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Modeling the metal-semiconductor interaction: Analytical bond-order potential
for platinum-carbon
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We propose an analytical interatomic potential for modeling platinum, carbon, and the platinum-carbon
interaction using a single functional form. The ansatz chosen for this potential makes use of the fact that
chemical bonding in both covalent systems ahulansition metals can be described in terms of the Pauling
bond order. By adopting Brenner’s original bond-order potential for cafPbgs. Rev. B42, 9458(1990] we
devise an analytical expression that has an equivalent form for describing the C-C/Pt-Pt/Pt-C interactions. It
resembles, in the case of the pure metal interaction, an embedded-atom scheme, but includes angularity. The
potential consequently provides an excellent description of the properties of Pt including the elastic anisotropy
ratio. The parameters for both the Pt-Pt interaction and the Pt-C interaction are systematically adjusted using a
combination of experimental and theoretical data, the latter being generated by total-energy calculations based
on density-functional theory. This approach offers good chemical accuracy in describing all types of interac-
tions, and has a wide applicability for modeling metal-semiconductor systems.
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l. INTRODUCTION identified!* and a “soft landing” as well as the penetration
of metal clusters have been observéinally, metals play a

Analytical potentials of the embedded-atom &ﬁaep- dominant role in the synthesis of carbon nanostructures,
resent the current state of art in the classical description ovhere they act both as condensation seeds and cataiysts.
cohesion in metals, and they enable simulations of severgomputationally efficient interatomic potential that realisti-
million atoms on present day computers. For covalentlycally describes the structure and chemistry of both covalently
bonded systems, such as carbon, silicon, and germaniurionded materials and metals would therefore be very useful
reactive bond-order potentials play a similar role and havd°r atomistic simulations of those material processes.
successfully been used in various applicatibrihere are In this study we devise such a potential for carbon-
only few simulation studies, however, that considered matePlatinum. Platinum is of obvious importance for catalytic

0 6,17 .
rial processes in mixed covalent-metallic systems. This iéiewcesl, but there are also several bulk and interface

due to the lack of analytical potentials that describe the coP robllems related to Pt-C, for instance the optllmlzat!on of
hesion in metals. carbons. and metal-carbon in a compreherq]umlayers that are used as the reflector and dispersive ele-

sive way. The modified embedded-atom metHbEAM), ment in the optical system of synchrotron beamlitfeSrom

. . ) . a theoretical point of view, carbon and platinum are immis-
as proposed by BasKeprovides a possible analytical basis )| systems that do not form a carbide strucfir&ince

for such a potential, but has not yet been used for carbony,e glectronegativity difference of Pt and C is small, the
This might be related to the fact that within the MEAM charge transfer is negligible. Therefore, this system is an
angularity depends only on the atom-type but not on thggeal choice for an analytical description using a short—
bond type, so that different hybridizations cannot be easilyanged potential.
described. In some studies pair potentials have been used in The paper is organized as follows. First, we show how the
order to link established semiconductor and EAM bond-order scheme can be linked to established embedded-
potentials®~2 The applicability of these approaches, how- atom methods, and present the analytical form of the poten-
ever, is rather limited, since bonds between chemically untial. Then the density-functional theopFT) calculations,
saturated carbon and metal atoms cannot be described. that were performed in order to obtain a set of input data for
There is much interest, of course, in material propertieshe parameterization of the potential, are briefly described.
and processes that involve chemical interactions betweeRinally, we discuss the fitting procedure for each type of
metals and carbon. Typical examples include the growth ointeraction, separately.
nanostructured metallic films on semimetallic inert sub-
strates, such as graphite via cluster beam or vapor depositiollﬂ BASIC METHODOLOGY AND ENERGY FUNCTIONAL
techniques. These may be useful for the fabrication of nano-
electronic sensors. The deposition of metal clusters on car- During the past two decades the interest in modeling dy-
bon, or conversely, the deposition of carbon clusters on metamic processes in condensed phases, where statistical rel-
als, both at thermal and hyperthermal energies, is also advance is necessary, has led to the development of many
interest. By metal-cluster deposition an agglomeration oflifferent analytical potentials for various systems that enable
confined quantum systems can be obtaitediffusion large-scale atomistic simulations using molecular dynamics
mechanisms of huge clusters on graphite have beear Monte Carlo methods. These potentials are analytical
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functions or functionals, which relate the electronic structure This is identical to the empirical tight-bindingkB) po-

of the system to the lattice topology. Within a quantum-tentials for transition metals that Cleri and Rosato derfed.

mechanical framework, the tight-binding method is the sim-If we identify the sum over the hopping-integrals as the re-

plest scheme for describing the energetics of transition metulting electron density; at sitei and define an embedding

als and semiconductors. This is, therefore, a natural startinfuinctionF(p) =D p, then Eq(6) corresponds to the Finnis-

point for developing analytical energy functionals. In this Sinclair implementation of the embedded-atom methdds

section we review the basic assumptions of this theory andriginally proposed by Daw and Baskks.

derive the analytical functional used in this work. It is appropriate to chose an exponential term for both the

If we assume only one valence orbital per atomic site, thelistance dependence of the screening function and the hop-

total energy of the system of interest can be writted’&S:  ping integral. Without loss of generality, therefore, we can

write ¢(r;;) =Aexp i andh(r;;) = Cexp . Equation(6)

1 E ;
E=3 > BR;)+2 f "(E—e)NJE)dE. (1)  can then be rewritten as
i+] i — 0

1
E= 5( > Aexp Mii— E B~/ >, exp *Mii ) ,

Vs i#j JGFD
The first term accounts for the repulsion between atomic ~
pairs, and the second is the bond energy calculated as an Vi

integral over the local electronic density of stale6E) at an WhereB=CD.i _ o _

atomic sitei. ¢ is the effective atomic energy level. In fact, "€ termVg is the contribution of atom to the band
most structural quantities are insensitive to the details of thétructure energy; it can be rewritten in the following way:

electron density of states, being mainly related to its average

value and effective width. Fod transition metals such as i _p S exp 24 12 ®)
platinum, the cohesive energy is dominated by thieand B i P
contribution. It is a good approximation, therefore, to assume
a rectangular density of states of widtfj , so that the den- o N
sity of states per atom for a futl-band will take the value = _(;) Bexp i 1+k(; ) exp#i i) G
10MW. Then the bond energy per sitean be written & ! < ’ -
bij
. 1 :
Vi~ — —W:N4(10— Ny), 2 If we refer tob;; as the bond-order constant in terms of
B 20 o @ @ the Abell-Tersoff conce then the total-energy expression

as derived in Eq(6) becomes equivalent to a sum over ef-

whereNy is the number of electrons in theeband. fective bond strengths:

The widthW; is by definition related to the second mo-

- . 1
ment of the local density of statgs via E==> [Aexp Mii—b,Bexp *i] . (10)
20—
* wii2 10 10 VR Va
MiZZJ’ EZNi(E)dEzf —E2dE=—-W?. (3 , ,
—w —w;2W; 12 This equivalence between the EAM and the bond-order

ansatz was previously pointed out by Brerfi@imost a de-

On the other hand, the second moment is given by awade ago. It is basically a consequence of the fact that within
exact relation, which is the sum of two-center hopping inte-the TB approach the chemical bondingdfransition metals
gralsh;;, which depend on the next neighbor distange can be explained in the same terms as those for semiconduc-

tors.
Since we have considered only the hopping integrals to
M?=2j;) (ddo®+2ddm?+ 2dd52)R:Rij =10% h2(ri)). the next neighbors, it is necessary and computationally effi-
(4) cient to restrict the interaction to the next neighbor sphere by
a cutoff function, which we choose as

jo

Combining Egs(3) and (4) we obtain

1, r<R-D,
1 .
1—2W?=,(E¢,) h2(ry). (5) f(r)={ % - sin{=(r—R)/(2D)}, |R-r|<D,
I
J 0, r=R+D.
Finally, using Eq.(5) together with Eq.(2) the total en- (1)
ergy in Eq.(1) can be written as a sum over the atomic sites )
in the following way: After rearranging the sum, E¢10) becomes

blj+bjl

E=l > ( > #(r,)-DA/ hz(r--)> . (8 E:E_ fijrij) V;Qj(rij)_ ) VX(rij) . (12
25\ Y e = N

P i
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In this present form the bond-order parameigr, as de- 277G
fined in Eq. (9), does not include angular dependencies, B=K—, (16)
which are necessary for accurately modeling the deformation V2Do/p

of bonds. In order to overcome this deficiency Tersoff intro- .
: .. wherek is the wave number ang the reduced mass. The
duced angular dependent bond-order functions for silicon . . I
parametelS can be determined by the Pauling criterion that

carbon and germaniuf, while Brenner refined the relates the equilibrium bonding distancg and the ener
approacf’ for modeling hydrocarbons. Other closely related per bondE, : q 9 & 9y
b .

potentials were proposed for Si andRef. 26 and, recently,
several studies derived analytical bond-order functions di- _ _ _

rectly from a momentum expansiéfi.>®> While these ap- Ey=—Doextl ~ BV28(rp—ro)]. (17
proaches differ in the details of their functional form, the

:/z?unsi?n%ig?%%l‘?\;vgi?é?g% Tgizzgftgh deéjggggom% rrV%:dine;a_méﬂructures with different atomic coordinations, Efj7) must
y ' P 9 be fulfilled. This is extremely decisive for the transferability

tension developed by Brenner, which is simply an angular . . X . .
dependent termg(#) in the inner sum of the bond-order of the potential, as will be shown in the following sections.
function, so thab;; becomes

When fitting lattice parameters and cohesive energies of

Ill. TOTAL-ENERGY CALCULATIONS

= 12
bij = (14 xij) ™ In order to gain insight into the chemistry and bonding,

especially of the Pt-C interaction, total-energy calculations

Xij= E fie(Fi) Gk Biji) eXH 2 ik (1 — 1) 1. (13) were carried out in the framework of the density-functional

k(#1.) theory®! All results reported here were obtained using the
codecasTeP(Ref. 32 with ultrasoft pseudopotentials by Lee

Here ggain the cutoff function is included, while the in_di— (us-PP and alternatively with norm-conserving pseudopo-
ces monitor the type dependence of the parameters, which {gnia|s (nc-PP using the scheme of Troullier-Martfii. Ex-

important for the _descrip_tion_ of two or more components.change and correlation were included using the Perdew-
The angular functiomy(6) is given by Wang form of the general-gradient approximati@GA).3*
Calculations of the Pt fcc structure within the local-density
(14) approximationLDA) (Refs. 35 and 36showed a significant
overestimation of the bulk modulus, and therefore they were
not used here. This seems to be a shortcoming of the LDA
Forc=0 this term equals a constant, and the total poten- rather than a consequence of using nonrelativistic density
tial resembles an EAM potential. At this point it is important functionals for the heavy element Pt, since our nonrelativistic

to recognize that angularity is not only decisive for modelingcalculations within the GGA are in good agreement with
of covalent systems but also of metals. Alinaghétral.,?’ experimental data for fcc Pt.

for example, showed that shear constants can be described inFor all calculated structures the cutoff energies and
a first-nearest-neighbor potential only if the bond order isk-points were chosen to achieve a convergence better than
angular dependent. In this case, the anisotropy @{iéC’  0.01eV/atom. Total energies for platinum in the fcc, bec, sc,
can take values smaller than 2. and diamond structures were calculated. Stoichiometric PtC
For convenience, we change the analytical form of theyas investigated in thB2 structure(CsC), theB1 structure
pair-like expressions given in E(LO) to the physically more  (NaCl), and in a zinc-blende lattice. The minimum energy,

2 2

C
d2 [d%+(1+cos)?])’

g(o)=vy| 1+

instructive, fully equivalent Morse-like structures lattice constant, bulk modulus, and pressure derivative of the
D bulk modulus were calculated by fitting the Birch-
VR(r):S—Ol exd — BV2S(r — 1)1, Murnaghan equation of state to energy-volume dafi.
IV. CARBON
SD,
Va(r)= S_lexq—,BVZIS(r—ro)], (19 For modeling the interaction of pure carbon we adopted

the C-C parameters given in Brenner’s original hydrocarbon
whereD, is the dimer binding energy and the equilibrium  potential®® Since Brenner proposed two different parameter
distance. sets, we compared the Pauling relat[@y. (17)] to experi-

We now have an energy functional that should be suitablenental data and DFT calculations available in the
for describing Pt-Pt, C-C, and Pt-C within a single formalismliterature®® Brenner’s parameter set | delivers an excellent fit
as defined in Eqg11)—(15). Despite the semiempirical char- for both the graphite and diamond structures, whereas set I
acter of this approach, the number of freely adjustable payields a bond length for graphite that significantly deviates
rameters is not more than six for each interaction type, anffom the experimental data, as illustrated in Fig. 1. The over-
these can be derived systematically, as follows. all correspondence to the bond-order relation, however, is

If the binding energyD, and the ground-state frequency better for parameter set Il. Since this latter parameterization
of the dimer molecule are known, the¢his simply obtained has a square-root-dependent bond-order, it is fully equivalent
from the expression to the ansatz chosen for the potential in this study and there-
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verify the chosen pseudopotential method for carbon. Apart

60 [ Potential I from the bulk modulus, the results achieved by the norm-
301 Potential I semmmen | conserving pseudopotentials are in excellent agreement with
40 with by | experimental datésee Table)l With the ultrasoft pseudopo-
S 30t tentials the bulk modulus is closer to the experimental value,
2 but the lattice constant is slightly too low. Altogether, the
'§ 20 t calculations agree very well with data obtained with a similar
{; method®® and thus serve to validate our choice of pseudopo-
&n tentials for carbon.
5]
5 10f :
* V. PLATINUM
05 L ."""’_ A thorough set of experimental data on the thermome-
. . . . o chanical properties of Pt is available. Platinum, however,
1.2 14 1.6 1.8 20 22 does not exhibit solid structures other than the fcc phase, so

bonding distance (A%

that detailed information on the bonding behavior in under-
coordinated environments is not experimentally accessible.

~ FIG. 1. Comparison of the Pauling energy-bond relation asye investigated, therefore, the bonding of several hypotheti-
given by the Brenner potentiaRef. 23 to literature data. Starting ¢4 solid structures with different coordinations by means of
from left, the solid data points refer to experimental data for C pET calculations using both norm-conserving and ultrasoft

graphite and diamond, as well as theoretical values from LDF
calculations(Ref. 39 for carbon in sc, bcc and fcc structures. The
open points represent the corresponding values obtained by the fu

potential for carbon.

fore used here. The corresponding C-C parameters are list
in Table V. Additional information can be found in the origi-

nal paper.

A specific feature of Brenner’s potential is the over-
binding term, which corrects the unphysical interpolation of
single- and double-bonds for some atomic configurations.
is therefore customary to replace the bond-order function b

the corrected version

~—— bij+bji
i= =5 TFi,

Tpseudopotentials together with nonlocal gradient corrections

ih1 the exchange and correlation functionals.
From the total-energy calculations, lattice constants, bulk
moduli and cohesive energies were extracted. As shown in

él'@ble Il the energy differences calculated with both types of

pseudopotentials are fully consistent, while the bond lengths
calculated with the norm-conserving pseudopotentials tend
to be generally larger. The lattice constant for the fcc struc-
ture is about 2% too high for the nc-PP and somewhat closer

ond lengths to the experimental value of the Pt fcc phase,
he calculations yield consistent data for all structures.

In order to rationalize whether the analytical potential as
presented before is capable of describing energy and bonding
of Pt, the Pauling relationshifEq. (17)] was examined. Here
the quantitiesB, r,, andD, are in principle given by the

L%o the experimental value for the us-PP. After rescaling all

as described in Ref. 25. Since this correction affects onlylimer properties, and therefore or/is an adjustable pa-
interactions of pure carbon, we consider the overbinding corrameter. The literature values that can be found ferdither
rection as a necessary option to use in all applications whengroperties are, however, fairly diverdsee Table N. We
chemical bonds between carbon atoms of different coordinatherefore allowed the dimer properties to vary within the
tions become important. In those cases where only ideal calimits of the literature values, and found that the best fit
bon structures are involved, this correction might be left outcould be obtained for a dimer bond distance of 2.384 A
Finally, we compared the structural data obtained bywhich is in line with the theoretical values (2.39-2.40 A).
CASTEP to other calculations and experiments in order toThe bond strength was chosen to be close to the average of

TABLE I. Diamond structure calculated within the DFT GGA using ultrasoft pseudopotentials and density
mixing, as well as Troullier-Martins pseudopotential with all band minimalization. Results of the LDFT
calculation by Furthmiler et al. are given for compariso(Ref. 39.

Diamond LDFT(Ref. 39 nc-PP GGA-DFT us-PP GGA-DFT Expt
Vv (A3 5.498 5.674 5.531 5.673
a, (A% 3.530 3.567 3.539 3.567
ry (A% 1.528 1.544 1.532 1.544
B (GPa) 460 428) 4391) 443
=X 3.64 3.662) 3.632)
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TABLE II. Calculated structural and cohesive properties of Pt in various phases: Given are volume pé&f, éttime constang,,
cohesive energy per atoRy,,, cohesive energy per bortg,, bond lengthr,, and pressure derivative of bulk modulBs. Compared are
theoretical results, experimental numbers, and the predictions of the analytical potential. DFT calculations were done within the GGA using
CASTEP with ultrasoft pseudopotentials and density mixing, as well as the Troullier-Martins pseudopotential with all-band minimalization.
Reference data for the Pdimer were taken from the literature as indicated.

Theory Experiment Analytical Pot.
Yang et al. (LDA-DFT) Vargaet al. (RDFT) Tayleret al. Guptaet al.
(Ref. 56 (Ref. 57 (Ref. 58 (Ref. 59
Pt,
r, (A3 2.40 2.39 2.34 2.384
Econ (V) 1.65 1.97 1.57 1.855 1.8415
Ep (eV) 3.3 3.94 3.14 3.71 3.683
0, (cm™ 1) 218 234 218 259 236
Diamond nc-PP GGA-DFT us-PP GGA-DFT b;;=0.7761
Vv (A% 24.482) [23.14 @ 24.655) [23.81] 24.51
a, (A% 5.807[5.699 5.821[5.753 5.811
r, (A3 2.515[2.469 2.521[2.491] 2.516
Econ (€V) —4.703 —4.587 —4.662
E, (eV) —2.352 —2.294 —2.331
B (GPa 1231) 117(1) 115.3
B’ 5.31(2) 5.578) 5.15
scC b;;=0.6348
Vv (A% 18.66[17.62 18.445) [17.8(Q 17.99
a, (A3 2.652[2.607 2.642[2.611] 2.621
r, (A% 2.652[2.607 2.642[2.611] 2.621
Econ (€V) 5.296 —5.277 —4.866
E, (eV) —1.765 —1.759 -1.622
B (GPa 182(3) 1832) 177.62)
B’ 5.326) 5.534) 5.39
bcc bj;=0.5661"
Vv (A% 16.252) [15.37] 15.862) [15.3( 14.81
a, (A% 3.192[3.133 3.166[3.129 3.094
r, (A3 2.765[2.713 2.741[2.709 2.680
Econ (€V) —5.641 —5.691 —5.276
E, (eV) —1.410 —1.423 —1.319
B (GPa 240(1) 246(2) 245.5
B’ 5.254) 5.664) 5.51
fcc Ref. 60 MacFarlaine bj;=0.4751
(Ref. 61
Vv (A% 15.912) [15.07 15.583) [15.07] 15.02 15.02
a, (A% 3.992[3.917 3.965[3.917] 3.917 3.917
r, (A3 2.823[2.77] 2.803[2.77] 2.770 2.770
Econ (€V) —5.77°¢ —5.77°¢ —5.77 —5.77
E, (eV) —0.962 —0.962 —0.962 —0.962
B (GPa 260(2) 2653) 288.4 282.6
B’ 5.4(1) 5.92) 5.64

8Numbers given in brackets are rescaled to the experimental bond length in fcc-Pt.

The bcc properties were calculated under the assumption of first-nearest-neigbor interaction. Later, the cutoff radius was chosen so that

second-neighbor interaction occurs for bce. This leads to a better agreement of the potential with the reference data.
“Value taken from experimental data.
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the theoretical numbers. The ground-state oscillation fre- 1.0 ' Energies from us—PP DFT -
quency that determing® was set to 234 cmt, which again Scaled lengths from us—PP DFT --{3---
is close to the average of the literature values. 09 | . Anal. Pot — @~ |
. Best fit without angularity ———

In the next step, the parametewas adjusted by compar-
ing Eq. (17) with the bond lengths and bond strengths of all o0s | |
reference structures. Figure 2 shows the corresponding plot 5
in semi-logarithmic presentation. The properties of the dia- 'g
mond, sc and bcc phases follow almost a linear relationship. 2 071 1
On the transition from bcc to fcc a significant deviation from g D 23683 eV
this behavior occurs, which cannot be described within the 06 0=ID02 € A 1
present model. By connecting the data points of the fcc phase r,=2384 A
and the dimer, however, a reasonable agreement with all ref- 05 | S=224297 -
erence structures is achieved. Note that this line presents all B=1.64249 A™!
mathematically possible minimum configurations for a given (y=0.31177, for c=0, d=const.)
parameter se$, D,, r,, andB and is inpedendent of the 04 5 4 6 8 10 12
analytical form and parametrization bf;. coordination number

For comparison, data obtained with Baskes’ modified ) )
embedded-atom potenti@VEAM) (Ref. 7) are shown in the FIG. 3. Effective bond-order parameters as derived for the ref-

same plot. Obviously, the MEAM follows an almost linear €'ence data from us-PP DFT calculations using E4@. and (20)
compared with the analytically calculated bond-order. The solid

relation as well, but predicts a significantly smaller change in". ) 2 ) . -
bond lengths with varying coordination. In principle, a simi- _(:lrcles desc_rlbe the full potential |r_10|ud|ng angularity, the solid line
lar fit is also possible with the present bond-order potentia|S the best fit of the bond-order without angular dependence.

but only at the expense of a realistic description of the dimerbond order for the reference structures can be calculated di-
Since possible applications of this potential may include

. ) . ) . rectly either from the bond lengths,, or energiesk,, with
simulation studies where dimer and cluster properties are e g ; gts giesEy

) i guations

importance, we have chosen the param&ehat provides
reasonable agr_eement with all reference data, including that b :(Eb/DO)[lf(lls)] (19)
for lower coordinations.

With the complete set of dimer parameters, the effectiveand

40 ” . . . bi; =exp B[ V2/S—\2S](rp— 1)} (20
¥ Dimer: Lit, val. ¥ . .
36 MEAM -6 1 Figure 3 shows the result for the energies and scaled bond
321 D oo Pl onle® 8 - lengths obtained from the us-PP DFT calculation. If angular
28 | fCXLLftP vzzh @ dependencies are neglecte=0), the parametey can be
al. Pot.: + - .
S adjusted to the fcc phase, which allows the bond order to be
o 24 .
g 20t diamond "N 5 J 62 LI Dimer: Lit. val. []
o - % Dimer: DMol O
ﬁ 18 | ® . sz O DFT—éEé}AusPP —g— 1
o 3 DFT-GGA nc-PP
o 1o B=163WAT v sl o Anal, Pot, —6— |
S 14| De=3684ev 0y - o~ 36
r=2.384 A s
12 . = 30}
S=2.24297 2
©
10 1 24 ¢
. : : : %‘0 20 A1
23 24 25 2.6 27 2.8 g - B=1.836 A
bonding distance (A%) S gl DoAY
a4l 184 A
FIG. 2. Fit of the Pauling energy-bond relation to the Pt-dataset. 12l s=1.1965
Shown are the literature values of the dimer and fcc structure to-
gether with the results of nonlocal DFT calculations for diamond, . ‘ , ) , ) B2
sc,bcc and fcc structures. The bond lengths calculated from DFT 16 17 18 19 2 21 22 23 24 25
have been rescaled to the experimental bond length in fcc-Pt. The bonding distance (A3)

analytical Pt potential is represented by the solid line. The open

squares and diamonds show the nc-PP and us-PP DFT calculations, FIG. 4. Fit of the Pauling energy-bond relation to the Pt-C
respectively. Open circles are the equilibrium energies and distancefataset. Open squares represent literature values for the Pt-C dimer
for the corresponding structures as calculated with the MEAM po-properties, the open circle the Dmol result. The other open symbols
tential of BaskegRef. 7). Black squares indicate the corresponding show the DFT-results obtained by using us- and nc- pseudopoten-
minimum configurations of the different solid structures as calcu-tials. The solid line with filled symbols refers to the analytical po-
lated with the analytical potential. tential.
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calculated as a simple function of coordination. Obviously,very well reproduced, including the fcc phase, although none
the square-root-dependent form is a reasonable approximaf them was part of the fitting procedure. This is a direct
tion. It can be seen, however, that the analytically calculate@¢onsequence of the proper choice which determines the
values underestimate the bond—order for the lower coordinazurvature of the potential given by the dimer oscillation fre-
tions if angularity is not includedsee Fig. 4. quency. AdditionallyB’, the pressure derivative of the bulk
Therefore, the potential parameters determining the bondnodulus, which was calculated from the Birch-Murnaghan
order including angularity were also fit. In doing so, a nu-equation fits the numbers derived from total energies calcu-
merical fitting scheme was applied that included the elastidations very well. This is a significant result, sin& is
properties in the reference data set. The resulting parametedirectly related to the global Gneisen parameter, and there-
are given in Table V. The analytically calculated effectivefore a proper description of anharmonic effects can be ex-
bond order for the reference structures is now significantlypected from this potential. The most relevant properties of
improved by including the angular dependence as shown ithe fcc solid structure are summarized in Table Ill, and com-
Fig. 3. The cohesive properties of all structures compared tpared with established potentials for/Pt/:2240:41
the DFT reference data are summarized in Table Il. In gen- A noteworthy feature of the present model is the correct
eral the numbers are in excellent agreement with the DFHescription of the elastic moduli. The inclusion of angularity
results and experiments. For the sc and bcc phases, howevarakes possible anisotropy ratios smaller than two. The same
the absolute values of the cohesive energies are about 10 true for the MEAM, but all other models fail to reproduce
too small, which is a direct consequence of the bond ordethis property. Only the calculated shear modudilsis some-
which only allows one to fit the bond lengths of these strucawhat too high, with the given parameter set. An alternative
tures properly. Even the bulk moduli of all solid phases areparameterization given in Appendix A does reproduce the

TABLE IIl. Materials properties of platinum as derived using the Pt potential of this work in comparison
to experimental data and other Pt potentials. BO is the bond-order potential derived in this work, MEAM is
the modified embedded-atom method of Basisf. 7), EAM is the embedded-atom potential as proposed
by Foileset al. (Refs. 4 and 4 OJ is the short-range potential by Oh and Johndoef. 41), FS is the
Finnis-Sinclair type potential of Sutton and ChéRef. 5, while TB means the empirical tight-binding
potential of Cleri and Rosat@Ref. 22. Given are the cohesive energy per atBgy,, lattice constanga,,
elastic modulic;;, bulk modulusB, pressure derivative of the bulk modul@s, Young’s modulusC’,
anisotropy ratiac,,/C’, melting pointT .o, vacancy formation energys yoc and relaxation volumaV,,,
interstitial formation energyes ;, and relaxation volumeV;, and surface energieSs. () is the ideal
atomic volume.

Expt. BO MEAM EAM 0J FS B
Econ (€V) 5.77(Ref. 60 5.77 5.77 5.77 5.77 5.86 5.853
a, (A) 3.92 (Ref. 60 3.92 3.92 3.92 3.92 392 3.924
¢y, (GPa 358 (Ref. 61) 351.5 347 303 312 314 341
¢y, (GPa 253 (Ref. 61) 248.1 251 273 268 258 273
44 (GP3 77.4(Ref. 6) 89.5 76.9 68 63.3 74 91
B (GP3 288.4(Ref. 61  282.6 283 283 283 277 296
B’ (5.4-5.92 5.52 5.64

C' (GPa 52.2 (Ref. 61) 51.6 48.06 15.0 22 28 34.0
C44/C’ 1.48 (Ref. 61) 1.73 1.6 453 2.88 2.64 2.68
Tomer (K) 2045(Ref. 62 210020 1530 (Ref. 63 179429 (Ref. 64
Efvac (€V) 1.35(Ref. 65 1.21 <1.? 1.68 1.48 1.17
AV e/ Q -0.2(Ref. 66  —0.33 —-0.45 -0.73
Efint (€V) 3.56) (Ref. 67  5.34 7.26 4.67

AV /Q 1.8 (Ref. 65 1.86 2.18

Es (eV/IA?):

(100 0.114(Ref. 42  0.123 0.135 0.103

(111 0.092(Ref. 42  0.091 0.103 0.089

(110 0.243(Ref. 42  0.119 0.133 0.109

(110(2x 1) 0.112

®Results of DFT calculations.

PCalculated for an unrelaxed lattice.

‘This value is the interstitial formation energy we have calculated for{fl®®, dumbell, which is the
lowest-lying energy interstitial type in fcc metals. The values given by Feiled. (Ref. 40 (3.24 eV and
AV,;/Q=1.4) correspond to a tetrahedral defect position.
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second order elastic constants, extremely well, but it doeby extended x-ray absorption fine-structUeexAFS) analy-
poorly in predicting the melting temperature. sis. Interestingly, experimental results on solid solubiligy of
The melting point was determined by monitoring the po-carbon in platinum are very inconsistent. While Sikgral
tential energy of an NPT ensemble containing both solid andieported solubilities of up to 4 atomic percent, Rut'’kov and
liquid phases at a given temperature. For zero pressure wi®-worker§®*® suggested equilibrium concentrations  that
determined the temperature where the relative size of the twere three orders of magnitude smaller. Theoretical studies
regions does not change, and therefore the average interfagf solid Pt-C structures have, to our best knowledge, only
velocity is zero. We found that the melting point is mostly been performed by Guillermet al.>® who investigated the
affected by the choice of the cutoff range, and therefore Wé\laC| StrUC.tUre. of a.tranSition metals inClUding PtC with a
adjusted the parameteRs,, andD using the known melting linear muffin-tin-orbital method.
temperature of Pt. In doing so we calculated a melting point In light of the sparse experimental information available,
of 210q20) K, which is in very good agreement with the several DFT calculations were carried out to guide the flttlng
experimental value of 2045 K. The fairly long range of the Of the potential. For zinc-blend&@), CsCl 82), and NaCl
cutoff improves, at the same time, the description of the bcéB1) structures with a stoichiometric basis of Pt and C at-
structure since it now reaches the second-nearest-neighb®fms, bond distances as well as total energies were calculated.
shell. The cohesive energies were then determined using the the
Defect properties were also examined. The relaxation voltotal energies from DFT calculations of pure carbon and
ume of the interstitial fits the experimental number almostPlatinum and the corresponding experimental cohesive ener-
perfectly, but the formation energy is 5.31 eV compared tdJI€S.
3.5(6) eV obtained by experiment. Although this is a signifi- ~ The energetically most favored configuration is the NaCl
cant error, it is still an improvement over the energy of 7'46Iattice. For this structure the calculated bond length of
eV obtained with Foile’s EAM potential. Here it is worth 2.237 A is somewhat higher than the value of 2.0 A ob-
noting that the number of 3.2 eV, as reported in Foiles origitained from fitting EXAFS data. Shuvaeat al*® reported
nal paper corresponds to a spurious defect structure and neewever, that the best experimental fit was achieved for co-
to the [100] split interstitial. Both the calculated vacancy ordination number six, which confirms our DFT result. For
formation energy and the vacancy relaxation volume agrethe same structure Guillermedt al™° calculated a bond
reasonably well with experiment. Even surface formation enlength of 2.05 A and a cohesive energy 6fl2.3 eV/f.u.,
ergies match recent DFT calculatidffsThe significant de- Wwhich is about 2 eV lower than our value calculated with
viation for the(110) surface might be a consequence of ne-GGA-DFT (see Table IV.
glecting atomic relaxations in the DFT calculations. Additional DFT calculations showed that ti andB2
An important result gleaned from this study is that short-phases of PtC are stable with respect to shear deformation,
ranged bond-order potentials offer a realistic description ofvhile zinc blende is not. The latter was therefore not consid-
thermomechanical properties for Pt and potentially of othegred for the potential fitting.
d-transition metals. The quality of the potential is at least Dimer properties of platinum monocarbide are reported in
comparable to the MEAM, and gives, in general, betterRef. 51 and in a much earlier paper by Siregral>* The two
agreement with reference data, both fitted and nonfitted, thagalculations give consistent values for the bond lengths and
the EAM models without angularity. oscillation frequencies, but they differ for the bonding en-
ergy. Since theoretical calculations on PtC dimer properties
are not available, we additionally performed a DFT calcula-
VI. PLATINUM-CARBON tion using the codeomoL (Ref. 53 with BLYP (Ref. 59
functionals. In contrast to the literature values, the calcula-

Platinum and carbon do not form thermodynamically . ) .
y y'uon predicts theA'Il state as the lowest lying energy con-

stable compounds, and consequently little information is. . o : ) ;
available in the literature to guide the parameterization. Th iguration with s_|gn|f|cantly different dimer properties.
chemical interaction of Pt-C is mostly considered to be non- In or(;ier fo fit the reference data, the parar_neigamvas
bonding, although this is only true when carbon bonds aré:hosen in accordance to thetoL calculations whileD, was
fully saturated. There are many experiments, however, th dopted from Ref. 52. The paramef@was set so that both

are characterized by the chemical interaction of carbon an e,ﬁ’“'_k medUIUS of thé81 sﬁructur% anddtrf ground-state .
platinum. Cepeket al*® deposited fullerene clusters on th0| aftlon reqéjency _ar:er:/ve re(:jprq uce fth complar_lsoln 0
Pt(111) surfaces, and found strong covalent bonds with ver)} e reference data with the predictions of the analytical po-

small charge transfer. Hea al** reported the existence of tential is given i_n Tat_)le Y. The correspon(_jing potential
a superficial compound PfC~1) in polycrystalline films parameters are listed in Table V. Although this parameter set

of platinum containing up to 17% carbon that were Synthe_reproduces the essential features of the Pt-C interaction, it is

sized by dc reactive sputtering. A superlattice structure Opased on a minimal set of input data and therefore might

platinum-carbon was proposed by Westmacott, Dahmen anr&eed to be refitted if more detailed reference data become

Witcomb*® based on their observations of an ordered struc-ava'lable'

ture of P#C in the vicinity of grain boundaries following
quenching or irradiation. Finally, Shuvaet al*® reported a
six-fold coordinated Pt-C compound which was synthesized We present an analytical potential that allows us to model
by co-evaporation of carbon and platinum and characterizedhemical bonding in mixed metallic-covalent systems using

VII. CONCLUSIONS
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TABLE IV. Calculated structural and cohesive properties of Pt-C in various hypothetical phases: volume
per formula unitV, lattice constant,, cohesive energy per formula url,,,/atom, cohesive energy per
bondE,, and pressure derivative of bulk modulBS. Compared are results of DFT calculations within the
GGA usingcasTePwith ultrasoft pseudopotentials and density mixing-PB, as well as Troullier-Martins
pseudopotentials with all band minimalizatiémc-PB.

Pt-C CRC(Ref. 5] Singh (Ref. 52 Dmol Anal. Pot.
r, (A% 1.6767 1.677 1.844 1.84
Econ/f.U. (€V) 5.3 4.4 5.3
E, (eV) 6.2 5.3 4.4 5.3
w, (cm™) 1051.13 1051.18 706 928
B1 (NacCl) nc-PP us-PP LMTQ@Ref. 50 bi;=0.8306
Vv (A%f.u.) 22.71211) 22.4083) 18.58 22.41
a, (A% 4.495 4.475 4.205 4.476
rp (A% 2.274 2.237 2.1 2.238
Econ/f.U. (€V) —-10.271 —10.266 -12.67 —-10.271
E, (eV) -1.711 -1.711 —2.11 -1.711
B (GPa) 2611) 271(1) 274
B’ 4.964) 4.955) 4.87
B2 (CsCl) b;;=0.7790
Vv (A%f.u.) 22.293) 20.62
a, (A% 2.814 2.742
ry (A% 2.437 2.375
Econ/f.U. (€V) —8.973 -9.27
Ep (eV) -1.122 —-1.159
B (GPa) 2401) 291
B’ 5.224) 4.94

a single functional form. Our model makes use of the insighatomic scale computer simulations of a wide class of mate-
that chemical bonding of most covalent systems andials problems where bonding interactions between covalent
d-transition metals can be described within a secondand metallic systems are important. Due to the limited num-
momentum tight-binding approach. We show that the origi-ber of adjustable parameters the model allows a systematic
nal version of Brenner’s carbon potential can be used fofit of materials properties.

modeling Pt as well as Pt-C if angular contributions are in-
cluded. This ansatz can have an tremendous importance for ACKNOWLEDGMENTS
This work was supported by the U.S. Department of En-
ergy through the University of California under Subcontract
No. B341494 and by the U.S. Department of Energy, Basic

TABLE V. Parameter set of the relevant interaction types. All
parameters are pair type dependent.

Pt-Pt Pt-C c-C Energy Sciences, under Grant No. DEFG02-96ER45439.
Grants of computing time from National Computational Sci-

Y 8.542<10-4  9.7x10°°  2.0813<10°* ence Alliance at UIUC and the National Energy Research
S 2.24297 1.1965 122 Supercomputer Center are gratefully acknowledged.
B (A™h 1.64249 1.836 2.1
Do (ev) 3.683 53 6.0 APPENDIX A: ALTERNATIVE PARAMETER SET FOR
lo (A) 2.384 1.84 1.39 PLATINUM
C 34.00 1.23 330
d 1.1 0.36 35 In the course of this study several parameterizations were
2u (A7Y 267 0.0 0.0 tested, mostly due to the uncertainties in the dimer param-
Rcut (A) 3.1 2.65 1.85 eters. WlthDO:371 eV, r0:2.34 A, ﬁ:165921 )&_1,

=269 A R.,=3.1A D=0.2 A improved elastic
properties were found for platinumc{;=258.9 GPa,c;,

4f simulations of amorphous structures are intended, a modified=253.4 GPa, and,,=81.0 GPa). The vacancy formation
cutoff range should be usé&ef. 68. energy, however, is only 0.74 eV, and the melting point goes
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to about 1500 K, while surface energies and interstitial for- . . I
9 whereVeg is the potential for states close to equilibrium

mation energy(4.05 e\j are still in very good agreement ) : : X .
with the reference data. Even the simplified version withoutdescnbed in the main text, and the Fermi function

angularity (c=0, y=0.20967, R.,=3.4 A, and D

=0.2 A) delivers a reasonable description of most proper-

ties except for the surface properties and might be useful for F(r)= — . (B2)
the quantification of models that rely on bond counting. 1+e Pl

APPENDIX B: MODIFICATION OF THE REPULSIVE

POTENTIAL The value of the constantg andr; are chosen such that

the potential is essentially unmodified at the equilibrium and
In applications where one needs to take high-energetitonger bonding distances, and that a smooth fit at short sepa-

(Exin>10 eV) collisions between atoms into account, it isrations with no spurious minima is achieved for all realistic
necessary to modify the repulsive part of the potential tocoordination numbers.
realistically describe such collisions. To this end, we first Using this approach we obtainedi=1.5 A and b;
derive an accurate repulsive pair potential for a dimer using &10.0 1/A for the Pt-Pt interactions, ang=0.7 A and
density-functional theory method. We then construct a totab;=9.0 1/A for C-C interaction as well as=0.8 A and
potential V1, using b{=8.0 1/A for Pt-C interactions. These same values also

give a smooth fit to the Ziegler-Biersack-Littmark universal

Vo) =Vr(N[1—F(r)]+[Vey(r)IF(r), (B1)  repulsive potential®
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