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Field dependence of the hopping drift velocity in semiconductor superlattices

S. Rott, N. Linder, and G. H. Do¨hler
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~Received 13 November 2001; published 19 April 2002!

The electronic transport in biased semiconductor superlattice structures is investigated on the basis of
hopping transitions between the partially localized states of the Wannier-Stark ladder. The drift velocity is
calculated numerically by summing all transitions between any two states of the ladder according to their
respective weight due to the overlap of the superlattice wave functions and the microscopic scattering process.
Both elastic~ionized impurity! and inelastic~acoustic and LO phonon! scattering has been taken into account.
Two distinct field ranges are observed depending on the relation between the Wannier-Stark spacingeFd and
the width of the lowest minibandD. For moderate fields (eFd,D) the drift velocity is inversely proportional
to the applied field for all scattering processes. ForeFd.D the discrete nature of the Wannier-Stark ladder
leads to a 1/Fn dependence of the drift velocity on the applied field, wheren depends on the scattering
mechanism and is larger than 1. Resonances in the drift velocity due to the discrete LO phonon energy and due
to resonant tunneling into excited states are observed and discussed in detail. Simplified analytical expressions
for the hopping drift velocity at low and high fields are given.

DOI: 10.1103/PhysRevB.65.195301 PACS number~s!: 73.61.2r, 72.10.2d, 72.20.Ht
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I. INTRODUCTION

Electronic transport perpendicular to the layers of a sup
lattice structure has been a field of growing interest e
since the famous starting paper of Esaki and Tsu.1 In spite of
the strongly simplifying assumptions concerning the scat
ing of miniband electrons in the Esaki-Tsu theory, this on
dimensional model served very well in explaining the occ
rence of negative differential conductivity~NDC! along with
the Bloch oscillations at high fields in these structures. T
extension of this model to finite temperatures and disti
momentum and energy relaxation times2 is still used by
many people for fitting their experimental data.

It was, however, very soon realized that negative diff
ential conductivity could alternatively be explained in term
of a description of transport by hopping transitions betwe
the rungs of the Wannier-Stark~WS! ladder.3,4 In this model
the negative differential conductivity results from the d
creasing overlap of the WS states at different sites of
superlattice due to the field-induced localization of the wa
functions. At that time, however, only the hopping transitio
between the first and second neighboring rungs of the S
ladder could be computed numerically. The resulting d
velocity, therefore, was only valid at sufficiently high field
F, i.e., when the spatial extent of the Wannier-Stark wa
function D/eF ~see Fig. 1! becomes smaller than two time
the superlattice periodd ~D is the width of the lowest mini-
band!.

This numerical shortcoming of the original papers on ho
ping transport led to the fact that in several discussions
literature on the validity of the above models5–7 hopping was
usually ruled out as the mechanism responsible for the
currence of NDC and it was assumed that hopping trans
can only be observed in weakly coupled superlattices w
very small miniband widths. For this reason most of the f
lowing theoretical investigations in this field were based o
treatment of transport in momentum space,2,8,9even though it
was shown that the hopping transport equation of Re
0163-1829/2002/65~19!/195301~12!/$20.00 65 1953
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could be derived from density matrix theory by choosing t
Wannier-Stark levels as basis states.10,11The few papers pub-
lished on hopping conduction in superlattices were of rat
theoretical interest and did not provide calculations of
drift velocity for realistic superlattices.10,12

Even though it was soon realized that at moderately h
fields the localization effect of the Wannier-Stark wave fun
tions is equivalent to the occurrence of Bloch oscillations
the NDC regime,13,14 it has been established only very r
cently that in the field range of Bloch oscillating electro
both the miniband and the hopping transport picture
equivalent descriptions for superlattice transport.15,16,20 In
particular, it was shown that the criterion for the validity
the hopping picture is that the Bloch frequencyvB
5eFd/\ is larger than the scattering rate 1/t. As this is also
the condition for the onset of NDC, it was found that th
hopping picture has a much broader range of applicab
than was previously thought.

In this paper we closely investigate the field depende
of the hopping drift velocity for strongly coupled GaAs/AlA
superlattices. We consider both elastic~ionized impurity! and

FIG. 1. Schematic diagram of an inelastic hopping transit
from an initial stateu0k& with energyE0(k) to a final stateunk8&.
The energy of the final state isEn(k8)5E0(k)6\vqW , whereqW is
the transferred phonon momentum.
©2002 The American Physical Society01-1
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inelastic~acoustic and polar optical phonon! scattering pro-
cesses and we present, for the first time, quantitative num
cal calculations of the drift velocity in the NDC regime du
to Wannier-Stark hopping, including all relevant transitio
between any two WS levels. In contrast to the popular o
dimensional miniband model,2 no fitting parameters ente
into our calculations and the drift velocity is calculated usi
microscopic scattering between the three-dimensional st
of a perfect, biased superlattice. We neglect disorder eff
due to interface roughness.

The outline of the paper is as follows: In Sec. II we sho
the detailed theory for the numerical calculation of the ho
ping drift velocity for the various scattering processes.
Sec. III technical details of the numerical simulation a
sample parameters are presented. The field dependen
the calculated drift velocity is discussed in detail in Sec.
Here, analytical models for the low- and high-field limit a
derived and the influence of the WS quantization on the d
velocity is discussed. We also show that the hopping the
is capable of describing resonant tunneling into higher s
bands of adjacent wells~interminiband Zener tunneling!. Our
results will be discussed and summarized in Sec. V.

II. THEORY OF THE HOPPING DRIFT VELOCITY

In an unbiased superlattice the electron energy spect
consists of the eigenenergies of the superlattice Bloch fu
tions with given wave vectorkW5(kz ,k). In growth direction
a miniband with widthD and dispersion relation«(kz) is
formed. If, however, a constant external fieldF is applied to
the superstructure, the conduction band edge is tilted by
additional electrostatic potentialeFz of the electric field. In
moving one periodd from one well of the superlattice to th
next neighboring well, the potential thus drops by a value
eFd. Due to the large superlattice constants of several
nometers this potential drop may take values up to the o
of 100 meV at high fields. Due to the invariance of the p
tential under the operation (z→z1d,E→E2eFd) the en-
ergy spectrum is now given by the Wannier-Stark ladder w
equidistant energy statesun,k&, where n denotes the WS-
ladder index andk is the wave vector parallel to the layer
The kinetic energy for parallel motion,«k , is given by a
parabolic dispersion with an effective massmi that is ob-
tained by averaging the GaAs and AlAs effective mas
according to the respective probability densities of the sup
lattice wave function in the GaAs wells and AlAs barriers

The electronic motion in field direction in this Wannie
Stark picture is achieved through scattering processes
induce hopping transitions between the otherwise station
WS-levels~see Fig. 1!. The drift velocity is given3 by

vdr5 (
n51

`
nd

tn
5 (

n51

`

nd~w0→n2wn→0!, ~1!

where the sum is over all transitions from one state of
Wannier-Stark ladder to any state further down the ladd
Here, 1/tn5w0→n2wn→0 is the net hopping rate for th
transitionu0&→un&. The termw0→n is given by summing the
scattering rateS(0k,nk8) over all initial (k) and final (k8)
19530
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wave vectors of the 2D-electron gas belonging to the 0th
the nth Wannier-Stark level, respectively. We obtain

w0→n5
2

n(2D) (
k

(
k8

f ~k!@12 f ~k8!#S~0k,nk8!. ~2!

The factor 2 accounts for the spin degeneracy of the initiak
states and we assume that the spin is not changed durin
scattering process. The 2D density of the electron gas
pendicular to the growth directionn(2D)5n(3D)d and the
electron distribution functionf (k) are assumed to be inde
pendent of the Wannier-Stark level indexn due to the trans-
lational invariance of the superlattice. The scattering r
S(0k,nk8) depends on the scattering process and can be
culated by using Fermi’s golden rule.

For an equilibrium phonon distribution,

S~nk8,0k!5expS En~k8!2E0~k!

kBT DS~0k,nk8!

~‘‘detailed balance’’!, ~3!

and Eq.~1! can be written as

vdr5 (
n51

`

n d
2

n(2D) (
k

(
k8

S~0k,nk8! f ~k!@12 f ~k8!#

3S 12expS En~k8!2E0~k!

kBT D f ~k8!@12 f ~k!#

f ~k!@12 f ~k8!#
D . ~4!

If field-induced heating of the electron distribution is neg
gible, f (k) can be approximated by a Fermi distributio
(e«k /kBT11)21 with lattice temperature. Indeed this is re
sonable for lattice temperatures above about 100 K as
have shown recently.17 The term in brackets on the right
hand side of Eq.~4! then reduces to (12e2neFd/kBT) and the
drift velocity thus becomes

vdr5 (
n51

`

n dw0→n~F !~12e2neFd/kBT!. ~5!

A. Phonon scattering

For simplicity, we assume that the superlattice phon
dispersion can be approximated by the bulk material mo
of GaAs. By summing over all lattice modesqW the transition
rate becomes

w0→n
ph ~F !5

2

n(2D)

1

~2p!2E dk
1

~2p!2E dk8
1

~2p!3E dqW f ~k!

3@12 f ~k8!#
2p

\
u^nk8,nqW

61uHel-phu0k,nqW&u2

3d~«k2«k87\vqW1neFd!. ~6!
1-2
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Here, the upper and lower signs refer to phonon emiss
and absorption, respectively. The electron-phonon interac
in quasi-two-dimensional semiconductor structures can
expressed as21

u^nk8,nqW61uHel-phu0k,nqW&u2

5c~q!dk2k87q~nqW1 1
2 6 1

2 !u^nue7 iqzzu0&u2, ~7!

where

c~q!5
\e2v0

2 S 1

e`
2

1

e D q2

~q21q0
2!2

~polar optical phonon scattering!,

5
DA

2\

2rcs
q ~acoustic phonon scattering!. ~8!

Here,v0 is the optical phonon frequency,e` and e are the
high-frequency and static permittivity,q0 is the reciprocal
screening length of the 3D-electron gas,DA is the deforma-
tion potential,r is the mass density, andcs is the velocity of
sound in the semiconductor material.

Inserting Eq.~7! into Eq. ~6! and using the momentum
conservingd function to eliminate theq integration one
obtains

w0→n
ph ~F !5

2

n(2D)

1

~2p!3\
E k dkE k8dk8E du f ~k!

3@12 f ~k8!#E dqzc~q!~nqW1 1
2 6 1

2 !

3u^nue7 iqzzu0&u2d~«k2«k87\vqW1neFd!,

~9!

where u is the angle betweenk and k8, and q
5q(k,k8,u,qz) is given by

q5Aq21qz
2, q25k21k8 222kk8cosu. ~10!

Finally, substituting k8dk85mi /\2d«k8 and using the
energy-conservingd function, the transition rate becomes

w0→n
ph ~F !5

2

n(2D)

1

~2p!3

mi

\3E k dkE du f ~k!

3@12 f ~k8!#E dqzc~q!~nqW1 1
2 6 1

2 !

3u^nue7 iqzzu0&u2. ~11!

Here

«k85«k1neFd7\vqW and k85
1

\
A2mi«k8. ~12!

For polar optical phonon scatteringvqW5v0 is a good ap-
proximation and Eqs.~10! and ~12! can be easily solved fo
given k, u, andqz .
19530
n
n
e

For acoustic phonon scattering, however, the system
Eqs.~10!1~12! is coupled by the conditionvqW5csq ~using a
linear dispersion for the acoustic phonon branch!. To obtain
faster computation, in this case, the substitutionqz

56Aq22q2, dqz5q/qzdq is performed in Eq.~9!. Thus

w0→n
ap ~F !5

2

n(2D)

1

~2p!3\
E k dkE k8dk8E du f ~k!

3@12 f ~k8!#2E dq
q

qz
cap~q!S nqW1

1

2
6 1

2 D
3u^nue7 iqzzu0&U2

1

\cs
dS «k2«k81neFd

\cs
7qD

5
2

n(2D)

2

~2p!3\2cs
E k dkE k8dk8E du f ~k!

3@12 f ~k8!#
q

qz
cap~q!S nqW1

1

2
6

1

2D
3u^nue7 iqzzu0&u2, ~13!

wherecap(q) is the value given in Eq.~8! for acoustic pho-
non scattering and

q56
«k2«k81neFd

\cs
, qz5Aq22q2,

q25k21k8222kk8cosu. ~14!

Now, for given integration variables ofk, k8 andu, q, andqz
can be directly determined through Eqs.~14!.

B. Impurity scattering

For ionized impurity scattering,

Sii ~nk8,0k!5
2p

\ U(
j

^n,k8uVj u0,k&U2

d~«k2«k81neFd!,

~15!

where the sum overj runs through all impurities of the su
perlattice. Assuming a homogeneous doping density and
semble averaging over all impurity positions in the structu
one finds that

K U(
j

^n,k8uVj u0,k&U2L
ens.av.

5
N(2D)

d E dz0u^nuVk2k8~z2z0!u0&u2. ~16!

N(2D) is the number of impurities per superlattice perio
Within the three-dimensional Thomas-Fermi theory t
screened impurity potential is given by

Vq~z2z0!5
e2

2ee0

1

uqeffu
e2uqeffuuz2z0u, uqeffu5Aq21q0

2,

~17!
1-3
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whereq0 is the reciprocal Debye screening length.22

Inserting Eqs.~15! and ~16! into Eq. ~2!, the transition
rate for impurity scattering becomes

w0→n
i i ~F !5

2

n(2D)

1

~2p!3E k dkE k8dk8E du f ~k!

3@12 f ~k8!#
2p

\

N(2D)

d E dz0

3u^nuVk2k8~z2z0!u0&u2d~«k2«k81neFd!.

~18!

Using thed function to perform the integration overk8, one
finally obtains

w0→n
i i ~F !5

2

n(2D)

1

~2p!2

N(2D)

d

mi

\3E k dkE du f ~k!

3@12 f ~k8!#E dz0u^nuVk2k8~z2z0!u0&u2,

~19!

where k8 is determined by energy conservation for elas
scattering

k85Ak21
2mi

\2
neFd, ~20!

andq5k2k8 is given by Eq.~14!.

III. NUMERICAL SIMULATION OF THE HOPPING
DRIFT VELOCITY

In the following we will present results for the hoppin
drift velocity as a function of electric field for a sample co
sisting of 12 monolayers GaAs and six monolayers AlA
The superlattice period in this structure isd5dWell
1dBarrier55.1 nm, where dWell53.4 nm and dBarrier
51.7 nm. The resulting width of the lowest miniband
20.3 meV, i.e., the wells of the superlattice are stron
coupled. The minigap separation between the lowest and
first excited miniband is about 500 meV. Thus, the occu
tion of higher minibands is small and conduction occurs o
in the lowest miniband at moderate fields where interm
band Zener tunneling may be neglected. The electron den
was taken to be equal to a homogeneous doping den
N(3D)5N(2D)/d of 1016 cm23. This gives a value of 22 nm
for the screening length 1/q0 at 77 K. The kinetic energy for
electronic motion parallel to the layers was calculated in
effective mass approximation using a valuemi50.0732m0,
wherem0 is the free electron mass.

We have numerically calculated the hopping drift veloc
at different lattice temperatures for fields ranging from 5
V/cm to 23106 V/cm, corresponding to an energy spaci
of the Wannier-Stark states ranging fromeFd50.255 meV
at 500 V/cm toeFd51018 meV at 23106 V/cm. The on-
set of tunneling into states belonging to the second minib
19530
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is found to occur at abouteFd5700 meV as will be shown
later.

According to Eq.~1!, the computed drift velocity is given
by a sum over all transitions between a given Wannier-St
stateu0& and any stateun& at lower energy further down the
ladder. For Wannier-Stark states that are separated by e
gies neFd significantly larger than the miniband widthD,
the overlap between the wave functions approaches z
Thus, only those transitionsu0&→un& contribute to the net
drift velocity for which neFd is smaller thanD. For an ap-
plied field of 500 V/cm, this involves transitions betwee
about 80 states while for only fields significantly larger th
FD5D/ed543104 V/cm is the transition to the neares
state (n51) important.

In Fig. 2 we show the calculated drift velocities for th
various transitionsu0&→un& for n51, . . . ,8 ~thin lines! and
the total drift velocity resulting from the summation over a
relevant n ~thick line!. We observe that at high fieldsF
.FD the drift velocity is dominated by theu0&→u1& transi-
tion, corresponding to hopping between the localized wa
functions in adjacent wells. Moving to lower fields, th
Wannier-Stark wave functions become extended over an
creasing number of quantum wells and, correspondingly
increasing number of transitions contribute to the total d
velocity. Even though the individual contributions decrea
at low fields, the total drift velocity diverges due to the sum
mation over the increasing number of possible transitio
Thus, as was shown in Ref. 15, the hopping picture is o
valid in the NDC regime, that is, down to fields for which th
collisional broadending\/t of the Wannier-Stark states i
smaller than the energetic WS-level spacingeFd. At lower
fields, the electron coherence length due to scatte
becomes smaller than the extentL5D/eF of the WS
functions.

Hence, the electrons are scattered before the Wann
Stark states can be coherently formed, and the WS-state
no longer represent an adequate basis for describing
transport. To make this point more clear, we refer to
correspondence between the semiclassical and the qua
mechanical picture at sufficiently low fields, which was me
tioned in the introduction. In the semiclassical picture, t
meaning ofL is the amplitude of the real-space center-o
mass motion of an electron performing a Bloch oscillatio
The condition\/t,eFd for the existence of the WS ladde
corresponds directly to the conditionvBt5eFdt/\.1 for
the existence of Bloch oscillations. The latter conditi
means that the path of an electron ink space has to be suf
ficiently long before its momentum becomes changed b
scattering event, i.e.,k(t)5(eF/\)t.1/d. Formally, the
time evolution of«„kz8(t)… during a Bloch oscillation is also
reflected in the analytical expression for the WS wave fu
tions u0& andun& @seekz integrals in Eq.~A1!; assumekz8 be
substituted byeFt/\]. Then, the analytical expression fo
the WS wave functions corresponds to the unperturbed t
evolution ofkz(t) over the whole mini-Brillouin zone from
2p/d at the time2T/2 to p/d at the timeT/2 ~whereT
52p/vB52p\/eFd is the Bloch oscillation period!. Thus,
the WS wave functions are no longer eigenstates of the
1-4
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FIG. 2. Contribution of the transitionsu0&
→un& ~thin lines! towards the total drift velocity
~thick line!. The drift velocity is shown in a
double logarithmic plot for the total of all scatter
ing processes~a! and for the three single contri
butions~b–d!.
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perlattice with a uniform electric field, if (eF/\)t.1/d. In
this case the transport has to be calculated either by foll
ing the trajectory of miniband Bloch electrons in momentu
space, as achieved, for instance, by realistic Monte C
simulations,17,18 or the time evolution of miniband electron
has to be described in a formally more advanced sche
which takes into account both hopping from quantum wel
quantum well in real space and scattering processes in
mentum space at an equal footing.19 The latter approach
though formally very elegant, as it is applicable and corr
for the full range from very low to very high fields, unfortu
nately, does not allow us to take into account the scatte
mechanisms in a realistic way in a reasonable numer
effort.

IV. FIELD DEPENDENCE OF THE DRIFT VELOCITY

In the following we will discuss the dependence of t
drift velocity on the applied field. First we will show that a
moderate fields the drift velocity obeys a 1/F law. This be-
havior corresponds to the semiclassical NDC regime
Bloch-oscillating electrons and is independent of the scat
ing process.

From Fig. 2 we observe, however, that significant dev
tions from the semiclassical 1/F law occur at higher fields
Here, the drift velocity is described by a power law 1/Fn

with exponentsn.1, i.e., the hopping drift velocity de
19530
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creases faster than in the semiclassical theory. The valuen
depends on the scattering mechanism considered. A de
tion for the values ofn will be given in Sec. IV B in an
analytical model that agrees very well with the numeric
calculations except for very high fields.

We will also discuss the occurrence of resonances c
nected with the constant optical phonon energy\v0 and
with the effect of resonant tunneling into excited states
neighboring quantum wells. For the latter case we go bey
the single-band approximation for the Wannier-Stark sta
In both situations an increased drift velocity is observed n
the resonances.

The distinct behavior for the field dependence of the d
velocity depending on the scattering process is summar
in Table I.

A. Moderate fields „eFdËD…

To analyze the behavior of the drift velocity at moderate
high electric fields, we perform a transition from the discre
Wannier-Stark states towards a quasi-energy continuum
states, corresponding to the semiclassical miniband poin
view. This continuum transition may be performed if, wi
decreasing fieldF, the Wannier-Stark spacingeFd becomes
much smaller than the miniband widthD.

Starting from expression~5! the drift velocity can be re-
written in the form
e in

ring
TABLE I. Field dependence of the hopping drift velocity from numerical calculations. The valu
brackets for impurity scattering results from the analytical model of Sec. IV B.

Field range Acoustic phonon scattering Polar optical phonon scattering Impurity scatte

eFd,D }1/F }1/F }1/F
eFd.D }1/F2 }1/F3 }1/F3.5(4)

eFd5\v0 /n Resonances
eFd5(E12E0)/n Resonant tunneling into the next highest subband
1-5
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vdr5
1

eF (
n51

`

n eFdw0→n~F !~12e2neFd/kBT!. ~21!

The termneFd corresponds to the change of energy in t
electric potential associated with a hopping process
changes the center-of-mass position of the electron by
amountnd. For low fields this discrete spectrum of potent
energy changes gradually turns into a quasi-continuous s
trum, characterized by the continuous energy change«z . In
this case the sum overn can be replaced by an integral ov
«z . Also, the discrete scattering ratew0→n is replaced by a
scattering rate per energyw«z

5w0→n /eFd, accounting for
the fact that the scattering amplitude per energy interval
comes independent of the field at low fields. The drift velo
ity then becomes

vdr5
1

eFE0

`

d«z«z~12e2«z /kBT!w«z
, ~22!

where the integral corresponds to the semiclassical en
relaxation rate.w«z

is the probability per time and energ
that an electron is scattered to a state for which thepotential
energyeFz in the electric field is reduced by a factor«z . It
should be pointed out that the scattering-induced chang
total energy of the electron is typically different, as it in
cludes the change of in-planekineticenergy due to scatterin
from k to k8.

We have performed numerical calculations ofw«z
for the

different scattering processes. The results forF
5500 V/cm are shown in Fig. 3. Our calculations show th
w«z

is indeed independent of the electric field at low field

FIG. 3. The energy dependence of the transition ratew«z

5w0→n /eFd at low fields. For the field shown, the Wannier-Sta
spacing is 0.255 meV. Each point corresponds to a transition
givenn. The full line is the semiclassical result for aq-independent
scattering process.
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According to Eq.~22!, this agrees with the fact that the re
sulting hopping drift velocity becomes proportional to 1/F at
low fields.

In analyzing the energy dependence ofw«z
, we first ob-

serve that the transition rate goes to zero for energies la
than the miniband width due to the vanishing overlap of
Wannier-Stark wave functions. The curve for impurity sc
tering can be qualitatively explained by the fact that the c
pling constant in this case is proportional to 1/q4 and that
with increasing energy loss«z in z-direction the transferred
momentum parallel to the layers increases roughly accord
to «z}q2. For acoustic phonon scattering the coupling co
stant is approximately independent of«z and the small de-
crease ofw«z

with energy in this case results from the d
creasing overlap of the corresponding wave functio
Finally, as the miniband widthD is smaller than\v0, only
those electrons that are thermally excited parallel to the
ers may undergo LO phonon emission. For the transit
u0&→un& the minimum energy for LO phonon emission
«k5\v02neFd5\v02«z . Therefore, the number of elec
trons that may emit LO phonons and thus also the resul
scattering rate both increase slightly with increasing«z .

For the case of ak independent scattering process, a li
to the semiclassical, one-dimensional miniband model m
now be established by approximating the scattering rate

w«z
5

Dcomb
1D ~«z!

t
,

~23!

Dcomb
1D ~«z!5E

«z

D

d«D1D~«!D1D~«2«z!,

whereDcomb
1D («z) is the one-dimensional combined dens

of states. In the one-dimensional~tight-binding! miniband
picture the density of Bloch states entering intoDcomb

1D («z) is
given byD1D(«z)51/pA«z(D2«z). The resulting curve for
w«z

with a fitted value of 10 ps fort is shown as full line in
Fig. 3. We observe a very good agreement with the scatte
rates for acoustic phonons in the hopping picture. The de
tion of the other scattering rates from this semiclassical re
is due to the momentum dependence of these scattering
cesses.

With the above approximation, the integration in Eq.~22!
can be performed and we obtain

vdr5
1

eF

D«z

t
,

~24!

D«z5E dkzE dkz8@«~kz!2«~kz8!#u„«~kz!2«~kz8!…

3S 12expF2
«~kz!2«~kz8!

kBT G D .

Here,u(x) is the Heavyside function andD«z is the mean
energy loss per scattering event of Bloch oscillating el
trons. Equation~24! thus has the meaning of an energy b
ance equation for Bloch oscillating electrons, balancing

th
1-6
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energy acquired from the field,eFvdr , with the mean energy
relaxation rateD«z/t. At a temperature of 77 K, a value o
6.5 meV for D«z is obtained numerically. ForT→`, D«z

goes to zero and forT50 K, D«z54/p2D'8.23 meV. We
note that our values forD«z differ slightly from the results
obtained within the relaxation time approximation of the 1
Boltzmann equation.2 In particular, in that theory a value o
D/2 is obtained forD«z at 0 K.

B. High fields „eFdÌD…

In order to establish a link to the original hopping tran
port paper by Tsu and Do¨hler,3 analytic expressions for th
scattering matrix elements are derived in this section, us
minor approximations for the treatment of umklapp pr
cesses. The resulting formulas provide power laws 1/Fn for
the drift velocity in the limit of high fields. The exponentsn
are determined for different collision processes.

We calculate the field dependence of the matrix elem
^nuVu0&, where V(z)5e7 iqzz @see Eq.~7!# in the case of
phonon scattering andV(z)5Vq(z) @Eq. ~17!# for impurity
scattering, using the fact that the eigenfunction of thenth
Wannier-Stark stateun& can be expressed analytically23 as

cn~z!5
Ad

2pE2p/d

p/d

dkzukz
~z!eikz(z2nd)ei /eF*

0

kzdkz8[«(kz8)2«0] .

~25!

Here,«(kz) is the miniband dispersion relation and

«05
d

2pE2p/d

p/d

dkz8«~kz8!. ~26!

Assuming a tight-binding model for the dispersion and a
proximating umklapp processes to neighboring mi
Brillouin zones one can show~see Appendix! that

^nuVu0&'
1

2p
i nE

2`

`

dqzg~qz!V~qz!e
in(qzd/2)

3JnS D

eFd
sin

qzd

2 D , ~27!

where Jn is the Bessel function of ordern and g(qz) ac-
counts for the fact that scattering to distant mini-Brillou
zones is reduced according to the form of the periodic su
lattice function ukz

(z). Our approximation forg(qz) is
equivalent to the approach of Tsu and Do¨hler for the calcu-
lation of the acoustic phonon scattering rate.3

Equation~27! is exact in the limit of vanishingqz @i.e.,
V(qz)}d(qz)]. When, at high fields,qz becomes of the orde
of the miniband Brillouin zonep/d, however, umklapp pro-
cesses become increasingly important and Eq.~27! gives too
low values for the scattering matrix element. This is sho
in Fig. 4, where the hopping drift velocity resulting from th
above equation for̂ nuVu0& is compared to the numerica
calculation without approximations.

The slower decrease of the numerical result at very h
fields is due to the fact that at these fields the wave functi
19530
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@Eq. ~25!# become the Wannier functions of the superlattic
which are independent of the applied field. The scatter
matrix element then only contains a field dependence via
q dependence of the scattering coupling constant resul
from increasing in-plane momentum transferq with increas-
ing field. At very high fieldsq2 is roughly proportional toF.
The scattering matrix element between the field-independ
Wannier functions vanishes, however, in the approximat
leading to Eq.~27!.

Phonon scattering

For phonon scatteringV(qz)52pd(qz7qz8), whereqz8 is
the phonon momentum in growth direction. The squared m
trix element then becomes

u^nue7 iqz8zu0&u2

5g~qz8!2Jn
2S D

eFd
sin

6qz8d

2 D
5g~qz8!2S (

l 50

`
~21! l

~n1 l !! l ! S D

2eFd
sin

qz8d

2 D n12l D 2

.

~28!

Hence the leading term in 1/F is of the order of (1/F)2n for
the transition 0→n.

To calculate the field dependence of the drift velocity, w
now have to take into account the fact that for high fields
scattering wave vector parallel to the layersq becomes ap-
proximately

q'
A2mi~eFd6\v!

\
}AF for eFd@\v. ~29!

FIG. 4. Comparison of the hopping drift velocity according
Eq. ~27! ~thick lines! and the numerical calculation~thin lines!. The
two models agree very well for fields up to 43105 V/cm.
1-7
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S. ROTT, N. LINDER, AND G. H. DÖHLER PHYSICAL REVIEW B 65 195301
This does not introduce a field dependence into the acou
phonon scattering rate that is independent of the value ofq at
sufficiently high temperatures.24 For optical phonon scatter
ing, however, a factor 1/(qz

21q2) appears in the scatterin
rate. Sinceqz

2 can be neglected in comparison toq2 at high
fields, this leads to an additional factor 1/F in the drift ve-
locity for polar optical phonon scattering.

Hence, we find that the lowest-order term (n51) in the
reciprocal field in the high-field drift velocity is of the orde
1/F2 for acoustic phonon scattering and of the order 1/F3 for
polar optical phonon scattering. This is in good agreem
with the slopes of the curves in Fig. 4.

Impurity scattering

By inserting Eq.~27! into Eq. ~16! we obtain

N

dE dz0u^nuVk2k8~z2z0!u0&u2

5
N

4p2d
E dz0U E

2p/d

p/d

dqzg~qz!Vq~qz!e
in(qzd/2)

3JnS D

eFd
sin

qzd

2 Deiqzz0U2

5
N

2pdE2p/d

p/d

dqzg~qz!
2uVq~qz!u2JnS D

eFd
sin

qzd

2 D 2

.

~30!

Here we have used the fact that the Fourier transform
Vq(z2z0) is eiqz0 times the Fourier transform ofVq(z).
SinceuVq(qz)u2 is proportional to 1/q4 we expect that thisq
dependence of the scattering potential should add ano
factor 1/F2 to the resulting drift velocity due to impurity
scattering. The total impurity-induced drift velocity shou
then follow a 1/F4 law. In Fig. 4 we observe a slope o
1/F3.4. We attribute this lower exponent to the fact thatqz
cannot be completely neglected in comparison toq in the
integral in Eq.~30!.

C. Optical phonon resonances

As the miniband width of our superlattice is smaller th
the optical phonon energy\v0, normally, LO phonon emis-
sion can only occur if the electrons are heated parallel to
layers. If, however, at high fields, the spacing between
two Wannier-Stark states becomes larger than the op
phonon energy, then LO phonon emission is allowed for
electrons for the corresponding transition, and the resul
hopping rate increases considerably due to the large coup
constant for optical phonon scattering. Thus, LO phon
resonances can be observed wheneverneFd becomes equa
to \v0. The resonances belonging to the individual tran
tions u0&→un& can be easily recognized in Fig. 2~d!.

The LO phonon resonance peaks are very pronounce
low temperatures while they become increasingly smea
out at higher temperatures due to the spreading of the e
tron distribution parallel to the layers. This is illustrated
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Fig. 5 that shows the total drift velocity for different tem
peratures. For fieldseFd below \v0536 meV, only hot
electrons that have an energy«k.\v02eFd may undergo
LO-phonon emission to the next lowest Wannier-Stark sta
Therefore, the low-field slope of the resonance is determi
by the electron temperature. For fieldseFd larger than the
optical phonon energy, polar optical phonon processes
always possible and, therefore, LO-phonon emission
comes the dominant scattering mechanism. This is also
flected by the fact that the drift velocity for fields larger tha
\v0 is hardly temperature dependent, since, at these t
peratures, only spontaneous emission processes contribu
the drift velocity.

D. Tunneling into higher bands

At sufficiently high fields, resonant tunneling into high
states of neighboring quantum wells dominates the trans
through the superlattice. In this case, the description of
electronic structure in terms of the single-band wave fu
tions @Eq. ~25!# is not valid anymore. The effect of resona
tunneling can, however, be included into our model by us
the correct wave functions that have been numerically ca
lated for the tilted superlattice potential using the trans
matrix method with Airy functions as basis functions.25 In
this model we make the assumption that the tunneling tim
between adjacent wells are smaller than the electron lifet
due to scattering. This should be valid in our case of stron
coupled superlattices.

In our structure the resonance between the lowest subb
in one well~at energyE0) and the first subband in the adja
cent well ~at energy E1) occurs at eFd5E12E05D10
'700 meV. The resulting drift velocity, including the cou
pling of the wave functions between neighboring wells d
to resonant tunneling, is shown as dotted line in Fig. 6. B
low the main resonance~at eFd5D10) two more peaks ap-
pear~at eFd5D10/2 andeFd5D10/3) due to the resonanc

FIG. 5. The drift velocity for all scattering processes at differe
temperatures.
1-8
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FIELD DEPENDENCE OF THE HOPPING DRIFT . . . PHYSICAL REVIEW B65 195301
of the lowest state of one well with the first excited state
the second and third next nearest well, respectively. We n
that our calculation of the hopping drift velocity only in
cludes transitions between the ground states of the~reso-
nantly coupled! quantum wells and disregards all transitio
including excited~antibonding! states of the coupled wells
For this reason and also due to the finite discretization of
applied field in the calculations shown, the height of t
main resonance in Fig. 6 is quantitatively too small. Bel
this resonance, however, the above approximation is v
and we observe that resonant tunneling can be safely
glected foreFd,200 meV, i.e.,F,43105 V/cm, in this
structure.

V. DISCUSSION

We have seen that the range of electric fields in wh
NDC is observed can be divided in two regimes, show
different drift-velocity-field characteristics.

For moderate fields, for whicheFd is smaller thanD, the
hopping velocity is characterized by a sum over several p
sible transitions between any two WS states separated
energies less than the miniband width. In this field regi
the drift velocity obeys a 1/F law, independent of the micro
scopic scattering process. This behavior agrees with the
velocity as given in terms of Bloch oscillating miniban
electrons in a semiclassical picture. The hopping theory
comes, however, invalid in the ohmic transport regime of
semiclassical theories. The reason for this is that for l
fields, for which the Bloch oscillation frequencyvB
5eFd/\ becomes smaller than the scattering rate 1/t, the
mean free path of the electron becomes smaller than the
tial extent of the WS wave function.15 At these fields the use
of the WS functions as basis functions would require hig

FIG. 6. The drift velocity in the single miniband approximatio
arising from scattering between the Kane states of Eq.~25! ~full
line! and with inclusion of the effect of resonant tunneling~dotted
line!. The inset shows the band structure and quantum well st
for the field at which 2eFd5D10.
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orders of perturbation theory to describe the effect of sc
tering between the WS states adequately.

At high fields, characterized byeFd.D, NDC with a
different field characteristic is observed. Here, hopping
dominated by transitions between adjacent quantum w
and the drift velocity decreases with decreasing overlap
neighboring wave functions with increasing field. The dr
velocity obeys a power law 1/Fn, wheren is larger than 1
and depends strongly on the microscopic scattering proc
For the case of a scattering process that is independent o
transferred momentumq5k2k8 a value of n52 is ob-
tained. This value has been predicted by Kazarinov and S
for the case of nonresonant tunneling between the gro
states of adjacent quantum wells26 and by Döhler et al. for
the case of acoustic phonon scattering.4 In this field range the
spacingeFd between the nearest WS states is larger than
miniband width and the semiclassical description of transp
based on the motion of Bloch electrons obviously brea
down.

Another prominent feature of the drift velocity that is du
to the discrete nature of the WS ladder are the resona
due to LO phonon scattering~Fig. 5!. These resonances ha
already been predicted in 1972 by Bryksin and Firsov27 in a
paper on high-field transport in ZnS. Their theory accou
for the quantum nature of the Wannier-Stark ladder by us
the field- and time-dependent Houston functions28 ~acceler-
ated Bloch states! instead of the Bloch states as basis inkW
space. To obtain analytic results for the scattering ma
elements between the Houston states, the authors, how
had to neglect theqW dependence of LO phonon scatterin
Their results are qualitatively valid but no quantitative agre
ment can be expected. For the case of a purely o
dimensional superlattice structure the correspondingd-spike
resonances have been described by Emin and Hart.12

At the position of the main LO phonon resonance an
crease of the drift velocity should be observable in expe
ment at low temperatures. So far, however, no conclus
evidence of these resonant structures has been present
literature. In some cases, an increase of the drift velocity
high fields may have been misinterpreted as resonant tun
ing into the first excited state of the next quantum well
stead of LO-phonon-induced tunneling into the ground st
of the adjacent well. A clear distinction of the two differe
processes could be achieved by temperature-dependent
surements of the drift velocity slightly below the main res
nance. Of course, it would be very instructive,
temperature-dependent domain formation between the m
peak of the drift velocity at the critical field and the LO
phonon resonance could be experimentally observed.

Direct measurements of the drift velocity in the NDC r
gime are not possible due to the formation of constant
traveling field domains. Nevertheless, there are experime
techniques that allow the determination of the drift veloc
in the NDC range with good accuracy.29,30 Further experi-
ments, especially with respect to the temperature dep
dence, would certainly provide new insights into this fas
nating field.

With regard to a comparison between theory and exp

es
1-9
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S. ROTT, N. LINDER, AND G. H. DÖHLER PHYSICAL REVIEW B 65 195301
ment a further remark, concerning the in-plane distribut
function of the electrons in the Wannier-Stark levels,f (k),
appears to be appropriate. As mentioned in Sec. II, fie
induced heating of the electrons is negligible at temperatu
above about 100 K andf (k) can be approximated by a Ferm
distribution function with the lattice temperature. This h
been found as a result of self-consistently solving the h
ping rate equations for the in-plane distribution functi
f (k).17,18 For temperatures below 100 K, however, stro
heating is observed. Although these self-consistent distr
tion functions differ strongly from thermal equilibrium a
largerk values, they can still be approximated by Fermi d
tribution functions for the~most relevant! range of smallerk
values. For our 20.3-meV miniband, e.g., an electron te
perature of about 100 K is obtained. As a result, the str
structure in thevdr vs field curve related to the LO phono
resonances at\v05eFd/n obtained for temperatures belo
77 K when the Fermi distribution of the lattice temperature
used, becomes much less pronounced and the values
proach the 77-K results. For the range above 77 K thevdr vs
field results are hardly affected by the self-consistent tre
ment of the hopping rates. A detailed discussion of the s
consistent hopping theory, however, goes beyond the sc
of the present paper. It can be found in Refs. 17 and 18. I
however, important to note that a comparison between the
and experiment for the full range down to very low tempe
tures has to be based on the self-consistent calculations
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APPENDIX: CALCULATION OF THE MATRIX ELEMENT
ŠnzVz0‹

Using the wave function from Eq.~25! the matrix element
in z direction can be written as

^nuVu0&5
d

~2p!2E dzV~z!E
2p/d

p/d

dk̃zuk̃z
* ~z!e2 i k̃z(z2nd)

3e2 i /eF*
0

k̃zdkz8[«(kz8)2«0]E
2p/d

p/d

dkzukz
~z!

3eikzzei /eF*
0

kzdkz8[«(kz8)2«0] ~A1!

5
d

~2p!2E2p/d

p/d

dk̃zE
2p/d

p/d

dkze
2 i k̃znd

3ei /eF*
k̃z

kzdkz8[«(kz8)2«0]E dzuk̃z
* ~z!ukz

~z!

3ei (kz2 k̃z)zV~z!. ~A2!

Sinceuk̃z
* (z)ukz

(z) has the periodicity of the superlattice, w

can write
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uk̃z
* ~z!ukz

~z!5(
n

anein(2p/d)z, ~A3!

where thean can be assumed to be independent ofkz andk̃z .
For the 12/6-GaAs/AlAs superlattice we obtaina051,a61
'0.463, anda62'20.027. For an investigation of the high
field dependence of the matrix element, we can expand
exponential function, giving

^nuVu0&5
d

~2p!2 (
n

anE
2p/d

p/d

dk̃zE
2p/d

p/d

dkze
2 i k̃znd

3(
j

1

j ! S i

eFEk̃z

kz
dkz8@«~kz8!2«0# D j

3E dzexpF i S kz2 k̃z1n
2p

d D zGV~z!. ~A4!

The j 50 term in the expansion corresponds to t
‘‘Wannier-limit,’’ that describes the reduction of the Kan
functions @Eq. ~25!# to Wannier functions in the high-field
limit.

Assuming a tight-binding model for the dispersion re
tion, we can perform thekz8 integration, obtaining

^nuVu0&5
d

~2p!2 (
n

an(
j

1

j ! S D

4 D j 1

~eFd! jE2p/d

p/d

dk̃z

3E
2p/d

p/d

dkze
2 i k̃znd~ei (kz2 k̃z)d21! j

3~eik̃zd1e2 ikzd! jVqS kz2 k̃z1n
2p

d D , ~A5!

and substitutingqz5kz2 k̃z1n(2p/d) we can write the
above expression as

^nuVu0&5
d

~2p!2 (
j

1

j ! S D

4 D j 1

~eFd! jE2p/d

p/d

dk̃ze
2 i k̃znd

3(
n

anE
2[(p/d)2 k̃z1n(2p/d)]

[(p/d)2 k̃z1n(2p/d)]
dqz~eiqzd21! j

3~eik̃zd1e2 i ( k̃z1qz)d! jV~qz!. ~A6!

We now approximate the sum overn together with the inte-
gral overqz according to

(
n

anE
2[(p/d)2 k̃z1n(2p/d)]

[(p/d)2 k̃z1n(2p/d)]
dqz→E

2`

`

dqzg~qz!, ~A7!

where

g~qz!5(
n

anPn~qz!, ~A8!

and
1-10
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Pn~qz!5
d

2pE2p/d

p/d

dk̃zuS p

d
2 k̃z2qz1n

2p

d D
3uS k̃z1qz2n

2p

d
1

p

d D ~A9!

is the overk̃z averaged probability thatk̃z1qz lies within the
nth Brillouin zone. This approach is a generalization of t
method used by Tsu and Do¨hler3 for the simplified calcula-
tion of the acoustic phonon hopping matrix elements.

We can thus write the scattering matrix element as

^nuVu0&5
d

~2p!2 (
j

1

j ! S D

4eFdD
jE

2`

`

dqzg~qz!~eiqzd

21! jV~qz!E
2p/d

p/d

dk̃ze
2 i k̃znd~eik̃zd1e2 i ( k̃z1qz)d! j .

~A10!

When expanding the term in brackets according to

~eik̃zd1e2 i ( k̃z1qz)d! j5 (
m50

j S j
mDei (2m2 j ) k̃zde2 i ( j 2m)qzd

~A11!

and performing the integration ink̃z we then obtain a sum
overd functionsdn,2m2 j with 0<m< j . Using thesed func-
tions we find that forn< j andn1 j even we have
B

tt

dn

hu

.

19530
^nuVu0&5
1

2p (
j >n

1

j ! S D

4eFdD
jS j

n1 j

2
D E

2`

`

dqzg~qz!V~qz!

3~eiqzd21! jexpF2
i

2
~ j 2n!qzdG ~A12!

with the matrix element vanishing otherwise. Finally, by u
ing l 5( j 2n)/2 as new summation index and applying t
definition of the Bessel functions in terms of an infinite su
we find that

^nuVu0&5
1

2pE2`

`

dqzg~qz!V~qz!(
l 50

`
1

~n12l !! S D

4eFdD
n12l

3~eiqzd21!n12l S n12l
n1 l De2 i lq zd

5
1

2p
i nE

2`

`

dqzg~qz!V~qz!e
( inqzd/2)

3(
l 50

`
~21! l

~n1 l !! l ! S D

2eFd
sin

qzd

2 D n12l

5
1

2p
i nE

2`

`

dqzg~qz!V~qz!e
in(qzd/2)JnS D

eFd
sin

qzd

2 D .

~A13!
on-
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