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Field dependence of the hopping drift velocity in semiconductor superlattices
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The electronic transport in biased semiconductor superlattice structures is investigated on the basis of
hopping transitions between the partially localized states of the Wannier-Stark ladder. The drift velocity is
calculated numerically by summing all transitions between any two states of the ladder according to their
respective weight due to the overlap of the superlattice wave functions and the microscopic scattering process.
Both elastic(ionized impurity and inelastiqacoustic and LO phondrscattering has been taken into account.

Two distinct field ranges are observed depending on the relation between the Wannier-Stark espdcngl

the width of the lowest miniband. For moderate fieldseFd<<A) the drift velocity is inversely proportional

to the applied field for all scattering processes. E6id>A the discrete nature of the Wannier-Stark ladder
leads to a " dependence of the drift velocity on the applied field, wherdepends on the scattering
mechanism and is larger than 1. Resonances in the drift velocity due to the discrete LO phonon energy and due
to resonant tunneling into excited states are observed and discussed in detail. Simplified analytical expressions
for the hopping drift velocity at low and high fields are given.
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[. INTRODUCTION could be derived from density matrix theory by choosing the
Wannier-Stark levels as basis statés: The few papers pub-

Electronic transport perpendicular to the layers of a superished on hopping conduction in superlattices were of rather
lattice structure has been a field of growing interest evetheoretical interest and did not provide calculations of the
since the famous starting paper of Esaki and Tsuspite of ~ drift velocity for realistic superlattice’*?
the strongly simplifying assumptions concerning the scatter- Even though it was soon realized that at moderately high
ing of miniband electrons in the Esaki-Tsu theory, this onefields the localization effect of the Wannier-Stark wave func-
dimensional model served very well in exp|aining the Occur.tions is equivalent to the occurrence of Bloch oscillations in
rence of negative differential conductiviiDC) along with ~ the NDC regimé;>** it has been established only very re-
the Bloch oscillations at high fields in these structures. The&ently that in the field range of Bloch oscillating electrons
extension of this model to finite temperatures and distincboth the miniband and the hopping transport picture are
momentum and energy relaxation tifids still used by equivalent descriptions for superlattice transporf:*° In
many peop|e for f|tt|ng their experimenta| data. particular, it was shown that the criterion for the validity of

It was, however, very soon realized that negative differthe hopping picture is that the Bloch frequenayg
ential conductivity could alternatively be explained in terms=¢eFd/7 is larger than the scattering rater1As this is also
of a description of transport by hopping transitions betweerthe condition for the onset of NDC, it was found that the
the rungs of the Wannier-StafkVS) ladder®* In this model ~ hopping picture has a much broader range of applicability
the negative differential conductivity results from the de-than was previously thought.
creasing overlap of the WS states at different sites of the In this paper we closely investigate the field dependence
superlattice due to the field-induced localization of the waveof the hopping drift velocity for strongly coupled GaAs/AlAs
functions. At that time, however, only the hopping transitionssuperlattices. We consider both elastanized impurity and
between the first and second neighboring rungs of the Stark

ladder could be computed numerically. The resulting drift E4

velocity, therefore, was only valid at sufficiently high fields

F, i.e., when the spatial extent of the Wannier-Stark wave ——NeF— B (=g

function A/eF (see Fig. 1 becomes smaller than two times A E(K)=-veFd + & /\/

the superlattice period (A is the width of the lowest mini- A O -

band. 0 —s \A MAL I i 1
This numerical shortcoming of the original papers on hop- veFd MAAAR &

ping transport led to the fact that in several discussions in v L,

literature on the validity of the above mod&i5hopping was
usually ruled out as the mechanism responsible for the oc
currence of NDC and it was assumed that hopping transpor
can only be observed in weakly coupled superlattices with
very small miniband widths. For this reason most of the fol- FIG. 1. Schematic diagram of an inelastic hopping transition
lowing theoretical investigations in this field were based on &rom an initial statg0k) with energyEy(k) to a final statgvk’).
treatment of transport in momentum spaé@even though it The energy of the final state B,(k’)=Eq(k) *fiwg, whereq is
was shown that the hopping transport equation of Ref. 3he transferred phonon momentum.
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inelastic (acoustic and polar optical phonoscattering pro- wave vectors of the 2D-electron gas belonging to the Oth and
cesses and we present, for the first time, quantitative numerthe vth Wannier-Stark level, respectively. We obtain

cal calculations of the drift velocity in the NDC regime due

to Wannier-Stark hopping, including all relevant transitions 2

between any two WS levels. In contrast to the popular one- W, _,=—= > f(k)[1-f(k)]S(0k,vk’). (2)
dimensional miniband modélno fitting parameters enter n Ko

into our calculations and the drift velocity is calculated using

microscopic scattering between the three-dimensional statéd!€ factor 2 accounts for the spin degeneracy of the irktial

of a perfect, biased superlattice. We neglect disorder effectiiates and we assume that the spin is not changed during the

due to interface roughness. scattgring process. The 2D.den-sity 2%f the 3%Iectron gas per-
The outline of the paper is as follows: In Sec. Il we showPendicular to the growth direction®=n®")d and the

the detailed theory for the numerical calculation of the hop-€/€ctron distribution functiori (k) are assumed to be inde-

ping drift velocity for the various scattering processes. InPe€ndent of the Wannier-Stark level indexdue to the trans-

Sec. Ill technical details of the numerical simulation anglational invariance of the superlgttlce. The scattering rate

sample parameters are presented. The field dependence 0k, vk") depends on the scattering process and can be cal-

the calculated drift velocity is discussed in detail in Sec. [v.culated by using Fermi's golden rule.

Here, analytical models for the low- and high-field limit are ~ FOr an equilibrium phonon distribution,

derived and the influence of the WS quantization on the drift

velocity is discussed. We also show that the hopping theory

is capable of describing resonant tunneling into higher sub-

bands of adjacent wellgnterminiband Zener tunnelingOur )

results will be discussed and summarized in Sec. V. (“detailed balance, ©)

Svk',Ok)zex%w) S(0k,vk")
sl

and Eq.(1) can be written as
Il. THEORY OF THE HOPPING DRIFT VELOCITY

[’

In an unbiased superlattice the electron energy spectrum 2 , ,
consists of the eigenenergies of the superlattice Bloch func- vdFZ vd—or5 ; kE S(Ok, k") F(k)[1—f(k')]

2 1 (
tions with given wave vectdk= (k,,k). In growth direction "
a miniband with widthA and dispersion relatios(k,) is
formed. If, however, a constant external fiélds applied to X
the superstructure, the conduction band edge is tilted by the
additional electrostatic potentialFz of the electric field. In
moving one periodl from one well of the superlattice to the

B Ey(k’)—Eo(k))f(k’)[l—f(k)]
! eXp( kgT f(k)[l—f(k’)])' @

If field-induced heating of the electron distribution is negli-

next neighboring well, the potential thus drops by a value oi?'ble’ f(k) can be approximated by a Fermi distribution

eFd. Due to the large superlattice constants of several na-egk/kBTJrl)i1 with lattice temperature. Indeed this is rea-
‘ . 9 P sonable for lattice temperatures above about 100 K as we
nometers this potential drop may take values up to the ord

of 100 meV at high fields. Due to the invariance of the poeﬁave shown recenty. The term in brackets on the right-

: . < “"hand side of Eq(4) then reduces to (2 e~ *¢F9*eT) and the
tential under the operatiore{~z+d,E—E—eFd) the en- drift velocity thus becomes

ergy spectrum is now given by the Wannier-Stark ladder with

equidistant energy statds,k), where v denotes the WS- w
ladder index andk is the wave vector parallel to the layers. _ d F)(1— e veFdksT 5
The kinetic energy for parallel motiors,, is given by a Odr 1/21 v W, (F)(1-e ) ©

parabolic dispersion with an effective masg that is ob-
tained by averaging the GaAs and AlAs effective masses
according to the respective probability densities of the super-
lattice wave function in the GaAs wells and AlAs barriers. For simplicity, we assume that the superlattice phonon
The electronic motion in field direction in this Wannier- dispersion can be approximated by the bulk material modes
Stark picture is achieved through scattering processes thaf GaAs. By summing over all lattice modgsthe transition
induce hopping transitions between the otherwise stationaryate becomes
WS-levels(see Fig. L The drift velocity is giver by

A. Phonon scattering

o ovd o (F)= o fdk ! fdk' ! fd*f(k)
wf” L (F)=

var= 2 = 2 vd(Wo,~W, o), @ 0@ 2mz) “mzl © am3)

where the sum is over all transitions from one state of the x[l_f(k’)]z_wuyk’,nd

Wannier-Stark ladder to any state further down the ladder. h

Here, 1f,=wgy_,,—W,_ iS the net hopping rate for the +1|H |0k, ng)|?

transition|0)— | v). The termw,_,, is given by summing the — o elphiE

scattering rate5(0k,vk’) over all initial (k) and final k') X 8(ex— e +hwg+veFd). (6)
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Here, the upper and lower signs refer to phonon emission For acoustic phonon scattering, however, the system of
and absorption, respectively. The electron-phonon interactio&gs.(10)+(12) is coupled by the conditiomg=csg (using a
in quasi-two-dimensional semiconductor structures can bénear dispersion for the acoustic phonon brandfo obtain

expressed &5
|<Vk,vn€|i1|Hel—ph|0kvn5|>|2
=¢(q) Sk =q(Ng+ 3+ 3)|(v]e797(0)|?,
where

1 1 2

L T
€ €/ (g°+qj)?

(polar optical phonon scatteripg

hezwo

D%
- 2pcC q

S

(acoustic phonon scattering  (8)
Here, wq is the optical phonon frequency,. and e are the
high-frequency and static permittivity), is the reciprocal
screening length of the 3D-electron gé&s, is the deforma-
tion potential,p is the mass density, ard is the velocity of
sound in the semiconductor material.

Inserting Eq.(7) into Eq. (6) and using the momentum-
conservingé function to eliminate theq integration one
obtains

2 1
wh (F)= —fkdkfk’dk’fdafk
0 V( ) n(2D) (277)3ﬁ ( )
X[1- )] [ dag(ang+ =)
><|<V|eiiqzz|0>|25(8k_8krIﬁa)a‘f‘VEFd),
€)
where 6 is the angle betweenk and k', and q
=q(k,k’,6,q,) is given by
q=a?+q? q?=k2+k’'2-2kk'cosh.  (10)

Finally, substituting k'dk’=m/f%de,, and using the
energy-conserving function, the transition rate becomes

h _

WBHV(F)—n(ZD) = ﬁsfkdkf dof(k
X[1- )] [ dac(a)ng+ 1=
x|(v|e*97(0)[2. (12)

Here

1
\/ZmHSk, (12)

For polar optical phonon scattering;= w, is a good ap-
proximation and Eqs(10) and(12) can be easily solved for
givenk, 6, andq,.

e =gtveFd+hwg and k'=

faster computation, in this case, the substitutiop
=+.9°—q?% dag,=q/q,dq is performed in Eq(9). Thus

o yap ) k[ e |
=—— — | kdk| k’dk’ | dof(k
nP) (27)%% ®

1 1
X[l f(k )]Zf dq Cap(q)(nq 2— 5)

“

2 2
= kdkf k'dk'fdef k
n(2P) (277)3h2csf (k)

X[1=f(K )]

w5, (F)

e — e +rvekd

x|(v]e"1%7[0) 2 =

15
hicg

Cap( q)

L1t 1 1
Nat3=3
x|(v|e™1970)[2, (13
wherec,(q) is the value given in Eq8) for acoustic pho-
non scattering and
e— e +rvekd

hcg > @

= Na a7,

q==*

q?=k?+k’2—2kk’ cosé. (14

Now, for given integration variables &f k' and ¢, g, andq,
can be directly determined through Eq$4).

B. Impurity scattering

For ionized impurity scattering,

2
5(8k_8k/+ VeFd),
(15

where the sum ovejr runs through all impurities of the su-
perlattice. Assuming a homogeneous doping density and en-
semble averaging over all impurity positions in the structure,
one finds that
2>
ensav.

| dzloivi ezl as

N(P) is the number of impurities per superlattice period.
Within the three-dimensional Thomas-Fermi theory the
screened impurity potential is given by

| Oel = Vo2 + 0,
(17)

S;i(vk',0k)= Zh—w 2}} (v,k'|V;|0k)

N(2D)

2
e |derllz— 2ol

V4 (z—2z5)=
27 20)= 5 e e
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whereqy is the reciprocal Debye screening length. is found to occur at abow@Fd=700 meV as will be shown
Inserting Egs.(15) and (16) into Eq. (2), the transition |ater.
rate for impurity scattering becomes According to Eq(1), the computed drift velocity is given
by a sum over all transitions between a given Wannier-Stark
i , state|0) and any statév) at lower energy further down the
Wo-.,(F)= n(2D) (27,.)3f K dkf k'dk f dof(k) ladder. For Wannier-Stark states that are separated by ener-

gies veFd significantly larger than the miniband width,
N(ZD)f g the overlap between the wave functions approaches zero.
d % Thus, only those transition®)—|») contribute to the net
drift velocity for which veFd is smaller thamA. For an ap-

X[(Vi- k(2= 20)|0) | 8o~ 210 + veFd). plied field of 500 V/cm, this involves transitions between
(18)  about 80 states while for only fields significantly larger than

=A/ed=4x10* V/cm is the transition to the nearest
state ¢=1) important.

In Fig. 2 we show the calculated drift velocities for the

2
X[1-f(k)] 7

Using thes function to perform the integration ov&r, one
finally obtains

(20) various transition$0)—|v) for »=1,...,8(thin lines and
i 2 1 N . . . .
Wo . (F)=—— 5 3 k dkf dé f(k) the total drift velocity resulting from the summation over all
n 2m? d # relevant v (thick line). We observe that at high fields

>F, the drift velocity is dominated by thi)—|1) transi-
X[l_f(k')]f dzo|(v|Vi_wr(2—20)|0)|?, tion, corresponding to hopping between the localized wave
functions in adjacent wells. Moving to lower fields, the
(199  Wannier-Stark wave functions become extended over an in-
creasing number of quantum wells and, correspondingly, an
wherek’ is determined by energy conservation for elasticincreasing number of transitions contribute to the total drift

scattering velocity. Even though the individual contributions decrease
at low fields, the total drift velocity diverges due to the sum-
) , . 2m mation over the increasing number of possible transitions.
k'=\/k“+ ?VeFd, (200 Thus, as was shown in Ref. 15, the hopping picture is only
valid in the NDC regime, that is, down to fields for which the
andq=k—k’ is given by Eq.(14). collisional broadendingi/r of the Wannier-Stark states is

smaller than the energetic WS-level spaceigd. At lower
fields, the electron coherence length due to scattering
becomes smaller than the extent=A/eF of the WS
functions.

In the following we will present results for the hopping Hence, the electrons are scattered before the Wannier-
drift velocity as a function of electric field for a sample con- Stark states can be coherently formed, and the WS-states do
sisting of 12 monolayers GaAs and six monolayers AlAs.no longer represent an adequate basis for describing the
The superlattice period in this structure id=dy,, transport. To make this point more clear, we refer to the
+dgarrier=5.1 nm, where dye=3.4 nm and dg,rier correspondence between the semiclassical and the quantum
=1.7 nm. The resulting width of the lowest miniband is mechanical picture at sufficiently low fields, which was men-
20.3 meV, i.e., the wells of the superlattice are stronglytioned in the introduction. In the semiclassical picture, the
coupled. The minigap separation between the lowest and th@eaning ofA is the amplitude of the real-space center-of-
first excited miniband is about 500 meV. Thus, the occupamass motion of an electron performing a Bloch oscillation.
tion of higher minibands is small and conduction occurs onlyThe condition/i/ 7<eFd for the existence of the WS ladder
in the lowest miniband at moderate fields where intermini-corresponds directly to the conditiangr=eFdr/n>1 for
band Zener tunneling may be neglected. The electron densitiﬂe existence of Bloch oscillations. The latter condition
was taken to be equal to a homogeneous doping densitjieans that the path of an electronkirspace has to be suf-
NGP)=NEDP)/d of 10'® cm™2. This gives a value of 22 nm ficiently long before its momentum becomes changed by a
for the screening length 44 at 77 K. The kinetic energy for scattering event, i.e.k(7)=(eF/#)7>1/d. Formally, the
electronic motion parallel to the layers was calculated in théime evolution ofe (k;(t)) during a Bloch oscillation is also
effective mass approximation using a valwme=0.0732n,,  reflected in the analytical expression for the WS wave func-
wherem, is the free electron mass. tions|0) and|v) [seek, integrals in Eq(AL); assumek, be

We have numerically calculated the hopping drift velocity substituted byeFt/7]. Then, the analytical expression for
at different lattice temperatures for fields ranging from 500the WS wave functions corresponds to the unperturbed time
V/cm to 2x10° V/cm, corresponding to an energy spacing evolution ofk,(t) over the whole mini-Brillouin zone from
of the Wannier-Stark states ranging fr@fd=0.255 meV —«/d at the time—T/2 to w/d at the timeT/2 (whereT
at 500 V/cm toeFd=1018 meV at Z10° V/cm. The on- =2m/wg=27hleFdis the Bloch oscillation period Thus,
set of tunneling into states belonging to the second minibanthe WS wave functions are no longer eigenstates of the su-

Ill. NUMERICAL SIMULATION OF THE HOPPING
DRIFT VELOCITY
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107
10°
10°
10*

b) Impurity scattering

a) Total _j

10°
10*

Drift velocity (cm/s)

3 FIG. 2. Contribution of the transitionf)
Wik —|v) (thin lines towards the total drift velocity
(thick line). The drift velocity is shown in a

V=8|7654 3 | 2

R D -
d) Polar optical = 4 double logarithmic plot for the total of all scatter-
phonon scattering § X . .
3 ing processes$a) and for the three single contri-
E butions(b—d).

Drift velocity (cm/s)

10° 10 10° 10° 10° 10 10° 10
Electric field (V/cm) Electric field (V/cm)

perlattice with a uniform electric field, ifgF/#)t>1/d. In  creases faster than in the semiclassical theory. The valoe of
this case the transport has to be calculated either by followdepends on the scattering mechanism considered. A deriva-
ing the trajectory of miniband Bloch electrons in momentumtion for the values ofn will be given in Sec. IVB in an
space, as achieved, for instance, by realistic Monte Carlanalytical model that agrees very well with the numerical
simulationst’*® or the time evolution of miniband electrons calculations except for very high fields.
has to be described in a formally more advanced scheme, We will also discuss the occurrence of resonances con-
which takes into account both hopping from quantum well tonected with the constant optical phonon enefgy, and
guantum well in real space and scattering processes in mavith the effect of resonant tunneling into excited states in
mentum space at an equal footifigThe latter approach, neighboring quantum wells. For the latter case we go beyond
though formally very elegant, as it is applicable and correcthe single-band approximation for the Wannier-Stark states.
for the full range from very low to very high fields, unfortu- In both situations an increased drift velocity is observed near
nately, does not allow us to take into account the scatterintghe resonances.
mechanisms in a realistic way in a reasonable numerical The distinct behavior for the field dependence of the drift
effort. velocity depending on the scattering process is summarized
in Table 1.

IV. FIELD DEPENDENCE OF THE DRIFT VELOCITY

In the following we will discuss the dependence of the A. Moderate fields (eFd<A)
drift velocity on the applied field. First we will show that at ~ To analyze the behavior of the drift velocity at moderately
moderate fields the drift velocity obeys a1law. This be-  high electric fields, we perform a transition from the discrete
havior corresponds to the semiclassical NDC regime ofVannier-Stark states towards a quasi-energy continuum of
Bloch-oscillating electrons and is independent of the scatterstates, corresponding to the semiclassical miniband point of
ing process. view. This continuum transition may be performed if, with
From Fig. 2 we observe, however, that significant devia-decreasing field, the Wannier-Stark spacingFd becomes
tions from the semiclassical B/law occur at higher fields. much smaller than the miniband width
Here, the drift velocity is described by a power lawF1/ Starting from expressiofb) the drift velocity can be re-
with exponentsn>1, i.e., the hopping drift velocity de- written in the form

TABLE |. Field dependence of the hopping drift velocity from numerical calculations. The value in
brackets for impurity scattering results from the analytical model of Sec. IV B.

Field range Acoustic phonon scattering  Polar optical phonon scattering  Impurity scattering
eFd<A «1/F o« 1/F «1/F

eFd>A x1/F? x1/F3 x 1/F35(4)
eFd=fhwqlv Resonances

eFd=(E;—Ey)/v Resonant tunneling into the next highest subband
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Transition index v According to Eq.(22), this agrees with the fact that the re-
0 20 40 60 80 sulting hopping drift velocity becomes proportional td- lat
' T . ' ' ' ' A low fields.
F=500V/em,T=77K In analyzing the energy dependencewaf, we first ob-
0.03 - . A=203meV < iy - . 2 .
. serve that the transition rate goes to zero for energies larger
e ® Toul | than the miniband width due to the vanishing overlap of the
_ +e +  [mpurily scauering Wannier-Stark wave functions. The curve for impurity scat-
% o0m b + '. A Acoustic phonons i tering can be qualitatively explained by the fact that the cou-
£ % & Polar optical phonons pling constant in this case is proportional ta4/and that
= PR | with increasing energy loss, in z-direction the transferred
& . "-.“ momentum parallel to the layers increases roughly according
0.01 e - i to &,q?. For acoustic phonon scattering the coupling con-
A AL * stant is approximately independent ©f and the small de-
o e crease ofvvaZ with energy in this case results from the de-
e creasing overlap of the corresponding wave functions.
0.00 ! H Finally, as the miniband widtiA is smaller thari wg, only
0.0 50 100 15.0 200 those electrons that are thermally excited parallel to the lay-
Energy loss & = veFd (meV) ers may undergo LO phonon emission. For the transition

.y 0)—|v) the minimum energy for LO phonon emission is
FIG. 3. The energy dependence of the transition rate L:k>=ﬁ|w(>)—veFd=ﬁwo—sz. '??:erefore t?]e number of elec-

=Wo_.,,/eFdat low fields. For the field shown, the Wannier-Stark ¢ that may emit LO phonons and thus also the resulting
spacing is 0.255 meV. Each point corresponds to a transition with

givenv. The full line is the semiclassical result folgaindependent Scattering rate both I_ncrease slightly Wlth. Increasing .
scattering process. For the case of & independent scattering process, a link

to the semiclassical, one-dimensional miniband model may
now be established by approximating the scattering rate as

o]

vdrzi veFdw,_ (F)(1—e *eFdkeT)  (21) DI (e,
eF v=1 v W. = _combi 7z’
SZ T 1
The termveFd corresponds to the change of energy in the A (23
electric potential associated with a hopping process that Dggmb(gz):f deDP(£)DP(e—¢,),
changes the center-of-mass position of the electron by the &z

amountrd. For low fields this discrete spectrum of potential where D10 (&) is the one-dimensional combined densit
energy changes gradually turns into a quasi-continuous spec; comi\ €z y

trum, characterized by the continuous energy changeln OT states. In th? one-dimensionétlght—b_indi_n@ minibal_ﬂd
this case the sum overcan be replaced by an integral over p!cture theltlzjlensny of Bloch states entering 'ﬁ.tbgmb(SZ) 'S
¢,. Also, the discrete scattering rate, ., is replaced by a  9Iven byD~"(e,) =1/m\e,(A~¢,). The resulting curve for
scattering rate per energy, =W, _.,/eFd, accounting for We with a fitted value of 10 ps for is shown as full line in

£, —v ) Z . .
the fact that the scattering amplitude per energy interval bef'9- 3: We observe a very good agreement with the scattering
comes independent of the field at low fields. The drift veloc-"ates for acoustic phonons in the hopping picture. The devia-

ity then becomes f[ion of the other scattering rates from this semiclassica_l result
is due to the momentum dependence of these scattering pro-
cesses.
1 (= With the above approximation, the integration in E2R)
_ _ A&, lkgT o
Udf_epfo dezen(1-e "W, , (22 can be performed and we obtain
. . . 1 Ag,
where the integral corresponds to the semiclassical energy Var=oF ,
.

relaxation ratew, is the probability per time and energy
that an electron is scattered to a state for whichpibeential

energyeFzin the electric field is reduced by a factey. It Aszzf dsz dk[e(k,) —&(k,)]6(e(k,) —e(k}))
should be pointed out that the scattering-induced change of

(24)

total energy of the electron is typically different, as it in- e(ky) —e(kL)
cludes the change of in-platk@eticenergy due to scattering X|1- ex;{ B — ) .
fromk to k. B

We have performed numerical calculationsvaf forthe  Here g(x) is the Heavyside function anfie, is the mean
different scattering processes. The results fdf  energy loss per scattering event of Bloch oscillating elec-
=500 V/cm are shown in Fig. 3. Our calculations show thattrons. Equatior(24) thus has the meaning of an energy bal-
W, is indeed independent of the electric field at low fields.ance equation for Bloch oscillating electrons, balancing the
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energy acquired from the fieléFv 4, , with the mean energy eFd (meV)
relaxation rateA e,/ 7. At a temperature of 77 K, a value of _,“1'-|° . 10|0 A _ ...1.9?'0 ”}?IOIO-O :
6.5 meV forAeg, is obtained numerically. Fof —«, Ag, e, T=71K ]

goes to zero and fof =0 K, Ae,=4/7?A~8.23 meV. We
note that our values foA e, differ slightly from the results
obtained within the relaxation time approximation of the 1D-
Boltzmann equatiof.In particular, in that theory a value of
A/2 is obtained forAe, at 0 K.

B. High fields (eFd>A)

In order to establish a link to the original hopping trans-
port paper by Tsu and thter? analytic expressions for the

............ Impurity scattering

Hopping drift velocity (cm/s)

E ~
scattering matrix elements are derived in this section, using Fommm- Acoustic phonons \ N\
minor approximations for the treatment of umklapp pro- 1 e Polar optical phonons \\ <3
cesses. The resulting formulas provide power lavws' Tor i | | | \ o
the drift velocity in the limit of high fields. The exponents 0'1103 — "'1'04 — "'1'05 — "'1'06 —

are determined for different collision processes.

We calculate the field dependence of the matrix element
(v|V]0), whereV(z)=e™'9 [see Eq.(7)] in the case of FIG. 4. Comparison of the hopping drift velocity according to
phonon scattering and(z) =V,(2) [Eq. (17)] for impurity  Eq.(27) (thick lines and the numerical calculatidthin lines. The
scattering, using the fact that the eigenfunction of title  two models agree very well for fields up to<40° V/cm.
Wannier-Stark statkv) can be expressed analyticaflyas

Electric field (V/cm)

[Eq. (25)] become the Wannier functions of the superlattice,
(D)= ﬁ wid dicu, (26t Vd)ei/eFf'Sdeé[s(ké)fso] wh|c_h are independent of the.appllgd field. The scattering
g 27w) g 2 e : matrix element then only contains a field dependence via the
(25) g dependence of the scattering coupling constant resulting
from increasing in-plane momentum transéewith increas-

Here, e(k,) is the miniband dispersion relation and ing field. At very high fieldsy? is roughly proportional td-.
q /d The scattering matrix element between the field-independent
I "l Wannier functions vanishes, however, in the approximation
€9 dkje(k,). (26) :
21 ) — a4 leading to Eq.(27).

Assuming a tight-binding model for the dispersion and ap-
proximating umklapp processes to neighboring mini-
Brillouin zones one can shoysee Appendixthat For phonon scattering(q,) =275(q,+q,), whereq, is

the phonon momentum in growth direction. The squared ma-
trix element then becomes

Phonon scattering

1 (= _
(nVIO)~ 51" f ~_dg,g(a,)V(qy)e =

A ad - |(v]e™'9%0)|?
"leFd 2 |’ A *q,d
_ _ =9(a)23| gggsiT—
where J, is the Bessel function of order and g(qg,) ac- ek 2
counts for the fact that scattering to distant mini-Brillouin o _q A PIGELE:
zones is reduced according to the form of the periodic super- =g(q’)2< =D ( .-inqL> ) )
lattice function u, (z). Our approximation forg(qy,) is 2\ & (v+DIIT | 2eFd™ 2
equivalent to the approach of Tsu andHber for the calcu- (28)
lation of the acoustic phonon scattering rate.
Equation(27) is exact in the limit of vanishingy, [i.e.,  Hence the leading term in R/is of the order of (1) for
V(d,)>=d(d,)]. When, at high fieldsg, becomes of the order he transition 0= ».
of the miniband Brillouin zoner/d, however, umklapp pro- To calculate the field dependence of the drift velocity, we

cesses become increasingly important and(E@). gives t00 oy have to take into account the fact that for high fields the

low values for the scattering matrix element. This is ShOW”scattering wave vector parallel to the layerbecomes ap-
in Fig. 4, where the hopping drift velocity resulting from the proximately

above equation fo{v|V|0) is compared to the numerical
calculation without approximations.

The slower decrease of the numerical result at very high - v2my(eFd+7iw) s
fields is due to the fact that at these fields the wave functions a f m\/E for eFd>ho. (29
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This does not introduce a field dependence into the acousti eFd (meV)
phonon scattering rate that is independent of the valugabf 100 181 36.2 100.0
sufficiently high temperaturéd.For optical phonon scatter- ] R

ing, however, a factor 1@(§+ g®) appears in the scattering 10°
rate. Sinceq§ can be neglected in comparisondb at high i
fields, this leads to an additional factoi1in the drift ve-
locity for polar optical phonon scattering.

Hence, we find that the lowest-order term={1) in the
reciprocal field in the high-field drift velocity is of the order
1/F? for acoustic phonon scattering and of the ordé&rIfor
polar optical phonon scattering. This is in good agreemen
with the slopes of the curves in Fig. 4.

= hw, ¢Fd = fim,

10°

Hopping?riftvelocity (cm/s)

10°
Impurity scattering

By inserting Eq.(27) into Eqg. (16) we obtain [

10° . s
10 10°

N
— _ 2
df d2ol(v|Vi-k(2=20)0)] Electric field (V/em)
N Id . FIG. 5. The drift velocity for all scattering processes at different
= f dz, f da,9(0,)Vq(aq,)e' v(Azd12) temperatures.
472 —mld
A qd) 2 Fig. 5 that shows the total drift velocity for different tem-
xJ, ?dsm%) e'dz% peratures. For fieldeFd below Awy=36 meV, only hot
€ electrons that have an energy># wy—eFd may undergo

mld
- lj o|ng(qz)2|vq(qz)|2JV(isin(E Therefore, the low-field slope of the resonance is determined
27d )~ 1yg eFd 2 by the electron temperature. For field§d larger than the
(30) optical phonon energy, polar optical phonon processes are
always possible and, therefore, LO-phonon emission be-
Here we have used the fact that the Fourier transform ofomes the dominant scattering mechanism. This is also re-
Vq(z—2p) is €'9% times the Fourier transform o¥,(z).  flected by the fact that the drift velocity for fields larger than
Since|Vq(qZ)|2 is proportional to 14* we expect that thigf 7w, is hardly temperature dependent, since, at these tem-
dependence of the scattering potential should add anoth@eratures, only spontaneous emission processes contribute to
factor 1F2 to the resulting drift velocity due to impurity the drift velocity.
scattering. The total impurity-induced drift velocity should
then follow a 1F* law. In Fig. 4 we observe a slope of
1/F34 We attribute this lower exponent to the fact thugt o ) ) o )
cannot be completely neglected in comparisorgtin the At sufﬂcu?ntly h!gh fields, resonant tun_nellng into higher
integral in Eq.(30). states of neighboring quantum wells dominates the transport

through the superlattice. In this case, the description of the
electronic structure in terms of the single-band wave func-
tions[Eq. (25)] is not valid anymore. The effect of resonant
As the miniband width of our superlattice is smaller thantunneling can, however, be included into our model by using
the optical phonon energywg, normally, LO phonon emis- the correct wave functions that have been numerically calcu-
sion can only occur if the electrons are heated parallel to théated for the tilted superlattice potential using the transfer
layers. If, however, at high fields, the spacing between anynatrix method with Airy functions as basis functiofisin
two Wannier-Stark states becomes larger than the opticahis model we make the assumption that the tunneling times
phonon energy, then LO phonon emission is allowed for albetween adjacent wells are smaller than the electron lifetime
electrons for the corresponding transition, and the resultinglue to scattering. This should be valid in our case of strongly
hopping rate increases considerably due to the large couplingpupled superlattices.
constant for optical phonon scattering. Thus, LO phonon In our structure the resonance between the lowest subband
resonances can be observed whenexedfd becomes equal in one well(at energyEg) and the first subband in the adja-
to Awy. The resonances belonging to the individual transi-cent well (at energy E;) occurs ateFd=E;—Ey=Aq,
tions|0)—|») can be easily recognized in Fig(d. ~700 meV. The resulting drift velocity, including the cou-
The LO phonon resonance peaks are very pronounced ating of the wave functions between neighboring wells due
low temperatures while they become increasingly smearetb resonant tunneling, is shown as dotted line in Fig. 6. Be-
out at higher temperatures due to the spreading of the eletew the main resonanc@t eFd=A,,) two more peaks ap-
tron distribution parallel to the layers. This is illustrated in pear(ateFd=Ay2 andeFd=A;y3) due to the resonance

)2 LO-phonon emission to the next lowest Wannier-Stark state.

D. Tunneling into higher bands

C. Optical phonon resonances
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eFd (meV) orders of perturbation theory to describe the effect of scat-

10 A ho, 100 350 700 tering between the WS states adequately.

At high fields, characterized bgFd>A, NDC with a
different field characteristic is observed. Here, hopping is
dominated by transitions between adjacent quantum wells
and the drift velocity decreases with decreasing overlap of
neighboring wave functions with increasing field. The drift
velocity obeys a power law EI", wheren is larger than 1
and depends strongly on the microscopic scattering process.
For the case of a scattering process that is independent of the
transferred momentung=k—k’ a value ofn=2 is ob-
tained. This value has been predicted by Kazarinov and Suris
}Al E for the case of nonresonant tunneling between the ground

’ \ 1 states of adjacent quantum wéfiand by Ddler et al. for
I 3 the case of acoustic phonon scatteftrig this field range the
102 el R S spacinge Fd between the nearest WS states is larger than the
10* 10° 10° miniband width and the semiclassical description of transport

Electric field (V/cm) based on the motion of Bloch electrons obviously breaks

eFd=A,

Hopping drift velocity (cm/s)

FIG. 6. The drift velocity in the single miniband approximation down.
arising from scattering between the Kane states of 28 (full Another prominent feature of the drift velocity that is due

line) and with inclusion of the effect of resonant tunnelifptted to the discrete nature of Fhe .WS ladder are the resonances
line). The inset shows the band structure and quantum well state@ue o LO phonon_scatt_erlr@lg. 9. Thes_e resonances had
for the field at which 2Fd=A . already bee_n pr_ed|cted in 197_2 by Bryk5|r_1 and Fifdaw a
paper on high-field transport in ZnS. Their theory accounts
of the lowest state of one well with the first excited state of " the quantum nature of the Wannier-Stark I.adder by using
the second and third next nearest well, respectively. We notihe field- and time-dependent Houston functﬁ?r(accelef-
that our calculation of the hopping drift velocity only in- ated Bloch statgsinstead of the Bloch states as basiskin
cludes transitions between the ground states of(teeo- space. To obtain analytic results for the scattering matrix
nantly coupledl quantum wells and disregards all transitions €lements between the Houston states, the authors, however,
including excited(antibonding states of the coupled wells. had to neglect the; dependence of LO phonon scattering.
For this reason and also due to the finite discretization of th@heir results are qualitatively valid but no quantitative agree-
applied field in the calculations shown, the height of thement can be expected. For the case of a purely one-
main resonance in Fig. 6 is quantitatively too small. Belowdimensional superlattice structure the correspondhspike
this resonance, however, the above approximation is validesonances have been described by Emin and*#art.
and we observe that resonant tunneling can be safely ne- At the position of the main LO phonon resonance an in-
glected foreFd<200 meV, i.e.,F<4x10° V/cm, in this  crease of the drift velocity should be observable in experi-
structure. ment at low temperatures. So far, however, no conclusive
evidence of these resonant structures has been presented in
V. DISCUSSION Iit_erat_ure. In some cases, an increase of the drift velocity at
high fields may have been misinterpreted as resonant tunnel-
We have seen that the range of electric fields in whiching into the first excited state of the next quantum well in-
NDC is observed can be divided in two regimes, showingstead of LO-phonon-induced tunneling into the ground state
different drift-velocity-field characteristics. of the adjacent well. A clear distinction of the two different
For moderate fields, for whicaFd is smaller tham\, the ~ processes could be achieved by temperature-dependent mea-
hopping velocity is characterized by a sum over several possurements of the drift velocity slightly below the main reso-
sible transitions between any two WS states separated hyance. Of course, it would be very instructive, if
energies less than the miniband width. In this field regimaemperature-dependent domain formation between the main
the drift velocity obeys a H law, independent of the micro- peak of the drift velocity at the critical field and the LO
scopic scattering process. This behavior agrees with the drifihonon resonance could be experimentally observed.
velocity as given in terms of Bloch oscillating miniband  Direct measurements of the drift velocity in the NDC re-
electrons in a semiclassical picture. The hopping theory begime are not possible due to the formation of constant or
comes, however, invalid in the ohmic transport regime of theraveling field domains. Nevertheless, there are experimental
semiclassical theories. The reason for this is that for lowtechniques that allow the determination of the drift velocity
fields, for which the Bloch oscillation frequencwg in the NDC range with good accuraty® Further experi-
=eFd/# becomes smaller than the scattering rate iie  ments, especially with respect to the temperature depen-
mean free path of the electron becomes smaller than the spdence, would certainly provide new insights into this fasci-
tial extent of the WS wave functiol.At these fields the use nating field.
of the WS functions as basis functions would require higher With regard to a comparison between theory and experi-
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ment a further remark, concerning the in-plane distribution . (2mrd
function of the electrons in the Wannier-Stark leveflg), U;Z(Z)Ukz(2)=; a,en@maz, (A3)
appears to be appropriate. As mentioned in Sec. Il, field-

induced heating of the electrons is negligible at temperature\ﬁlhere thea,, can be assumed to be independerk,aindk
; n 7

above about 100 K anf{k) can be approximated by a Fermi F : L
A . ! . . or the 12/6-GaAs/AlAs superlattice we obtaag=1,a.,
distribution function with the lattice temperature. This has%0_463, anch.,~—0.027. For an investigation of the high-

b?e” found as a result of self_-consisten_tly _sol\_/ing the hOpfieId dependence of the matrix element, we can expand the
ping rate equations for the in-plane distribution funCt'onexponentiaI function, giving ’

f(k).1"18 For temperatures below 100 K, however, strong :
heating is observed. Although these self-consistent distribu-

tion functions differ strongly from thermal equilibrium at (v|V]0)= d E a md dk f”/d dk.e ikzvd
largerk values, they can still be approximated by Fermi dis- m2 T "Jemd Coma 7

tribution functions for themost relevantrange of smallek

values. For our 20.3-meV miniband, e.g., an electron tem- xS 1 —szdk/[s(k')—s ] J
perature of about 100 K is obtained. As a result, the strong T jtleFJx, ? z 0

structure in thevdr vs field curve related to the LO phonon 5

resonances dtwy=eFd/n obtained for temperatures below . - ™

77 K when the Fermi distribution of the lattice temperature is x f dzexp{ I ( ke ke n?) ZV(2). (Ad)

used, becomes much less pronounced and the values ap-

proach the 77-K results. For the range above 77 Kiithevs ~ The j=0 term in the expansion corresponds to the
field results are hardly affected by the self-consistent treat-Wannier-limit,” that describes the reduction of the Kane
ment of the hopping rates. A detailed discussion of the selffunctions[Eq. (25)] to Wannier functions in the high-field
consistent hopping theory, however, goes beyond the scopénit.

of the present paper. It can be found in Refs. 17 and 18. Itis, Assuming a tight-binding model for the dispersion rela-
however, important to note that a comparison between theorijon, we can perform th&; integration, obtaining

and experiment for the full range down to very low tempera-

tures has to be based on the self-consistent calculations. d 1AV 1 wid
oVI0=3 )2; "2 |7 (eFd)iJ Ja
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APPENDIX: CALCULATION OF THE MATRIX ELEMENT _ ~ .
(v|V]0) and substitutingg,=k,—k,+n(27/d) we can write the

above expression as
Using the wave function from E@25) the matrix element

in z direction can be written as 1/AV 1 wd -
<V|V|0>= PRy 2 F(Z) Fd Jf kg ikzvd
T ~ j . e —ald
(v|V|0)= 5 zJ’ sz(z)f " dPZuf(z)e‘ikz(Z—Vd) (zm N( :
—x/d z 7/d)—k,+n(2x/d . .
e x; a“f[([( /L) k ;((2 /L])]dQZ(equd_l)]
. K., , w/d —[(#7/d)—k,+n(2m
Xe—lleFfOdez[s(kz)—eo]f dk,uy (2) ~ . _
—wld z X (e84 711020y (q,). (A6)
><eikzzei/eFIE’dké[s(ké)—80] (A1)  We now approximate the sum overtogether with the inte-
gral overq, according to
d wld _ (=ld ~
= 2f dsz dk,e'kzvd [(m/d)—K,+n(2/d)] o
(2m)2) —mia ) i > a, : da,—~ | dag(ay), (A7)
n ~[(w/d) Kk, +n(2m/d)] —o
. kZ ! ’
Xe'/ew?zdkz[a(kz)ﬁo}f dzqu(z)ukz(z) where
x el (ke=kD2y/(2). (A2)

9(d) =2 anPy(ay), (A8)
Sinceu{;r (z)ukz(z) has the periodicity of the superlattice, we i

can write and

195301-10



FIELD DEPENDENCE OF THE HOPPING DRIFT ... PHYSICAL REVIEW &5 195301

5 _d jﬂ-/d i a(w T N 277) 1 A [ ]
n(A)=5 |  dkef| g k= ng (v|V]0)= 2—,(48Fd) V+J f d.g(a,)V(ay)
277 T
0l k s+ 0,— d +a (A9) ) ) i
X(equd_l)lex%—E(j—y)qzd:| (A12)

is the overk, averaged probability that,+ g, lies within the
nth Brillouin zone. This approach is a generalization of thewith the matrix element vanishing otherwise. Finally, by us-
method used by Tsu and Bier® for the simplified calcula- ing I=(j —»)/2 as new summation index and applying the

tion of the acoustic phonon hopp|ng matrix elements. definition of the Bessel functions in terms of an infinite sum,
We can thus write the scattering matrix element as we find that
d 1( A \l[= _ 1 jw - 1 A v+
OO G 3 il sora | ansraacens (vIVI0)=57 | 4969(0V(a) 2, 7777 | Zerd
m - - - , +21\
_1)jv(qz)J ' dk,e kard( gkt g-itk ), x(e'qzd—l)”+2'( VVH )e"'qzd
—ald
1 (= _
(AL0) =i f dg,9(d,)V(q,) el
When expanding the term in brackets according to o
* v+2l
T T J J T E A o|n(E
(eikzd+efi(kz+qz)d)j= E )ei(zmj)kzdei(jm)qzd = V+| Ill 2€Fd
m=o0 \M

(A11)

1 o : A
- — ;v iv(q,d/2) —sin
and performing the integration ik, we then obtain a sum o ﬁwdng(qZ)V(qZ)e J”(eFdSI 2 )

over ¢ functionsd, - with 0=m=j. Using thesej func-

tions we find that forv<j andv+]j even we have (A13)
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