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Superconductivity and charge-density waves in a quasi-one-dimensional spin-gap system
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We consider a model of spin-gapped chains weakly coupled by Josephson and Coulomb interactions. Com-
bining such nonperturbative methods as bosonization and the Bethe ansatz to treat the intrachain interactions
with the random phase approximation for the interchain couplings and the first corrections to this, we inves-
tigate the phase diagram of this model. The phase diagram shows both charge-density wave ordering and
superconductivity. These phases are separated by line of critical points which exhibits an approximate SU~2!
symmetry. We consider the effects of a magnetic field on the system. We apply the theory to the material
Sr2Ca12Cu24O41 and suggest further experiments.
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I. INTRODUCTION

Quasi-one-dimensional~1D! models are often used to te
various theoretical ideas in the area of strongly correla
electron systems for the simple reason that most known n
perturbative approaches work only in one dimension.1,2 The
route often taken is to use a non-perturbative solution o
strictly one-dimensional model and then use mean field
the random phase approximation~RPA! to take into account
the interchain interactions. Through techniques such
bosonization and the Bethe ansatz, many results are kn
about such one-dimensional systems as spin chains
Tomonaga-Luttinger liquids which form the skeleton of the
quasi-one-dimensional models. Linking these using the R
formalism has yielded many successful experimental pre
tions, for example, for linear conductors3 and for magnetic
systems.4–6 A very early use of this technique is Efetov an
Larkin7,8 who estimated the transition temperatures in
same model we use.

As is well known, the RPA formally represents the leadi
term in a perturbation expansion in 1/z' , wherez' is the
number of nearest-neighbor chains in the lattice. For r
experimental systems this number is not usually large so
important to know about higher order contributions in 1/z' .
The recent results for the quasi-one-dimensional Heisen
magnets indicate that the worst these corrections can d
about a 25% shift in the transition temperature.9,10 The rela-
tive smallness of these corrections demonstrates the val
of the RPA approximation when considering real systems
our case it turns out that the corrections are even smalle

In this paper we follow the same road and discuss
simple model of a non-BCS superconductor. In the model
consider the formation of superconducting pairs on o
dimensional chains is triggered by formation of a spin g
The three-dimensional coherence is established through
interchain Josephson coupling. We also include the Coulo
interaction, which can destroy the superconductivity and
tablish charge-density wave~CDW! ordering. As we shall
show, these two phases are separated by a critical line
increased symmetry. Near this line, we take into account
interplay between these two interactions considering cor
tions to RPA.
0163-1829/2002/65~19!/195121~10!/$20.00 65 1951
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The model we use has been considered in some d
recently11 in the context of high-Tc superconductivity. It was
assumed that the one-dimensional behavior came about
the formation of stripes.12 Since in the stripe picture, fluctua
tions of the stripes dephase the CDW coupling,13 only the SC
interchain interaction was considered. In our paper we re
the Coulomb interaction and therefore expect it to be r
evant to materials that are structurally quasi-one-dimensio
such as the Bechgaard salts or some cuprate materials
as the family Sr142xCaxCu24O41.

In Sec. II we introduce the model we will be dealing wit
In Sec. III we show that this model has an SU~2! symmetric
quantum critical line. In Sec. IV we calculate the transiti
temperature for the model within the RPA approximatio
Treating the interchain coupling in the mean field appro
mation we obtain an effective sine-Gordon model for ea
chain. Using the exact results for this model we calculate
zero-temperature spectral gapM and derive the expressio
for the ratioTc /M . Here, we also consider the properties
our system in a magnetic field. In Sec. V we look at the fi
corrections to RPA which gives us an improved phase d
gram of the model. In Sec. VI we show that the same gen
behavior also occurs in two dimensions, although the tra
tion here is Kosterlitz-Thouless rather than the symme
breaking found in higher dimensions. Finally, in Sec. VII, w
show that the quasi-1D compound Sr2Ca12Cu24O41 is a beau-
tiful example of our model and we discuss the measu
properties of it in relation to our theory. We also make so
quantitative predictions about this material which could
confirmed by further experiments.

II. THE MODEL

Let us consider a system of conducting one-dimensio
units ~we will call them ‘‘chains,’’ though in reality they may
be, for instance, ladders! weakly coupled to each other. A
often happens in one dimension, the spin and charge deg
of freedom decouple at low energies. We assume that
spin sector aquires a gap, and that the filling of each in
vidual chain is incommensurate with the lattice so that
low-energy behavior of the charge sector is decribed univ
©2002 The American Physical Society21-1
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sally by the Gaussian model. The Hamiltonian density
therefore

Hchain5Hcharge1Hspin, ~1!

Hcharge5
1

2
@Kc~]xQ!21Kc

21~]xF!2#, ~2!

where @Q(x),F(y)#5 iu(x2y). We don’t write down the
form of the Hamiltonian in the spin sector: our only requir
ment is that it has a gapDs . @In a specific case of single
chains a realistic description of the spin sector is given by
SU~2! Thirring model Hamiltonian1

Hspin5
2pvs

3
~ :JaJa:1: J̄aJ̄a: !2g:JaJ̄a:, ~3!

where vs is the spin velocity andJa,J̄a are chiral SU~2!
currents satisfying the levelk51 SU~2! Kac-Moody algebra.
The spin gap is generated wheng.0 such that the current
current interaction in the spin sector is marginallyrelevant.
In the case of ladders a description of the spin sector is m
complicated; this, however, does not affect the charge Ha
tonian and therefore will not concern us here.#

The spin gap blocks single-particle tunneling proces
between the chains. Then the multiparticle processes ge
ate pair hopping. In what follows we shall assume that
interchain tunneling matrix element is much smaller than
spin gap. In this case one can take into account only t
particle virtual processes giving rise to Josephson coup
between the chains. They lead to the following Hamiltonia

Hsc5
1

2
Jeff (

nÞm
:cos@A2p~Qn2Qm!22eHbnmx/c#:,

~4!

where the colons signify that operators are normal orde
with respect to the state with spin gap and therefore the
traviolet cutoff for the correlation functions of bosonic exp
nents isDs . The fields without index are assumed to be fro
the charge sector, as will be the case from here on. We h
also introduced external magnetic fieldH directed perpen-
dicular to the chains;bnm is the projection of the interchain
lattice vector on the direction perpendicular both to t
chains and the magnetic field.

An analysis of dimensionalities as shown in Appendix
yields

Jeff;S Ds

L D 1/Kc21 t2

Ds
, ~5!

wheret is the single particle hopping andL is related to the
original bandwidth.

Interaction~4! has scaling dimension

dsc51/~2Kc! ~6!

and therefore is relevant even for repulsive interactions in
charge sector provided they are not too strong (Kc.1/2).
This is a well known effect of the spin gap; it generat
preformed pairs making it easy for them to condense.14
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There is also a Coulomb interaction between the t
chains In the spin gap regime, there is only one term in h
that remains relevant: it is the coupling of 2kF components
of the charge density which gives the effective Hamiltoni
density~Appendix A!

HCDW5
1

2
Veff (

nÞm
:cos@A2p~Fn2Fm!#:, ~7!

where

Veff;S Ds

L D Kc

V0 . ~8!

The corresponding scaling dimension is

dCDW5Kc/2. ~9!

The effective action for coupled chains is therefore

Leff5
1

2Kc
(

n
~]mFn!2

1
1

2 (
nÞm

$Vnm :cos@A2p~Fn2Fm!#:

1Jnm :cos@A2p~Qn2Qm22eHbnmx/c!#:%

~10!

and hasDs as the ultraviolet cutoff. We will be considerin
nearest-chain interactions only, i.e.Vnm5V, Jnm5J for
neighboring chains and zero otherwise. In what follows
will be most interested in the caseKc'1 when both interac-
tions are important.

III. AN EFFECTIVE THEORY OF THE CRITICAL POINT

For a general value ofKc the symmetry of the model is
U(1)3U(1) which corresponds to independent global sh
of F and Q. When Kc51 and V56J the symmetry in-
creases and becomes SU~2!. To see this we use the non
Abelian bosonization description.1,15At Kc51 the exponents
exp@6iA2pF#,exp@6iA2pQ# have conformal dimension
~1/4,1/4! and can be understood as matrix elements of
tensor fieldgab from theS51/2 representation—the first pri
mary field of the levelk51 Wess-Zumino-Novikov-Witten
model~for a discussion of this model, see, e.g., Itzykson a
Drouffe16!:

ĝ5S exp@ iA2pF# exp@ iA2pQ#

exp@2 iA2pQ# exp@2 iA2pF#
D . ~11!

The Gaussian part of the action becomes the sum of
WZNW actions from individual chains

1

2 (
n

~]mFn!2→(
n

W@gn# ~12!

and the interaction term in Eq.~10! can be written as
1-2
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L int5 (
nÞm

H ~V2J! (
a51,2

@gn
(aa)@gm

1# (aa)

1~n→m!#1J Tr~gngm
11gmgn

1!J . ~13!

This description is convenient since it contains only mutua
local fields and therefore can be considered as the Ginzb
Landau theory.

In three spatial dimensions the system undergoes a p
transition into the ordered state where the matrixg acquires
an average value throughout the system. In the long w
limit one can replace the last term in Eq.~13! by

~]yg!~]yg
1! ~14!

and omitting the time dependence of the fields we obtain
following Ginzburg-Landau free energy:

F5b22E dxd2r TrF va0

16p
~]xg

1]xg!1Jb2~¹'g1¹'g!G
1Fanisotropy, ~15!

whereb is the lattice constant in the transverse direction a

Fanisotropy5~V2J!b22E dxd2r (
a51,2

g(aa)@g1# (aa).

~16!

We can now reparametrize the theory. The order par
eter is the SU~2! matrix g. Its relation to the CDW and SC
phasesQ andF are

g5exp@ is3~F1Q!/4#exp@ is1a/2#exp@ is3~F2Q!/4#.
~17!

The Ginzburg-Landau free energy density is

F5
1

2
r@cos2~a/2!~¹Q!21sin2~a/2!~¹F!2#

1
1

2
r~¹a!21~V2J!cosa. ~18!

This is interpreted as follows: whenV2J is positive,a is
pinned atp so that the coefficient in front of (¹F)2 is non-
zero and henceF, the CDW order parameter, is consta
throughout the material. WhenV2J is negative,a is pinned
at 0 and hence it isQ, the superconducting order parame
that acquires an expectation value. WhenV2J50 we are at
the critical point where the free energy of the supercondu
ing and insulating phases becomes equal. The effects of
V2J mode will be considered throughout the rest of t
paper.

IV. PHASE DIAGRAM IN MAGNETIC FIELD
AND CRITICAL TEMPERATURE

For two chains the problem was solved by Sheltonet al.17

There are two modes; one symmetric in the two chains
the other antisymmetric. In the presence of the interch
interactions, the symmetric mode remains gapless and
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antisymmetric sector splits into two Majorana fermions w
gaps (V1J) and (V2J).

For an infinite number of chains, we expect to see a si
lar sort of behavior. The gapless symmetric mode in the
case of two chains will in some sense be the Goldstone m
in our infinite system and we expect to see a range of o
modes with gaps ranging fromV2J to V1J. We will see
that within the basic RPA approximation we cannot rep
duce this behavior: the properties will depend on the stron
of V and J but not both. However when we go beyond th
first order term we can start probing the interplay betwe
these two competing interactions.

To begin with, we estimate the critical temperature us
RPA. Within this approximation the pairing and the CD
susceptibilities are given by

xsc5
xsc

(0)

12Jz'xsc
(0)

,

xCDW5
xCDW

(0)

12Vz'xCDW
(0)

, ~19!

wherez' is the number of nearest neighbor chains. These
shown diagrammatically in Figs. 4~a! and 4~b!.

When Kc51 the bare susceptibilities are equal to ea
other and therefore the instability occurs in that chan
where the interaction is stronger. This is shown explicitly
Appendix B. IfKcÞ1, the instability still occurs in the stron
ger channel, although this now depends not only on the
ues ofV and J but also onKc and Ds , the crossover point
being

S t2

Ds
vcD 1/(221/2Kc)

;S V

vc
D 1/(22Kc/2)

. ~20!

An important modification occurs in magnetic field whic
affects the interchain interaction in the superconduct
channel~4!. In this case the susceptibilities corresponding
the lattice directionsl should be taken at wave vecto
2e(H@ x̂3 l#)/c, wherex̂ is the unit vector along the chains
Therefore the RPA criterion for the transition is replaced

15(
l

Jlxsc
(0)$q52e~H@ x̂3 l# !/c%. ~21!

For definiteness let us assume that the instability occur
the superconducting channel which is the most likely c
for Kc.1. Note that the duality property of the effectiv
Lagrangian~10! under K→1/K, V↔J, Q↔F means that
all of the results in this and the next section are identical
the CDW channel.

In a Tomonaga-Luttinger liquid with the ultraviolet cuto
Ds the static susceptibility for the operator with scaling d
mensiond is given by18
1-3
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x (0)~q!5
2

Ds
2
sinpdS 2pT

Ds
D 2212d

G2~12d!

3U G~d/21 ivq/4pT!

G~12d/21 ivq/4pT!
U2

, ~22!

wherev is the velocity in the charge sector.

A. Zero magnetic field; the critical temperature
and the vortex energy

Substituting Eq.~22! with q50 into Eq.~19! we obtain

Tc5
Ds

2p S 2Jz'

Ds
sinpd

G2~d/2!G2~12d!

G2~12d/2!
D 1/(222d)

. ~23!

The scaling properties of this equation were calculated
the first time in Ref. 8.

Below the transition temperature the long-wavelen
fluctuations of superconducting order parameter are three
mensional. The amplitude fluctuations are, however, mo
one dimensional and their spectral weight is concentra
above certain energy which plays a role of a pseudogap.
zero-temperature value of the pseudogap can be found
the mean-field theory combined with the exact results for
sine-Gordon model. In this approach one approximates
interchain interaction

J (
^nm&

cosb~fn2fm! ~24!

(bf5A2pQ andb252pKc
21) by

2m cosbf, ~25!

where

2m5Jz'Ds^cosbf&. ~26!

This expectation value is known exactly:19

^cosbf&5
~11j!pG~12d/2!

16sinpjG~d/2!

3S GS 1

2
1

j

2DGS 12
j

2D
4Ap

D (d22)

3S 2 sin
pj

2 D dS M

Ds
D d

, ~27!

whereM is the soliton mass in the SG model, and is rela
to m by

m5
G~d/2!

pG~12d/2! S 2G~j/2!

ApGS 1

2
1

j

2D D
d22S M

Ds
D 22d

Ds
2 .

~28!
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In all these equations,d5b2/4p is the scaling dimension o
the field eibf, andj51/(22d). These mean-field relation
are solved to give

M5DsFJz'

Ds

1

2~d22!
tan

pj

2 G1/(222d)

3FpG~12d/2!

G~d/2!
S GS 1

2
1

j

2DAp

2G~j/2!
D (d22)G 1/(12d)

.

~29!

The ratioTc /M which is often considered in the theory o
superconductivity is plotted as a function ofd in Fig. 1. It’s
numerical value in certain limits is

Tc

M
~d50!5

A2

8
'0.177, ~30!

Tc

M
~d51/2!5

3

16

A3p@G~2/3!G~5/6!#3

G~3/4!8
'0.404. ~31!

In the limit d→1 which corresponds to weak coupling, o
expressions forTc and M diverge in this approximation
However, their ratio can still be evaluated. Writingx51
2d and expanding all the gamma functions as Taylor se
in x gives us the BCS value

Tc

M
~d→1!5

1

2p
lim
x→0

@11~ ln 21g!x#1/x5
1

p
eg'0.567,

~32!

whereg'0.57722 is Euler’s constant.
Notice that in comparing to experiments, one has to

member thatM is not the single particle gap. Single partic
spectroscopies such as basic tunneling would see a gap m
closer toDs , the spin gap. To probeM, one would have to
look at experiments involving pairs of electrons, such as A
dreev tunneling. In the context of the sine-Gordon model,M
is the soliton mass. Solitons correspond to spatial change
the superconducting phaseQ and hence to vortices. There
fore M is the minimal energy necessary to create a vortex

FIG. 1. A graph ofTc /M againstd. The valued51 corresponds
to the BCS limit, decreasingd corresponds to increasing repulsio
1-4
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FIG. 2. ~a! The critical temperature as a function of magnetic field for various values ofd. ~b! The critical magnetic field as a functio

of d. The magnetic field is measured in the units of 2eh̄bv/c.
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should also be noticed that atd,1 the sine-Gordon mode
has not only solitons, but bound states which, being neu
should be interpreted as vortex-antivortex pairs. Atd,1/2
the energy of the first bound state is smaller than the soli
See Carlsonet al.11 for a nice discussion of the implication
of having these two energy scales.

B. Phase diagram in a magnetic field

To keep the calculations as simple as possible, let us c
sider the simplest possible situation when a given chain
four nearest neighbors with Josephson couplingsJz and Jy
and the magnetic field lays in theyz plane. Combining Eqs
~21! and~22! we obtain the equation for the critical temper
ture

CS Tc

Tc~0! D
(222d)

5JzU G~d/21 iabzHy /Tc!

G~12d/21 iabzHy /Tc!
U2

1JyU G~d/21 iabyHz /Tc!

G~12d/21 iabyHz /Tc!
U2

C5~Jz1Jy!U G~d/2!

G~12d/2!
U2

, a5ev/2pc. ~33!

The solution of this equation describes several interes
effects.

~i! A possibility of a reentrance behavior. Let us consid
the case when in-plane interactions are isotropic:Jz5Jy ,bz
5by and the magnetic field is directed at 45° angleHz
5Hy5H. This gives it the maximal power to suppressTc . A
numerical solution of Eq.~33! is plotted in Fig. 2~a! for
various values of the scaling dimensiond. We see that there
is a range of magnetic fields for which the superconductiv
exists in an intermediate range of temperatures. To study
stability of these solutions one needs to have a good des
tion of the ordered state in magnetic field, which we hope
obtain in the future.
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At Tc→0 Eq. ~33! can be solved analytically which al
lows us to extract the value of critical field atTc50

Hc~0!5
2pc

e

Tc~0!

bv S G~12d/2!

G~d/2! D 1/(12d)

. ~34!

This is plotted in Fig. 2~b! along with the numerical solution
for Hc

max.
~ii ! Anisotropy of the phase diagram. Another predicti

following from Eq. ~33! is an anisotropy of the phase dia
gram. This can be illustrated by an analytical solution
Tc→0 case. SettingTc→0 in Eq. ~33! we find

Jz

~aHybz!
2(12d)

1
Jy

~aHzby!2(12d)
5

C

@Tc~0!#2(12d)
.

~35!

This is plotted in Fig. 3. We must be careful to rememb
however that this is a first order mean field calculation, a

FIG. 3. Angular dependence of the critical magnetic field. T
is plotted for d51/2. The graph is qualitatively similar for othe
values ofd.
1-5
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FIG. 4. ~a! The basic RPA diagram,~b! The
Dyson series for RPA,~c! The first correction
term. In these diagrams, the dashed lines rep
sent the 1D chains, the dots indicate vertex o
erators off or u and the wiggly lines are the
interchain interactions, and each diagram is
irreducible correlator.
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further corrections will give a critical flux in all directions
even when the field is pointing directly along one of t
crystal axis.

~iii ! SC-CDW transition. The validity of the above calc
lations is limited by the range of temperatures where
system is stable against CDW transition. Therefore, stri
speaking, before theTc→0 quantum critical point is reache
the system will undergo a transition into a CDW state.

V. CORRECTIONS TO RPA

The analysis of the previous sections was based on R
Since in realistic situations the number of nearest neighb
is never large, it is important to check how robust RPA is. W
will calculate corrections to RPA in the simplest case case
zero magnetic field. We shall also restrict ourselves toKc
51 (d51/2 for both interactions!.

The basic RPA calculation involves only the stronger
the two interactions—for clarity let us again take this to beJ.
However, as we mentioned before we would expect the p
ence of the other competing interaction of the same sca
dimension to also play a role. In particular we expect there
be a mode with a gap ofJ2V, seen in Eq.~18! and in the
two chain model. This will be very important around th
point V5J as it will become massless thereby increas
fluctuations and decreasing the transition temperature.
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can be investigated by looking at the first correction to
RPA formula—Fig. 4~c!.

In terms of the fieldsf and u, this diagram can be ex
pressed as

dx5V2z'@^eiA2pf(a)eiA2pu(1)e2 iA2pu(2)e2 iA2pf(b)&

2^eiA2pf(a)e2 iA2pf(b)&^eiA2pu(1)e2 iA2pu(2)&#

3^e2 iA2pu(1)eiA2pu(2)&

1J2z'@^eiA2pf(a)eiA2pf(1)e2 iA2pf(2)e2 iA2pf(b)&

2^eiA2pf(a)e2 iA2pf(b)&^eiA2pf(1)e2 iA2pf(2)&#

3^e2 iA2pf(1)eiA2pf(2)&. ~36!

The revised RPA equation for the transition temperatur

15
Jz'

Tc
FA0

J1A1
J J2z'

Tc
2

1A1
V V2z'

Tc
2 G , ~37!

where the coefficients are given by

A0
J5

1

pE0

p

dtE
2`

`

dx
1

usinh~x1 i t!u
5

1

2p
B2~1/4,1/2!,

~38!
A1
J5

1

p3E0

p

dt1dt2dtbE
2`

`

dx1dx2dxb

1

usinh~xb1 i tb!u
1

usinh~x121 i t12!u2
F usinh~x11 i t1!uusinh~xb21 i tb2!u
usinh~x21 i t2!uusinh~xb11 i tb1!u

21G ,
~39!

A1
V5

1

p3E0

p

dt1dt2dtbE
2`

`

dx1dx2dxb

1

usinh~xb1 i tb!u
1

usinh~x121 i t12!u2

3F S sinh~x11 i t1!sinh~x22 i t2!sinh~xb21 i tb2!sinh~xb12 i tb1!

sinh~x12 i t1!sinh~x21 i t2!sinh~xb22 i tb2!sinh~xb11 i tb1! D
1/2

21G ~40!
with x125x22x1 and so on.
The integrals are evaluated numerically be Monte Ca

techniques,20 with values calculated over finite volumes the
scaled to infinity. The results are

A0
J54.377,
o
A1

J534.8160.02,

A1
V5233.0160.02. ~41!

Hence the correction to the transition temperature is
1-6
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FIG. 5. ~a! A plot of Tc againstV andJ, ~b! A cross section ofTc againstV along the lineV1J50.1. In these plots, we have takenz'52
to allow these corrections to be clearly seen, although for this approach to be valid, we requirez'>3.
on
si-
om
s

w
sy
m

t
es
d
e
ns
er

:
t
fo

rite

-
e

uf-

era-
Tc

A0
JJz'

'11
1

z'
F0.4220.40S V

J D 2G . ~42!

This expression is valid forJ.V. If V.J, the expression is
exactly the same, but withV↔J. This is plotted in Fig. 5 and
gives a dip near the critical point as expected.

It is interesting to note that in the absence of the sec
interaction term, i.e.,V50, these correction raise the tran
tion temperature above the RPA value. This differs fr
models of coupled spin chains where RPA tends to overe
mate the transition temperature.9,10

VI. A WORD ABOUT TWO DIMENSIONS

In two dimensions the RPA approach in the previous t
sections must break down completely, as spontaneous
metry breaking is forbidden by the Mermin-Wagner theore
We can see how this comes about by looking at Fig. 4~c!.
The correction we looked at involved only bare couplings
the bare correlation function. The process of making th
lines ‘‘thick’’ involves much numerical complication an
gives rise to only small corrections in three or high
dimensions.9 However in two dimensions, these correctio
have infrared divergences and drive the transition temp
ture back down to 0.

Nevertheless we still get a transition in two dimensions
is of the Kosterlitz-Thouless21,22 type. Let us look closer a
Coulomb coupling in two dimensions. The Lagrangian
the coupled chains can be written

L5(
i

H 1

2
~]mf i !

22J cos@b~f i2f i 11!#J . ~43!

By making the approximation
19512
d

ti-

o
m-
.

o
e

r

a-

it

r

2cosf5
f2

2
^cosf& ~44!

which comes from the diagrammatic expansion, we can w
this as

L5(
i

H 1

2
~]mf i !

21 J̃~f i2f i 11!2J ~45!

with the self-consistent relation

J̃5Jb2^cosb~f i2f i 11!&

5Jb2expH 2b2T(
n
E dq'

2p

dqi

2p

12cosq'

vn
21qi

214J̃sin2~q'/2!
J .

~46!

At T50 this relation becomes

J̃5Jb2expS 2
b2

2p
ln

Ds

A2J̃
D 5Jb2S J̃

Ds
D d

, ~47!

where d5b2/4p as before. As T increases, the self
consistent value ofJ̃ will decrease, but for an estimate of th
behavior of the transition temperature this relation will s
fice. The Kosterlitz-Thouless transition temperature1,22 TKT

;AJ̃ hence we have

TKT;DsS J

Ds
D 1/(222d)

~48!

giving the same order of magnitude as the ordering temp
ture in higher dimensions~23!.
1-7
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Hence in two dimensions, although the nature of the tr
sition is different, the energy scales involved are the sam
in higher dimensions. The only major difference occurs wh
approaching the SU~2! critical point where the presence of
non-Abelian symmetry in two dimensions means that
transition temperature will drop to zero at this point. T
qualitative phase diagram in two dimensions is sho
in Fig. 6.

VII. AN EXAMPLE EXPERIMENTAL SYSTEM

The class of materials Sr142xCaxCu24O41 are built up from
alternating layers of weakly coupled Cu O2 chains and
Cu2O3 two-leg ladders. The material shows a spin gap
both of these one-dimensional units,23 making it a prime can-
didate for application of our model. Our theory is still val
even if the superconductivity originates from the ladders

For x>11.5, these materials show superconductivity u
der pressure,24,25 and NMR ~Ref. 23! studies also indicate
possible charge ordering at low temperature and amb
pressure. Recent measurements of the electrodyna
response26 have confirmed the presence of CDW in this cla
of compounds. One of the most interesting measureme
however, is the dc resistivity. For Sr2.5Ca11.5Cu24O41 these
measurements25 show a number of features.

~i! Below about 4 GPa pressure, the temperature dep
dence of the resistivity perpendicular and parallel to the l
ders is different. This indicates that different mechanisms
governing the transport in these two directions, consis
with the spin-gap concept. Above 4 GPa the tempera
dependence of the resistivity anisotropy becomes we
which indicates that single particle hopping between ladd
is now possible, i.e. the spin gap has vanished and we ha
crossover to a conventional two-dimensional metallic beh
ior. This is consistent with the pressure dependence of
spin gap observed in recent NMR experiments.27

~ii ! At sufficiently high temperatures, coherent interladd
charge dynamics is also seen. The temperature where
occurs is consistent with the NMR determinations of the s
gap, so we may conclude that the transport properties of

FIG. 6. The modified phase diagram for our model in tw
dimensions.
19512
-
as
n

e

n

n

-

nt
ic

s
ts,

n-
-

re
nt
re
k,
rs
e a
-
e

r
his
n
is

material are indeed governed by weakly interacting o
dimensional spin-gapped units.

In Fig. 7 a qualitative phase diagram of this material
shown.27 This is explained in terms of our model. If we tak
Ks'1 we have

Jeff;t2/Ds ,

Veff;V0~Ds /L!. ~49!

The increase of spin gap leads to decrease in the effec
interladder Josephson coupling. Hence eventually the in
ladder Coulomb interaction takes over and the supercond
tivity disappears. In quasi-two-dimensions the SC and CD
regions of the phase diagram are separated by the qua
critical point, as described in Sec. VI.

It would be interesting for this material to measure t
charge gap in the superconducting region. This may
achieved via optical conductivity measurements. For the L
tinger liquid parameterKc'1, our model then predicts th
ratio Tc /Dc to be the non-BCS value of order of 0.4.

Also in this material,Tc is very small in comparison to
the Fermi energyv/a, so the magnetic field effects on th
superconducting state should be strong. This would be
other interesting experiment to perform.

VIII. CONCLUSION

We have discussed a model with the following hierarc
of energy scales.

~1! The highest energy scale is the spin gapDs . BelowDs
the system is described by competing CDW and
fluctuations.

~2! There is a transition temperature at which eith
^cosA2pQ& or ^cosA2pF& are formed. According to the
mean field calculation, these order parameters canno
formed simultaneously. Thus we are either in CDW or S
phase, but the temperature of their formation goes smoo
through the pointV5J.

~3! There is a third energy scale associated with the

FIG. 7. Qualitative phase diagram for the spin gap a
superconducting transition temperature against pressure
Sr2Ca12Cu24O41.
1-8
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for another mode which becomes soft at the critical po
This mode is not seen in the first order RPA calculations,
it’s effects can be noted by looking at the first correction
RPA.

Within the RPA approximation we calculated the tran
tion temperature for generalKc . We calculated the ratio
Tc /M where M is the zero temperature gap in the char
sector. We saw that this decreases below the BCS valu
the coupling strength is increased. We also looked at
properties of our model in a magnetic field, noting in partic
lar the extreme anisotropy of the phase diagram.

We then went on to calculate the first corrections toTc in
the vicinity of the critical point which is decreased becau
of the interplay between the two interactions. We a
showed that in two dimensions where RPA breaks do
completely, we get a transition of the Kosterlitz-Thoule
type which has the same energy scales as the ordering
sition in higher dimensions. We also showed that the co
pound Sr2Ca12Cu24O41 is likely to be described by our mode
and on this basis made further predictions about it’s prop
ties and suggested that optical conductivity experime
should be done on such a material.
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APPENDIX A:
ESTIMATE OF THE EFFECTIVE COUPLINGS

The easiest case is that of the Coulomb coupling. In
bare system, we have a term

HCoulomb5
V0

a0
(

nÞm
rn~x!rm~x! ~A1!

with r(x) the charge density on each chain, andV0 is the
strength of the interchain Coulomb coupling. When we op
a spin gap, two things happen to this expression. First, a
thing involving the spin field is replaced by it’s averag
value^cos(A2pFs)&;(Ds /a0

21)Ks/2. Secondly, the cutoff in
the normal ordering of the charge sector is changed froma0

21

to Ds . This gives an extra factor of (Ds /a0
21)Kc/2 for each

operator. Overall, we generate an effective interaction

HCDW5
1

2

Veff

Ds
21 (

nÞm
:cos@A2p~Fn2Fm!#:, ~A2!

where

Veff;S Ds

a0
21D Ks1Kc21

V0 . ~A3!
19512
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-
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In this paper, we will be keepingKs'1.
In the case of the effective Josephson coupling, we s

from a single particle hopping term in our bare Hamiltoni
density

Hhopping5
t

2a0
(

nÞm
$Rn

†Rm1Ln
†Lm%. ~A4!

After opening the spin gap, the effective Hamiltonian dens
only involves pair hopping:

Hsc5
1

2Ds
21

Jeff (
nÞm

:cos@A2p~Qn2Qm!#:. ~A5!

These are virtual processes involving an intermediate ene
Ds , hence theJeff will have a factort2/Ds . We must also
remember to change the cutoff in the normal ordering, so
overall expression is

Jeff;S Ds

a0
21D 1/Kc21

t2

Ds
. ~A6!

APPENDIX B:
MEAN FIELD SOLUTION FOR MANY CHAINS

In the mean field approximation, the interaction term i

Lint5(
m

$V cos@A2p~Fn2Fm!#1J cos@A2p~Qn2Qm!#%

'z'V^cos@A2pF#&cos@A2pFn#

1z'J^sin@A2pQ#&sin@A2pQn#. ~B1!

This can be written as

Lint5AA21B2Tr@~cosgI 1 is1sing!g1c.c.#,

A5Vz'^cos@A2pF#&, B5Jz'^sin@A2pQ#&,

tang5
B

A
. ~B2!

The constant matrix can be removed by the redefinition og.
After that it becomes evident that the free energy depe
only on R25A21B2. The mean field equations are

A52Vz'

]F

]A
52Vz'

A

R

]F

]R
,

B52Jz'

]F

]B
52Jz'

B

R

]F

]R
. ~B3!

From this it is clear that the only case where bothA andB are
simultaneously nonzero isV5J.
1-9
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