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Quantum Brownian motion in ratchet potentials

Stefan Scheidl
Institut fir Theoretische Physik, Universttau Kdn, Zupicher StraRe 77, D-50937 Km Germany

Valerii M. Vinokur
Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, lllinois 60439
(Received 2 January 2002; published 22 April 2002

We investigate the dynamics of quantum particles in a ratchet potential subject to an ac force field. We
develop a perturbative approach for weak ratchet potentials and force fields. Within this approach, we obtain an
analytical description of dc current rectification and current reversals. Transport characteristics for various
limiting cases—such as the classical limit, the limit of high or low frequencies, and the limit of high tempera-
tures — are derived explicitly. To gain insight into the intricate dependence of the rectified current on the
relevant parameters, we identify characteristic scales and obtain the response of the ratchet system in terms of
scaling functions. We pay special attention to inertial effects and show that they are often relevant, for example,
at high temperatures. We find that the high-temperature decay of the rectified current follows an algebraic law

with a nontrivial exponentjoT =17/
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[. INTRODUCTION different species—it still lacks a satisfying theoretical under-

standing. Analytical approaches can give insight into this

Ratchets have attracted a considerable recent interest beroblem. However, even the single-particle problem is al-
cause of their paradigmatic role as microscopic transport dg€ady so complex that analytical approaches can be advanced
vices (for review articles, see, e.g., Refs. J—8pplications ~ only in limiting cases, such as the adiabatic lithior the

. . . . inictic limitl8.22

range from microscale electronics—including the photogaldeterministic limit. _ _
vanic effect' transport in quantum dot§ and antidot In our paper we develop a perturbative approach valid for
arrayd—over Josephson junctioti$!and vortex mattéf to ~ Weak ratchet potentials and weak driving forces, which cov-
cell biology3 At the same time, ratchets are of fundamental€rs & wide range of practical applications. Within this pertur-
theoretical interest since they represent one of the simple§@tive approach we are able to capture all prominent phe-
nonequilibrium systems. nomena including multiple current reversals. This approach

The analysis of ratchet systems reaches back quite sonf¥ovides a unified framework for deriving and understanding
time before Feynman drew the attention of a wide audiencé'e dependence of the rectified current on the particle mass,
to such systems in his lectures where he discussed the pd§mperature, friction coefficient, and frequency of the driving
sibility of employing ratchets as heat engif8sSubse- force. We pay particular attention to the role of inertial ef-
quently, researches in ratchets have progressed steadily, igCts, and show that they lead to a substantial current en-
parallel in different scientific communities, until an explosive hancement even in the high-temperature limit.
outburst of theoretical and experimental interest occurred in !N Sec. Il we specify the model and establish a path-
the 199045 integral formulation as an analytical framework. A perturba-

In this paper, we report on the analytical progress in thdive scheme is develo.ped in Sep_. [ll. In Sec. IV we briefly
study of so-called tilting ratchets, where the combination ofd€monstrate that the linear mobility can be conveniently ob-
an asymmetric static potential with an unbiased ac force anfined from this approach, and that results for special cases
a coupling to a heat bath leads to current rectification. Padfnown in the literature are reproduced. However, ratchet ef-
theoretical studies of this ratchet type focused on the classféCts can be obtained only in nonlinear response. The leading
cal massless cas!’and revealed theurrent reversaphe- r;on_wl_mear mobyhty is calculated and eva}luated.for various
nomenon, i.e., the possibility that the direction of the recti-limiting cases in Sec. V. We conclude with a discussion of
fied current reverses its direction when model parameter@Ur @pproach and results in Sec. VI. Technical details of our
such as the frequency or amplitude of the ac current aralculations are presented in Appendixes.
changed. The inclusion of a finite mass of the particles
showed that it may give rise even tmultiple current Il. MODEL
reversals® Further extensions accounted for the quantum
nature of particles and of the bath. Quantum fluctuations We consider a quantum particle of mamsn a stationary
were found to provide an additional source of currentratchet potential(x). In addition, we impose an ac driving
reversals®—2 force F(t) which is chosen to be unbiased, i.e., to vanish

In essence, the direction and amplitude of the currentipon time averaging. Following Caldeira and Leggétve
turned out to be very sensitive to the various system paraneouple the particle linearly to a bath of harmonic oscillators
eters. While this dependence makes ratchets valuable f@t temperaturd. This bath simultaneously provides friction
applications—such as devices that can separate particles and a fluctuating force for the particle. For simplicity, we
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assume a linear spectral distribution of these oscillators, giv- 1
ing rise to Ohmic dissipation. In the classical limit, the par- SO:EJ j dtdt’y(H)K(t—t")y(t")
ticle coordinatex(t) follows the equation of motion

mX(t)=—U' () +F(O) - px(O+ED), (@) [ awtomic+ i1 (7o)
with a friction coefficient and a Gaussian thermal noise ) 1
&(t) obeying 81=IJ dt ES 25X +sy()]-y(OF ()|, (70

= "WN=2pTS(t—1t"). 2 with all time integrals running front; to t;. For notational

(ED)=0. (F&t))=2yTa-t) @ convenience, the usual contributib x* (t)]—U[x ™ (t)] is

To account for the quantum nature of the particle and of thavritten as a sum over the spinlike variatsle: +#/2, which,

bath, we follow the analysis of quantum Brownian motion byhowever, does not have the meaning of a physical spin.
Fishef* and Fisher and Zwergét,who studied the case of a  Effective action(7) already includes the average over the

sinusoidal potential and a dc driving force. bath degrees of freedom. This average leads to an integral
The rectified particle velocity can be determined from kernel K(t) which reads, in a Fourier representafiofwe
the average particle coordinax€t) via setkg=1),
1 _ hw
VE“mTX(t), (3a) K(a))—r]ﬁw coth ﬁ (8)

t—o

In the classical limitK(w)=2#,T reproduces the correlator

[Eq. (2)]. For T=0, K(w)=n#|w| represents a kernel that
X(t)zf dxxP(t,x), (3b)  is highly nonlocal in the time representation.

The model has a large number of parameters: the particle

massm and the friction coefficientp, thens and T as a
measure of the strength of quantum and thermal fluctuations.
Further parameters are implicit id(x) and F(t). The po-
tential can be represented by a Fourier series

where P(t,x) is the probability distribution for the particle
position at timet. This distribution is related to the reduced

density matrix operatop(t) (after the bath degrees of free-
dom are traced ouby

P(t,%)=(x|p(1)]x). (@) U00=2 Uge'™ )

with amplitudesU,, for wave vectorsy. For periodic poten-

We use the Dirac notation, whetg*|p(t)|x~) is the den- " : )
[ (@ lp(Ox") tials with a perioda, the wave vectors are

sity matrix in position representatidn.

The dynamics of this density matrix is most conveniently 20
treated in the Feynman-Vernon path integral g=n—, (10)
representatiof®?’ The time evolution of the density matrix a
from some initial timet;, to a final timet;, is given by with an integem.

In analogy toU, the ac drive is represented as

<xf+|,3(tf)|x;>=f fdxﬁder(tf,xf* Xe st x) FO=S F e ot (11)

+ ~ —
X" [p(t) i), (53 with Fy=0, since the force is assumed to be unbiased on
with the kernel time average. For a periodic drive with peritg, the fre-
quenciesw are integer multiples of the basic frequency
27/te . Although here we assume periodicitieslindF, a
It X X st X ,xi_)=f DxDye (5b)  generalization to randoftd andF is straightforward and will
be discussed at the end of the paper.

being a double path integral over all trajectorigd) and
y(t) with the boundary conditioR Ill. PERTURBATIVE APPROACH

Definition (3) of the velocity has the drawback that one
has to calculateX(t) as the expectation value of the final
position in an ensemble of forward-backward paths of a fi-
nite lengtht;—t;. In order to avoid technical complications

1 1
X(ti'f): E(XL-'—f+XL_f)v y(ti,f): %(XI_Ff_XI,_f) (6)

The path integral involves the effective action related to boundary effects, we relate the average velocity to
an expectation value at an intermediate timehich can be
S=S+ S, (79 kept fixed while the limitt;— —o andt;—c is been taken.
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Consider the “partition sum” 1
Vw:lu‘l(w)Fw_l— E Z” Iu‘Z(w/ 1w,’)Fw’Fw”5w,w’+w"

:f dxff f dXierXFJ(tf,Xf,Xf§ti,Xi+yXi7) +O(F?). (16)
><<x-+|f>(t-)|x-‘> (12) The rectified current is given by the time-averdgero fre-
R quency componehbf the velocity:
of all forward-backward paths betweénandt;. It is nor-
malized tqZ=1, since it is the trace of the density matrix at Vo:E Z o — @, 0)F_ F,+O(F3). (17)
t;. We define 2

. Since the driving force is unbiaseBlg=0, current rectifica-
V(t)=(x(1)) (13 tion cannot be obtained in linear response. Rather, ratchet
effects require frequency mixing which is present only in
nonlinear response. For wekkhe leading ratchet effect will
be determined byu,.

If the driving force has the symmetry

as the expectation value in the ensemBlef fluctuating
paths. In this definition, we can take the limi{s- —« and
tq— oo right away. In the absence of a nonequilibrium driving
force and due to the presence of dissipativift) would
vanish after an initial relaxation for every possible initial F(t)=—F(t—tp) (18)

density matrixp(t;). In the presence of the driving force and
in the limit t;— —o, V(t) will be determined uniquely by
F(t) and independently of the initial state.

Although we strictly follow the definition of Fisher and
Zwergef*?°in the path integral formulation of the problem,
we differ in the definition of the average velocity. We argue
in Appendix A that, in the long-time limit, the time average
of the velocityV(t) coincides with the earlier definitiorEq.
(3)] in combination with Eqs(4) and(5). We find the expec-
tation valueV(t) to be a convenient quantity for the subse-
guent perturbative evaluation.

for some timet, (for example, ifF is monochromatig the
rectified velocity will be invariant under the transformation
F(t)—F(t—tg)=—F(t). Then the contributions to the rec-
tified current from all mobilitiese, with odd m must vanish.
Although the calculation of these mobilities is already
much simpler than a closed calculation\ft), it still cannot
be performed analytically for general potentials. Therefore,
we employ a second expansionlh utilizing the weakness
of the potential.
The mobilities, which, according to Eq$l5), are the
equilibrium expectation valueg,=(Op)|g-o of observ-
. . ablesO,,=x(t)iy(t')- - -iy(t™), will be calculated pertur-
A. Perturbative expansion batively in the potential using the expansibf®
To make analytical progress, we consiffeas small, and

calculate the nonlinear dynamic response of the velocity to B n
the driving force: e Slp_o= E fth g+l (19)

]

We thus can write

V(t):fdt'ﬂl(t—t')F(t,)-i-%f J'dt'dt",u,z(t—'[,,t
_t//)F(t/)F(t//)+O(F3). (14) E /-L(n) (20

The mobilitiesu,, can be expressed conveniently as expecwith
tation values in the path ensemble using the partition sum as
generating functional:

1
(U
Mm n! S1, ql “Sn s qn - ZISJJ'dtl fdt

SV(t) .
ma(t=t")= ; =(x(Diy(t"))|g=0, (153 o
SF(t') | _, X{ Opex ';21 qilx(t)+sy(tpl] ), D
B 0
, , 52V(t) where the averagé - - ) is governed by the “free” action
po(t=t' 1=t = —————— S, defined by Eq(7b). SinceS, is Gaussian, the averages
SF(1)SF(t") |

can be performed straightforwardly using Wick'’s theorem.
=(x(D)iy(t")iy(t"))|e—o. (15b
(x(Oiy(t)iy(t"))|r=o. (15D B. Free theory

The generalization to higher-order mobilities is straightfor-  For these averages it is important to know the correlations

ward. The expectation values now refer to #guilibrium  of the free theory. In Fourier representation, one easily finds
system in the absence of the driving force.

After Fourier transformation, Eq14) reads X(0")X(0"))=C(w")d(w'+ "), (229
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X(w")iy(0"))=C(w") (o' + "), (22b)
(Y(@")y(@"))o=0, (220)
with the response and correlation functions
Glw)y=—7——"—F5—, 23
(@) i nw+mw?—0" (239
K(w)
Clw)= (23b

772w2+m2w4

To calculate the nonlinear mobilities, one has to user¢hie

tardedresponse function, which is, in a time representation,

1
G(t)=<X(t)iy(0)>o=;[1—e’yt](t), (24)
with a relaxation rate defined by
=7
Y=o (25
The causality of the response,
G(t)=0 for t<O (26)

is reflected by the Heaviside step functi®r{t) in Eq. (24).

Note that(x?(t)) ==, since the free system is translationally

invariant and the particle spreads diffusivégubdiffusively
for T=0) over the entire space. Therefoi@(t) is not a
well-defined quantity. Instead, the displacement function

1
W(t)= 5 ([x(t) =x(0)]*)o (279

dow
J E[l—C0$wt)]C(a))
(27b)

captures all information about the particisubdiffusion.
This quantity will play a central role in perturbation theory.
Unfortunately, it can be calculated explicitly only in limiting
cases:

-
W(t)=%[y|t|+e’7|t|—l] for #=0, (270

h
W(t)~—Iny|t| for T=0. (270
T

For semiquantitative purposes,

W(t)~ l[yltl +e l—1]+ iln[1+(~yt)2]
ny 2wy
(27¢

is a good interpolation over the whole parameter range.

PHYSICAL REVIEW B 65 195305

TG(t)=W(1)O(t). (28)

In the quantum case with=0, W(t) diverges for alk in the
limit m—0.

C. Characteristic scales

Before we move on to a further evaluation of the path
integral, we pause for a moment to fix the relevant time,
length, and energy scales of our problem. From the response
function of our problem we can identify the typical relax-
ation time

1 m
Yy n
Rewriting the displacement correlation functioW/(t)

=12W(t/t,e) in terms of the dimensionless functivi of the
dimensionless argumetit,., from Eqs.(27) we identify the
diffusion lengthd for the thermal and the quantum case:

(29

o=

, Im 2_ﬁ
lth_?’ Iqu_,'_?' (30)
The de Broglie wavelength
27h? s
A2= e wl%’ (32)

is a related further characteristic scale for the particle in the
absence of dissipation.

Alternatively to Eqs.(30), we can associate with thermal
and quantum fluctuations characteristic energiesy?l?/m,

En=T, (32

The potential and driving force—which act as probes to the
free particle—define the space periadtime periodtg, and
amplitudes

Equ=1y.

U=2|Uqy, F=2|F,|, (33)

defined by the lowest harmonic modesnd w. In the case
of randomU or F, the periods would be replaced by a cor-
relation length or time and the amplitudes by variances.

In terms of these scales, a necessary requirement for the
validity of the perturbative approach is that external probes
must be weak in comparison to the internal fluctuations, i.e.,

U,aF<max Eg,Eqy). (34

These scales will also determine the location of the phenom-
ena under consideration, as we will discuss later. However,
as we recall by calculating the linear response mobility, con-
dition (34) is not sufficient for the validity of perturbative
results.

In the subsequent calculations it is convenient to use di-
mensionless quantities. It is natural to chobggas the time

We conclude this subsection by pointing out some keyscale, ory as the frequency scale. The generic length scale is

features of the response and displacement function.7For

the potential period.. The ratios ofl , andI, to a? provide

=0, G andW are related through the fluctuation-dissipationa natural measure of the strength of thermal and quantum

relation

fluctuations. Hence we define
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oot ~ - P h - Tm
= , w=—, =agqg, =—, = .
(35
as dimensionless quantities.
D. Mobilities

In Eqg. (22), the mobilities,ug‘) are determined by expec-

tation values which can be calculated conveniently from a

generating functional. We define

ZE<eX[<if dT[p(T)X(T)+0’(T)y(T)])> (36)
0

as a functional of auxiliary fieldp(7) and o(7). 7 is a
real-time variable, and we will be distinguishing it from
only for bookkeeping purposes. The averages determinin
the mobilities) can be then represented as functional de
rivatives,

<Om ex;{ i]z,l qj[x(tj)+sjy(tj)]) >

0

d 8(m+1)
T @ o) seqmy
where one has to identify
n
p<r>=j§1 q;8(7=1j), (383
n
a(r)=j§1 q;s;6(7—t)) (38b)

PHYSICAL REVIEW B65 195305

u (=t t—t",- - t—tm)

d 1
_I_—
dtnl s g, s, .0,

S(q)

5(m+ 1)

n llq]
dt, - o
op(t)da(t’)- - bo(t'™)

oo |
XeX%J\ f d’Tlde

+ip(7)G(11— 72)0(72)

X

1
EP(TI)W( 1~ T2)p(72)

|

Thereby, substitutiof38) has to be made after all functional
derivatives are taken. Momentum conservation implies that
Il mobilities vanish for nm=1. Forn=2 and everm the
obilities vanish since the contributions to the sum in the
right-hand side of Eq(41) are odd in{q}. We already noted
above that no contribution to the rectified current can arise
from w,, with odd m and arbitraryn if the driving force
obeys symmetry18). In this case, up to fifth order iR and
U, the only contribution comes fromc(23). Having deter-
mined the generating function&l for the mobilities, we now
turn to the evaluation of the lowest order mobilities of inter-
est.

(42)

IV. LINEAR MOBILITY gy

Although we do not expect ratchet effects from linear
response, it is instructive to calculage, in order U? to
verify that the present calculation of the mobility reproduces
that results of Fishéf and Fisher and Zwerg@rfor staticF
and sinusoidal (i.e., for this purpose we include the ampli-
tudeF, in our consideration

after performing the functional derivatives. Using the results

of Sec. lll B, the generating functional can be expressed as

1
_Ep(Tl)C(Tl_TZ)P(TZ)

|

As mentioned previouslyz(t) is divergent. This implies that
Z=0if f[drp(7)=Z;q;#0. Therefore Z can be nonvanish-
ing only if the “momentum conservationZ;q;=0 is satis-
fied. In this case one may rewrite

Z:eX%J‘ J dTlde

ZZGX[{I delde

+ip(7)G(11— 1) 0(72)

(39

1
Ep(Tl)W(Tl_TZ)P(TZ)

A. Leading orders

To zeroth order irlJ, it is obvious that

wWO—t")=G(t—t"). (42)

To first order,

p(t—t')=0 (43)
since the momentum conservation mentioned above cannot
be satisfiedstrictly speaking, it is satisfied for the mode
=0 which, however, does not enter the dynarnics

To second order, a straightforward calculati@ee Ap-
pendix B leads to

+ip(Tl)G(Tl_7'2)O'(T2) )5{q} (40) Mg-Z)(w):inZ(w)% q2|Uq|2AB(—2c)1,q(w)1 (44)
Hereby, we introduce the abbreviatiop, = 5ij10. The sub- )
sequent calculations of the mobilities are based on this geﬁ(y'th
erating functional. For later convenience, we combine Egs. @) @) @
(21), (37), and(40) to our master formula ABYG g(0)=BX; ((0=0)—BX] (), (4539
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Ugl? @2
u? g?-iz’

(52

2 |h ) -
Bgi),qz(t):ﬁs'r{iqics(t) € qlw(t)5q1+q2,0- (45D M(12)(Z):§q:

In the last expression, the sine has a nonunique sign for Thus, form=0, the corrections to mobility decay propor-

2 tional to T~ 2 at high temperatures.

" (46)

h 2
'7T<§q G()= o
7 C. Adiabatic limit
reflecting quantum interferences of particle trajectories. We The adiabatic limitw—0 simplifies the calculation of
briefly discuss interesting limiting cases af?), for which AB®) (w), resulting in

we will also examine the ratchet effect later on.

2
2 _ _ 2~2
B. Classical limit pf )(w_o)___nzﬁ % |Uglq

In a classical limit,4A— 0, both the overdamped and un- .
derdamped cases are understood fairly ﬁ?e‘ﬁ3 In the Xj dttquW(t)sir{ﬁqu(t)}, (53
present perturbative approach, the fluctuation-dissipation 0 2

theorem[Eq. (28)] allows for the simplification ] ] ) o
which agrees with the linear response limiting cd&®.

1d (4.18)] of Ref. 24.

Bgi),qz(t)Z—fae*ql""(‘)(@(t)&qﬁqzyo. (47) At T=0, the particle shows a remarkable localization
transition due to the dissipative couplift?* For strong cou-

In this case, the Fourier transformation can be performed!ing, the particle is localized in an arbitrarily weak poten-

analytically, tial, whereas it remains mobile for weak damping. This tran-

sition is reflected by the divergence of the mobility

@) e — W) correction,u(lz)(wZO) due to a divergence of the time inte-
ABZgq(@)=— ?fo dte“'e (483 gral at larget. From the logarithmic asymptoti¢&q. (270)]
of W(t), one can identify the location of the transitionat
A =1 with
— — ety i, bg)
T q Y¥q Yg)s pa? 1
(48D =k ot (54)

with y(-,-) the incomplete gamma functiofto be distin-
guished from the parameter). We introduced the dimen-
sionless frequency

Note that fora<1 inequality (46) is fulfilled for all wave
vectorsq, i.e., quantum interference effects suppress the con-
tribution to u{?.
Tme In the strong damping regime, the divergenceud?(w

(499  =0) signals a breakdown of perturbation theory. Thus, at
T=0, the conditionw<<1 should be added to conditi¢B4).
This condition may be regarded also as a condition for the
period of the potentialwith localization fora?< ZwléLJ.

S 1242
Vq=|thq - 2

related to the thermal diffusion time over a distancg \lia

W(trei/vq) =0 ?. The insertion of expressio@8b) into Eq. In the perturbatively accessible regime @& 1, Fisher
(_44) yields an expllch _analyt!cal expression for the classicalypg Zwerge?* pointed out the interesting fact that the mo-
linear response mobility at finite frequencies, bility is a nonmonotoneoutinction of temperature. At zero
temperature, the particle has its free mobility. Weak thermal
@, 1 1 |Uq|2 DL (vg-i®) fluctuations T<T*) first reduce mobilitythermally resisted
pi (@)= 77 (1-i0)2F T2 &y quantum tunneling whereas strong thermal fluctuations in-
crease the mobility back to its free val(thermally assisted
X y( ;}q_i(:)x;q); (500  hopping. The crossover occurs far<1 at the temperature
which reproduces Ed4.11) of Ref. 24 for the special case of w2h2
sinusoidalu and w=0. T = - (59

In the massles®verdampeglimit m— 0, whereB can be

easily Fourier transformed, this simplifies to at which the de Broglie wave length is comparable to the

5 potential period\ =a. Before we continue to enter new ter-

@, _ 1 Uz.. (o) M@ 5y litory, we wish to conclude this subsection by stressing that
pi (@)= ; F“l T ) (5D our approach successfully reproduces previous linear re-
sponse results foew =0, and already provides additional in-
with a dimensionless scaling function sight into the frequency dependence.
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V. NONLINEAR MOBILITY (In order to obtain simple analytic expressions below, we

. . . find it most convenient to use momentum conservation to
The generating functional formalism presented above alsQ

provides an efficient tool to calculate higher-order mobiIities.ellmlnalte the sum oveg,) In Eq. (59), the sum over the

. N momenta can be restricted ¢p+0 (in addition to momen-
Here we focus on the lowest order @f in U contributing to . . (3) ; ,
current rectification. tum conservatiop sinceBjyi vanishes otherwiséater on,

these restrictions are referred to By). Physically, it is clear
that a constant shift of the potential cannot enter the dynam-
ics of the particle.
To zeroth order, Equation(59) is our main result in general form. Further
_ analytical progress is hampered by the absence of an analyti-

p =t t—t") =(x(D)iy(t)iy(t"))o=0  (56)  cal expression forW(t). Nevertheless, further analytical

progress is possible in various limiting cases.
Using the dimensionless quantities defined in E§S)

we may reexpress E@59) as

A. Leading orders

vanishes, sinceS, is invariant under the reflectiofix,y}
—{—x,—y}. To first order,

uH(t—t' t—t")=0 (57)
3
vanishes again because momentum conservation cannot be N~ w,w)= — 4,u(23)(h,T,w), (62)
satisfied. To second order, nathy
@)t —t" t—1" = o . . . . . .
pe (1=t t=1)=0, (58) with u being a dimensionless function of dimensionless ar-

according to the general statements following ). guments. For a monochromatic driving force, the rectified
The general third-order contribution{(t—t’,t—t") is  Velocity is
given by expressioiC6) calculated in Appendix C. Since

this expression is somewhat clumsy and since we are inter- U3F?2 @) &~
ested only in ratchet effects, we can restrict our consider- Vozmﬂz (7, T,w) (63)
ations to mahy
: to leading order according to E¢L6).
WP o=t 3 Uy Ug g
! 2 2 2 4 ;702> 03
T et M0 G4z B. Limit #—0 and m—0
X{Q1Q2[25§§f(0,0)—ngf(—w,o) We start with the examination of the classical limit. To
_ 53) (3) a3) further simplify the analysis and to perform a comparison of
Blaj(@.0)]+ 0103 2B1(0.0) = Bjgi( — , our perturbative results with previous approaches, we con-
—w)—Bgf(w,w)+q2q3[28$§(0,0) sider the overd?sr)np_ed limit witm=0. In this case, the
memory kerneByi simplifies considerably to
~B{(0,~ )~ B{l(0,0)1}, (59)
. 2
with 01029 1 1
B2} (@1,00) =~ g5 - ———,
, 2 . ﬁ 2 n Vql (OF} Vq3 (0F)
ng%(H_tzvtz_ts): gSW{E%GQQZ}g (64)
A with the characteristic frequencies
X sin 5 (016103 + Q2G23Q3)}
Vg= To?/ 7. (65
X exp(gWiz0,+ 0 W3 . o .
This frequency corresponds to the ti a classical

+01W1dd3) 8, +,+45,0923- (600 particle needs to diffuse over a distarget. Insertion of Eq.

Note thatB{3) is an implicit function of{q} and invariant (64) into Eq. (59) leads to

under{q}— —{q}. Consequentlyut)(— w,») changes sign o

under a reflectiotJ ,— U _, which implies that the rectified p(h,T,0)—=52T 4wl T), (66)
velocity [Eq. (17)] vanishes for even potentials, as it should.

Examining the contribution from a set of wave vect¢gs  i-€.,

and its reflected set—{q}, one can recognize that

w$)(— w,w) is real, and that it depends only on , ., ( nalo
pe(—0.0) =G5 T (67)
- Ug,Uq,Uq, 7
Off)=Im ——. (61) _ _ _
us with a reduced scaling function
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)=- 2 (Q1+0s)
a29

2&% B &1&3(51?&%—22)
qi+2%  (a+22)(03+22)

The primed sum is restricted to momenta satisfying momen-
tum conservation and;#0. It is interesting to realize that ! ;

the functlonu(z?’&(z) is uniquely determined by the shape of

the potential. If current reversals exist in the limit under con- 0 \\/”

sideration, they correspond to oscillatory behavior of this

function.

The scaling funct|0nM(230)|(z) becomes simple in addi-
tional limiting cases. In deriving these limits from E&8),
one has to make use of momentum conservation and of per- g 1. scaling function

mutations of momentum labels. Fors o,

’

4 oA nAnA
M(zgc)|(z)—’_4 2 UEﬁftﬁngs
Z" d10203

4a6 a m 217
_z4u3fo dx{U”(x)]°U"(x).

Terms of orderz™2 cancel each other. Thus we easily re-
trieve the result obtained previously in Ref. 35.

In the opposite limiz—0,

: 1
pSi2)—2 2 U ==
419203 (o[

with potential integrals

Y (x)= foxdyuw).

1ra
W(X)EY(X)—EL dyY(y).

In deriving Eq.(69b we have assumetl,=0; otherwise 0.015

additional subtraction terms should be added.

This scaling behaviofEq. (69)] implies the asymptotic

behaviors of the rectified velocifyeq. (17)]:
VoxTo0™* for w—w,

Vox T~ % for T,

The apparent divergence &f, for T—0 is an artifact of

leaving the range of validity of our perturbative approach. 0
Analogously, the apparent divergence\gf for »—0 is due

to the assumption of overdamped dynamics. Nevertheless

these divergences may be interpreted as indications the

ratchet effects are particularly strong at Iowand in the

PHYSICAL REVIEW B 65 195305

T T
0.03 1 F T T 7
0.5 -
0.02 2
68 g °
e 05 .
©Qo
<2 001} Ak 4 1
0 0.5 1 15
x/a
1 1

0 100 200 300
z

$3)(2) for potential(72) shown in the
inset.

explicit quantitative comparison of our results with the exact
results in Ref. 17. For this comparison, we evaluate (Ed).
with Eq. (67) for

(693 U(x)z—l/{sm(erX (72

+1 4 X
4sm T

cf. the inset of Fig. 1. The corresponding scaling function
[Eq. (68)] is shown in Fig. 1. Since it has one zero, we
expect one current reversal.

We explicitly compare our perturbative result for the rec-
tified velocity as a function of temperature—displayed in
Fig. 2—with the exact solution displayed in Figalof Ref.
(69b) 17. Thereby, length, energy and time scales are fixed by the

choicesa=1, U= 1/27, and=1. The monochromatic driv-

ing force isF(t) =Fsin(wt), with amplitude/=0.5. From

the shape of the scaling function it is clear that we find a
(709 current reversal with varying temperature for evesy-0
and also a current reversal with varying frequency for every
finite T. The quantitativeagreement is good for=u/, where

(70D the perturbation theory it is justified.

0.01
(718 °

(71b) 0.005

0 0.05 0.1 0.15 0.2 0.25 0.3
T

underdamped case. This situation will be examined later on. F|G. 2. V(T) for »=0.01 (bold line), w=1 (long dashes w

Before we move on to other limiting cases, we show that=4 (short dashes w=>5.5 (dotted ling, and w=7 (dash-dotted
the current reversal phenomenon is captured by our pertufine) for comparison with Fig. ) in Ref. 17. The vertical line
bative approach. We also find it instructive to perform anrepresents the vicinity of the current reversal éor 1.
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0.02 T T T T rent is much stronger for massive particles than for massless
1 ' ' . cases, sincets)~T~7 for m>0 whereasu{~T* for
- m=0 [cf. Eq.(71b)]. This observation is consistent with the
3 0 mass dependence in E4), u$3~m"6T~17 for m—0,
0.01 > - which signals that in the limin—0, ,u(23) should decay with
] ; a higher power of temperature. Thinertial terms are cru-
ez L L L | cial at high temperatures even for large friction where the
= 0 0.5 1 1.5 relaxation of the particle in the minima of the potential is
0 x/a overdamped.
D. Limit w—
L ! ! L For large frequencies, E¢59) simplifies to
0 100 200 300 400 500
z ~ A A A ~ A A
) p T o)== ufih 1) (759
FIG. 3. Scaling function$(2) for potential(73) shown in the w*(1+ %)
inset. or
The classical limit is not restricted to single current rever- 5 P& a5 A
sals. It is likely that an arbitrary number of current reversals ~ #5(—0,0)= 2 V25221 o2 wEAT),
can be obtained by suitably tailored potential. We have n(na*w) h*(y"+ o) 758
found, for example, that it is sufficient to add one more har- (75D
monic to obtain a second current reversal. Specifically, thavith
potential
) x\ 1 x\ 1 X /1(2331((%,?)5_ > Ugg?asql{QE"'QN\?"'q%}
U(x)=—U sin 2775 +4sin 4775 + 4 sin 6775 419293
(73 x h2y*B{3)(0,0). (750

leads to the scaling function shown in Fig. 3 with two zeros,[For the discussion of this limitB{}(0,0)=B{})(»=0.0

i.e., two current reversals.

C. Limit T— o for m>0

=0).] #53 is a function of the potential shape and of pa-
rameters measuring the strength of quantum and thermal
fluctuations. In the special cage=m=0 in Sec. VB we

It is interesting to examine the high-temperature limit, found a momentum dependenBg)(0,0)=d/q, which led
since there are significant differences between the cases 10 @ cancellation in the sum over momenta in expression

=0 andm>0. ForT—«, the exponential factor in E460)
strongly suppressea(y) and thusu$” . In this limit, we find
the asymptotic behavior of the mobilitgee appendix D

723-176
G T 74
my( ) L4 o7 Haht (743
or
(3) _ au3 7]a27 L7ie /:\L(Z?P?IT
py (mo0)=————| 2/, 2"
7 (nacy) 1+ wly
(74b)
with
o) =2Fzﬁr(3) 052
20T 3)qbhm0 @
(01+03)%03 e 3% 1
X =5 ~ ,\2—6 . (740
a: gq:+ds

The constaniu$¥y is uniquely determined by the shape of
the potential. In the high-temperature limit, the rectified cur-

(750. Using the fluctuation-dissipation relatidiq. (28)],
one can easily show th&{3)(0,0) is independent afn for
f=0. Thus this cancellation persists as longfasO, i.e.,
p$9(0,2)=0. Form>0 this implies a decay (- w, )

« w8 However, such a cancellation can no longer be ex-
pected forzi>0. In this case, one again findes’(— w, )
xw~ % at large frequencies.

E. Limit w—0

A further limit of interest is the adiabatic limit for the
quantum particle. This limit was also studied in the pdst!
and revealed that additional current reversals may arise from
the competition of quantum and thermal fluctuations.

For w—0, Eq.(59) reduces to

i To=- 3 of [ dvd
g10203 0
X qq(0st’ —0at") 2B 1), (763
with

Bt 1) =h2BEA( 9,1l y). (76b)
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APPENDIX A: VELOCITY

l0g4g |

In this appendix we show that the average velocity can be
calculated from definitior{13). It is this definition in which
we deviate from the approach of Fisher and Zwef§ér.

The original definition(3a), in a more explicit form, is

'12_3 '2 '1 (I) 1' é 3 ?aseq ton thle average distance the particle travels in a large
Ime Interval,
logyo [T/nay)]
FIG. 4. Double logarithmic plot of the rectified velocifyhe X(t;) — X(t;)
dimensionless quantity$’)y given in Eq.(76)] vs temperature in V= Tt (A1)

the adiabatic limit for potentia(72) in the underdamped case
:% (bold line). The dashed line is a guide to the eye, representin

9n the limits t;—% andt;— — . Thereby we obtain the po-
the behavior:T~17 of the high-temperature limit. e - y P

sition expectation valu¢Eq. (3b)] and the time evolution
[Eg. (53] of the density matrix. On the other hand, the time

We have calculated. ), numerically forh = (1/m) [i.e., a average o/(t) [Eq. (13)] can be written as

= pa®/(2wh)=13 corresponding to the delocalized case, cf.
Eq. (54)] as a function of temperatukef. Fig. 4) for poten- - ~
tial (72). The two poles of the double-logarithmic plot in Fig. ——  X(tp) = X(t;)

4 represent current reversals. At high temperatures, the rela- V(= t—t (A2)

tion 153 T~178js recovereddashed ling At zero tempera-
ture, a finite current is generated by quantum fluctuations. with

VI. CONCLUSIONS

. Ef dxxP(t,x), (A3a)
We have developed a perturbative approach for quantum
ratchets, which captures current rectification and reversals of
the current direction. Our main results are the analytical ex- =
Y P(t,x)=([x—x(1)]). (A3b)

pression Eq. (59)] for the leading nonlinear mobility and its
evaluation for various limiting cases. In particular, the high-
temperature limit for massive particles revealed the relA priori, P(t,x), which is an expectation value in an en-
evance of inertial terms even for strong damping. Since théemble of paths of length—t;, is different from P(x,t)
rectified current decays lik¥,cT~# for massless particles [EQ- (4)], which is an expectation value in an ensemble of
whereas it decays lik¥/,= T~ 17 for massive particles, in- Paths of lengtit—t;. However, the definitions coincide for
ertial effect can lead to a substantehancemenof ratchet  t=tr and also fort=t;. In the first case the definitions coin-
effects. On the other hand, in the high-frequency limit, theCide. In the second case, because one can integrate out the
quantum nature of the particle is important. WHilgxw ¢  paths(the integral corresponds ®[Eq. (12)] the integral is
for massive classical particles, quantum fluctuations atso  most easily performed for a diagonal initial density matrix
hancethe rectified currant, leading tg,=w 4. Thus

While our perturbative approach is limited to weak poten-
tials and driving forces, it has the advantage that it can be It Xt — N/t
easily generalized to higher dimensions. Therzgefore applica- X(t) = X(t) =X(t) — X(t) (A4)
tions, for example to asymmetric antidot arraybecome — . , .
possible. Furthermore, a generalization to random ratchet p@"d V=V(1). If there is a well-defined expectation value
tentials is obvious. Thereby one could describe the case of(t)=(x(t))=(d/dt)X(t) for ti——o and t;—eo, it must
asymmetric potential wells with random positions. This gen-coincide withV/(t), since boundary effects from times near
eralization can be achieved if one allows for continuousandt; should become negligible in this limit.
wave vectorsq of the potential and simply replaces
Uq,Uq,Uq, by its average in the nonlinear mobilifyEq.
(59)]. An extension of this perturbative approach from single

guantum particles to electron gases is under current investi- Here we present intermediate steps of the calculation
gation by the authors. leading to Eq.(44). In a first step, we need to evaluate

APPENDIX B: CALCULATION OF p{?
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52 In these remaining terms, the summation osgeyields

Pt CIEONY ] EEC VISR

HiG(t—T1)o(71)]p(72)iG(1—1") | Z, wPt—t)=-> Uququ Jdtldtzc(t_tl)%
d192
(B1) 2
X[q1G(t;—t')+,G(t,—t")1BE), (t;—t),
where Eqs(38) have to be inserted far=2. Thereby, S amhe hip L 2
4 . (B4a)
Z= eqlW12q2+q1|G1252q2+q2|G2151q15q1+q2’0’ (B2)
where we abbreviataV,,=W(t,—t,), etc., and we use
W(0)=G(0)=0. Note that in the last exponenti&, or 2
G,4 vanishes for alt; andt, because of causality. Inserting Bqlqz(tl—tz)fz Kslz
Eq. (B1) into Egs.(36) and (21), only the last of the three S152 TR122
terms coming from Eq(B1) survives summation oves; in 2 3
Eq. (21). One obtains ngm( Q1G12>
@(t—t')=— Yoy qz’det dt,G(t—t X exp( — qiWy,) 8 . (B4b
mi( ) qlq25152 4s,s, 1d6G(t—ty) A —a1W12) 8g, +q,.0 (B4b)

X$101[0:G(t;—t") +g,G(t,—t") ] 2.
(B3)
APPENDIX C: CALCULATION OF p%

Fourier transforming this expression leads to Eqf).

Following the same route as farl?), we first calculate

5p(t)5ois’)5o(t”)Z:J dTp(T)[iG(t—t’)iG(T—t”)+iG(t—t")iG(T—t')]Z+f dW(t—7)p(7)
+iG(t—T)0(T)]f dT'p(T’)iG(T'—t’)f dr’p(7")iG(7"—t") Z. (Cy
Equation(38) leads to
Z— U1 Wigtls + 01 Wagls+QWoslis+ (021G 0giGail disy +[A1iG 1o+ d3iG 5] q232+[q1i613+q2i62§q3s35{q} , (%)

With (¢ = 6y, +q,+q,0- CoONsidering the right-hand side of E€1) as a sum of four contributions, the first three disappear

after a summation oves;. For example, ift;<t,<t;, Z is independent of; and the summation oves; leads to a
cancellation. The remaining fourth contribution to EGJ1) reads, explicithyf ® ;=0 (t,—t3)],

U, U

qq *P)

uSt—t t—t")=—

—11)$101{0:G(t;—t")q,G(t; —t")

01.02.03.51.57.55 2151 2iS; 2|s3
T026(t,—t")qaG(ty—t") +q3G(t3—t")qsG(ts—t") +0102[ G(t; —t") G(t,—t")
+G(t1—t")G(to—t") ]+ 0103 G(t; —t") G(t3—t") + G(t1 —t")G(tz—t')]
+0203[G(t,—t")G(t3—t") + G(t,—t")G(tz—t) ]} Z, (C3)

where we used permutation symmetries among indjcesiich allow us to restrict the time integrals tg>t;. Then,
summation ovefs} leads to

1 1 1

B(G) 2
B, q, (i~ t2, ta—ta) = @235152233 L Z (C4)

4 |h |
:@)zsﬁs”'{i(helz% SW{E(%GB%WL 42G2403) e W12z a2 Wasts T A Widls 5y ) (CH)
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Note thatB{3)#0 only for t;>t,>t5. In terms ofngsz%qu we obtain

u‘23>(t—t',t—t")=iq qEq Ug,Uq,Uq, f f f dtydtdtsG(t—1)qs{qs Gt —t)qsG(t;—t") + G (t,—t")q,G(t,— 1)
1:42:43
+03G(t3—t") 3G (tz—t") + 10 G(t; — ") G(t,—t") + G(t; — ") G(t,—t") ]+ 0193 G(t, —t") G(t3
—t")+G(t; = t")G(tg—t") ]+ q205[ G(t,— ) G(tz—t") + G(t,— ") G(ts—t ) }B{S)(t1— 15,1~ tg),

(C6a
or, after Fourier transformation,

/L(ZS)(w’,w")=(w'+w")G(w’+w”)G(w')G(w”)qq2q Uq,Uq,Uq,d1{aiB{3(0,0+ 03B (o' + 0”00+ a3B{3)(w’
14243

+0",0'+ ")+ 00, BFl(',0)+Bfg)(»",0)]+ 4103 BFl(0",0") +B{g)(", o) ]+ 003 B} (o’
+0",0)+BY (0 +o",0")]}. (Céb)
Ratchet effects are related & = — v’ = w, for which Eq.(59) follows after usage of momentum conservation.

APPENDIX D: DETAILS FOR T—® In the high-temperature limit, one can neglect the quan-
tum contribution toW, and expand for small time&ising

Although straightforward, the calculation for the high- 41— s because of momentum conservalion

temperature limit requires some care. For this calculation, ifl2=
is convenient to rewrite Eq59) as

) ’ (3)_T_rn (qi—‘rq%)z’\z 1 2ql+q3"3
(3)(_ww):_'_; S U, U, U.q Elof= 7 202 =430 t
M2 ' 7 e+ me® a0z % 1
- Lo 121, 11 ) (D3)
Xj fo dtlzdtstggi(wilz,tza) ( " wite)
xex] — Eff(t15,t59)], (D) we introduced dimensionless timés andt_ via
with tjkEtj_tkl t13:t12+t23,
~ Q1.
Fggg(w-tlz-tzs)zZ{Q1Q2[1_Coiwtlz)] M=t — @L ' (D4a)
+0103[1-cogwty3)]
+0203[ 1 - cog wtyg) ]} Y= + %{Jr . (D4b)
2 (& 2 (& 3
Xz sin E%G(tlz)% 7 sin E(Q1G(t13)(13
To extract the asymptotics foF—, one has to distin-
guish the contributions fag; /q;>0 andqg; /q;<0 (remem-
+02G(t23)93) (D28 per that one needs to consider only=0+qs). Because of
causality, the time integrals cover only the quadrant with
and t1,>0 andt,3>0 in the ¢;,,t55) plane. This quadrant cor-
3) responds to ranges
Eiqi(tio,t2a)=—[0d:1W(t12) 0o+ g2 W(t23) 3+ g1 W(t13) 03]
(D2b)
1 t,>0 and —%f+<f,<$f+ for %>O,
3 1 3
:§<[Q1X(t1)+QZX(t2)+Q3X(t3)]2>020- (D53)
(D20
ith i - ifi i indel3) . A .
Wlth mcreasmgT,_the rectified current shrinks, smﬁq} { -0 and %t_<t+<—%t_ for %<0.
increases proportionally to temperature. The dominant con- ds o] ds
tributions come from smalt;, and smallt,3. We proceed (D5b)
with an expansion oE(}) and F{3) to extract the leading
orders for largeT. The integrals are transformed via

195305-12
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2, .2
g1t

dtlzdt23=y— t (D6)

For q,/g3<0, it is sufficient to retain the quadratic term
in Eq. (D3), since it implies that_~T~Y2 Then alsot
~T72 according to Eq(D5), i.e., t;;~t,s~T 2 Since

F(3) is quartic in small times,

2

PHYSICAL REVIEW B65 195305

(1)2

Oirg (O1, -
> (A1 +0ds)(a5+3)? (q§+q§)—;t§<—1t_—t+)
7Yy g; \Us

(3)_
Fiar=

2

: (q+ %)fz—fi

- +0O(T~ 136,
203

(DY)

Thereby it is sufficient to retain even orderstin because

the integral overt_ can be extended to all real valugig-
noring condition(D5)] since the quadratic term in E¢D3)
provides a cutoff that dominates over conditidd5) (the
errors decay exponentially if). Therefore, the leading or-

FER)__© (42 Q1(Q1+Q3)f3 (ﬂf _3 ) der F§§f~f§f+~T‘“’6 will not result in a contribution to
2,2 s a3 “lagg T w5 of orderT~#3 since it is odd irt _ . Performing the time
. integrals for the remaining terms,
+0(T %7, (D7)
i 1
p(Cww) = o 2 Uy,
the resulting contributions t.5¥ will be of order T~2. 7YY T G143 s
These terms can be neglected in comparison to terms of or- (ﬁ
der T~ which come fromd, /g3>0. _ . XU g, qUq, (A1t 03)(a]
For q1/93>0 it is not sufficient to retain the quadratic a3
term in Eq.(D3) since the integral over, would diverge. (= . [(g>+0q3
: - ) which i +q2%| di, | di | %4
Thus one has to include cubic ordersE({ﬁ}, which imply a3) o) L T
thatt, ~ T3 Consequently, the higher-order terms not ex-
ici itten i ince(3) +03.,
pI|Ac‘:tIy written in Eq. (D3) c;3an be neglected. Sincey e qstz_ti)e‘Eg?, (DY)
~t* ~T72 we now expeci$®)~T~ 176 The proper expan- 2

sion of F{3) up to orderT 2 now yields

yields Eq.(74).
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