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The effects of electron-electron interactions on tunneling into the bulk of a two-dimensional electron system
are studied near the integer quantum Hall transitions. Taking into account the dynamical screening of the
interactions in the critical conducting state, we show that the behavior of the tunneling density of states
(TDOSY is significantly altered at low energies from its noninteracting counterpart. For the long-range Cou-
lomb interaction, we demonstrate that the TDOS vanishes linearly at the Fermi level according to a quantum
Coulomb gap forrrw(a)):CQ|w|/e4, with Cq a nonuniversal coefficient of a quantum-mechanical origin. In
the case of short-range or screened Coulomb interactions, the TDOS is found to follow a poyef“lawith
a proportional to the bare interaction strength. Since short-range interactions are known to be irrelevant
perturbations at the noninteracting critical point, we predict that, upon scaling, the power law is smeared,
leading to a finite zero-bias TDO& w)/v(0)=1+ (|w|/w)?, wherey is a universal exponent determined by
the scaling dimension of short-ranged interactions. We also consider the case of quasi-one-dim@i3jonal
samples with edges, i.e., the long Hall bar geometry, and find that the TDOS becomes dependent on the Hall
conductance due to an altered boundary condition for diffusion. For short-range interactions, the TDOS of a
quasi-1D strip with edges is linear near the Fermi level, with a slope inversely proportiopg} to the
perturbative limit. These results are in qualitative agreement with the findings of bulk tunneling experiments.
We discuss recent developments in understanding the role played by electron-electron interactions at the
integer quantum Hall transitions and the implications of these results on the dynamical scaling of the transition
width. We argue that for long-range Coulomb interactions, the existence of the quantum Coulomb gap in the
guantum critical regime of the transition gives rise to the observed dynamical expoaént

DOI: 10.1103/PhysRevB.65.195316 PACS nuntder73.43—f, 73.50.Jt, 05.30-d

I. INTRODUCTION on the integer quantum Hall transitioQHT) in samples
with sufficiently strong disorder that fractional quantum Hall
states do not intervene. In this case, the transitions are di-
rectly between adjacent integer quantized Hall plateaus. The

The physics of disorder and interaction in strong magneti@xperimental data, reviewed in Ref. 5, can be summarized as
fields is central to our understanding of the low-temperaturefollows: (a) On either side of the transition the Hall conduc-
quantum-mechanical behaviors of novel electronic materialdivity o, is quantized, and the dissipative conductivity has
One of the most important physical phenomena under sucthe limit o,,—0 at zero temperaturéb) At the transition,
settings is the quantum Hall effe@®HE).> The QHE refers oy IS unquantized, and, remains finite at zero tempera-
to the low-temperature magnetotransport properties of highture, so that the disordered quantum critical state is conduct-
mobility two-dimensional electron systems in a strong transing. Thus the quantum phase transition is an unusual
verse magnetic field-3> The main part of the phenomenology insulator-to-insulator transition with no intervening metallic
can be summarized bil) the existence of stable phases of phase; only the critical point itself has a finite conductance.
matter, i.e., quantum Hall states, with vanishing dissipation In an experimental situation, the divergent length, i.e., the
and integer or fractional quantized Hall conductances; andritical singularity, is cut off by the presence of a finite length
(2) the existence of continuous, zero-temperature phase trageale, giving rise to a finite transition width within whiefy,
sitions between the quantum Hall states, which are often redeviates from the quantized values amg, is nonzero. The
ferred to as quantum Hallplateau transitions. The basic transition width, denoted a&*, follows the scaling form
physics in(1) for the spin-polarized incompressible quantum

A. Integer quantum Hall transitions and inadequacies
of the noninteracting electron theory

Hall states4 and their Iovy—energy excitations are well St Lol ¥e [ T\ Mzrvios | g | Yourios
understood:* In contrast,(2) is yet an unresolved problem, ~ ~min (_) <_) <_) . (1)
which is the subject of this work. 0 L To o

In a nutshell(2) is a metal-insulator transition problem of

the Anderson-Mott type in a two-dimension@D) disor-  whereL, T, andw are the finite system size, the temperature,
dered system with strong time-reversal symmetry breakingand the measurement frequency in a specific experimental
These transitions are generally believed to be prime exsituation, andAy, Ly, To, and wy are microscopic scales.
amples of continuous quantum phase transitions, i.e., exFhe various exponents in E¢L.1) have the usual meaning:
amples of quantum critical phenomeh®Although there are v, is the static exponent of the single divergent length scale,
reasons to suspect that the critical phenomena are univerdhle localization lengtht~ 6 "lec, where § is the distance to

for both integer and fractional transitiofisi* here we focus the quantum critical point,, is the dynamical exponent de-
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fining the length scale introduced by a finite frequehgy  around the three interconnected issu@g—(iii) raised
~w Y, and z7 is the thermal exponent governing a above?*?>231226-2%rhere were also formal approaches by
temperature-dependent length schle~T Y71, In general, Pruisken and co-workers that aimed at extending the topo-
z; andz,, can be independent exponeftdut zr=z, fora  logical nonlinears-model description of the noninteracting
generic quantum phase transittth.The three scaling re- transition to include Coulomb interactiofs.

gimes in Eq.(1.1) have all been probed experimentalffy,'® The first quantitative study of the one-particle density of
as well as the regime in which the electric-field strength setstates(DOS) in the presence of Coulomb interactions was
the cutoff!’ The critical exponents extracted from the experi- carried out by Yang and MacDonald. Using a self-consistent
ments can be summarized ag.=2.3+0.1, 1£,v,c=0.41  Hartree-Fock(HF) approach, in which disorder was treated
*0.04, and 17vj,.=0.42+0.04. Thus we have/T scaling  exactly while the Coulomb interaction was treated by the HF
with zr=z,=1, which is in conformity with the dynamical approximation, they found that the TDOS vanishes linearly
scaling description of a generic quantum phase transition. at the Fermi level aall filling factors in the lowest Landau

The phase structure of the IQHT appears to be consistenével, even at the critical enerd§.The linear Coulomb gap
with that of the noninteracting theory of disordered 2D elec-behavior, especially at the critical energy, is in sharp contrast
trons in a strong magnetic fiefd:'* In a single-particle de- to that expected of the noninteracting thefsge(i) abov,
scription, all states are localized due to disorder, except foand is in qualitative agreement with experimental findifigs.
those at a single critical enerdy, near the center of each |n spite of the dramatic TDOS change due to Coulomb in-
disorder-broadened Landau level. The IQHT takes placgeractions, however, Yang, MacDonald, and Huckestein
when the Fermi leveEr of the 2D electron system and one found that the value of the localization length exponent and
of the discrete set of the critical energy cross, i.e., when the fractal dimension of the critical eigenstate wave func-
5=|Er—E| approaches zero. Moreover, numerical calculations remain unchanged from the noninteracting theory, as
tions based on the noninteracting theory give a localizationjoes the qualitative behavior of the conductiviyt is im-
length exponeni,,.=2.3, which is remarkably close to the portant to emphasize a unique and important feature of the
experimental value. HF theory for the IQHT: thenoncritical suppression of the

However, our understanding of the IQHT is far from com- single-particle DOS, i.e., it vanishes linearly at all filling
plete. It has become increasingly clear that the noninteractinfractions regardless of whether the system is at criticality or
theory, reviewed in Ref. 20, contradicts the experimentahot?®
findings in several ways. Three of these are as folloiws. In order to understand the effects of Coulomb interactions
Recent experimental work has shown that the tunneling derfrom the point of view of critical phenomena, Lee and Wang
sity of stateg TDOS) vanishes linearly at the Fermi levél, carried out a stability analysis of the noninteracting fixed
in sharp contrast to the finite density of states in the noninpoint (NIFP), which governs the noninteracting transition, by
teracting theory(ii) It was pointed out recently that due to numerical calculations of the perturbative renormalization-
the peculiar phase structure involving a set of extended stategoup (RG) scaling dimensions for the interactiofisThey
that has a measure zero, the conductivity, in the nonin-  found that interactions of sufficiently short range are pertur-
teracting theory is rigorously zero in the limit of large samplebatively irrelevant at the NIFP, and scale to zero in the
size at all values of the magnetic field, including the criticalasymptotic limit. The NIFP is therefore stable against such
values, for any nonzero temperatdfeThis is in direct con-  screened interactions, and, as a resulj,~2.3 andz=2.
tradiction to the experimental observatiofii.) The nonin-  Wang et al. showed that, although short-range interactions
teracting theory does not offer a correct description of theare irrelevant in the RG sense, they generate a nonzero criti-
dynamical scaling behavior observed experimentally. Theal value for the dissipative conductance, and thus remove
dynamical exponent governing how the enefgymperature  the pathologyii) of the noninteracting theory and control the
scale relates to the length scale for noninteracting electrons temperature-scaling behavior of,.'? They showed that in
z=d=2, which disagreeswith the experimentally obtained the presence of irrelevant interactions, the scaling theory for
values quoted above. In fact, the experimental findings ofransport properties becomes unconventioral] scaling
w/T scaling withzr=z,=1 is in conformity with the dy- breaks down, and a third independent critical exponent, the
namical scaling description of a generic quantum phase trarthermal exponenty in Eq. (1.1), emerges. The value af is
sition in which the Coulomb interaction is relevant andset by the scaling dimensior-a<0 of the interaction
scales to a finite value at the transitir?>The failure of the  strength through the finite temperature dephasing time in the
noninteracting theory highlighted bgi)—(iii) puts serious critical regime,r,~T P, wherep=1+2a/z, leading toz;
constraints on the ability of the free-electron model to ex-=2z/(z+2a). They argued that quantum critical scaling be-
plain the IQHT in real materials, and necessitates the inveshavior of this kind may be a generic feature of finite-
tigation of the effects of electronic interactions and their in-temperature transport near quantum critical points, when in-
terplay with disorder and localization. teractions arédangerouslyirrelevant!?

In contrast to short-range, model interactions, true long-
range Coulomb interactions are, on the other hand, found to
be relevant perturbations at the NIFP, making the latter
unstable®® Hence the true critical point must be interacting,

A significant part of the recent theoretical studies on thecorresponding to an interacting fixed point having a finite
role of Coulomb interactions near the IQHT has centerednteraction strength. This is consistent with the fact that the

B. Recent theoretical developments on the effects
of interactions and the focus of this work
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experimentally extracted dynamical exponemis=z,=1, smeared and a finite zero-bias TDOS recovered in accor-
which are typical of the charge dynamics at quantum criti-dance with the observation that short-range interactions are
cality controlled by Coulomb interactiodé.However, Lee irrelevant perturbations in the RG sense. Interestingly, in the
and Wang proposed that the fixed point in the theory wherecaling regime, the change in the TDOS;(e), follows a
Coulomb interaction is treated via the HF approximationpower law with a universal exponent determined by the scal-
may in fact be stabl& They introduced the concept of a HF ing dimension of short-range interactions and the frequency
fixed point(HFFP), and argued that it is the simplest possible exponeniz=2 in this case. In this paper we also address the
interacting fixed point of the IQHT. Correlation effects are issue of whether and how the bulk TDOS depends on the
found to be marginal perturbations at the HFFP due to thélall conductance. To this end, we study the case of quasi-1D
linear Coulomb gap in the HF theory that degrades of the RG@amples with edges, such as in the long Hall bar geometry,
dimensions of the residual interactions. They conjectured@nd find that the TDOS becomes dependent of the Hall con-
that a change in the dynamical exponéntwith no change ductance due to an altered boundary condition for diffusion
in the static one #,,) can be due to the noncritical linear in a finite magnetic field. It vanishes linearly at the Fermi
suppression of the single-particlainneling DOS induced level with a slope that is inversely proportional to the
by Coulomb interactions. The HF theory, in particular themagnetic-field strength in the perturbative regime, in good
HFFP of the plateau transition, presents itself as a concref@ualitative _agreement with recent bulk tunneling
example. There are two important issues that must be reexperiment£! These results will be summarized in Sec. ID.
solved before this conjecture can be further substantiated. ~ The second issue has to do with the implications of the
First, the theory of Coulomb gap was derived largely onlinear Coulomb gap on dynamical scaling. The linearly van-
the basis of classical physi¢slt applies directly to elec- ishing DOS in two dimensions means that the averaged
tronic systems with Fermi energy lying in an excitation gapenergy-level spacing scales with the length of system accord-
such as semiconductors and insulators. Therefore it may né?g to Ag~1/L, leading to a dynamical scaling exponent
be completely surprising that a 2D Coulomb gap DOS exists=1. However, one of the persistent mysteries remains,
away from the transition regime where the electronic state§amely, it is not clear that this is the dynamical exponent
are strongly localized and where the transport is dominatetheasured by the transport experiments. The fact that quan-
by variable range hopping in the presence of a 2D Coulomtum diffusion exists at the critical point of the transition im-
gap?® What is remarkably surprising is that the linearly van-plies a  frequency-dependent  length  scald,,
ishing Coulomb gap is found to pertain to the critical regime~[(dn/du)i @] Y2 that is shorter than the dynamical
of the IQHT where the localization length is enormously length scales derived from the single-particle sector. Note
large and the conductivity finite. This behavior is unprec-that the relevant DOS ik, is the thermodynamic DOS or
edented, and it is natural to ask whether it is an artifact of théhe compressibilitydn/du.®® Although it is somewhat un-
HF approximation that does not include the screening of thénecessary to associate a critical exponent with diffusion, a
exchange interactions. Therefore, it is necessary to go bealue of z,=2 is directly implied and should govern the
yond the HF theory in the critical conducting regime, anddynamics of diffusive transport in the asymptotic limit. In a
study the behavior of the TDOS when the screening of Courecent attempt to substantiate our previous conjecture made
lomb interactions is taken into account. In ordinary disor-in Ref. 23, Huckestein and Backhdlisvaluated the density-
dered metals in zero or weak magnetic fields, the dynamicalensity response function near the IQHT within a time-
screening of the Coulomb interactions by the diffusive mo-dependent HF approximatigitDHFA), in an effort to deter-
tion of the electrons is known to be very importdfit3®1t  mine z, from two-particle correlation functions. Their
leads tocritical corrections of the TDOS' The natural ques- analysis giveg,, =1, but, under the compressibility sum rule
tion is whether the interplay between quantum diffusion andhat relatesdn/du to the static limit of the irreducible den-
Coulomb interaction at the IQHT leads to a linear Coulombsity response function, it appears to have resulted from using
gap beyond the HF theory. a linearly vanishingdn/du in L, . This result is at least
This is the focus of the present work. In a recent p&per, counterintuitive, sincein/du is expected to be smooth and
we reported our findings that the quantum diffusive motionfinite for a disordered system on general grounds. Moreover,
of the electrons, i.e., the diffusive dynamics, is too slow toa finite compressibility is necessary for observing the quan-
effectively screen out the Coulomb singularity in the dy-tum Hall transition without the latter being interrupted by
namical case. A nonperturbative resummation of the mosinhcipient quantization plateaus. tfn/du were indeed van-
singular corrections in the long time limit to the TDOS givesishing, the linear screening length would diverge and the
rise to a linearly vanishing TDOS for the critical conducting screening properties of the critical state would be similar to
state. This behavior, termed the quantum Coulomb gap, cailose of an insulator. Recently, Yang, Wang, and
be thought as the quantum-mechanical analog of the classicklacDonald’ pointed out that the controversial result may be
Coulomb gap. It has a quantum origin and the slope of the& consequence of not accounting for the consistency of the
gap is nonuniversal in contrast to the classical case. In thiexchange local fields and the disorder potential in the
paper, we provide more physical and detailed theoretical DHFA used. Analyzing the charge redistribution following
derivations of the quantum Coulomb gap. We also study thé¢he insertion of an external test charge, they studied the
TDOS behaviors for short-range interactions, both outsidecreening properties in the long-wavelength limit of the self-
the scaling regime where a nonuniversal power-law TDOS igonsistent HF theory, and found that the thermodynamic
found, and in the scaling regime where the power law iSDOS is finite in spite of the linearly vanishing tunneling
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DOS in the critical conducting state. Therefore the questionnteraction*? Defining the dimensionless conductivity

of whether or how the vanishing single-particle DOS affectsunits of €/# via the Einstein relatiow= (dn/du)D, it was

the dynamics of transport near the quantum Hall criticalshown that

point remains open. We will discuss this issue in more detail

in Sec. VI. W)= voe~ Wero)n(wrin(wry) (1.3
The main part of this paper is devoted to understanding

how a linearly vanishing TDOS in two dimensions is likely Which is valid only for o>In(l/w 7o) such that the weak

so long as the conductivity is finite. A similar analysis in the localization correction ter can be ignored. The conductivity

case of zero magnetic field was carried out recently bys given byo= oD wherev, is the finite density of states in

KopietZ° in connection to the 2DB=0 metal-insulator the self-consistent Born approximati@BCBA). It should be

transition?® Our basic finding is that, in the presence of dis-€émphasized that Eq1.3) does not represent the asymptotic

order, the Coulomb interaction is insufficiently screened bybPehavior of the TDOS at small bias, where the conductiv-

the quantum diffusive medium at finite frequencies. As alty is strongly renormalized and becomes itself scale

result, the single-particle DOS in the extended regime comedependent?

to resemble that in the localized regime, i.e., exhibiting a The behavior ofv(w) in metallic systems should be con-

linear Coulomb gap, although the slope of the gap is differtrasted to the classical Coulomb gap behavior of the TDOS

ent due to a different mechanism. After an understanding ofn disordered insulators. Efros and Shklov3kiES) showed

the dynamics in the single-particle sector has been devethat, when the long-range Coulomb interaction is un-

oped, we will turn to the important question of how the screened, which is true in dielectric insulators, the single-

depletion of single-particle DOS relates to the larger issue oparticle DOS exhibits a universal Coulomb gap behavior,

dynamical scaling near quantum phase transitions in disor-

dered systems. ved @) = aglo[*7He?lD), (1.4

whered=3 and 2 is the dimensionality aney is a dimen-
C. Interplay between disorder and interaction sionless constant of order unity. Thus in the insulating re-

, , , gime, one expects a linearly vanishing Coulomb gap in two
At roughly the same time as the discovery of the '”tegerdimensions;vEsz a,|w|. Since the long-range n/Coulomb

quantum Hall effect, there were some remarkable developsingylarity is crucial in the derivation of the classical Cou-

ments in our understanding of quantum transport such agmp gap, it is only expected to be valid in the strongly
localization and metal-insulator transitioffs.The weak-  |ocalized regime where the screening of the interaction is

localization theory was developed as a perturbative approacfjeak and dielectriclike. In the quantum Hall effect, the latter

to study the effects of disorder and interactions. Early Workscorresponds to the regions far away from the quantum Hall
by Altshuler and Aronov and Altshuler, Aronov, and Bée transitions.

found several remarkable effects arising from the interplay of Perhaps less well known is that the same double-
interaction and disordef1) the electron-electron scattering logarithmic correction to the TDOS as given in Efj.2) was
rate is enhanced due to the prolonged stay of electrons negjier derivedin the presence of a strong magnetic fidigl
one another(2) there is a correction to conductivity compa- Girvin, Jonson, and Lé&and Houghton, Senna, and YiAg.
rable to the localization effect caused by quantum interferpit,sion in a strong magnetic field comes from the “skip-
ence; and3) most dramatically, the TDOS s significantly ing~ of the semiclassical cyclotron orbits caused by impu-

altered from its noninteracting counterpart near the Fermhty scattering®® In the SCBA, the diffusion constant in Eq.

energy. , , _ (1.2) is given byD=3r2r51, where the cyclotron radius

For ordinary disordered metals, perturbative dlagram—r —(2N+1)Y,, with I the magnetic length antl the
matic calculations show that in three dimensions the WeakL;ndau-Ievel ian,ex Notg that in this cagjs proportional
localization correction to the TDOS;(w), is of the form i

, i ) to the field-dependent scattering ratergIB)=[ w./7o(B
Sv~+w, a result largely confirmed by experiments in the =0)]*2. In this work, we will derive the analog of E€L.3)

early 19_8052'4 wherew is measured from the Fermi energy. i, sirong magnetic fields by a nonperturbative resummation
In two dimensions, for long-range Coulomb interaction, o the double-log divergences. Since the critical conductance
is finite and scale invariant at the IQHT, it is possible for us

1 to derive the true asymptotic behavior of the TDOS in the

__ low-bias limit. We show that, in the presence of disorder,

ov 8772ﬁD|n(wT°)ln(le)' (1.2 Coulomb interaction is insufficiently screened by the 2D

quantum diffusive medium at finite frequencies. As a result,
the TDOS exhibits a linearly vanishing quantum Coulomb

indicating the possibility of a vanishing(w) near the Fermi gap behavior.

energy aso—0. In Eq.(1.2), D is the diffusion constant,
is the elastic scattering time, and, in terms of the inverse
screening lengthk=2me?dn/du, 7, is given by 1#;
=1o(Dk?)?2. Summations of all logarithmic terms are  The main results can be explained physically in a simple
needed to find the limiting behavior. This was done first bysemiclassical picture. The electron-electron interaction
Finkel'stein in a field-theoretic treatment of disorder and—r’) can be viewed as being mediated by a fluctuating po-

D. Main results—quantum Coulomb gap in the TDOS
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tential  field &(r) with a distribution P(®) details of the sample such as the mobility. For laigev(w)
~ e~ (W20 Hr=1)P(") At the crudest level, neglecting all Crosses over to the perturbative diagrammatic result in strong

H : 5,36
dynamical effects, the presence of a potential field directlyMagnetic fields

changes the energy levels of individual electrons and contrib- Since Coulomb interaction is a relevant perturbation at the
A ) , NIFP, the true transition must be governed by an interacting
utes a phase delag /o097 *Ira(7)] to the single-electron

N X i fixed point where the Coulomb interaction strength is finite.
propagator, whereg(7') is the c!assmal trajectory. Such @ Thus we expect that the quantum Coulomb gap to be the true

. . 4'45 . .
field to studyedge tunneling®*°Averaging the® field over  oyiined for the critical conducting state at the IQHT is

different trajectories as well as the random potentials, W&y jitatively different from those obtained in the clean &Ase
obtain the averaged phase lapse and in a weak magnetic fieff.

e~ W) = (g 1™ Plra(r]y (1.5 2. Short-range interactions—prescaling regime

during a time interval (G). This phase delay can be viewed ~ FOr simplicity, we consider the case ofefunction inter-

as a Debye-Waller fact® for the impurity-averaged single- action potential (r—r’)=ué(r—r") as a prototype short-

particle Green’s function at dtunneling site r, G(r) range interacting potentlal.. OutS|d_e the scaling regime, the

—(y(r,7) 9" (r,0)), scale erendence of the interaction strengtbqn be ig-
nored, i.e.u can be treated as a constant or equivalently as a

G(7)=Go(7)e" W, (1.6 ~ marginal perturbation. In this case, dynamical screening of

the interaction leads to a weaker, single-logarithmic diver-

whereGy(7)~1/7 is the counterpart o6 (7) in the absence gence in the phase del&y(7)~In(7 ). The integral of the

of interactions. Note thaG(7) no longer depends on the Debye-Waller factor is no longer convergent, such that a

coordinater after impurity averaging. The TDOS is given by power series expansion im becomes singular. This is simi-
lar to the situation encountered in the x-ray edge protffem.

1 : We find a pseudogap in the TDOS that takes the form of a
V((()): - ;Im f dTelwnTG(T)|iwn—>w+i7]' (1'7) power IaW,p g p

Two factors, both resulting from the diffusive nature of the v(w)=volwy|?, (1.9

electron motion in the presence of disorder, lead to the di- i )

vergence of the phase delay(r) at large 7, and subse- yvhere t.he exponent is nonuniversal and depends on the

quently to the vanishing of the single-particle DOS at theinteraction strength_._ It is well knc_>wn tha_lt transport at_the

Fermi-energy(1) electrons stay longer in the vicinity of one duantum Hall t_rans_ltl%n in the noninteracting theory exhibits

another at each encounter, af®l the Coulomb potential is anoma;lous dlffu?oﬁ,/z e, the zdlffusmn constantD

not completely screened at finite times. Since we address thg P (a7 @) ~Do(q”w) ”“ whenDoq> w, wherez is a criti-

effects of interactions only up to a phase delay, this part of@l exponent related to the multifractal dimensibp=2

the physics presumably can be set aside from the rest by 7- We will show that taking into account the anomalous

performing a W1) rotation?#2%46 iffusion, which has no effeqt in the Coulomb case, only
The specific form of the pseudogap in the TDOS dependads to a wealy dependence in the exponenin Eq. (1.9).

on the type of the interaction and on the scaling behavior of

the interaction strength. We shall consider both long- and 3. Short-range interactions—scaling regime
short-range screened Coulomb interactions. Because short-range interactions are irrelevant perturba-
tions at the NIFB? the strength of the effective interaction
1. Long-range Coulomb interaction must scale to zero in the scaling regime accordingidp

In the case of a long-range Coulomb potential, the phase” U®™*'?, where —x, =—0.64 is the dimension of the in-
delay diverges at long times a¥(7)~In(r/m)In(-/r). We  teraction andz=2 is the dynamic exponent at the stable
will show in detail that this double-log divergence rendersNIFP. This makes the phase delaly(7) converge in the
the 7 integral overe (" convergent, thereby enabling an large- limit. As a result, the power-law decay in Ed..9) is
expansion inw for v(w). In the asymptotic low-frequency Smeared, resulting in a finite zero-bias TDOS,
limit, this leads to a linearly vanishing TDOS at low tem- o]

w

peratures: v w)=1(0) e}
wo

v(w)=Cofi|w|/e. (1.9

Y

1+ , (1.10

wherewy is a frequency scale ang=x, /z=0.32 is a uni-
We shall refer to Eq(1.8) as the 2Dguantum Coulomb gap versal exponent. This result leads to several interesting pre-
behavior In contrast to the 2D classical Coulomb gap behav-dictions: (a) For short-range interactions, the TDOS s finite
ior given in Eq.(1.4), the coefficientCq in the quantum and nonuniversal at zero biagh) It can be shown that
Coulomb gap is not a universal number, but rather a quantity(0)<<v, if the bare interaction strength is strong, so short-
of quantum-mechanical origin. It depends on microscopiaange interactions irrelevant in the RG sense can still lead to
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strong density of states suppression at low bi@sEquation  study of the single-particle DOS. We then proceed, in Sec.
(1.10 shows that the TDOS increases withaccording to a 1ll, to formulate the effective-field theory and the semiclas-
universalpower law with an initial cusp singularity for our sical phase approximation, and to derive the Debye-Waller
value of y. These predictions can, in principle, be testedfactor in Eq.(1.6). The bulk TDOS in two dimensions is
experimentally since the Coulomb interaction can be madealculated in Sec. IV for various forms of interactions in the
short ranged by placing a metallic screening gaund perturbative and the scaling regimes. The results summarized
plane nearby. in Eqs(1.8)—(1.10 are derived in this section. The effect of
the anomalous diffusion at the IQHT is also studied. Section
4. Quasi-1D samples with edges V is devoted to the derivation of the TDOS in quasi-1D

We also study whether and under what condition the bulksamples in the presence of edgdés). (1.13]. A summary

; and discussions of the connection between the single-particle
(TlDé))_S(f i%egg;ogotthge';:l:dcg;dugzngﬁéyfg%;gqﬂice DOS and the dynamical scaling of the transition width are
: . Xy

of the fact that transverse force does not affect the charg ven in Sec. \./I' We argue that f[he existence of the quantum
spreading in the bulk of the sample. Thus any direg} _oulomb gap in the qu:_;mtum critical regime of_the t'ransmon
dependence in tunneling must come from contributions at th@'ves Mse, through the interplay between quasiparticle decay

boundary. It was shown by Khmelnitskii and Yoséfiand rate -and level spacing, to the experimentally observed dy-
by Xiong, Read, and Stofethat, in the presence of edges, namical exponent=1.

the Hall conductance enters measurable quantities even in

the perturbative limit. More recently, Shytov, Levitov, and IIl. ROLE OF INTERACTIONS—HARTREE-FOCK

Halperin studied the problem efigetunneling into the frac- ANALYSIS OF LEVEL SPACING

tional quantum Hall state, where the Hall conductivity de-  the Hamiltonian of interest describes interacting elec-
pendence of thd-V characteristics also arises from the {qn¢ moving in a two-dimensional random potential in the

boundary cpndition at the_ tunneling edﬁe. . presence of a magnetic field,
We considered a quasi-1D sample with its lengtimuch

greater than its width, and with two reflecting edges. This

condition is realized experimentally in the long Hall bar ge- H=Z
ometry. The edge effect becomes prominent in such a limit, !
since the boundary condition effectively changes the diffuwhereA is the external vector potential producing the strong
sion constant fromD in two dimensions toD;p=D(1  transverse magnetic field, aMir) is the one-body impurity
+97), wherey, = o,/ 0y is the Hall ratio. For the case of potential. The interacting part of the Hamiltonidd,, is
J-function interaction, we find that the asymptotic TDOS given by the two-body interaction potential:

becomes linear in an infinite strip with edges:

2
+V(ry)

1

2m

e

p;+ EA +Hines (2.1

1

v(w)=5|w|. (1.11 Hint:i; v(ri=r), (2.2
The slope of the linear gap is proportional to the inverse of
the dissipative resistivitys~px_xl. In the high-field limit
where energy levels form Landau bands.t;>1), the bare
value of g, in the SCBA at the center of the Landau levels ]
is proportional to the Landau indeX while the bare Hall Hereu andp control the strer_lgth and the range of the inter-
ratio is of order 1. The above result then implies that, in theaction. The Coulomb potential correspondsute e’/ and
perturbative regime where the localization correction to the?=1, and a short-distance cutoff can be introduced for the
conductivity is much smaller than the SCBA conductivity, case ofp=4.
the slope of the linear density of states is proportional tr The noninteracting fixed point of the IQHT is obtained by
1/B. Interestingly such a dependence was indeed observed f¢ttingu=0. The effects of interactions can be studied in the
the high-field bulk tunneling experimerfsit remains to be ~ framework of critical phenomena by analyzing the stability
seen whether the samples used in certain experimental set@hthe NIFP. Imagine starting with a system at the NIFP, and
can be qualified as being quasi-1D with edges, and whethadiabatically switching on the interactian One can ask

the presence of ground planes indeed make the Coulomi$hetheru is a relevant or irrelevant perturbation in the
interaction short ranged. renormalization-group sense by calculating the RG scaling

dimension ofu. This has been done by Lee and Wang.
They analyzed the most singular contributions to the disor-
dered averaged free-energy functional. Here we present an
In Sec. II, we revisit the role of electronic interactions atalternative treatmerft from the point of view of the single-
the NIFP of the quantum Hall transition, and cast the resultparticle DOS, and cast the result of Lee and Wang in terms of
of Lee and Wang for the RG dimensions of interactions in the interaction induced corrections to the single-particle level
an analysis of the level spacing in the Hartree-Fock theoryspacing.
In doing so, we make connections to the more conventional For this purpose, it is convenient to use the exact eigen-
scaling theory of localization la Wegner?® and motivate the  states approach at criticality. Consider a finite system of

U(ri_rj): (23)

|ri_rj|p.

E. Organization of the paper
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linear dimensionL, and two adjacent one-electron eigen- fixed point would be unstable.

states located on the two sides of the critical endtgyvith Let's calculatedA ,, perturbatively, which is sufficient for
energyE,<E. andE,>E_; and a separatiom=E;—E,. In  the perturbative RG analysis. To first order in perturbation
the noninteracting theory, the finite-size scaling behavior otheory we have

the separation should follow that of the mean level spacing

and scale with_ according to A 1,=P1(2|H; 2), (2.6
o 1 1 whereP; is a projection operator that keeps exclusively the
A= Vol “z (24 contribution from statél) to the level shift ofi2). The fac-

torized interactiorH;,; can be written as
wherevy is the noncritical DOS in the noninteracting theory.
Switching on the interaction causes a mixing of the critical
eigenstates, which results in shifting of the single-particle Hi=2 SHFclc,, 2.7
energy levels. The level spacing becomes ¢
A12=A(1)2+ A1y, 2.5 thereEgF is_ precisely the Hartre_e-lT:ock self-energy correc-
ion to the single particle stafer)=c/|0),

where §A 1, is the level shift ofE, due to the mixing with
occ.

level E;. The question we would like to ask is, in the limit e - ) 5

w—0 and the associated length scalg=(vow) ¥—oo, SHE=2 fd rd“r'[|ga(r)]gg(r)|

how the interaction correction to the level spacifag, k

scales withL as we approach the thermodynamic lirhit — i (r)* dfa(r’)w’,}(r’)wﬂ(r)]v(r—r’). (2.9

<L,—oe. If it falls off faster than the mean level spacing

A%,~1/L2 of the noninteracting system, the level statisticsHere the summation is over all occupied states. To discuss
will be determined by that of the noninteracting eigenstatesthe average energy shift, it is necessary to study the disorder
and unaffected by the interaction in the thermodynamic limit.average of the self-energy at the fixed enekgy

Thus the interaction would be an irrelevant perturbation in
the RG sense. On the other hand,sik ,, falls off slower
than 1L2, the level spacing will be dominated by the
interaction-induced level shifts as an increasing number of
noninteracting eigenstates is mixed by the interaction withvhere v, is the DOS per unit area for noninteracting elec-
increasing system side The interaction would therefore be trons. Taking the disorder average of E2.6) and using Egs.

a relevant perturbation in this case, and the noninteractin€2.7)—(2.9), we obtain the averaged level shifts,

1
Ezzm ; S8(E,—E,)3,, (2.9

1 2
5A12=(7) [ S, L Pl = bl bl D5 (0 SE = B oo (1—1)

1 2
=( ) fdzrdzr’[OA(r—r’)—OB(r—r’)]v(r—r’). (2.10

In order calculate this quantity, we need to know the scal- _ _
ing behavior of the impurity-averaged products of four wave 2= v =0. (2.12
functions denoted by, and Og in Eq. (2.10 in the limit ' !
w—0. The latter are functions @f-r’, since the translation

symmetry is restored after impurity averaging. There are two irreducible representations for these operators,

It is instructive to follow Wegner's symmetry & symmetric one and an antisymmetric one, under permuta-
decompositioft**57and extract the orthogonétigen scal- tions of indices of the rank-2 tensor. We can therefore de-

ing variables under the RG. Consider the most general fou€0MPOSeED, into independent scaling operators,
field operator in the unitary ensemble,
; 05°=30,+30_, 0.=05°x0%. (213
O4= 2 ki vs= 2 vii0L. (21D
“ry oy The operator®, andO_, having independent scaling di-
where Oﬁizoiﬁ. The coefficientsv obeys the traceless mensionsx.., describe the eigenscaling directions of the
condition, corresponding to the subtraction of vacuum exfour-field operators under the RG. In the unitary universality

pectations: class of the metal-insulator transition, i.e., the cases of weak

195316-7



ZIQIANG WANG AND SHANHUI XIONG PHYSICAL REVIEW B 65 195316

magnetic field and spin-flip scattering by magnetic impuri- X .
ties, x. = = \2€ has been derived from perturbation theory 5 relevant;
in 2+ e dimensions® '
At the IQHT, the RG dimensions @.. were determined
numerically by Lee and Warj;?® from the leading scaling
operators associated with the fusion products of four fermion

2\ 2+X
operators that are antisymmetric and symmetric under per- ; T p
mutations, respectively. The scaling dimensiorCof is ob- et i
tained from the product of two “spin” operatofs irrelevant
X_=Xps=—0.60+0.02, (2.19

FIG. 1. The scaling dimensioxof the interaction strength in
whereas that oD, is extracted from the leading scaling 14P potential as a function gf. The interaction is relevant for
operator fused by the product of two nearby densityx>0 and irrelevant fox<<0 in the RG sense.

operators? 66,23 _ _ _ _ .
zero;*“° consistent with the single-particle DOS being non-

X+ =Xp,=0.65+0.04. (2.15 critical at the noninteracting critical point.
Substituting Eq(2.17) into Eq.(2.10 and carring out the
A general four-field operator involves contributions from spatial integrals from a lattice cutoéfto the system sizé,
bothO_ and O, , but its leading scaling behavior will be we obtain

dominated by that 0©_, sinceO_ is much more relevant
than O, . A good exampl&® is the ensemble averaged in-
verse participation ratio introduced by WegtieP(®). Ex-
pressed in terms of a four-field operator, its scaling dimen-
sion, which is also known as the multifractal dimension ofwherec; and c, are nonuniversal constants. Note that for
the eigenstate®(2), is governed byx_, i.e., D(2)=d p>2+x, , the integral depends on the lower cutoff and the
+x_=1.4+0.02, indicating strong amplitude fluctuations of second term in Eq(2.18 diverges asa—0 which must be
the critical eigenstates at plateau transitions. Indeed, the exbsorbed into the renormalized interaction. We are now
ponent » used by Chalker and Dantélto describe the ready to determine the relevance of the interactions by com-
anomalous diffusion at the IQHT is given by=—x_. The  paring the scale dependencedi, to the mean level spac-
scatter in the value of_ is most likely due to uncertainties ing of the noninteracting system for large Defining the
involved in different numerical approaches. By the same toscaling dimension of the interactianaccording to

ken, one can show that the scaling behavior of the ultrasonic

a 24X, —p

L

u
5A 12= s

P c,+¢,

: (2.18

attenuation, extensively studied intZ dimensions near the d 6A 1,

conventional metal-insulator transitiofisjs controlled by X= log| —] |, (2.19
dinL AO

O_ as well. 12

Now let us apply these results to the interaction-induced . . — >
level shifts in Eq.(2.10. We will show that the density- We obtain, using Eq(2.18 andAj,~L "7,
density correlation is, in contrast to the inverse participation
ratio and the anomalous diffusion coefficient, controlled by ) Xfma>(2—_p,—_x+). (?'20)
the symmetric operata®, with the scaling dimensior.. . The behavior ok is shown in Fig. 1. Fop<2, the inter-
Individually, operatorsO, and Og contain contributions ~actions acquire a RG scaling dimension 2—p>0 and are
from both O_ and O, . Their leading scaling behavior is relevant. We can refer to these types of interactions as long-

therefore dictated by that of the opera®r . We have range interaction& In this case, the interaction-induced
level shift becomes much larger than the mean level spacing
r=r'|

X of the critical eigenstates in the noninteracting theory for
OA(T—V')NOB(T—W)N< L ) (2.16  large system sizek. For the Coulomb interactiomp=1, u
has a RG scaling dimensiox.,, =1, and is therefore a
for [r—r’/L<L,. However, the combination o®,— Og relevant perturbation. The resulting flow away from the NIFP
has precisely the symmetry of the symmetric oper&qr. will lead to an interacting fixed point at which the effective
Thus interaction strength is finite. Presumably, the simplest ver-
sion of the latter is the Hartree-Fock fixed point discussed in
| 1\ %+ Sec. I. At the level of the Hartree-Fock theory, Q.18
OA(r—r')_OB(r—r')~(T) : (217 shows that the level spacing is entirely dominated by the
Coulomb interaction-induced level shift that scales.as in
We see that the scaling behavior of the interacting-inducethe thermodynamic limit, consistent with the linear Coulomb
level shift is determined by the fusion product of two densitygap DOS found in numerical calculatioffs.
operators in the symmetric representation. The absence of On the other hand, for all values pf>2, we havex<0.
pure powers ofr —r’| in Egs.(2.16 and(2.17 comes from  The interactions are irrelevant, and can be referred to as
the fact that bilinear field operators have dimensionsshort-range interactions. The dipole-dipole interaction, in
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particular, havingp= 3, belongs to this class of interactions. where Z is the partition function expressed in terms of the
The NIFP is therefore stable against short-range interactiongmaginary-time path integral:
For screened Coulomb interaction with<®<<2+x, the
RG dimension ofu is x=2—p, while for p>2+x, itis x . s
=—X, . In both cases the interaction scales to zero at the Z:f DLy*DLyle > 3.4
transition in the asymptotic limit, although it controls the
finite-temperature behavior of the conductan@srom Eq.  The interaction between the electrons can be viewed as being
(2.18), it is clear that the interaction-induced mixing betweenmediated by a fluctuating scalar fiefl in the Coulomb
the critical eigenstates of the noninteracting theory onlygauge, for one can always rewrite the interaction term in the
leads to level shifts that are much smaller than the meafollowing way:
level spacing in the thermodynamic limit. Thus the zero-bias
DOS must be finite in the asymptotic limit for short-range g—(1/2)fd% fd?ry* () u(r)o(r,r")o* (1) u(r')
interactions. However, as we will demonstrate later in this
paper, even in this case the interactions lead to remarkable
properties of the TDOS in the prescaling regime, which may :f Dl®]
have important experimental consequences. . ) .
s @ d Ty (N@ () w(r) = (L2)fdr [dr" (o~ “(r—r")o(r")

Ill. FIELD THEORY FRAMEWORK (3.5
AND SEMICLASSICAL APPROXIMATION

. . . . To perform the averaging over random potentials, we use the
To include the screening of the Coulomb interactions byreplica trick, calculatez", wheren is the number of replicas,

the diffusive electrons in the calculation of the TDOS beyondand take the limin—0 at the end. The ensemble-averaged

the H_artre_e-Fock theory, we wil set up, In this section, th.esingle-particle Green’s function can be obtained according to

effective field theory and the semiclassical approximation in

order to derive the Debye-Waller factor in E4..6).
(G(r))zlimf D[(I)]f D[V]P[V]

A. General formalism n—0
We consider the action for interacting electrons in a ran- .
dom potential and a magnetic field described by the Hamil- Xf DL¢* ID[ 414, (r.0) ¥, (r,7)
tonian in Eq.(2.1),

ﬁ n
— 2, 1%
S= fﬁdrdzr[,, (3.1) Xex”[ fo dr 2, “ FrarnldrtHotV
0

where —iq>a(r,7)]¢a(r,7)+f dr
L=y*[d,+Ho+ V(N ]y

xf dr'® (r,n)v Hr—r")®(r',7) ] (3.6)

1
+5 | P opouw . 62

In the above equatio®[ V] is the distribution of the random

Her n inV(r) is the random external ntial ) o . .
ere, once againy(r) is the random external potential, potential which is taken to be Gaussian white noBEV ]

v(r—r') is the electron-electron interaction, anH, 1om2 . R
= (L/2m) (9, +ieA)?, with A(r) being the vector potential ~€ Y for the short-range correlated impurities,is

of a uniform external magnetic field perpendicular to the 2Dthe replica index, and, represents an arbitrary replica chan-
plane. In Eq.(3.2, ¢ and ¢* are independent Grassmann N€l- As in the usual treatment of disordered systems, integrat-

fields. The electron single-particle Green’s function is dedNg overV(r) in Eq. (3.6) introduces a four-point interaction
fined as term in the action that is local in space but nonlocal in time,

(912)2 2 o [A?r [ [T b, (r, D)2 ho (r,7)[2. The
_ _ latter is usually decoupled by introducing an auxiliary field
—_z-1 s
G(rrn=2 j DLy IDLy(r,00¢* (r, e, Q.. (7,7") by way of the Hubbard-Stratonovic transforma-
(3.3 tion:

(012 [fdrfBdr |, (r, D)2 0 (1, 7)1 = f D[Q]e~ (M2 arS§dr§dr’ Quar(n7)Qur ol 7) +i 1 1Gd 7T’ 7, () Qua (r 7 Vi (7).
3.7
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This quench-averaging process leads to the following repli-

cated action:

0 aa’

s Q@)= | erJOEdT[fﬁdT’Z (¢z<r,r>{[67

+Ho=® (1) ]8(7—7") S pa

PHYSICAL REVIEW B 65 195316

1
@)= STrd(nu Hrr)e(r’).  (3.13
In Eq. (3.12, w is the fermion Matsubara frequency, and
“Tr” stands for the trace over the replica, spatial, and Mat-
subara indices. Expanding Tflm—Hy+i®+iQ] in power
series ofd, we obtain

_iQa,a’(T!T,)}¢a’(riT,) 1 2 . .
So=— ETrQ +Trinflio—Hp+iQ]
1 1
+ 5g Quar (7)1 Qural 7 D)+ 5 2 L
+Tr(ml®
xfdzr’QDa(r,r)v1(r,r’)d>a(r’,r)}. 1 1
—5Tr| - —id- —i® | +0(D3).
3.8 2 (|w—H0+|Q iw—Hg+iQ (@5
The impurity-averaged Green’s function in E(B.6) be- (3.14
comes We group the terms i5y(®), which are zeroth order i
ass,,
(G(7))=1lim f D[®]f D[Q]f D[* ID[¢]¢,,(r,0) 1
n—0 SU=—ETrQ2+TrIn[iw—H0+iQ], (3.15
* —S(U* 4.Q. )
X, (T 7)€ : B9 the terms linear inb asAS; (D),

The rest of this section proceeds as followdy: We integrate
out theQ field as well as the) field, and derive an effective ASlzTr[+i®}, (3.16
action in terms of theb field: Su(®P). The Green’s function lo—Hot1Q
_(G(r,r’;r)) can be expres§ed in terms of the averaged nony 4 thed? term asAS,(d),
interacting electron Green’s function in tne presence of the
fluctuating potentiadb, which we denote b (®P), weighted 1 1 ) 1 ]
by e” %), The effective actioiy can be obtained system- ASy=— 5T — Hoti0 10— Hoti0 P
atically in a power series b and 1b,,. (2) By appealing (3.17

to the semiclassical approximation for the slowly varying

part of the ® field, we argue that G(d)~ Clearly, S, is nothing but the transport action for electrons in

G(0)exp(iffdrfd?rdp), where p(r) is the diffusion

propagator(3) Keeping inSy up to quadratic terms ib?
and integrating out the® field, we arrive at(G)
~G(0)e" W,

B. Effective action

a random potential in the absence of the Coulomb interac-
tion. The standard proceddfes to expand around the saddle
point of S,. The self-consistent saddle-point equation is
given by

iQ(r)z—g<rmr>. (3.18

Let us define the effective action by forma”y integrating The Sadd'e-point solution is given by

out theQ and they field:

Awl=e % [ D[Q] [ DLy ID[yle ¥ #o)
(3.10

Carrying out the functional integral explicitly over thg
field, we obtain

Z[ )= Ser®) = f D[Qle %@~ (313

where

So(®)=— %TrQ2+TrIn[iw—Ho+i<I>+iQ],
(3.12

i
i[QO]SEZQO‘SaB‘smn+2_7_()5mn5aﬁsgr(n)a (3.19
wherer is the elastic scattering time. In genergldepends

on the magnetic fiel®. In the weak-magnetic-field limit, the
Landau levels overlap due to disorder broadening &j{&
—0)=1/2mvyg, where vy is the density of states. In the
strong-field limitw.7¢(0)>1, wherew, is the cyclotron fre-
quency. The diffusion comes from the “skipping” of the
semi-classical cyclotron orbits caused by impurity scattering.
One must solve Eq3.18 in the presence of quantized Lan-
dau levels. Such a solution renders the famous semicircle
density of states by Ando and co-worké&?sjsually referred

to as the result of the SCBA. Let us denote the saddle-point
Green'’s function as
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1
mn__ _ = 2\ 2
[Gsp aﬁ_<r iw—Ho-HQo r>5a,85mnr (32@ <ASZ>0' 2[<Asl>0' <ASl>¢r]
which is also called the SCBA Green’s function. Usi@g, = 1 > f dzrf dr'II(r,r";0,) @ (1) _q(r').
one can calculate the bare parameters of the theory, i.e., the 2 %5
transport coefficients,, and o,y at the level of the SCBA. (3.26

Without going into the details of the SCBA calculations, o . ) ]
which can be found in Refs. 43, 35, 36, and 52, we point outl he polarization function can be calculated in power series
the following key results(1) In the strong-field limit the ~Of 1/oxx. To leading order in ¥, we recover the result of
elastic-scattering timey, is of order \7o(0)/wg, the mean the ladder approximation:
free pathl =v{7y becomes the cyclotron radil,, and the 5
e 1p2 L Dq
diffusion constanD = 3 R¢/ 7, depends on the magnetic field. 1(q,i ) = vg—————.
(2) o4y in the center of theNth Landau level is approxi- D2+ |wy|
mately given byoPCB%=(N+1/2)e?/h; therefore, the per-
turbative expansion in i, is valid as long adN>1.

The single-particle Green’s function in E¢.18, and
hence the saddle-point solution f@rhas, quite generally, a
branch cut atw=0. Taking this into account, the saddle-
point solution assumes the generic formQy=qg T . _
+(1/27)A, where A is a diagonal matrix, A}} Sett~ 5 ; (v (r=r")+1(r—r"iw,) ]Pn(r").
= Snmla5SON(), in the space spanned by the replieg 8)

B L . (3.28
and the Matsubara frequency,(m) indices. The nonlinear ) ) _ o
model is obtained by including the gapless, long-distancd he scalar fieldD precisely mediates the diffusion-screened
fluctuations around the saddle-point manifold of the form electron-electron Coulomb interactiéh.

(3.27

Higher-order interference corrections presumably renormal-
izes the diffusion constarid, and the thermodynamic DOS
vo—dn/du in Eq. (3.27. Thus we have derived the effec-
tive action to orderb?:

~ C. Semiclassical phase approximation
Q(N=U"NQuU(N), (3.20 classicel phase approximeT

Now we turn to the evaluation of the impurity averaged
single-particle Green’s function given in E@3.9). By a

whereU is a unitary matrixJ e U(M), andM is the product > . . .
y € U(M) P simple reordering of functional integré$° we have

of the number of replicas and that of the frequencies. Defin
ing a dimensionless matrix field .
<G(r,r,r)>=f D[®]G(r,r,7,®)e %(®) (3.29

Q(r)=U"Yr)AU(r), (3.22 _
whereG is the averaged Green’s function in a fixed configu-
it is straightforward to show that ration of the scalar potentiab:
1 E(r,r,q>)=|imf D[Q]
AS = mryTr(Qd) +i ETr[(Gser G:p)®]+0(QVQ), n—0
3.2 _ .
323 X f DIYID[¢]¢a, s, e XD Z[ @],
1
ASy= 7o THO?= QBQD) + LT (G G2 P(Gep B 330
We now make an approximation regardi@g®d) that takes
+G§p)CI>]+(’)(QVQ). (3.249 into account exclusively the important interference effects

between the phases of the electron wave functions. The am-
It is now convenient to denote the quantum average Qver plitude fluctuatiqns are smalllfor the slowly \_/ary_ing fluctua-
under the statistical weight~S-(Q) by (--),. From Egs. tions _of theC_D f|g|d that domlnate the contrlbutlon_s to the
(3.11)—(3.17) we obtain the effective action effective action in Eq(3.28. Since these fluctuations are
spatially smooth on the scale of the elastic mean free path
1 i.e., VOI/E;<1, they do not significantly alter the classical
_ _= 2y _ 2 trajectory of the electrons. This is a unique feature of the
Serl( @) =(AS1)s+(AS2) 2[<(Asl) Ja=(AS)] slow diffusive dynamics of the electrons in a random media.
0) 3 Appealing now to the semiclassical approximation, the
+S7(@)+0(@7) (3.29 single-electron propagator in the presence of interactions is
modified by a W1) phase factor,
The second and third? terms in Eq.(3.25 define the(den- o o
sity) polarization functionlI: G(r,r;7®)~G(r,r;7;,0)e 2S(®), (3.30)
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whereAS,, is the change of the action caused by samplingcality, another complication arises: due to the multifractal
the potentiald along the classical path, behavior of the critical eigenstates, the diffusion is anoma-
lous, i.e.,D becomes dependent on the length and the time
I L scales. These subtleties will be addressed in later sections.

ASu(P)= 'JOdT PLro (), 7], (332 The final step is to substitute E¢B.37) into Eq. (3.29
and carry out the functional integral. Taking into account the

with r,(7") being the classical trajectory that starts and endgsaussian fluctuations i captured by the effective action in
atr in the presence of random potential but in the absence afq. (3.28, we obtain the central result

the ® field. Upon averaging over the random potentials, the
classical trajectory can be described by a random walk. Let

. Y - —W(7,
p(r,7) be the probability of a particle being atat time 7; (G(rr;m)~G(r,r;7,0)e” M, (3-39

where the Debye-Waller phase-delay factor is

‘I’[f&(f’),f’]:fdf’p(r’.T’)q)(r’,T’)- (3.33

T d?
Since the critical conductivity is finite at the IQHT, the W(7)== >, f—qu(q,iwn)vsc(q,iwn)p(—q,—iwn),
charge spreading is expected to be describethhgmalous 2% (2m)

diffusion. The probability density then satisfies the diffu- (3.39

sion equation . . . S
q andv 4 is the dynamically screened interaction implied in the

[—D(V')2+4d.]p(r', 7 )=[8(r)— 8(' — 7)]8(r" =), effective action in Eq(3.28:
(3.39
where thes functions on the right-hand side result from the 0 ) = v(q) _ v(q)
boundary conditions imposed on the original trajectory and® 1 n 1+v(g)ll(q,wy,) dn Dg?
correspond to injecting an electron maind time 0 and re- 1+ d_U(Q)Z—
moving it at timer. The associated current density is given # Da*+| ey
by (3.40
J=—D(V—yyzxV)p, (3.35 InEq.(3.38, G(7) corresponds to the SCBA Green’s func-
tion Gg(7) defined in Eq(3.20:
where y, = o,/ o, is the Hall ratio. Note thay,; does not
enter diffusion equatiot3.34) because the transverse force 7B
does not affect the charge spreading which is described b@(r,r,q-) _|7TVO 2 e '“n"sign(w,) = By
V - Jin the continuity equation. Solving E(.34) in the bulk sin(r/B)
of systems without edges, we find, (3.41
1—gion” After carrying out the sum over Matsubara frequency in Eq.
p(Qiwy) = ——. (3.3  (3.39, the details of which are given in Appendix A, we
Da*+|wy| obtain the finite-temperature expression

Later we will show thatyy does enter in the presence physi-

cal edges. In this case, the diffusion equation must be solved +o dw 1—-e®"

with the appropriate spatial boundary conditions. W(r)= f_w SoLf(—iw)—f(i w)] 7 (3.42
Inserting the results of Eq$3.36), (3.32, and(3.33) into

Eq. (3.31), we have

where

G(r,r;7®)~G(r,r;7;,0)e /7 fdr' ", =)p(t", ")
1

1[0 d? ?
(3.37) f(—iw)=—f2—qz 2—> vs&q,—lw)
Note that the above is but a special case of the more general (2m\ Dg?~iw

phase approximation in the presence of(1U gauge (3.43
fields?%44% The quantum interference effects can be in-

cluded by the renormalization of the diffusion constént The interaction correction to the TDOS is determined by the
and other parameters of the theory. In fact, it was argue@€havior of the phase factd¥(7), which depends on the
recently in Ref. 46 that the phase approximation of Eqnature of the dynamically screened interactiqq.

(3.37), along with the effective action of the screened poten-
tial of Eq. (3.28 can be derived by seeking a temporally and
spatially varying saddle-point solutid@q(r,r,®) of the ac-
tion So(®) for eachd(r,7). Quantum interference can be
treated systematically by considering fluctuations around We now derive the TDOS &&=0. It is necessary to per-
such saddle-point solutions. We note in passing that, at critiform the following analytical continuation:

IV. BULK TUNNELING DENSITY OF STATES IN TWO
DIMENSIONS
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1 . be seen from Eq(4.6). In fact, in the region wher®q?
v(w)=——lm G(r,riionliv ~wris <w<Dkq, the effective interaction has the most singular
form

1 A
=— ;Im“ dre'n"G(r,r,r)e” W)

o wtis v, —iw)~ D?<w<Dkq, (4.7

4.9
) . ) which gives the main contribution to the wave-vector inte-
The procedure turns out to be quite nontrivial. Since Wegral in Eq.(4.5):

could not find discussions of the technique in the literature,

qu,

we elect to include the details of the analytical continuation 1 Uredew w
in Appendix B, where we show, in the limit—0, W(it)= f — ( 2) 4.9
Aaloy,J it D
v(w)~ EVOJWMeW(H), (4.2) Note that, in this region, the diffusion coefficiedtis a con-
m Jo ot stant. The anomalous diffusive behavfbin the regime

| Dg?>|w| does not affect the leading contribution. The re-
"maining frequency integral generates the double-logarithmic
dependence in time,

where v is the noninteracting TDOS near the Fermi leve
Taking theT=0 limit of Eq. (3.42, we obtain

> dw .
W(it =f —{f(—iw)—f(io)](1-e7'*"), (4.3 1 t t
(it) . Slf(—iw)=f(iw)]( ), (4.3 Wit ~ In(—)ln(—), 9
. . . . ) 8720,y \ 70 71
with the functionf given in Eq.(3.43. The term with the o _ _
oscillatory factore™'“! averages to zero upon integration ex- Wherer; = 1/7o(D %), andoy=Ddn/du is the conductiv-

cept for w<1/t wheree '®'~1. Therefore we can effec- ity defined via the Einstein relation. Near the Landau-level
tively leave out thee™"*! term and introduce a lower cutoff centers, one can show in the SCBA that;/7,
41t to the integral: = (1/4m* o) (krag)?/k¢ < 1. This double-logarithmic form
is the dominant behavior of the Debye-Waller phase factor in
) g 1 ) ) the long-time limit. Next-order corrections are of the order
W(it) = L/t dos—[f(mio)=f(i0)]. (449 115 1/02 }In(t/z). The contributions from all six different
integration regions in the«,q)-plane are discussed in detail
The upper cutoff of the integral in the above equation arisesn Appendix C. Substituting Eq4.9) into Eq. (4.2), we ob-
from the fact that the diffusive picture becomes invalid attain the zero-temperature TDOS in the Coulomb case:
time scales shorter than the elastic scattering time. Using Eg.

(3.43, we obtain Y(w)= @fmdtsmqwme—(1/8w2<rxx)In(t/To)ln(t/n).
n

Urodew f d2q 0

— | =—=Im
14 2

W(it)= T

1 2

Us&q,—iw)(m) . (4.1@

(4.5 Keeping in mind that in deriving this result we have assumed
a frequency-independent conductivity,, i.e., we have ne-

We next turn to the evaluation of the most singular contribuglected the quantum interference effects. In general,is
tions toW and thus to the TDOS for different forms of in- renormalized by localization effects, of leading order
teractions. (Loy,)In wry in the unitary ensemble, and by interaction ef-

fects of leading order lm, in strong magnetic field>-3®
A. Long-range Coulomb interaction Thus oy, takes on the frequency-independent SCBA value

The singularity in the TDOS arises from the physics of MY if |In(e 7)< 0y
dynamical screening. For Coulomb interactiom,(q)
=2me?/q. The dynamical screened interaction in E8,40
becomes In this regime, the weak localization correction to the con-

ductivity can be neglected. If in additiofin(w7e)|<voys

1. High-frequency regime]in(wy)|<o,

2

. 2me we can expand the exponential in £4.10 to leading order
vsdd, —iw)= T kD (468 1/oy, and obtain
a+ Dg’—iw

v(w)=rvg 1— In(|w| 7o) IN(|w|7y) . (4.12)

wherex=2me?dn/du is the inverse screening length at the
transition. It is important to note that, in the presence of
disorder, the range of validity for static screening is quiteThis reproduces the high-field perturbative diagrammatic re-
small®® Since diffusion is a relatively slow process, at non-sult of Girvin, Jonson, and L&and Houghton, Senna, and
zero frequency the long distance singularity associated witling.®® For frequencies in the rangéo<|In(|w|m)| <o,

the long-range Coulomb interaction is not screened, as catfie integral in Eq(4.10 can be evaluated by the stationary

2
T Oxx
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point/instanton method, leading to a nonperturbative resum- 10—+ 71 7 1 7 T 1 1T T 1T
mation of the double-log divergences in E¢.11):
o
2

1
v(w)=veexg —
( ° ;{ 87’o

In the zero-magnetic-field case, such a nonperturbative re’s
summation of the perturbative double-log divergences was> o4
carried out by Finkel'steif? and recently reexamined using

0.8

In(|w|70)In(|w|71) |-

(4.12 0.6

T T [ T T T | T T T [ T T T [ T T T
~

~
TN T TN [N TN TN T [T T Y N [N SO TR N |

/ — TDOS v(w)
different approache®:463°Our result of Eq.(4.12 can be / — == v(®=Clole’
regarded as an extension of the latter to the strong-magnetic 0.2 /
field case.
2. Low-frequency regime|In(wmo)[> oy, 0.0 15— '0.'02' : '0164' . '0.66' . '0_68' 510
Here the quantum interference effects will, in general, ||

lead to a frequency-dependent conductivity. However, at the

IQHT, the critical conductivityo, is finite and of the order of FIG. 2. The TDOS in Eq(4.10 in the case of long-range Cou-
e?/#. This experimental fact was shown numerically for bothlomb ipteraction, showing an asymptotic linear Coulomb pseudogap
noninteracting electrons and interacting electrons in the Hipehavior at smallw|. The parameters aigx= o ando/7;=10.
theory?1:996263.25.26rh 5 the validity of our analysis, i.e., the

structure of the double-log divergence at long times, can be

[ 1
extended into the regime of small provided thatr,, in EQ. Co= 5 [1+d( oy UC)]e(zﬁZUc)+(1/8,T20C)|092R,
(4.10 is replaced by the critical conductivity.=0.5/27. 2mo

Note that due to the double-log term in the exponent, Eq. (4.19
(4.10 implies
where ®(x) is the error function andR=\71/7g
lim W(it) = + o, =1/D«k?7q is a quantity that depends on the degree of disor-
oo der. The latter can be written in terms of more familiar quan-

tities according to
and consequently a zero-bias anomaly in the TDOS

1 (kfag)?

vl ~ a0, Kio

(4.19

To obtain the limiting behavior of(w) for small w, we ) ) ) )
expand the sindt) factor in Eq.(4.10 in a power series in whereag is the Bohr radius ant} is thezero-fieldmean free

wt. It is important to emphasize that this is possible becausBath-

of the double-log contribution which makes the time integral !t IS €asy to vezrlfy that the next term in the expansion is of
overe~ WiV converge fast enough such that the TDOS bethe ordero(wo) _e"XX_, WhICh.IS small in th|§ regime. 'I_'he
comes analytic at smalb. The claims made by Polyakov rgsults of _numencal integration of E@4.10 is 'plotted in
and Samokhif? that the TDOS falls off faster than any Fig. 2,. which shows the crossover from the hlgh'—fre'quency
power law inw is in fact incorrect. Since the signs of the Pehavior described by Ed4.12) to the asymptotic linear

expansion-coefficients alternate, the series is asymptotic, i.e-oulomb gap of Eq(4.14 at low frequencies. Since the real

it can be infinitely accurate at small. To first order inw, transition must be ggverned_ by an intergcting fixed point
where the Coulomb interaction strength is finite, we con-

clude that the true asymptotic behavior of the bulk TDOS
()= Vo|w|%j dte (UBr2aQin rg)in(t/ ) 4.13 exhibits the quantum Coulomb gap at the IQHT.
0

Performing this integral, and using the fact that the com- B. Short-range interactions

pressibility is only weakly renormalized, i.edn/du= v, In this subsection, we address the question of how short-

we obtain the 2D quantum Coulomb gap behavior given irrange interactions, such as screened Coulomb interactions,

Eq. (1.8 in Sec. |, i.e., which are irrelevant perturbations at the NIFP in the RG
sense, cause depletion of the TDOS near the Fermi level. For

y(w):CQﬁ|w|/e4_ (4.14 simplicity, we focus on the local interactions described by

the prototype short-range interacting potentia(r—r')

In contrast to the 2D classical Coulomb gap, the slGgeis  =ué(r—r’) andv(q)=u. The screened interaction in Eq.

not a universal number. It is given by (3.40 becomes,
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u multifractality of the critical eigenstates leads to anomalous
vsdQ,iw,)= in Dz (4.17  diffusion in the regimeDg?>w. The diffusion constant be-
TRk N comes a function 0§/ o,
du Dq2+|wn|
: : o : , D(q,w)=D(qL,)" ", (4.23
Inserting this expression into E¢.5) for W(it), one finds
where as beford, ,= VD/w and = —x_ which is given in
) Urodw it d%q Eqg.(2.14, andD,=2— 7 is the multifractal dimension. The
Sr('t):f ﬁ(l_ )J (27)2 critical conductivityo. is once again finite and will be taken
as scale independent. The Debye-Waller phase fatgdit)
1 1 in Eq. (4.19 is now modified by replacinge— a', where
XIm| =—— —, (4.18
Do"~ie D'g?—iw 1 24\
'= +Iny1+2\], (4.29
whereD’ =D+ uo,y. In contrast to the long-range Coulomb “ " 8nlo, (1+>\)2[C

case, the contributions to tlygntegral from thew>Dg? and with ¢, =1/2+2/(4— 3 7). This modification due to the mul-

w<Dq? regimes are now comparable. tifractal behavior alone would lead to, repeating the calcula-
tions above, the same behavior of the TDOS as in(EQ2

in the prescaling regime, except the exponeris replaced

Let us first ignore the quantum interference effect andby «'.

focus on the perturbative regime appropriate whieno| Next we must take into account the fact thias an irrel-
<\/<r_xx. In this case we can treat the diffusion coefficiént evant perturbation. The effective interaction scales to zero
as a constant, and the interaction strengths a marginal according t6**?ug;~uw*+ ', where—x, is the scaling di-
perturbation(a scale invariant constarin Eq. (4.18. Carry-  mension for short-range interactions discussed in Sec. Il, and

1. Prescaling regime

ing out integrations, we arrive at z=2 is the dynamical exponent at the NIFP. As a result, the
quantity o’ obeys the following scaling relation:
i 1/7'0 a .
Wsr(lt):Jo do—(1-e ', (4.19 a'(u,0)=A(uw*+'?). (4.25

The fact that A(u—0,0)=0 implies, together with Eq.

whereq is a nonuniversal dimensionless quantity depende E4 24, the leading scaling behavior fr':

on the interaction strength,

a'=AN(wT)*+ ', A=C,7/47720'C. (4.26
1
a=N— 2(1+In V1+2N), (4.20 Substituting this result into Ed4.19, we find
8m? oy (1"')\)
Y
with N =uvy. Thus W(it) diverges in the long-time limit Wsr(it):A)\yl[(E) -1/, 4.27
only logarithmically. The situation is completely analogous t

to the classic x-ray edge proplé%Taking care of the short-  \yhere y=x, /z=0.32. ThatW,(it) converges now in the
time behavior in Eq(4.19 as in the x-ray edge problem, we |ong-time limit should be contrasted with the long-range
obtain Coulomb case, and is a consequence of the short-range inter-
actions being irrelevant, i.ey>0. An immediate implica-

We(it)=—aIn(1+1t/7). (42D tion is that the TDOS would be finite at zero bias and the
Substituting Eq.(4.21) into Eq. (4.2, we have, for the level spacing scales asLf/ as in the _nonlnteract_mg the_ory.
TDOS, However, we shall show below that if the bare interaction
is large, it still leads to strong suppression of the TDOS at
velw) 2 ffodtgin(|wt|) 1 e . low energies. > and (427, 1 < e b
~ — 70 n st o074 From Egs.(4.2) and(4.27), the TDOS is given by

(4.22

where C,=(2) [;dy(sinyly)[1/(1+y)*] is a dimension-
less numerlcal constant. Thus we conclude that a nonuniver-
sal power-law suppression of the TDOS prevails in the pres
caling regime for short-range interactions.

2 (> sin(|o|t
vsl©)=1(0) — f dtwe“‘“”%“”, (4.28

where v(0)=voe”*M7<p,. Performing the integral using
the saddle- point/instanton approximation, we find that, at

low frequenciesw<wg, the TDOS is given by
|wl|”
On approaching the scaling regime of the IQHT, it is nec- vsw)=r(0) w—)
essary to take into account the scaling behaviorglpthe 0
diffusion coefficientD, and(2) the interaction strength. It ~ where wy= Tal(A)\/y)‘l’V is an energy scale. We see that
is known from the work of Chalker and Dari@lthat the upon scaling, the irrelevance of short-range interactions leads

2. Scaling regime

1+ , (4.29
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to a smearing of the power-law behavior in the perturbativeOur case differs from and is simpler than that of the com-
regime, giving rise to a finite and nonuniversal TDOS at zergosite fermions, in the sense that we need to consider only
bias. However, although short-range interactions are irrelpure potential fluctuations mediated interactions in the inte-
evant in the RG sense, sine€0)< v, for large\, they still  ger quantum Hall regime.
lead to a strong density-of-state suppression at low bias. To study how the physical boundaries bring the Hall ratio
What is remarkable is that E¢4.29 predicts an increase of into the bulk TDOS, we consider, instead of the half-plane
the TDOS with energy that follows aniversalpower law, geometry’® a quasi-1D sample with its length much
with an initial cusp singularity for our value of. These greater than its widthV, exposing two reflecting edges along
predictions can, in principle, be tested experimentally by deits width. This condition can be realized experimentally in
liberately screening out the long-ranged Coulomb interactiorthe long Hall bar geometry, and is the same as that consid-
using metallic gates or ground planes. ered by Xiong, Read, and Stofién their study of the edge
effects on mesoscopic conductance fluctuations in strong
magnetic fields.
Because the incident current is at an angle with the re-
It is interesting to consider a general interacting potentiaflecting edges, the presence of the magnetic field affects the
of the formuv (q) =u/q?~P. We find that forp<2, the domi-  diffusion process through a modified boundary condition
nant contribution ta/(it) in the long-time limit comes from  which depends on the Hall ratigy = o,y /0y«
the same double-log term as in the case of Coulomb interac-
tion (corresponding t=1). We conclude that, fop<2, [+ yudi]p=0. (5.2
the density of states in the asymptotic—0 limit is of the
form of the linear gap/(w)~ w. For p>2, the phase-delay Here the subscriph denotes the directions normal to the
factor W(it) approaches a constaWt,>0 for t>r,. In this ~ €dge, and denotes the tangential direction. Strictly speak-

case the density of states does not vanish, but rather develojfd, if boundary condition(S.1) is taken into account, the -
a shallow dip atw=0, wherev(0)= voe~W=. The borderline  diffusion propagator as well as the screened interactions will

case is that op=2, corresponding to thé-function inter- depend on the Hall conductivity. Such an effect is minimal if
action studied. It can be shown from either the 2 or the the sample is wider than it is long, and becomes pronounced
p<2 side that ap— 2, a single-log term emerges and domi- Only in the quasi-1D limit wherlL.>W. For simplicity, we
nates the contributions iW(it), leading to the power-law consider the case of thefunction interaction encountered in
density of states of Eq4.22) in the perturbative regime, and Sec. IV B and the geometry of an infinite strip with hard

to the finite zero bias TDOS obtained in Eg.29. Details ~ Walls aty=0 andy=W. We also limit ourselves to the per-
of this analysis can be found in Appendix C. turbative regime, and neglect scaling corrections to the con-

ductivities and the interaction strength.
The diffusive modes that are solutions of diffusion equa-
V. TDOS IN QUASI-1D SYSTEMS WITH EDGES tion (3.34 and satisfy the boundary conditidh.1) can be

obtained as follows?

k S(kTry) ) ) (kwy)

—C0§ — | —i sin| ———
out time-reversal symmetry. The traverse force induced by a W w 1A w
magnetic field does not affect the diffusive charge spreading. o
It is well known that in the noninteracting theory of the ¢3’q=a0e'qx—lmqy for k=0. (5.2
IQHT, the term in the action that depends @y, is topologi-
cal and nonperturbativ’é‘. However, it was discovered re- Since the boundary condition is not self-adjoint, there is also
cently that in the presence of edges, the Hall conductanca set of right eigenfunctionisvith the same eigenvaluethat
enters measurable quantities even in the perturbative limisatisfy the boundary condition under parity transformation:
for diffusion, and at more subtle levels affects the quantum [9n— ynd]$"=0. (5.3
interference processes. For example, it was shown b
that mesoscopic conductance fluctuations in phase-coherent
samples become dependent on the Hall conductance in ther k—wco kmy

W W
perin demonstrated that tHeV curves foredge tunneling
into the 1D Luttinger-liquid-like edge excitations of frac- ¢gq:aoeiqx+imqy for k=0. (5.4)
view of bulk composite fermions by using a similar phase{ ", #R} are the eigenmodes of the Laplacian operator,
approximation in treating the effects of gauge fluctuatiths.
tunneling conductance also arises from a boundary condition
of the source current at the edge of a semi-infinite samplewhere

C. General interacting potential: v(q)=u/q>~"?

In the cases studied above, thelk TDOS does not de-
pend on the Hall conductance. This is in keeping with the

fact that the bulk diffusion equation is the same with or with- ¢L = a.el™ for K+#0,

. A 5N o ko
+|qusmW or k#0,

The topological term gives rise to a tilted boundary condition

Khmel'nitskii and Yosefif* and by Xiong, Read, and Stofe ¥hey are given by

presence of edges. More recently Shytov, Levitov, and Hal- k'q:akeiqx
tional quantum Hall liquids can be obtained from the point of
There theo,, dependence in the exponent of the power-law - DV2¢;'R(x,y)=Ak'q¢;'R(x,y), (5.5
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k2,n_2 0.8 T T T T T T T T T
Aqe=D|——+¢q*| for k#0,
[ = TDOS v,,,(®)
Aqo=D(1+¥3)g? for k=0. (5.6) 0.6 - 7
Using the biorthogonality relation and the completeness con- o T .45 ————1—— 8
dition, we can express the Debye-Waller phase fadi(it) zZ C ]
in Eq. (4.5 in terms of the sum over the eigenmodes in the 3 04 [ [ —— TDOS v, 4 ]
transverse channels: B 010 = ]
> 0 C 17
1 (7 do r .
ey I L R * 02 L 0.05 C 71 4
Wit =5 "o S dnL6En12Re : :
0.00 Vel 1 1 1 L 1 1 1 P
1 u 5 0.00 002 004 006 008 0.10
A s 2 A . ( 7) 0.0 1 1 1 1 1 | 1 | 1
(Akg=l@)™ 4, Dka 0.0 1.0 2.0 3.0 4.0 5.0
OAgg—iw |/

In the: limit Dt>W?, contributions fromk>0 modes can be FIG. 3. The TDOS in quasi-1D strips with edges obtained from
ignored. For the consideration e{w), this condition trans-  Eq. (5.10 for short-range interactions. The inset shows the
lates intoL ,>W, i.e., iw>D/W?. Strictly speakingW(it) asymptotic low-energy behavior of a linear pseudogap given by Eq.
becomes dependent on the spatial position, but we do n@5.13.

expect any spatial singularity. It is therefore justifiable to

o] < (4n+1)! an

vaup( @)= vo"— E (— 1)n(2n+1), .
4
W<it>~———<f Vo, (59 (5.12

averageW(it) over the entire strip. We obtain
372 4D, 1+N . ) _
The TDOS is therefore dominated by the linear term near

whereD,=(1+ y3)D. Thus, the phase factor is dominated zero bias:

in the quasi-1D case by thgt divergence in the long-time
limit. Rewriting the prefactor in Eq(5.8) as

4 e\

w
VqlD(w)~V0£:s|w|- (5.13

Jwg= 372 W21t 72 ) o LEN (5.9  The magnetic field dependent slope is given by
97t 1
we haveW(it) = Jwgt — ywg7y. Upon substitution ofV(it) s=—— —(1+)M)? (5.14
into Eq. (4.2), the TDOS in the quasi-1D case is given by 16u° Pxx
Sln(|w|t) where py = oy (1+ yﬁ) is the dissipative resistivity. Note
vqip(@) = —f T e Ves(Vi- ), (5.10 that this result is valid at small frequencies such that
||/ wg>e“sl ie., for |w|<0.120g. In Fig. 3, we plot

the TDOS obtained by numerical integration of E§.10 as
a function ofw. The asymptotic linear pseudogap behavior
of the TDOS at low bias is shown in the inset. Therefore, we
(5.11) conclude that the TDOS of a quasi-1D quantum Hall strip
with reflecting edges exhibits a linearly vanishing pseudogap
Thus the TDOS is strongly suppressed at low energies imear the Fermi level, with a slope proportionalgtg! in the
quasi-1D systems in a manner that is sensitive to the appliegerturbative regime. Within the SCBA, the values of both
magnetic field through the energy scalg. If one naively oy, and o, at the center of the Landau levels are propor-
extends the behavior of Eq5.11) to arbitrarily small fre- tional to the Landau-level indek.*® This leads to a Hall
qguencies, one could conclude that the TDOS goes to zero amtio y, of order 1 and a longitudinal resistivity,,~ 1/N
the Fermi-surface faster than any power law, if the renormal—B. We see that, for a fixed interaction strengttthe slope
ization of the conductivity and the interaction strength at lowis inversely proportional to the magnetic fiedd-1/B. It is
energies are ignored. This is in fact incorrect, because Ednteresting to remark that bulk tunneling measurements un-
(5.17) is only valid at intermediate frequencies. Since theder the quantum Hall conditions using time-domain capaci-
Debye-Waller factoe™ V(") converges fast in the long-time tance spectroscopy indeed reveals a linearly vanishing
limit, the low-energy behavior obqp(w) is actually de- pseudogap TDOS with a slope that scales with. 1h addi-
scribed by an asymptotic series expansion in powers.of tion, the measured slope of the tunneling pseudogap oscil-
We find lates weakly as a function of filling fraction, which mimics

Approximating the time integral by the stationary point/
instanton solution, we find that, fa<wg,

VqlD( (1)) S V067 wB/4Iw‘ .
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the oscillatory behavior of the SCBA conductance. Howevergconductivity scaling at finite temperatures or frequencies in
although the experimental sefdpallows screening of the the transport measurements.
Coulomb interaction by the metallic gatéslectrode} such The conventional wisdom, at least for dc transport, has
that the interactions may be short ranged, it is not clear abeen that the hopping transport in insulators is determined by
present if the the sample used can be effectively qualified athe single-particle DOS, whereas the diffusive transport in
being quasi-one-dimensional. It is also interesting to notemetals is directly related to the thermodynamic D@8m-
that the results for the quasi-1D bulk TDOS in E¢5.13 pressibility). Generalized to finite frequencies, this would
and (5.11) depends strongly on the interaction strength imply that the dynamical aspects of the transport in insula-
This is in contrast to the case of tunneling into a singletors are controlled by that of charging, and in metals by that
fractional quantum Hall edge in the composite fermion de-of diffusive charge spreading. In ordinary disordered metals,
scription, where the TDOS was found to be a power law withthis problem can be better quantified. As noted by
an exponent that depends only weakly on the interactiofFinkel'steirf? in the calculation of the conductivity, there is a
strength®® great degree of cancelation between the corrections to the
Green’s functiongwhich causes the anomalous behavior in
the TDOS and to the vertices. Therefore the interaction ef-
VI. DISCUSSIONS: QUANTUM COULOMB GAP AND fects that cause the depletion of the the single-particle DOS
DYNAMICAL SCALING OF TRANSITION WIDTH v(w) do not appear to influence directly the dc transport

Understanding how interactions introduce new physicsp_)rope_rties. At finite frequencies, the coupled_scaling equa-
into the single-particle sector near the IQHT is an importan{ions in the RG calculation based on the nonlineamodel
step toward a more complete understanding of the interplaV‘VOlVe the conductivity, the interaction strength, and the fre-
between disorder and correlation and its effects on the tran§iuency renormalizatio#,, that enters in the diffusion kernel
port properties in the quantum Hall regime. A great part of2s 1/00°—iZ ). Note thatZ ,= 1 corresponds to the non-
this paper is devoted to demonstrating how various types dfteracting case and a dynamical scaling exponept
interaction-induced anomalies in the TDOS at low energy aresdim[D]+2=d in d dimensions. In conventional
likely to occur so long as the 2D conductivity is finite, which Anderson-Mott metal-insulator transitions id=2+e
occurs near the quantum Hall transitions. Our basic finding igimensions’’ the critical conductivity is zero. The lack of
that, in the presence of disorder, the range of validity forquantum diffusion at the transition is accompanied by the
static screening of the Coulomb interaction is very smallinteraction induced frequency renormalization, i.&,
whereas at finite frequencies the diffusive dynamics is too~L~*. For both the spin scattering and the spin-polarized
slow to effectively screen out the Coulomb interaction atcase, one-loop calculations give= e/2. As a result, the dy-
long distances. This leads to a Debye-Waller phase-delagamical scaling exponent relevant for metallic transport de-
factor in the averaged single-particle Green’s function thaparts from the noninteracting valug,=d—¢{. It is very dif-
vanishes in the long-time limit. As a result, the TDOS in theficult to extend the same quantitative analysis to the quantum
extended regime comes to resemble that in the localized rédall problem because the perturbative approach is no longer
gime, exhibiting a linearly vanishing quantum Coulomb gapvalid due to the presence of the topologigakerm in the
behavior. nonlineare model action. However, the fact that both

It is important to emphasize the coexistence of the vandn/du and the conductivity are finite at the quantum Hall
ishing Coulomb gap in theunnelingDOS with a finite ther-  transition in two dimensions ensures that the frequency in the
modynamic DOS. The double-log singularity in Eg.10), diffusion propagator remains unrenormalized and its associ-
arising from the correlations of the single-particle phasesated exponent,=2.
will not show up in the two-particle density-density correla-  The above analysis conveys a simple but important point,
tion function that determines the compressibility or the ther4.e., since it isZ,, and not the single-particle DOS that enters
modynamic DOS in the static limit. This point was recently scaling and controls the dynamics of the diffusive transport
demonstrated explicitly in the self-consistent Hartree-Fockrom the metallic side, within the existing framewd¥¢* it
theory?” where it is shown that the charge redistribution in-is natural to suspect that the suppression of the TDOS plays
duced by a test charge inserted into the quantum Hall criticaho role in the dynamical scaling behavior of the conductivity.
state is consistent with the presence of a finite screeningiherefore, the linear Coulomb gap may not by itself appear
length. The finite critical conductivity then implies that the to be an explanation for why=1 at the quantum Hall tran-
uniform diffusion constant must be finite. sitions. In the following, we argue that it is indeed the inter-

It is also important to understand how the depletion ofplay between the quasiparticle inelastic dephasileyel
TDOS relates to the larger issue of dynamical scaling neabroadeningand the level spacing that controls the transition
the IQHT. This is more challenging due to the possible exiswidth, contrary to common perceptions.
tence of several different time scales that control different Since the relevant phenomenon here is transport, this state
dynamical processes: charging, charge spreading, inelastaf affairs naturally translates into the question of which ex-
phase breaking, etc. While a linearly vanishing single-ponent determines the dephasing length In the standard
particle DOS in two dimensions does imply, through the quaproceduré® the system is divided intd., XL, phase-
siparticle level spacings~1/L, a dynamical scaling expo- coherent blocks. Transport within each block can be de-
nentz=1, it has not been shown that ttaswhich obviously  scribed by phase-coherent transport from the underlying non-
controls the charging dynamics, is also the one that enters thieteracting theory, and the relevant conductivity is given by
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the dephasing time,~ 1/T. If quantum diffusion is all that
matters, the associated length scale, i.e., the thermal diffu-
sion length would be set by;= (D 7,) Y2~ 1/T"2 leading to
a thermal exponent;=2. Similarly, the length associated
with a finite frequency i4. ,= (D% ®) Y2 such that the dy-
namic exponentz,=2. The conventional approach is to
identify Lt ,, with the quasiparticle dephasing lendtf in
the scaling function in Eq(6.1). As a result, the transition
width in this picture is determined by the crossover of length
scales set by 1 ,~ &, indicated in Fig. 4 by the dashed line,
which leads to
5*

ould-be™ (Tl/ZTV|DC, wl/zw”loc) .

(6.3

As emphasized in Sec. I, with the values=2.3 andz;
=z,=2, Eq.(6.3) does not agree with the scaling behavior

of the transition width measured by transport
FIG. 4. Schematic phase diagram near the quantum critical poirexperimentsl?'mFrom the theoretical point of viewdy, g pe
(E.) of the IQHT. The dashed line describes the “would-be” cross-would be the width of the phase coherent, diffusive metallic
over between phase coherence, the diffusive metallic transport dfansport regime, provided that Coulomb interaction effects
the quantum critical region, and the localized quantum-disorderedre not too strong to induce single-particle localization of the

regime at_ ,~ . The associated thermal and frequency exponentgjuasiparticle states.

are zy=z,=2. The solid line describes the true crossover from

diffusive, metallic to single-particle, insulatorlike transp@haded

We now point out the problem with this picture which is
commonly used to describe metal-insulator transitions. The

arefa) that takes place wheb,~¢. The obsgrved traqsition width ;se ofL+ , asL, in Eq.(6.1) completely ignores the impor-
6 is narrower thansy,,,4.pe, and has a scaling behavior controlled tgnt Mott physics in the single-particle sector, namely, the

by the dynamical exponert=1, arising from the quantum Cou-

lomb gap behavior.

the disorder average over the phase-coherent blocks. TI'{%
outcome is that the scaling variable for the conductivity be-Ie

comesL /¢ in the presence of interactions instead £ in
the noninteracting case, wheleis the sample size anélis
the localization length:

e? (L,
Uxx:FF ? . (61)
The scaling functior=(x) has the limiting behavior
o, X—0 5
F(x)= .
0=10" (6.2

The conducting critical regime dt,<¢ and the insulating
regime atL,>¢ are separated by a crossover lai~¢,
where the scaling variable in E¢6.1) is of order 1, giving

rise to a transition widths* ~L;l/”'°°. Physically, the tran-

tendency toward the single-particle insulator behavior in-
duced by Coulomb interaction. Physically, the inelastic
dephasing time is related to the interaction-induced quasipar-
le decay rate or level broadenithg-#/7,. The dephasing
ngthL,, on the other hand, can be determined only if the
underlying transport mechanism is specified, ballistic or dif-
fusive, insulating or metallic. Clearly, diffusive metallic
transport is possible only if there is a significant overlapping
of the quasipatrticle levels withiR, i.e., the level broadening
must be larger than the interaction-induced level spading,
>A. In the opposite limit]['<A, the single-particle states
are essentially gapped as a result of electron-electron inter-
action and the transport would be controlled by the localiza-
tion in the single-particle sector similar to that in a Mott
insulator. Diffusion would be impossible in this case, and
one would expect variable range hopping to be the dominant
mechanism of transport. It is therefore more appropriate to
define the quasiparticle dephasing length by the condition
I'~A(L,). The presence of the quantum Coulomb ¢&p.
(4.14], in the critical regime implies that, near the Fermi

sition width can be viewed as the width of the energy win-'€vel
dow of states whose localization length exceeds the phase-

coherence length. In the language of quantum critical A(L,)~ e 6.4)
phenomenon, the latter corresponds to the width of the quan- ¢ /CQL‘p’ '

tum critical region. This is a generic property associated with

the quantum critical point. The only peculiarity is that on which leads toL ,~ 7,~1/T and the dynamical exponeat
either side of the quantum Hall critical point the ground =1. Note thatL<P/LT~T’1’2, i.e.,L,>Ly at low tempera-
states are insulators which, drawing analogy to quantum spitures. However, it id, that controls the crossover to the
systemg$® are quantum disordere@@ee Fig. 4 The renor- quantum-disordered insulating regime since whemr ¢, the
malized classical regimgsnetallic phasesare absent. level spacing within &X & volume becomes larger than the

Now we examine the conventional view of finding, .
For a generic quantum phase transitibi the critical re-
gime is characterized by the only time scal€T, and thus

level broadening and the diffusive metallic transport be-
comes impossible. It must be replaced by hopping-
dominated transport similar to the Coulomb blockade regime
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in quantum dots. This part of the physics was emphasized by Im[z]
Polyakov and Shklovsk} and by Polyakov and Samokfth Co
in terms of the classical Coulomb gap.

Using thisL,,, the scaling function in Eq6.1) now de-
scribes the true crossover line, setlby~ ¢ (the solid line in R
Fig. 4), that separates the diffusive, metallic transport from

the single-particle, insulatorlike transport. The scaling behav- Cs
ior of the width of the critical conducting regime is therefore Cs Re[z]
given by
5 ~ (T, w) 2o, (6.5
with z=1 as observed in transport measurements. In this Cq
theory, the presence of the quantum Coulomb gap behavior is
central to the emergence of tke= 1 scaling of the transition FIG. 5. The contours of integration for the functioRs (2)

width. It eliminates the difficulty associated with invoking gefined in Eq(A6). The crosses indicate the locations of the poles
the classical Coulomb gap or the bare charging energy due t§ Matsubara frequencies,= 2n/g.

the unscreened Coulomb interactidff which is only valid

deep in the insulating regime. _ DE-FG02-99ER45747, and by an award from Research Cor-
As shown in Fig. 4, the single-particle DOS obeys thepgration.

guantum Coulomb gap behavior in the quantum critical re-

gime, whereas, deep in the quantum disordered, insulating

regime, it is expected that the Coulomb interaction reinstates APPENDIX A: THE MATSUBARA SUM

the classical Coulomb gap of Efros and ShklovskiThus it In this appendix, we carry out the discrete frequency sum

is remarkable that in the presence of Coulomb interactionsn the phase delay given in E(.39,

the crossover between quantum critical and quantum disor-

dered regimes is accompanied by a crossover in the behavior 1 _

of the TDOS—from the quantum to the classical Coulomb W(r)== > [1—€e'“"]f(|wy|), (A1)

gap. Comparing Eqg1.4) and (1.8), we see that the cross- B W

over is simply described by a crossover in the slope of th?/vherew —2mn/g, n=0+1+2 is theboson Matsub-

linear gap near the Fermi level. Such a crossover should, igra freqaency an’d T

principle, be detectable experimentally by sitting at a fixed ’

distance to the critical point of the transition. In this case, as

the temperature or frequency is lowered, one should observe f(|wg))= v(q) (A2)
a linearly vanishing gap with an initial nonuniversal slope n |w,| +Dog? 2

that turns into a universal number in the low-temperature/ 1+v(@)vo 2
frequency limit. |wn|+Dg

We emphasize that the lineguantumCoulomb gap be-
havior results from the combined effects @f two dimen-
sionality, (ii) long-range Coulomb potential, aridi) quan-
tum diffusion, i.e., a finite conductivity af=0. It is
expected to pertain to other metal-insulator transitions in 2D
amorphous electron systems, provided that the critical congpere
ductivity is finite. The physics discussed here is quite generic
of the 2D disordered metal-insulator quantum critical point.
Arecent example is the 2B=0 metal-insulator transitioff WH(r) =,
In this case, Fig. 4 needs to be modified to include the renor- n>0
malized classical, i.e., the metallic region. It is our hope that
the present work will stimulate further experimental investi- B 1 .
gations on the nature of dynamical scaling in the quantum w (T):Z’o E[l_e "I o). (A0)
Hall effect and in other metal-insulator transitions.

To perform the Matsubara sum, we first separate the positive
and the negative frequencies by writing

W(T)=W*(7)+ W (7), (A3)

[1—e“n]f(w,), (A4)

|-

Next we define a function on the complex plane:
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2i .
jE Ff(2)dz= — > [1—-€“n"]f(w,)+ 27i
C1+Cy B >0

12| == O

X [residues fromf(—iz)], 2=it+p

2i . _
3@ Ff(2)dz= — > [1—€“n"]f(—w,)+ 27i
C3+Cy B 10

X [residues fromf(iz)]. (A7) z=it+0

It can be shown straightforwardly that the integrals—gf) -

along both semicircle€, and C, (with |z|=R) vanish at 0 B T
infinite radiusR— o, provided that 6<7<< . Since residues
of f(—iz) lie in the lower half-plane while those éfiz) lie : o i
in the upper half-plane, they do not contribute to the contoufUt the analytical continuation. The real axis corresponds to the
integrals as we defined. Therefore, summing up the integral'gnag'nary timer, whereas the imaginary axis is labeled by the real

alongC; andCg3, we obtain time t

FIG. 6. The contour of integration used in E§2) for carrying

+ o0 1_ TE 1 . _ « 7a)nt . 3\ .
W(T)=f xdeeﬁeflz—ﬂ_i[f(—ie)—f(ie)]_ (A8) G(iwn) Ifo dte”“n'[G(it+0")—G(it+p)]. (B3)

) o ) . .Using the antiperiodic property, we obtain
Note that since the fermionic Green’s functions are antiperi-

odic in 7, i.e., G(7+ B) = — G(1), this implies that, through ] S N
Eq.(3.38, a periodic phase factaW(3+ 7)=W(7) which is G(iwy)=2i fo dte”“n"G(it+07), (B4)
indeed satisfied by EqAS8).
where we have included the result fof,<<0, in which case,
APPENDIX B: ANALYTICAL CONTINUATION the integration contour was chosen to lie in the low half-
plane.
In this appendix, we describe one of the technical subtle- Next we take the analytical continuation in frequency,
ties encountered when taking the analytical continuation inw,—w+i0", and obtain
Eg. (4.1). We show how to obtaiG(w+i0") directly from
the time-ordered imaginary-time Green's functiGgr) by . N SO T et Wi
analytically continuingr—it+0". We begin with the Fou- Glotid)=2i fo dte tG(|t).22|L e'“'Goe MY,
rier transform of the fermion Green’s function, ’ (B5)

. where we have used Ed3.38 for the Green’s function
G(iw,)= fo dre'“n"G(7), (B1)  G(it) in our semiclassical phase approximation. Substituting
the expression of the SCBA Green’s functi@y in Eq.
which satisfies the antiperiodic boundary conditi@®{ (3.41), we obtain the TDOS at finite temperatures:
+B)=—G(7). As a resultG(i w,) is non-zero only for odd _
Matsubara frequencies, i.e., far,=[(2n+1)7/B]. o ilmG Lis)= 2 (= sin(lolt) 0
To perform the integration in E4B1) and the analytical vw)= T (@ B VO,B 7 Sinh(art/ B) '
continuation to the real frequency, we extendo the com- (B6)
lex z plane with R¢z]= 7 andi Im[ z]=it. We seek to ana- . o
IF;/ticaII)p/ continue tEe] integral in [th]e segment bounded byNOt.e that an overall factor stemming fro.m the Ferm_l .d|str|-
(0,8) on the real axis to integrals along the vertical axis atbutlon tflfj_n(_i[tlotl’l has n:)t been mcl_l:c_jed tm the q[eflnltl_on of
=0,8. To this end, consider the closed-path integral alongz’(“’) at finite temperatures, since 1t 1S, at any rate, unimpor-
the contour shown in Fig. 6, chosen to lie in the upper half- ant at low temperatures.
place forw,>0. SinceG(7) is nonanalytic atr=0,3, the
vertical segments of the contours are shifted infinitesimally APPENDIX C: SIX INTEGRATION REGIONS
such that 6<Rez< . The analytical continuation is possible | this appendix, we perform integrations over the fre-
when G(z) is analytic, and has no poles encircled by thequency and wave vector in E@4.5 to obtain the phase-

contour: delay factorW(it). We consider the interaction potential of
the general formv(q)=u(1/92"P) in momentum space or
jg dze“?G(z)=0. (82) v(r)=u/r’in real space. We can rewrite E@.5 as
Since the integral along tHe| — o segment of the contour in = [F g, e dg®
h ; g g g W(It)—f do— —ZQ(q,(u), (Cl)
Fig. 6 vanishes fow,>0, we have i 2w ) 4Aq
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where the integrand witk®> = vqu is given by jllfodwf 0(q.0)= 1 20 1 2log(t/ 7o)
g,0)=_——vou" D=k 75log(t/ 7o
Q( ) ZUw(ZDq2+quK2p) 1t 2 27T 2p
)= '
T D+ W IL(DAP+ D PP+ g ? u 1
(2 2 — 2pTSK Plog(t/ry).  (C8

There are six characteristic integration regions differed by
the ordering ofDg?, DgPx? P, and w. The details of the
integration are discussed below. For pk2 we find the
leading contribution is the double-log term appeared in th
long-range Coulomb cas@€ 1) in Sec. IV A. Forp>2 the
leading contribution is of the foriV.,~ 1/t° with >0, and
6—0 asp—2. 3. RegimeDgPk? P<D@’<w

This single-log term is subleading when compared to the
qleading double-log contribution in regime 1 in the long-time
imit.

In this case, we have
1. RegimeDg?<w<DgPx®~P
The conditionDg?<w<DqgP«? P requireso<D«? for 4Du
p<2; andw>D«? for p>2. In this case, the integrar@in Q(q,w)~ ——qP. (C9)
Eq. (C2) can be approximated by ’

(C3) The limits for theq and w integrals arexk<q<w/D, w
Drowg?’ >Dk?= 1/, for p<2, andgq<min[«,\Jw/D] for p>2. The
p<2 case is of no interest in this regime since the lower
cutoff of the frequency integral is 4/ and is time indepen-

Q(p,w)~

For p<2 we obtain

d%q 1 1 2-p dent in the limitt> 7.
f —Q(q,0)=—— =—— —logwrs (C4) We now discuss th@>2 case. For most of the physical

4 2m Dy p systems the mean free palths greater than the screening
where we have introducer], via 1/7s= D« Performing the l€ngth«; therefore, mifik,yw/D}= Jw/D. The integrals can
remainingw integral, we obtain be carried out according to

Urodw 1 1 2-p d2 ‘
= - =" q 2Du 1 (Ve
jn 277J —Q(q,0) 82Dvg P logt/ mplogt/ Ty, f 4_774Q(q'w):_77 Efo gdqd®
(CH

where Tf=7-0/DK2. For p>2, due to the requirement that :2_u 1 L ®)P2"2,  (C10
w>D«?, this regime does not have any time-dependent con- T pt+2 pp2 '

tribution in the long-time limit when> 5.

2. RegimeDg?<DgPk? P<w Jl/TOde u 1 2

This regime requireq)<qo(w)=min[ «,(w7s) k] for ~ 2DPZp+2p-2

p<2 and k<q<(w7s) Pk for p>2. The latter case re- { . L

quiresw>1/75. This means that, fop>2, this regime does _
T8/2—1 P21

not contribute in the long-time limit in a time-dependent
way.

For p<2, we have (C1Y
2 i Pe2—P 2
Q(q,w)~—3vou2Dq2p*2, (C6) 4. RegimeDgPrk-"P<w<Dq
© In this regime, we have
such that
42 » o )~ 4ou 1
do(w )~ — ——
o Qa0)= VOUZDJ " dgepP + St
47 '7Tw3 0
1, 03P (w) The limits of the integrations arew{D)?<q< k(wrs)P,
= vou o (C?  w>1/rg for p<2, and w<1/7s for p>2. The p<2 case
only produces time-independent contributions in the limit
Usually t> 79> 75, therefore,w<rg . We obtain >75. For the case op>2, it is straightforward to obtain
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d?q
j mQ(q,w)

k(wTg) Up 1

_ 2Uw

D3m

(0/D)V2

_ 2u 1 1 1
T D37 6—p| 2 PRpPR-3 _wGIp—ZTS/p—lke_p ,

(C12
=

u 1 27'0
= — —[1_
w2 6P| (p—2)IP

stKp
(3p 6)(K|)6(Ts/7'o)6/p

(2D 75)¥? is the mean free path.

—Q(q,w)

(ro/t)P24]

1—(To/t)3—6’p]] , (C13
wherel =

5. Regimew<DgPk? P<Dq?
In this regime, the integran® in Eq. (C2) can be ap-
proximated by

4uw

Q(q, w)~—

(C149

Qe P

For w<1l/mg<1l/7g, the limits of the integrations arg@> «
for p<2 and (o) Pxk<q<« for p>2.
In the case op<2, we have

d?q _2u(ujd 1 2ue 1 1
mQ(q,w)— D37 J« qup_ D37 6—p 6P’
(C19

[ [ $hq SRS
w 2m) 4m° e ZWZTS(G_p) o .

(Cle
On the other hand, fgp>2, we have
f d?q 2Uw 1
At ZQ(q (,!)) D3 q_
B 2Uw 1 1
D37 (6—p)k®P| (wrs) B PP ,
(C17)
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leading to
1/Toda)
_u stKp
w2 6—p (3p—6)(kl)®(7s/70)®P
2 «P
><[l—(To/t)3’6’p]— 26— [1 (mo/1)?].
(C18
6. Regimew<Dqg?’<DgPk?P
Finally, in regime 6, we have
Q) ~ —2 (19
ARTTO

The limits of the integrations aresx{D)?q< « for p<2 and
>« for p>2.
In the p<2 case, integrals give

(C20

= f 3 Q(0,0)

1
= log(t/ 7o) —
8 772 voD [ /7o) 2D%k

[1/7O /tz]] . (Cc21

The p>2 case, on the other hand, gives,

Jl/Tode QA 1 2[1/2 1/'[2]
w 2m) dm? o e 16772v0DTS o '

(C22

Note that thes potential considered in Sec. IV B corresponds
to the p=0 case. The result in Eq4.21) can be obtained
from either thep>2 case or thgg<2 case by taking the
limit p—2 using lim_q(1X)(1-y*)=—-Iny and
lim,_>(p—2)In(7)=In(wou).
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