
Ḡ(0)exp(2i*0

bdt*d2rFr), where r(r ) is the diffusion
propagator.~3! Keeping inSeff up to quadratic terms inF2

and integrating out theF field, we arrive at ^G&
;Ḡ(0)e2W(t).

B. Effective action

Let us define the effective action by formally integratin
out theQ and thec field:

Z@F#5e2Seff(F)5E D@Q#E D@c* #D@c#e2S(c* ,c,Q,F).

~3.10!

Carrying out the functional integral explicitly over thec
field, we obtain

Z@F#5e2Seff(F)5E D@Q#e2SQ(F)2S2
(0)(F), ~3.11!

where

SQ~F!52
1

2g
Tr Q21Tr ln@ iv2H01 iF1 iQ#,

~3.12!
19531
i-

n-
e

S2
(0)~F!5

1

2
Tr F~r !v21~r ,r 8!F~r 8!. ~3.13!

In Eq. ~3.12!, v is the fermion Matsubara frequency, an
‘‘Tr’’ stands for the trace over the replica, spatial, and Ma
subara indices. Expanding Tr ln@iv2H01iF1iQ# in power
series ofF, we obtain

SQ52
1

2g
Tr Q21Tr ln@ iv2H01 iQ#

1TrS 1

iv2H01 iQ
iF D

2
1

2
TrS 1

iv2H01 iQ
iF

1

iv2H01 iQ
iF D1O~F3!.

~3.14!

We group the terms inSQ(F), which are zeroth order inF
asSs ,

Ss52
1

2g
Tr Q21Tr ln@ iv2H01 iQ#, ~3.15!

the terms linear inF asDS1(F),

DS15TrF 1

iv2H01 iQ
iFG , ~3.16!

and theF2 term asDS2(F),

DS252
1

2
TrF 1

iv2H01 iQ
iF

1

iv2H01 iQ
iFG .

~3.17!

Clearly,Ss is nothing but the transport action for electrons
a random potential in the absence of the Coulomb inter
tion. The standard procedure42 is to expand around the sadd
point of Ss . The self-consistent saddle-point equation
given by

iQ~r !52gK rU 1

iv2H01 iQUr L . ~3.18!

The saddle-point solution is given by

i @Q0#ab
mn5q0dabdmn1

i

2t0
dmndabsgn~n!, ~3.19!

wheret0 is the elastic scattering time. In generalt0 depends
on the magnetic fieldB. In the weak-magnetic-field limit, the
Landau levels overlap due to disorder broadening andt0(B
→0)51/2pn0g, where n0 is the density of states. In th
strong-field limitvct0(0)@1, wherevc is the cyclotron fre-
quency. The diffusion comes from the ‘‘skipping’’ of th
semi-classical cyclotron orbits caused by impurity scatteri
One must solve Eq.~3.18! in the presence of quantized Lan
dau levels. Such a solution renders the famous semici
density of states by Ando and co-workers,43 usually referred
to as the result of the SCBA. Let us denote the saddle-p
Green’s function as
6-10
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@Gsp#ab
mn5 K rU 1

iv2H01 iQ0
Ur L dabdmn , ~3.20!

which is also called the SCBA Green’s function. UsingGsp
one can calculate the bare parameters of the theory, i.e.
transport coefficientssxx andsxy at the level of the SCBA.
Without going into the details of the SCBA calculation
which can be found in Refs. 43, 35, 36, and 52, we point
the following key results:~1! In the strong-field limit the
elastic-scattering timet0 is of orderAt0(0)/vc, the mean
free pathl 5v ft0 becomes the cyclotron radiusRc , and the
diffusion constantD5 1

2 Rc
2/t0 depends on the magnetic field

~2! sxx in the center of theNth Landau level is approxi-
mately given bysxx

SCBA.(N11/2)e2/h; therefore, the per-
turbative expansion in 1/sxx is valid as long asN.1.

The single-particle Green’s function in Eq.~3.18!, and
hence the saddle-point solution forQ has, quite generally, a
branch cut atv50. Taking this into account, the saddl
point solution assumes the generic formiQ05q0

1(1/2t0)L, where L is a diagonal matrix, Lab
nm

5dnmdabsgn(n), in the space spanned by the replica (a,b)
and the Matsubara frequency (n,m) indices. The nonlinears
model is obtained by including the gapless, long-dista
fluctuations around the saddle-point manifold of the form

Q̃~r !5U21~r !Q0U~r !, ~3.21!

whereU is a unitary matrixUPU(M ), andM is the product
of the number of replicas and that of the frequencies. De
ing a dimensionless matrix field

Q~r !5U21~r !LU~r !, ~3.22!

it is straightforward to show that

DS15pn0Tr~QF!1 i
1

2
Tr@~Gsp1Gsp* !F#1O~Q¹Q!,

~3.23!

DS25pn0

t0

\
Tr~F22QFQF!1

1

8
Tr@~Gsp1Gsp* !F~Gsp

1Gsp* !F#1O~Q¹Q!. ~3.24!

It is now convenient to denote the quantum average oveQ
under the statistical weighte2Ss(Q) by ^¯&s . From Eqs.
~3.11!–~3.17! we obtain the effective action

Seff~F!5^DS1&s1^DS2&s2
1

2
@^~DS1!2&s2^DS1&s

2 #

1S2
(0)~F!1O~F3! ~3.25!

The second and thirdF2 terms in Eq.~3.25! define the~den-
sity! polarization functionP:
19531
he
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^DS2&s2
1

2
@^DS1

2&s2^DS1&s
2 #

5
1

2 (
n
E d2rE dr 8P~r ,r 8;vn!Fn~r !F2n~r 8!.

~3.26!

The polarization function can be calculated in power ser
of 1/sxx . To leading order in 1/sxx , we recover the result o
the ladder approximation:

P~q,ivn!5n0

Dq2

Dq21uvnu
. ~3.27!

Higher-order interference corrections presumably renorm
izes the diffusion constantD, and the thermodynamic DOS
n0→dn/dm in Eq. ~3.27!. Thus we have derived the effec
tive action to orderF2:

Seff'
T

2 (
n

Fn~r !@v21~r2r 8!1P~r2r 8; ivn!#Fn~r 8!.

~3.28!

The scalar fieldF precisely mediates the diffusion-screen
electron-electron Coulomb interaction.34

C. Semiclassical phase approximation

Now we turn to the evaluation of the impurity averag
single-particle Green’s function given in Eq.~3.9!. By a
simple reordering of functional integrals,44,29 we have

^G~r ,r ,t!&5E D@F#Ḡ~r ,r ,t,F!e2Seff(F), ~3.29!

whereḠ is the averaged Green’s function in a fixed config
ration of the scalar potentialF:

Ḡ~r ,r ,F!5 lim
n→0

E D@Q#

3E D@c̄#D@c#ca1
ca1

* e2S(c* ,c,Q,F)/Z@F#.

~3.30!

We now make an approximation regardingḠ(F) that takes
into account exclusively the important interference effe
between the phases of the electron wave functions. The
plitude fluctuations are small for the slowly varying fluctu
tions of theF field that dominate the contributions to th
effective action in Eq.~3.28!. Since these fluctuations ar
spatially smooth on the scale of the elastic mean free pal,
i.e., ¹F l /Ef!1, they do not significantly alter the classic
trajectory of the electrons. This is a unique feature of
slow diffusive dynamics of the electrons in a random med
Appealing now to the semiclassical approximation, t
single-electron propagator in the presence of interaction
modified by a U~1! phase factor,

Ḡ~r ,r ;t;F!'Ḡ~r ,r ;t;0!e2DScl(F), ~3.31!
6-11
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whereDScl is the change of the action caused by sampl
the potentialF along the classical path,

DScl~F!52 i E
0

t

dt8F@r cl8 ~t8!,t8#, ~3.32!

with r cl8 (t8) being the classical trajectory that starts and e
at r in the presence of random potential but in the absenc
the F field. Upon averaging over the random potentials,
classical trajectory can be described by a random walk.
r(r ,t) be the probability of a particle being atr at timet:

F@r cl8 ~t8!,t8#5E dr 8r~r 8,t8!F~r 8,t8!. ~3.33!

Since the critical conductivity is finite at the IQHT, th
charge spreading is expected to be described by~anomalous!
diffusion. The probability densityr then satisfies the diffu-
sion equation

@2D~¹8!21]t8#r~r 8,t8!5@d~t8!2d~t82t!#d~r 82r !,
~3.34!

where thed functions on the right-hand side result from th
boundary conditions imposed on the original trajectory a
correspond to injecting an electron atr and time 0 and re-
moving it at timet. The associated current density is giv
by

J52D~¹2gHẑ3¹!r, ~3.35!

wheregH5sxy /sxx is the Hall ratio. Note thatgH does not
enter diffusion equation~3.34! because the transverse for
does not affect the charge spreading which is described
¹•J in the continuity equation. Solving Eq.~3.34! in the bulk
of systems without edges, we find,

r~q,ivn!5
12eivnt

Dq21uvnu
. ~3.36!

Later we will show thatgH does enter in the presence phy
cal edges. In this case, the diffusion equation must be so
with the appropriate spatial boundary conditions.

Inserting the results of Eqs.~3.36!, ~3.32!, and~3.33! into
Eq. ~3.31!, we have

Ḡ~r ,r ;t;F!'Ḡ~r ,r ;t;0!ei *0
tdt8*dr8F(r8,t8)r(r8,t8).

~3.37!

Note that the above is but a special case of the more gen
phase approximation in the presence of U~1! gauge
fields.29,44,45 The quantum interference effects can be
cluded by the renormalization of the diffusion constantD
and other parameters of the theory. In fact, it was arg
recently in Ref. 46 that the phase approximation of E
~3.37!, along with the effective action of the screened pote
tial of Eq. ~3.28! can be derived by seeking a temporally a
spatially varying saddle-point solutionQ0(r ,t,F) of the ac-
tion SQ(F) for eachF(r ,t). Quantum interference can b
treated systematically by considering fluctuations arou
such saddle-point solutions. We note in passing that, at c
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cality, another complication arises: due to the multifrac
behavior of the critical eigenstates, the diffusion is anom
lous, i.e.,D becomes dependent on the length and the t
scales. These subtleties will be addressed in later sectio

The final step is to substitute Eq.~3.37! into Eq. ~3.29!
and carry out the functional integral. Taking into account t
Gaussian fluctuations inF captured by the effective action i
Eq. ~3.28!, we obtain the central result

^G~r ,r ;t!&'Ḡ~r ,r ;t;0!e2W(t), ~3.38!

where the Debye-Waller phase-delay factor is

W~t!5
T

2 (
n
E d2q

~2p!2 r~q,ivn!vsc~q,ivn!r~2q,2 ivn!,

~3.39!

andvsc is the dynamically screened interaction implied in t
effective action in Eq.~3.28!:

vsc~q,ivn!5
v~q!

11v~q!P~q,vn!
5

v~q!

11
dn

dm
v~q!

Dq2

Dq21uvnu

.

~3.40!

In Eq. ~3.38!, Ḡ(t) corresponds to the SCBA Green’s fun
tion Gsp(t) defined in Eq.~3.20!:

Ḡ~r ,r ,t!52 ipn0

1

b (
n

e2 ivntsign~vn!52n0

p/b

sin~tp/b!
.

~3.41!

After carrying out the sum over Matsubara frequency in E
~3.39!, the details of which are given in Appendix A, w
obtain the finite-temperature expression

W~t!5E
2`

1` dv

2p i
@ f ~2 iv!2 f ~ iv!#

12evt

ebv21
, ~3.42!

where

f ~2 iv!5
1

2E d2q

~2p!2S 1

Dq22 iv
D 2

vsc~q,2 iv!.

~3.43!

The interaction correction to the TDOS is determined by
behavior of the phase factorW(t), which depends on the
nature of the dynamically screened interactionvsc.

IV. BULK TUNNELING DENSITY OF STATES IN TWO
DIMENSIONS

We now derive the TDOS atT50. It is necessary to per
form the following analytical continuation:
6-12
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n~v!52
1

p
Im G~r ,r ; ivn!u ivn→v1 id

52
1

p
ImF E dteivntḠ~r ,r ,t!e2W(t)G

ivn→v1 id
.

~4.1!

The procedure turns out to be quite nontrivial. Since
could not find discussions of the technique in the literatu
we elect to include the details of the analytical continuat
in Appendix B, where we show, in the limitT→0,

n~v!'
2

p
n0E

0

`sin~ uvut !
t

e2W( i t ), ~4.2!

wheren0 is the noninteracting TDOS near the Fermi lev
Taking theT50 limit of Eq. ~3.42!, we obtain

W~ i t !5E
0

` dv

2p i
@ f ~2 iv!2 f ~ iv!#~12e2 ivt!, ~4.3!

with the functionf given in Eq. ~3.43!. The term with the
oscillatory factore2 ivt averages to zero upon integration e
cept for v!1/t where e2 ivt'1. Therefore we can effec
tively leave out thee2 ivt term and introduce a lower cutof
\/t to the integral:

W~ i t !5E
1/t

1/t0
dv

1

2p i
@ f ~2 iv!2 f ~ iv!#. ~4.4!

The upper cutoff of the integral in the above equation ari
from the fact that the diffusive picture becomes invalid
time scales shorter than the elastic scattering time. Using
~3.43!, we obtain

W~ i t !5E
1/t

1/t0dv

2pE d2q

~2p!2ImFvsc~q,2 iv!S 1

Dq22 iv D 2G .
~4.5!

We next turn to the evaluation of the most singular contrib
tions to W and thus to the TDOS for different forms of in
teractions.

A. Long-range Coulomb interaction

The singularity in the TDOS arises from the physics
dynamical screening. For Coulomb interaction,v(q)
52pe2/q. The dynamical screened interaction in Eq.~3.40!
becomes

vsc~q,2 iv!5
2pe2

q1
kDq2

Dq22 iv

, ~4.6!

wherek52pe2dn/dm is the inverse screening length at th
transition. It is important to note that, in the presence
disorder, the range of validity for static screening is qu
small.38 Since diffusion is a relatively slow process, at no
zero frequency the long distance singularity associated w
the long-range Coulomb interaction is not screened, as
19531
e
,

n

.

s
t
q.

-

f

f

-
th
an

be seen from Eq.~4.6!. In fact, in the region whereDq2

,v,Dkq, the effective interaction has the most singu
form

vsc~q,2 iv!;
1

Dkq2
, Dq2,v,Dkq, ~4.7!

which gives the main contribution to the wave-vector in
gral in Eq.~4.5!:

W~ i t !5
1

4p2sxx
E

1/t

1/t0dv

v
lnS v

Dk2D . ~4.8!

Note that, in this region, the diffusion coefficientD is a con-
stant. The anomalous diffusive behavior50 in the regime
Dq2@uvu does not affect the leading contribution. The r
maining frequency integral generates the double-logarith
dependence in time,

W~ i t !'
1

8p2sxx

lnS t

t0
D lnS t

t1
D , ~4.9!

wheret151/t0(Dk2)2, andsxx5Ddn/dm is the conductiv-
ity defined via the Einstein relation. Near the Landau-le
centers, one can show in the SCBA thatt1 /t0
5(1/4p4sxx)(kfaB)2/kf l !1. This double-logarithmic form
is the dominant behavior of the Debye-Waller phase facto
the long-time limit. Next-order corrections are of the ord
$1/sxx,1/sxx

2 % ln(t/t0). The contributions from all six differen
integration regions in the (v,q)-plane are discussed in deta
in Appendix C. Substituting Eq.~4.9! into Eq. ~4.2!, we ob-
tain the zero-temperature TDOS in the Coulomb case:

n~v!5
2n0

p E
0

`

dt
sin~ uvut !

t
e2(1/8p2sxx)ln(t/t0)ln(t/t1).

~4.10!

Keeping in mind that in deriving this result we have assum
a frequency-independent conductivitysxx , i.e., we have ne-
glected the quantum interference effects. In general,sxx is
renormalized by localization effects, of leading ord
(1/sxx)ln vt0 in the unitary ensemble, and by interaction e
fects of leading order lnvt0 in strong magnetic field.35,36

Thus sxx takes on the frequency-independent SCBA va
only if u ln(«t0)u!sxx.

1. High-frequency regime:z ln„vt0…z™sxx

In this regime, the weak localization correction to the co
ductivity can be neglected. If in addition,u ln(vt0)u!Asxx,
we can expand the exponential in Eq.~4.10! to leading order
in 1/sxx , and obtain

n~v!5n0F12
1

8p2sxx

ln~ uvut0!ln~ uvut1!G . ~4.11!

This reproduces the high-field perturbative diagrammatic
sult of Girvin, Jonson, and Lee35 and Houghton, Senna, an
Ying.36 For frequencies in the rangeAsxx!u ln(uvut0)u!sxx,
the integral in Eq.~4.10! can be evaluated by the stationa
6-13
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point/instanton method, leading to a nonperturbative res
mation of the double-log divergences in Eq.~4.11!:

n~v!5n0expF2
1

8p2sxx

ln~ uvut0!ln~ uvut1!G .

~4.12!

In the zero-magnetic-field case, such a nonperturbative
summation of the perturbative double-log divergences w
carried out by Finkel’stein,42 and recently reexamined usin
different approaches.60,46,39 Our result of Eq.~4.12! can be
regarded as an extension of the latter to the strong-magn
field case.

2. Low-frequency regime:z ln„vt0…zšsxx

Here the quantum interference effects will, in gener
lead to a frequency-dependent conductivity. However, at
IQHT, the critical conductivitysc is finite and of the order of
e2/\. This experimental fact was shown numerically for bo
noninteracting electrons and interacting electrons in the
theory.61,50,62,63,25,26Thus the validity of our analysis, i.e., th
structure of the double-log divergence at long times, can
extended into the regime of smallv, provided thatsxx in Eq.
~4.10! is replaced by the critical conductivitysc.0.5/2p.
Note that due to the double-log term in the exponent,
~4.10! implies

lim
t→`

W~ i t !51`,

and consequently a zero-bias anomaly in the TDOS

n~v50!50.

To obtain the limiting behavior ofn(v) for small v, we
expand the sin(vt) factor in Eq.~4.10! in a power series in
vt. It is important to emphasize that this is possible beca
of the double-log contribution which makes the time integ
over e2W( i t ) converge fast enough such that the TDOS
comes analytic at smallv. The claims made by Polyako
and Samokhin28 that the TDOS falls off faster than an
power law inv is in fact incorrect. Since the signs of th
expansion-coefficients alternate, the series is asymptotic,
it can be infinitely accurate at smallv. To first order inv,

n~v!5n0uvu
2

pE0

`

dte2(1/8p2sc)ln(t/t0)ln(t/t1). ~4.13!

Performing this integral, and using the fact that the co
pressibility is only weakly renormalized, i.e.,dn/dm.n0,
we obtain the 2D quantum Coulomb gap behavior given
Eq. ~1.8! in Sec. I, i.e.,

n~v!5CQ\uvu/e4. ~4.14!

In contrast to the 2D classical Coulomb gap, the slopeCQ is
not a universal number. It is given by
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CQ5A 1

2p3sc

@11F~A2p2sc!#e
(2p2sc)1(1/8p2sc)log2R,

~4.15!

where F(x) is the error function and R5At1 /t0
51/Dk2t0 is a quantity that depends on the degree of dis
der. The latter can be written in terms of more familiar qua
tities according to

R5
1

4p4sc

~kfaB!2

kf l 0
, ~4.16!

whereaB is the Bohr radius andl 0 is thezero-fieldmean free
path.

It is easy to verify that the next term in the expansion is
the orderv(vt0)2esxx, which is small in this regime. The
results of numerical integration of Eq.~4.10! is plotted in
Fig. 2, which shows the crossover from the high-frequen
behavior described by Eq.~4.12! to the asymptotic linear
Coulomb gap of Eq.~4.14! at low frequencies. Since the rea
transition must be governed by an interacting fixed po
where the Coulomb interaction strength is finite, we co
clude that the true asymptotic behavior of the bulk TDO
exhibits the quantum Coulomb gap at the IQHT.

B. Short-range interactions

In this subsection, we address the question of how sh
range interactions, such as screened Coulomb interact
which are irrelevant perturbations at the NIFP in the R
sense, cause depletion of the TDOS near the Fermi level.
simplicity, we focus on the local interactions described
the prototype short-range interacting potentialv(r2r 8)
5ud(r2r 8) and v(q)5u. The screened interaction in Eq
~3.40! becomes,

FIG. 2. The TDOS in Eq.~4.10! in the case of long-range Cou
lomb interaction, showing an asymptotic linear Coulomb pseudo
behavior at smalluvu. The parameters aresxx5sc andt0 /t1510.
6-14
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vsc~q,ivn!5
u

11u
dn

dm

Dq2

Dq21uvnu

. ~4.17!

Inserting this expression into Eq.~4.5! for W( i t ), one finds

Wsr~ i t !5E
0

1/t0dv

2p
~12e2 ivt!E d2q

~2p!2

3ImF 1

Dq22 iv

1

D8q22 iv
G , ~4.18!

whereD85D1usxx . In contrast to the long-range Coulom
case, the contributions to theq integral from thev.Dq2 and
v,Dq2 regimes are now comparable.

1. Prescaling regime

Let us first ignore the quantum interference effect a
focus on the perturbative regime appropriate whenu ln vt0u
!Asxx. In this case we can treat the diffusion coefficientD
as a constant, and the interaction strengthu as a marginal
perturbation~a scale invariant constant! in Eq. ~4.18!. Carry-
ing out integrations, we arrive at

Wsr~ i t !5E
0

1/t0
dv

a

v
~12e2 ivt!, ~4.19!

wherea is a nonuniversal dimensionless quantity depend
on the interaction strength,

a5l
1

8p2sxx

21l

~11l!2~11 ln A11l!, ~4.20!

with l5un0. Thus W( i t ) diverges in the long-time limit
only logarithmically. The situation is completely analogo
to the classic x-ray edge problem.49 Taking care of the short
time behavior in Eq.~4.19! as in the x-ray edge problem, w
obtain

Wsr~ i t !.2a ln~11t/t0!. ~4.21!

Substituting Eq.~4.21! into Eq. ~4.2!, we have, for the
TDOS,

nsr~v!

n0
5

2

p
n0E

0

t0
dt

sin~ uvtu!
t

1

~11t/t0!a5Cauvt0ua,

~4.22!

where Ca5(2p)*0
`dy(siny/y)@1/(11y)a# is a dimension-

less numerical constant. Thus we conclude that a nonun
sal power-law suppression of the TDOS prevails in the pr
caling regime for short-range interactions.

2. Scaling regime

On approaching the scaling regime of the IQHT, it is ne
essary to take into account the scaling behaviors of~1! the
diffusion coefficientD, and~2! the interaction strengthu. It
is known from the work of Chalker and Daniel50 that the
19531
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multifractality of the critical eigenstates leads to anomalo
diffusion in the regimeDq2.v. The diffusion constant be
comes a function ofq2/v,

D~q,v!5D~qLv!2h, ~4.23!

where as before,Lv5AD/v andh52x2 which is given in
Eq. ~2.14!, andD2522h is the multifractal dimension. The
critical conductivitysc is once again finite and will be take
as scale independent. The Debye-Waller phase factorWsr( i t )
in Eq. ~4.19! is now modified by replacinga→a8, where

a85
1

8p2sc

21l

~11l!2 @ch1 lnA11l#, ~4.24!

with ch51/212/(423h). This modification due to the mul
tifractal behavior alone would lead to, repeating the calcu
tions above, the same behavior of the TDOS as in Eq.~4.22!
in the prescaling regime, except the exponenta is replaced
by a8.

Next we must take into account the fact thatu is an irrel-
evant perturbation. The effective interaction scales to z
according to23,12 ueff;uvx1 /z, where2x1 is the scaling di-
mension for short-range interactions discussed in Sec. II,
z52 is the dynamical exponent at the NIFP. As a result,
quantitya8 obeys the following scaling relation:

a8~u,v!5A~uvx1 /z!. ~4.25!

The fact thatA(u→0,v)50 implies, together with Eq.
~4.24!, the leading scaling behavior fora8:

a8.Al~vt0!x1 /z, A5ch/4p2sc . ~4.26!

Substituting this result into Eq.~4.19!, we find

Wsr~ i t !5Alg21F S t0

t D g

21G , ~4.27!

where g5x1 /z.0.32. ThatWsr( i t ) converges now in the
long-time limit should be contrasted with the long-ran
Coulomb case, and is a consequence of the short-range i
actions being irrelevant, i.e.,g.0. An immediate implica-
tion is that the TDOS would be finite at zero bias and t
level spacing scales as 1/L2 as in the noninteracting theory
However, we shall show below that if the bare interactionl
is large, it still leads to strong suppression of the TDOS
low energies.

From Eqs.~4.2! and ~4.27!, the TDOS is given by

nsr~v!5n~0!
2

pEt0

`

dt
sin~ uvut !

t
e(Al/g)(t0 /t)g

, ~4.28!

where n(0)5n0e2Al/g,n0. Performing the integral using
the saddle-point/instanton approximation, we find that,
low frequenciesv,v0, the TDOS is given by

nsr~v!5n~0!F11S uvu
v0

D gG , ~4.29!

wherev05t0
21(Al/g)21/g is an energy scale. We see th

upon scaling, the irrelevance of short-range interactions le
6-15
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to a smearing of the power-law behavior in the perturbat
regime, giving rise to a finite and nonuniversal TDOS at z
bias. However, although short-range interactions are ir
evant in the RG sense, sincen(0)!n0 for largel, they still
lead to a strong density-of-state suppression at low b
What is remarkable is that Eq.~4.29! predicts an increase o
the TDOS with energy that follows auniversalpower law,
with an initial cusp singularity for our value ofg. These
predictions can, in principle, be tested experimentally by
liberately screening out the long-ranged Coulomb interac
using metallic gates or ground planes.

C. General interacting potential: v„q…ÄuÕq2Àp

It is interesting to consider a general interacting poten
of the formv(q)5u/q22p. We find that forp,2, the domi-
nant contribution toW( i t ) in the long-time limit comes from
the same double-log term as in the case of Coulomb inte
tion ~corresponding top51). We conclude that, forp,2,
the density of states in the asymptoticv→0 limit is of the
form of the linear gapn(v);v. For p.2, the phase-delay
factorW( i t ) approaches a constantW`.0 for t@t0. In this
case the density of states does not vanish, but rather deve
a shallow dip atv50, wheren(0)5n0e2W`. The borderline
case is that ofp52, corresponding to thed-function inter-
action studied. It can be shown from either thep.2 or the
p,2 side that asp→2, a single-log term emerges and dom
nates the contributions inW( i t ), leading to the power-law
density of states of Eq.~4.22! in the perturbative regime, an
to the finite zero bias TDOS obtained in Eq.~4.29!. Details
of this analysis can be found in Appendix C.

V. TDOS IN QUASI-1D SYSTEMS WITH EDGES

In the cases studied above, thebulk TDOS does not de-
pend on the Hall conductance. This is in keeping with
fact that the bulk diffusion equation is the same with or wi
out time-reversal symmetry. The traverse force induced b
magnetic field does not affect the diffusive charge spread
It is well known that in the noninteracting theory of th
IQHT, the term in the action that depends onsxy is topologi-
cal and nonperturbative.18 However, it was discovered re
cently that in the presence of edges, the Hall conducta
enters measurable quantities even in the perturbative li
The topological term gives rise to a tilted boundary condit
for diffusion, and at more subtle levels affects the quant
interference processes. For example, it was shown
Khmel’nitskii and Yosefin51 and by Xiong, Read, and Stone52

that mesoscopic conductance fluctuations in phase-cohe
samples become dependent on the Hall conductance in
presence of edges. More recently Shytov, Levitov, and H
perin demonstrated that theI -V curves foredge tunneling
into the 1D Luttinger-liquid-like edge excitations of frac
tional quantum Hall liquids can be obtained from the point
view of bulk composite fermions by using a similar pha
approximation in treating the effects of gauge fluctuation45

There thesxy dependence in the exponent of the power-l
tunneling conductance also arises from a boundary cond
of the source current at the edge of a semi-infinite sam
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Our case differs from and is simpler than that of the co
posite fermions, in the sense that we need to consider o
pure potential fluctuations mediated interactions in the in
ger quantum Hall regime.

To study how the physical boundaries bring the Hall ra
into the bulk TDOS, we consider, instead of the half-plan
geometry,45 a quasi-1D sample with its lengthL much
greater than its widthW, exposing two reflecting edges alon
its width. This condition can be realized experimentally
the long Hall bar geometry, and is the same as that con
ered by Xiong, Read, and Stone52 in their study of the edge
effects on mesoscopic conductance fluctuations in str
magnetic fields.

Because the incident current is at an angle with the
flecting edges, the presence of the magnetic field affects
diffusion process through a modified boundary conditi
which depends on the Hall ratiogH5sxy /sxx :

@]n1gH] t#r50. ~5.1!

Here the subscriptn denotes the directions normal to th
edge, andt denotes the tangential direction. Strictly spea
ing, if boundary condition~5.1! is taken into account, the
diffusion propagator as well as the screened interactions
depend on the Hall conductivity. Such an effect is minima
the sample is wider than it is long, and becomes pronoun
only in the quasi-1D limit whenL@W. For simplicity, we
consider the case of thed-function interaction encountered i
Sec. IV B and the geometry of an infinite strip with ha
walls aty50 andy5W. We also limit ourselves to the per
turbative regime, and neglect scaling corrections to the c
ductivities and the interaction strength.

The diffusive modes that are solutions of diffusion equ
tion ~3.34! and satisfy the boundary condition~5.1! can be
obtained as follows:52

fk,q
L 5ake

iqxFkp

W
cosS kpy

W D2 igHq sinS kpy

W D G for kÞ0,

f0,q
L 5a0eiqx2 igHqy for k50. ~5.2!

Since the boundary condition is not self-adjoint, there is a
a set of right eigenfunctions~with the same eigenvalues! that
satisfy the boundary condition under parity transformatio

@]n2gH] t#f
R50. ~5.3!

They are given by

fk,q
R 5ake

iqxFkp

W
cosS kpy

W D1 igHq sinS kpy

W D G for kÞ0,

f0,q
R 5a0eiqx1 igHqy for k50. ~5.4!

$fL,fR% are the eigenmodes of the Laplacian operator,

2D¹2fq
L,R~x,y!5Lk,qfq

L,R~x,y!, ~5.5!

where
6-16
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Lq,k5DFk2p2

W2
1q2G for kÞ0,

Lq,05D~11gH
2 !q2 for k50. ~5.6!

Using the biorthogonality relation and the completeness c
dition, we can express the Debye-Waller phase factorW( i t )
in Eq. ~4.5! in terms of the sum over the eigenmodes in t
transverse channels:

W~ i t !5
1

2E1/t

t0 dv

~2p! (
q,k

fk,q
L ~r !@fk,q

R ~r !#* 2 Re

3H 1

~Lk,q2 iv!2

u

11un0

Lk,q

Lk,q2 iv
J . ~5.7!

In the limit Dt@W2, contributions fromk.0 modes can be
ignored. For the consideration ofn(v), this condition trans-
lates intoLv@W, i.e., \v@D/W2. Strictly speaking,W( i t )
becomes dependent on the spatial position, but we do
expect any spatial singularity. It is therefore justifiable
averageW( i t ) over the entire strip. We obtain

W~ i t !'
4

3p2

u

\AD1

1

11l
~At2At0!, ~5.8!

whereD15(11gH
2 )D. Thus, the phase factor is dominate

in the quasi-1D case by theAt divergence in the long-time
limit. Rewriting the prefactor in Eq.~5.8! as

AvB5
4

3p2

eAn0

\3/2A~11gH
2 !sxx

l

11l
, ~5.9!

we haveW( i t )5AvBt2AvBt0. Upon substitution ofW( i t )
into Eq. ~4.2!, the TDOS in the quasi-1D case is given by

nq1D~v!5n0

2

pEt0

`

dt
sin~ uvut !

t
e2AvB(At2At0). ~5.10!

Approximating the time integral by the stationary poin
instanton solution, we find that, forv!vB ,

nq1D~v!}n0e2vB/4uvu. ~5.11!

Thus the TDOS is strongly suppressed at low energie
quasi-1D systems in a manner that is sensitive to the app
magnetic field through the energy scalevB . If one naively
extends the behavior of Eq.~5.11! to arbitrarily small fre-
quencies, one could conclude that the TDOS goes to zer
the Fermi-surface faster than any power law, if the renorm
ization of the conductivity and the interaction strength at l
energies are ignored. This is in fact incorrect, because
~5.11! is only valid at intermediate frequencies. Since t
Debye-Waller factore2W( i t ) converges fast in the long-tim
limit, the low-energy behavior ofnq1D(v) is actually de-
scribed by an asymptotic series expansion in powers ov.
We find
19531
n-

ot

in
ed

on
l-

q.

nq1D~v!'n0

uvu
vB

(
n50

`

~21!n
~4n11!!

~2n11!! S v

vB
D 2n

.

~5.12!

The TDOS is therefore dominated by the linear term n
zero bias:

nq1D~v!'n0

v

vB
5suvu. ~5.13!

The magnetic field dependent slope is given by

s5
9p4

16u2

1

rxx
~11l!2, ~5.14!

where rxx5sxx(11gH
2 ) is the dissipative resistivity. Note

that this result is valid at small frequencies such th
uvu/vB.evB/4uvu, i.e., for uvu,0.12vB . In Fig. 3, we plot
the TDOS obtained by numerical integration of Eq.~5.10! as
a function ofv. The asymptotic linear pseudogap behav
of the TDOS at low bias is shown in the inset. Therefore,
conclude that the TDOS of a quasi-1D quantum Hall st
with reflecting edges exhibits a linearly vanishing pseudog
near the Fermi level, with a slope proportional torxx

21 in the
perturbative regime. Within the SCBA, the values of bo
sxx and sxy at the center of the Landau levels are prop
tional to the Landau-level indexN.43 This leads to a Hall
ratio gH of order 1 and a longitudinal resistivityrxx;1/N
;B. We see that, for a fixed interaction strengthu, the slope
is inversely proportional to the magnetic fields;1/B. It is
interesting to remark that bulk tunneling measurements
der the quantum Hall conditions using time-domain capa
tance spectroscopy21 indeed reveals a linearly vanishin
pseudogap TDOS with a slope that scales with 1/B. In addi-
tion, the measured slope of the tunneling pseudogap o
lates weakly as a function of filling fraction, which mimic

FIG. 3. The TDOS in quasi-1D strips with edges obtained fro
Eq. ~5.10! for short-range interactions. The inset shows t
asymptotic low-energy behavior of a linear pseudogap given by
~5.13!.
6-17
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the oscillatory behavior of the SCBA conductance. Howev
although the experimental setup21 allows screening of the
Coulomb interaction by the metallic gates~electrodes!, such
that the interactions may be short ranged, it is not clea
present if the the sample used can be effectively qualified
being quasi-one-dimensional. It is also interesting to n
that the results for the quasi-1D bulk TDOS in Eqs.~5.13!
and ~5.11! depends strongly on the interaction strengthu.
This is in contrast to the case of tunneling into a sin
fractional quantum Hall edge in the composite fermion d
scription, where the TDOS was found to be a power law w
an exponent that depends only weakly on the interac
strength.45

VI. DISCUSSIONS: QUANTUM COULOMB GAP AND
DYNAMICAL SCALING OF TRANSITION WIDTH

Understanding how interactions introduce new phys
into the single-particle sector near the IQHT is an import
step toward a more complete understanding of the interp
between disorder and correlation and its effects on the tr
port properties in the quantum Hall regime. A great part
this paper is devoted to demonstrating how various type
interaction-induced anomalies in the TDOS at low energy
likely to occur so long as the 2D conductivity is finite, whic
occurs near the quantum Hall transitions. Our basic findin
that, in the presence of disorder, the range of validity
static screening of the Coulomb interaction is very sm
whereas at finite frequencies the diffusive dynamics is
slow to effectively screen out the Coulomb interaction
long distances. This leads to a Debye-Waller phase-d
factor in the averaged single-particle Green’s function t
vanishes in the long-time limit. As a result, the TDOS in t
extended regime comes to resemble that in the localized
gime, exhibiting a linearly vanishing quantum Coulomb g
behavior.

It is important to emphasize the coexistence of the v
ishing Coulomb gap in thetunnelingDOS with a finite ther-
modynamic DOS. The double-log singularity in Eq.~4.10!,
arising from the correlations of the single-particle phas
will not show up in the two-particle density-density correl
tion function that determines the compressibility or the th
modynamic DOS in the static limit. This point was recen
demonstrated explicitly in the self-consistent Hartree-Fo
theory,27 where it is shown that the charge redistribution
duced by a test charge inserted into the quantum Hall crit
state is consistent with the presence of a finite screen
length. The finite critical conductivity then implies that th
uniform diffusion constant must be finite.

It is also important to understand how the depletion
TDOS relates to the larger issue of dynamical scaling n
the IQHT. This is more challenging due to the possible ex
tence of several different time scales that control differ
dynamical processes: charging, charge spreading, inel
phase breaking, etc. While a linearly vanishing sing
particle DOS in two dimensions does imply, through the q
siparticle level spacingD;1/L, a dynamical scaling expo
nentz51, it has not been shown that thisz, which obviously
controls the charging dynamics, is also the one that enters
19531
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conductivity scaling at finite temperatures or frequencies
the transport measurements.

The conventional wisdom, at least for dc transport, h
been that the hopping transport in insulators is determined
the single-particle DOS, whereas the diffusive transport
metals is directly related to the thermodynamic DOS~com-
pressibility!. Generalized to finite frequencies, this wou
imply that the dynamical aspects of the transport in insu
tors are controlled by that of charging, and in metals by t
of diffusive charge spreading. In ordinary disordered met
this problem can be better quantified. As noted
Finkel’stein42 in the calculation of the conductivity, there is
great degree of cancelation between the corrections to
Green’s functions~which causes the anomalous behavior
the TDOS! and to the vertices. Therefore the interaction
fects that cause the depletion of the the single-particle D
n(v) do not appear to influence directly the dc transp
properties. At finite frequencies, the coupled scaling eq
tions in the RG calculation based on the nonlinear-s model
involve the conductivity, the interaction strength, and the f
quency renormalizationZv that enters in the diffusion kerne
as 1/(Dq22 iZvv). Note thatZv51 corresponds to the non
interacting case and a dynamical scaling exponentzv

5dim@D#125d in d dimensions. In conventiona
Anderson-Mott metal-insulator transitions ind521e
dimensions,37 the critical conductivity is zero. The lack o
quantum diffusion at the transition is accompanied by
interaction induced frequency renormalization, i.e.,Zv

;L2z. For both the spin scattering and the spin-polariz
case, one-loop calculations givez5e/2. As a result, the dy-
namical scaling exponent relevant for metallic transport
parts from the noninteracting value:zv5d2z. It is very dif-
ficult to extend the same quantitative analysis to the quan
Hall problem because the perturbative approach is no lon
valid due to the presence of the topologicalu term in the
nonlinear-s model action. However, the fact that bo
dn/dm and the conductivity are finite at the quantum H
transition in two dimensions ensures that the frequency in
diffusion propagator remains unrenormalized and its ass
ated exponentzv52.

The above analysis conveys a simple but important po
i.e., since it isZv and not the single-particle DOS that ente
scaling and controls the dynamics of the diffusive transp
from the metallic side, within the existing framework,42,64 it
is natural to suspect that the suppression of the TDOS p
no role in the dynamical scaling behavior of the conductivi
Therefore, the linear Coulomb gap may not by itself app
to be an explanation for whyz51 at the quantum Hall tran
sitions. In the following, we argue that it is indeed the inte
play between the quasiparticle inelastic dephasing~level
broadening! and the level spacing that controls the transiti
width, contrary to common perceptions.

Since the relevant phenomenon here is transport, this s
of affairs naturally translates into the question of which e
ponent determines the dephasing lengthLw . In the standard
procedure,65 the system is divided intoLw3Lw phase-
coherent blocks. Transport within each block can be
scribed by phase-coherent transport from the underlying n
interacting theory, and the relevant conductivity is given
6-18
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ELECTRON-ELECTRON INTERACTIONS, QUANTUM . . . PHYSICAL REVIEW B65 195316
the disorder average over the phase-coherent blocks.
outcome is that the scaling variable for the conductivity b
comesLw /j in the presence of interactions instead ofL/j in
the noninteracting case, whereL is the sample size andj is
the localization length:

sxx5
e2

h
FS Lw

j D . ~6.1!

The scaling functionF(x) has the limiting behavior

F~x!5H sc , x→0

0, x→`.
~6.2!

The conducting critical regime atLw!j and the insulating
regime atLw@j are separated by a crossover atLw;j,
where the scaling variable in Eq.~6.1! is of order 1, giving
rise to a transition widthd* ;Lw

21/n loc . Physically, the tran-
sition width can be viewed as the width of the energy w
dow of states whose localization length exceeds the ph
coherence length. In the language of quantum criti
phenomenon, the latter corresponds to the width of the qu
tum critical region. This is a generic property associated w
the quantum critical point. The only peculiarity is that o
either side of the quantum Hall critical point the grou
states are insulators which, drawing analogy to quantum
systems,66 are quantum disordered~see Fig. 4!. The renor-
malized classical regimes~metallic phases! are absent.

Now we examine the conventional view of findingLw .
For a generic quantum phase transition5,6,12 the critical re-
gime is characterized by the only time scale\/T, and thus

FIG. 4. Schematic phase diagram near the quantum critical p
(Ec) of the IQHT. The dashed line describes the ‘‘would-be’’ cros
over between phase coherence, the diffusive metallic transpo
the quantum critical region, and the localized quantum-disorde
regime atLT,v;j. The associated thermal and frequency expone
are zT5zv52. The solid line describes the true crossover fro
diffusive, metallic to single-particle, insulatorlike transport~shaded
area! that takes place whenLw;j. The observed transition width
d* is narrower thandwould-be* , and has a scaling behavior controlle
by the dynamical exponentz51, arising from the quantum Cou
lomb gap behavior.
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the dephasing timetw;1/T. If quantum diffusion is all that
matters, the associated length scale, i.e., the thermal d
sion length would be set byLT5(Dtf)1/2;1/T1/2, leading to
a thermal exponentzT52. Similarly, the length associate
with a finite frequency isLv5(D\v)21/2 such that the dy-
namic exponentzv52. The conventional approach is t
identify LT,v with the quasiparticle dephasing lengthLw in
the scaling function in Eq.~6.1!. As a result, the transition
width in this picture is determined by the crossover of leng
scales set byLT,v;j, indicated in Fig. 4 by the dashed line
which leads to

dwould-be* ;~T1/zTn loc,v1/zvn loc!. ~6.3!

As emphasized in Sec. I, with the valuesn.2.3 and zT
5zv52, Eq. ~6.3! does not agree with the scaling behavi
of the transition width measured by transpo
experiments.13,16From the theoretical point of view,dwould-be*
would be the width of the phase coherent, diffusive meta
transport regime, provided that Coulomb interaction effe
are not too strong to induce single-particle localization of
quasiparticle states.

We now point out the problem with this picture which
commonly used to describe metal-insulator transitions. T
use ofLT,v asLw in Eq. ~6.1! completely ignores the impor
tant Mott physics in the single-particle sector, namely,
tendency toward the single-particle insulator behavior
duced by Coulomb interaction. Physically, the inelas
dephasing time is related to the interaction-induced quasi
ticle decay rate or level broadeningG;\/tw . The dephasing
lengthLw , on the other hand, can be determined only if t
underlying transport mechanism is specified, ballistic or d
fusive, insulating or metallic. Clearly, diffusive metalli
transport is possible only if there is a significant overlapp
of the quasiparticle levels withinG, i.e., the level broadening
must be larger than the interaction-induced level spacingG
.D. In the opposite limit,G,D, the single-particle state
are essentially gapped as a result of electron-electron in
action and the transport would be controlled by the locali
tion in the single-particle sector similar to that in a Mo
insulator. Diffusion would be impossible in this case, a
one would expect variable range hopping to be the domin
mechanism of transport. It is therefore more appropriate
define the quasiparticle dephasing length by the condi
G;D(Lw). The presence of the quantum Coulomb gap@Eq.
~4.14!#, in the critical regime implies that, near the Ferm
level,

D~Lw!.
e2

ACQLw

, ~6.4!

which leads toLw;tw;1/T and the dynamical exponentz
51. Note thatLw /LT;T21/2, i.e., Lw@LT at low tempera-
tures. However, it isLw that controls the crossover to th
quantum-disordered insulating regime since whenLw.j, the
level spacing within aj3j volume becomes larger than th
level broadening and the diffusive metallic transport b
comes impossible. It must be replaced by hoppin
dominated transport similar to the Coulomb blockade regi
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-
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ZIQIANG WANG AND SHANHUI XIONG PHYSICAL REVIEW B 65 195316
in quantum dots. This part of the physics was emphasized
Polyakov and Shklovskii33 and by Polyakov and Samokhin28

in terms of the classical Coulomb gap.
Using thisLw , the scaling function in Eq.~6.1! now de-

scribes the true crossover line, set byLw;j ~the solid line in
Fig. 4!, that separates the diffusive, metallic transport fro
the single-particle, insulatorlike transport. The scaling beh
ior of the width of the critical conducting regime is therefo
given by

d* ;~T,v!1/zn loc, ~6.5!

with z51 as observed in transport measurements. In
theory, the presence of the quantum Coulomb gap behavi
central to the emergence of thez51 scaling of the transition
width. It eliminates the difficulty associated with invokin
the classical Coulomb gap or the bare charging energy du
the unscreened Coulomb interaction33,28 which is only valid
deep in the insulating regime.

As shown in Fig. 4, the single-particle DOS obeys t
quantum Coulomb gap behavior in the quantum critical
gime, whereas, deep in the quantum disordered, insula
regime, it is expected that the Coulomb interaction reinsta
the classical Coulomb gap of Efros and Shklovskii.32 Thus it
is remarkable that in the presence of Coulomb interactio
the crossover between quantum critical and quantum di
dered regimes is accompanied by a crossover in the beha
of the TDOS—from the quantum to the classical Coulom
gap. Comparing Eqs.~1.4! and ~1.8!, we see that the cross
over is simply described by a crossover in the slope of
linear gap near the Fermi level. Such a crossover should
principle, be detectable experimentally by sitting at a fix
distance to the critical point of the transition. In this case,
the temperature or frequency is lowered, one should obs
a linearly vanishing gap with an initial nonuniversal slo
that turns into a universal number in the low-temperatu
frequency limit.

We emphasize that the linearquantumCoulomb gap be-
havior results from the combined effects of~i! two dimen-
sionality, ~ii ! long-range Coulomb potential, and~iii ! quan-
tum diffusion, i.e., a finite conductivity atT50. It is
expected to pertain to other metal-insulator transitions in
amorphous electron systems, provided that the critical c
ductivity is finite. The physics discussed here is quite gen
of the 2D disordered metal-insulator quantum critical poi
A recent example is the 2DB50 metal-insulator transition.40

In this case, Fig. 4 needs to be modified to include the ren
malized classical, i.e., the metallic region. It is our hope t
the present work will stimulate further experimental inves
gations on the nature of dynamical scaling in the quant
Hall effect and in other metal-insulator transitions.
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APPENDIX A: THE MATSUBARA SUM

In this appendix, we carry out the discrete frequency s
in the phase delay given in Eq.~3.39!,

W~t!5
1

b (
n

@12eivnt# f ~ uvnu!, ~A1!

wherevn52pn/b, n50,61,62, . . . is theboson Matsub-
ara frequency, and

f ~ uvnu!5F 1

uvnu1Dq2G 2
v~q!

11v~q!n0

Dq2

uvnu1Dq2

. ~A2!

To perform the Matsubara sum, we first separate the pos
and the negative frequencies by writing

W~t!5W1~t!1W2~t!, ~A3!

where

W1~t!5 (
n.0

1

b
@12eivnt# f ~vn!, ~A4!

W2~t!5 (
n,0

1

b
@12eivnt# f ~2vn!. ~A5!

Next we define a function on the complex plane:

F6~z!5
12ezt

ebz21
f ~7 iz!. ~A6!

We consider the integrals ofF(z) along contours in the up
per (C11C2) half-plane and the lower (C31C4) half-plane
as shown in Fig. 5. The results are given, respectively, b

FIG. 5. The contours of integration for the functionsF6(z)
defined in Eq.~A6!. The crosses indicate the locations of the po
at Matsubara frequenciesvn52pn/b.
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R
C11C2

F1~z!dz5
2p i

b (
n.0

@12eivnt# f ~vn!12p i

3@residues fromf ~2 iz!#,

R
C31C4

F1~z!dz5
2p i

b (
n,0

@12eivnt# f ~2vn!12p i

3@residues fromf ~ iz!#. ~A7!

It can be shown straightforwardly that the integrals ofF(z)
along both semicirclesC2 and C4 ~with uzu5R) vanish at
infinite radiusR→`, provided that 0,t,b. Since residues
of f (2 iz) lie in the lower half-plane while those off ( iz) lie
in the upper half-plane, they do not contribute to the cont
integrals as we defined. Therefore, summing up the integ
alongC1 andC3, we obtain

W~t!5E
2`

1`

de
12ete

ebe21

1

2p i
@ f ~2 i e!2 f ~ i e!#. ~A8!

Note that since the fermionic Green’s functions are antip
odic in t, i.e., G(t1b)52G(t), this implies that, through
Eq. ~3.38!, a periodic phase factorW(b1t)5W(t) which is
indeed satisfied by Eq.~A8!.

APPENDIX B: ANALYTICAL CONTINUATION

In this appendix, we describe one of the technical sub
ties encountered when taking the analytical continuation
Eq. ~4.1!. We show how to obtainG(v1 i01) directly from
the time-ordered imaginary-time Green’s functionG(t) by
analytically continuingt→ i t 101. We begin with the Fou-
rier transform of the fermion Green’s function,

G~ ivn!5E
0

b

dteivntG~t!, ~B1!

which satisfies the antiperiodic boundary conditionG(t
1b)52G(t). As a resultG( ivn) is non-zero only for odd
Matsubara frequencies, i.e., forvn5@(2n11)p/b#.

To perform the integration in Eq.~B1! and the analytical
continuation to the real frequency, we extendt to the com-
plex z plane with Re@z#5t andi Im@z#5 i t . We seek to ana-
lytically continue the integral in the segment bounded
(0,b) on the real axis to integrals along the vertical axis
t50,b. To this end, consider the closed-path integral alo
the contour shown in Fig. 6, chosen to lie in the upper h
place forvn.0. SinceG(t) is nonanalytic att50,b, the
vertical segments of the contours are shifted infinitesima
such that 0,Rez,b. The analytical continuation is possib
when G(z) is analytic, and has no poles encircled by t
contour:

R dzeivnzG~z!50. ~B2!

Since the integral along theuzu→` segment of the contour in
Fig. 6 vanishes forvn.0, we have
19531
r
ls

i-

-
n

y
t
g
-

y

G~ ivn!5 i E
0

`

dte2vnt@G~ i t 101!2G~ i t 1b!#. ~B3!

Using the antiperiodic property, we obtain

G~ ivn!52i E
0

`

dte2uvnutG~ i t 101!, ~B4!

where we have included the result forvn,0, in which case,
the integration contour was chosen to lie in the low ha
plane.

Next we take the analytical continuation in frequenc
ivn→v1 i01, and obtain

G~v1 id!52i E
0

`

dteivtG~ i t !..2i E
t0

`

eivtḠ0e2W( i t ),

~B5!

where we have used Eq.~3.38! for the Green’s function
G( i t ) in our semiclassical phase approximation. Substitut
the expression of the SCBA Green’s functionḠ0 in Eq.
~3.41!, we obtain the TDOS at finite temperatures:

n~v!52
1

p
Im G~v1 id!5n0

2

bEt0

` sin~ uvut !
sinh~pt/b!

e2W( i t ).

~B6!

Note that an overall factor stemming from the Fermi dist
bution function has not been included in the definition
n(v) at finite temperatures, since it is, at any rate, unimp
tant at low temperatures.

APPENDIX C: SIX INTEGRATION REGIONS

In this appendix, we perform integrations over the fr
quency and wave vector in Eq.~4.5! to obtain the phase
delay factorW( i t ). We consider the interaction potential o
the general formv(q)5u(1/q22p) in momentum space o
v(r )5u/r p in real space. We can rewrite Eq.~4.5! as

W~ i t !5E
1/t

`

dv
dv

2p i E dq2

4p2
Q~q,v!, ~C1!

FIG. 6. The contour of integration used in Eq.~B2! for carrying
out the analytical continuation. The real axis corresponds to
imaginary timet, whereas the imaginary axis is labeled by the re
time t.
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where the integrand withk22p5n0u is given by

Q~q,v!5
2uv~2Dq21Dqpk2p!

@~Dq2!21v2#@~Dq21Dqpk22p!21v2#q22p
.

~C2!

There are six characteristic integration regions differed
the ordering ofDq2, Dqpk22p, and v. The details of the
integration are discussed below. For allp,2 we find the
leading contribution is the double-log term appeared in
long-range Coulomb case (p51) in Sec. IV A. Forp.2 the
leading contribution is of the formW`;1/td with d.0, and
d→0 asp→2.

1. RegimeDq2ËvËDqpk2Àp

The conditionDq2,v,Dqpk22p requiresv,Dk2 for
p,2; andv.Dk2 for p.2. In this case, the integrandQ in
Eq. ~C2! can be approximated by

Q~p,v!'
2

Dn0vq2
. ~C3!

For p,2 we obtain

E d2q

4p2Q~q,v!52
1

2p

1

Dn0

22p

p
logvts ~C4!

where we have introducedts via 1/ts5Dk2. Performing the
remainingv integral, we obtain

E
1/t

1/t0dv

2pE d2q

4p2
Q~q,v!5

1

8p2

1

Dn0

22p

p
log t/t0log t/t1 ,

~C5!

wheret1
25t0 /Dk2. For p.2, due to the requirement tha

v.Dk2, this regime does not have any time-dependent c
tribution in the long-time limit whent.ts .

2. RegimeDq2ËDqpk2ÀpËv

This regime requiresq,q0(v)[min@k,(vts)
1/pk# for

p,2 and k,q,(vts)
1/pk for p.2. The latter case re

quiresv.1/ts . This means that, forp.2, this regime does
not contribute in the long-time limit in a time-depende
way.

For p,2, we have

Q~q,v!'
2

v3
n0u2Dq2p22, ~C6!

such that

E d2q

4p2 Q~q,v!5
1

pv3
n0u2DE

0

q0(v)

dqq2p21

5
1

p
n0u2D

q0
2p~v!

2p
. ~C7!

Usually t.t0.ts , therefore,v,ts
21 . We obtain
19531
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n-

E
1/t

1/t0dv

2pE d2q

4p2
Q~q,v!5

1

2p2
n0u2D

1

2p
k2pts

2log~ t/t0!

5
u

2p2

1

2p
tsk

plog~ t/t0!. ~C8!

This single-log term is subleading when compared to
leading double-log contribution in regime 1 in the long-tim
limit.

3. RegimeDqpk2ÀpËDq2Ëv

In this case, we have

Q~q,v!'
4Du

v3
qp. ~C9!

The limits for theq and v integrals arek,q,Av/D, v
.Dk251/ts for p,2, andq,min@k,Av/D# for p.2. The
p,2 case is of no interest in this regime since the low
cutoff of the frequency integral is 1/ts and is time indepen-
dent in the limitt.ts .

We now discuss thep.2 case. For most of the physica
systems the mean free pathl is greater than the screenin
lengthk; therefore, min$k,Av/D%5Av/D. The integrals can
be carried out according to

E d2q

4p4Q~q,v!5
2Du

p

1

v3E0

Av/D
qdqqp

5
2u

p

1

p12

1

Dp/2
~v!p/222, ~C10!

E
1/t

1/t0dv

2pE d2q

4p2
Q~q,v!5

u

p2Dp/2

1

p12

2

p22

3F 1

t0
p/221

2
1

tp/221G .

~C11!

4. RegimeDqpk2ÀpËvËDq2

In this regime, we have

Q~q,v!'
4vu

D3

1

q82p
.

The limits of the integrations are (v/D)1/2,q,k(vts)
1/p,

v.1/ts for p,2, and v,1/ts for p.2. The p,2 case
only produces time-independent contributions in the limit
.ts . For the case ofp.2, it is straightforward to obtain
6-22
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E d2q

4p2 Q~q,v!

5
2uv

D3p
E

(v/D)1/2

k(vts)
1/p

dq
1

q72p

5
2u

D3p

1

62p S 1

v22p/2Dp/223
2

1

v6/p22ts
6/p21k62pD ,

~C12!

E
1/t

1/t0dv

2pE d2q

4p2
Q~q,v!

5
u

p2

1

62p H 2t0

~p22!l p
@12~t0 /t !p/221#

2
ptsk

p

~3p26!~k l !6~ts /t0!6/p
@12~t0 /t !326/p#J , ~C13!

wherel 5(2Dt0)1/2 is the mean free path.

5. RegimevËDqpk2ÀpËDq2

In this regime, the integrandQ in Eq. ~C2! can be ap-
proximated by

Q~q,v!'
4uv

D3

1

q82p
. ~C14!

For v,1/t0,1/ts , the limits of the integrations areq.k
for p,2 and (vts)

1/pk,q,k for p.2.
In the case ofp,2, we have

E d2q

4p2 Q~q,v!5
2uv

D3p
E

k

`

dq
1

q72p
5

2uv

D3p

1

62p

1

k62p
,

~C15!

E
1/t

1/t0dv

2pE d2q

4p2Q~q,v!5
uts

3kp

2p2t0
2~62p!

@12~t0 /t !2#.

~C16!

On the other hand, forp.2, we have

E d2q

4p2 Q~q,v!5
2uv

D3p
E

k

`

dq
1

q72p

5
2uv

D3p

1

~62p!k62p F 1

~vts!
(62p)/p

21G ,

~C17!
19531
leading to

E
1/t

1/t0dv

2pE d2q

4p2 Q~q,v!

5
u

p2

1

62p

ptsk
p

~3p26!~k l !6~ts /t0!6/p

3@12~t0 /t !326/p#2
uts

2kp

2p2t0
2~62p!

@12~t0 /t !2#.

~C18!

6. RegimevËDq2ËDqpk2Àp

Finally, in regime 6, we have

Q~q,v!'
2v

n0~Dq2!3
. ~C19!

The limits of the integrations are (v/D)1/2q,k for p,2 and
q.k for p.2.

In the p,2 case, integrals give

E d2q

4p
Q~q,v!5

1

4p

v

n0D3 FD2

v2
2

1

k4G , ~C20!

E
1/t

1/t0dv

2pE d2q

4p2 Q~q,v!

5
1

8p2n0D
H log~ t/t0!2

1

2D2k4
@1/t0

221/t2#J . ~C21!

The p.2 case, on the other hand, gives,

E
1/t

1/t0dv

2pE d2q

4p2 Q~q,v!5
1

16p2n0D
ts

2@1/t0
221/t2#.

~C22!

Note that thed potential considered in Sec. IV B correspon
to the p50 case. The result in Eq.~4.21! can be obtained
from either thep.2 case or thep,2 case by taking the
limit p→2 using limx→0(1/x)(12yx)52 ln y and
limp→2(p22)ln(t1)5ln(n0u).
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