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Superconductivity and charge-density waves in a quasi-one-dimensional spin-gap system
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We consider a model of spin-gapped chains weakly coupled by Josephson and Coulomb interactions. Com-
bining such nonperturbative methods as bosonization and the Bethe ansatz to treat the intrachain interactions
with the random phase approximation for the interchain couplings and the first corrections to this, we inves-
tigate the phase diagram of this model. The phase diagram shows both charge-density wave ordering and
superconductivity. These phases are separated by line of critical points which exhibits an approxit@ate SU
symmetry. We consider the effects of a magnetic field on the system. We apply the theory to the material
Sr,Ca,Cwy,0,;1 and suggest further experiments.
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[. INTRODUCTION The model we use has been considered in some detalil
recently! in the context of highF, superconductivity. It was
Quasi-one-dimension&l D) models are often used to test assumed that the one-dimensional behavior came about from
various theoretical ideas in the area of strongly correlatedhe formation of stripe&? Since in the stripe picture, fluctua-
electron systems for the simple reason that most known nortions of the stripes dephase the CDW coupftignly the SC
perturbative approaches work only in one dimensiéithe interchain interaction was considered. In our paper we retain
route often taken is to use a non-perturbative solution of ahe Coulomb interaction and therefore expect it to be rel-
strictly one-dimensional model and then use mean field oevant to materials that are structurally quasi-one-dimensional

the random phase approximatidRPA) to take into account sych as the Bechgaard salts or some cuprate materials such
the interchain interactions. Through techniques such ags the family Sy, ,Ca.CupOa; .

bosonization and the Bethe ansatz, many results are known |n Sec. Il we introduce the model we will be dealing with.

about such one-dimensional systems as spin chains ang sec. |1l we show that this model has an @Usymmetric
Tomonaga-Luttinger liquids which form the skeleton of thesequantum critical line. In Sec. IV we calculate the transition
quasi-one-dimensional models. Linking these using the RPAemperature for the model within the RPA approximation.
formalism has yielded many successful experimental predicfreating the interchain coupling in the mean field approxi-
tions, for example, for linear conductdrand for magnetic mation we obtain an effective sine-Gordon model for each
systems.™® A very early use of this technique is Efetov and chain. Using the exact results for this model we calculate the
Larkin”® who estimated the transition temperatures in thezero-temperature spectral gap and derive the expression
same model we use. for the ratioT./M. Here, we also consider the properties of
As is well known, the RPA formally represents the leadingour system in a magnetic field. In Sec. V we look at the first
term in a perturbation expansion inzl/, wherez, is the  corrections to RPA which gives us an improved phase dia-
number of nearest-neighbor chains in the lattice. For rea@ram of the model. In Sec. VI we show that the same general
experimental systems this number is not usually large so it ipehavior also occurs in two dimensions, although the transi-
important to know about higher order contributions i@,1/  tion here is Kosterlitz-Thouless rather than the symmetry
The recent results for the quasi-one-dimensional Heisenbeligreaking found in higher dimensions. Finally, in Sec. VII, we
magnets indicate that the worst these corrections can do how that the quasi-1D compound,Se;,Cu,,0;; is a beau-
about a 25% shift in the transition temperattt8The rela-  tiful example of our model and we discuss the measured
tive smallness of these corrections demonstrates the validifyroperties of it in relation to our theory. We also make some

of the RPA approximation when considering real systems; ifjuantitative predictions about this material which could be
our case it turns out that the corrections are even smaller. confirmed by further experiments.

In this paper we follow the same road and discuss a
simple model of a non-BCS superconductor. In the model we
chS|de_r the for_mat_lon_of superconductl_ng pairs on one- Il. THE MODEL
dimensional chains is triggered by formation of a spin gap.
The three-dimensional coherence is established through the Let us consider a system of conducting one-dimensional
interchain Josephson coupling. We also include the Coulomhnits (we will call them “chains,” though in reality they may
interaction, which can destroy the superconductivity and esbe, for instance, laddersveakly coupled to each other. As
tablish charge-density wavgCDW) ordering. As we shall often happens in one dimension, the spin and charge degrees
show, these two phases are separated by a critical line withf freedom decouple at low energies. We assume that the
increased symmetry. Near this line, we take into account thepin sector aquires a gap, and that the filling of each indi-
interplay between these two interactions considering correcridual chain is incommensurate with the lattice so that the
tions to RPA. low-energy behavior of the charge sector is decribed univer-
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sally by the Gaussian model. The Hamiltonian density is There is also a Coulomb interaction between the two

therefore chains In the spin gap regime, there is only one term in here
that remains relevant: it is the coupling ok2 components
Hehain= Henargs™ Hspins (1) of the charge density which gives the effective Hamiltonian
. density (Appendix A)
HchargeZE[Kc( ax)z"" Kc_l(axq))z]l i) 1
Heow=5 Vet 2 04\ 27 (P0=Pm)];, ()

where [0 (x),®(y)]=i0(x—y). We don't write down the
form of the Hamiltonian in the spin sector: our only require-ynare
ment is that it has a gaps. [In a specific case of single

chains a realistic description of the spin sector is given by the Ag\Ke
SU(2) Thirring model Hamiltoniah Veﬁ~<X) Vo. (8)
Hspm=27;vs(13a3ai + 383 — g: 938, (3  The corresponding scaling dimension is
dCDW: KC/2 (9)

where v, is the spin velocity andl?,J? are chiral SW2)
currents satisfying the levél=1 SU(2) Kac-Moody algebra. The effective action for coupled chains is therefore
The spin gap is generated whgi»0 such that the current-

current interaction in the spin sector is marginatyevant 5

In the case of ladders a description of the spin sector is more Eeff:i > (9,Pn)

complicated; this, however, does not affect the charge Hamil- ¢n

tonian and therefore will not concern us hére. 1
The spin gap blocks single-particle tunneling processes +3 > {Vamicog \2m(D,— D )]:
between the chains. Then the multiparticle processes gener- nem
ate pair hopping. In what follows we shall assume that the +Jpm:co§ \27(0,— 0, — 2eHb,x/C)]:}
interchain tunneling matrix element is much smaller than the
spin gap. In this case one can take into account only two- (10

particle virtual processes giving rise to Josephson coupling 4 hasA, as the ultraviolet cutoff. We will be considering

between the chains. They lead to the following Hamiltonian:, o 5rest-chain interactions only, &, =V, J,,=J for

neighboring chains and zero otherwise. In what follows we

Hsc:%JeﬁE :co§ V2m(0,—0,)—2eHb,x/c]:, will be most interested in the cagg~1 when both interac-
n#m " tions are important.

where the colons signify that operators are normal orderedil. AN EFFECTIVE THEORY OF THE CRITICAL POINT
with respect to the state with spin gap and therefore the ul-
traviolet cutoff for the correlation functions of bosonic expo-
nents isA;. The fields without index are assumed to be from
the charge sector, as will be the case from here on. We ha

also introduced external magnetic fiettl directed perpen- crbeal‘_sesband t:_;ecqmeds @ T_czﬁsee this_wehuse the non-
dicular to the chainsb, , is the projection of the interchain AP€lian bosonization description="At K. =1 the exponents

lattice vector on the direction perpendicular both to the®XA=iv27®].exd+iy2w6] have conformal dimensions

For a general value df; the symmetry of the model is
U(1)xU(1) which corresponds to independent global shifts
® and ®. WhenK;=1 andV==*J the symmetry in-

chains and the magnetic field. (1/4,1/4 and can be understood as matrix elements of the
An analysis of dimensionalities as shown in Appendix A €nsor fieldg,, from theS=1/2 representation—the first pri-
yields mary field of the levek=1 Wess-Zumino-Novikov-Witten
model(for a discussion of this model, see, e.g., ltzykson and
Ag| K1 2 Drouffe'):
Jeit~| 3 Ay )

[ exdiV2ma®]  exdiV2mO] 0
wheret is the single particle hopping and is related to the g= . . . 11
original bandwidth. eXfl—iN2mO]  exd —iy2m ]

Interaction(4) has scaling dimension The Gaussian part of the action becomes the sum of the
de=1/(2K,) 6) WZNW actions from individual chains

and therefore is relevant even for repulsive interactions in the 1 ’

charge sector provided they are not too stroikg>1/2). 2 ; (9, Pp) *; WIgn] (12
This is a well known effect of the spin gap; it generates

preformed pairs making it easy for them to condeHise. and the interaction term in E410) can be written as
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antisymmetric sector splits into two Majorana fermions with
Lin= 2 {(V=3) > [g@¥[g;]@ gaps ¥+J) and (V—J).
n#m a=1.2 e . .
For an infinite number of chains, we expect to see a simi-
N N lar sort of behavior. The gapless symmetric mode in the the
+(N—=m) ]+ I Tr(gnIm+Imdn ) ( - (13)  case of two chains will in some sense be the Goldstone mode
in our infinite system and we expect to see a range of other
This description is convenient since it contains only mutuallymodes with gaps ranging frodd—J to V+J. We will see
local fields and therefore can be considered as the Ginzburghat within the basic RPA approximation we cannot repro-
Landau theory. duce this behavior: the properties will depend on the stronger
In three spatial dimensions the system undergoes a phas¢ V andJ but not both. However when we go beyond the
transition into the ordered state where the magyriacquires  first order term we can start probing the interplay between
an average value throughout the system. In the long wavthese two competing interactions.

limit one can replace the last term in E4.3) by To begin with, we estimate the critical temperature using
N RPA. Within this approximation the pairing and the CDW
(9y9)(dyg") (14 susceptibilities are given by
and omitting the time dependence of the fields we obtain the
following Ginzburg-Landau free energy: X(O)
SC
XSC:—'
va 1-J (0)
F=b‘2f dxd?r Tr ﬁ(&xgmxg)ﬂLJbz(Vng’VLg) AL Xse
+ I:anisotropy! (15 _ Xg:OI%W (19
whereb is the lattice constant in the transverse direction and Xcow 1-Vz, X9,
Fanisotropy:(v_‘])b_zj dxd?r >, g@d[g*]@a, wherez, is the number of nearest neighbor chains. These are
a=12 shown diagrammatically in Figs(& and 4b).
(16) When K.=1 the bare susceptibilities are equal to each

We can now reparametrize the theory. The order paramc_)ther and therefore the instability occurs in that channel

. : . where the interaction is stronger. This is shown explicitly in
eter is the S(2) matrix g. lts relation to the CDW and SC Appendix B. IfK.# 1, the instability still occurs in the stron-
phased® and® are

ger channel, although this now depends not only on the val-
g=exfic¥(®+0)/4lexdiotal2lexdicd(®—0)/4]. ues ofV andJ but also onK; andAg, the crossover point
(17) being

The Ginzburg-Landau free energy density is

t2 UR-UAKe) [ | Y(2—Kf2)
S R @

F= %P[CO§(a/2)(V®)2+Sin2(a/2)(VCI>)2] A0 ve

1 An important modification occurs in magnetic field which
+ EP(VCY)ZJF(V—J)COSC!- (18 affects the interchain interaction in the superconducting
channel(4). In this case the susceptibilities corresponding to
This is interpreted as follows: whevi—J is positive,a is  the lattice directions| should be taken at wave vector
pinned atr so that the coefficient in front of{®)? is non-  2e(H[xx1])/c, whereX is the unit vector along the chains.

zero and henceb, the CDW order parameter, is constant Therefore the RPA criterion for the transition is replaced by
throughout the material. Whe¥i—J is negative « is pinned

at 0 and hence it i®, the superconducting order parameter
that acquires an expectation value. WhénJ=0 we are at 1= E J,X(O){q=2e(H[§<X 1)/c}. (21)
the critical point where the free energy of the superconduct- [ s¢

ing and insulating phases becomes equal. The effects of this
V—J mode will be considered throughout the rest of the

saper For definiteness let us assume that the instability occurs in

the superconducting channel which is the most likely case

for K.;>1. Note that the duality property of the effective

Lagrangian(10) underK—1/K, V«<J, ©+® means that

all of the results in this and the next section are identical for
For two chains the problem was solved by Shekoal!’  the CDW channel.

There are two modes; one symmetric in the two chains and In a Tomonaga-Luttinger liquid with the ultraviolet cutoff

the other antisymmetric. In the presence of the interchair\s the static susceptibility for the operator with scaling di-

interactions, the symmetric mode remains gapless and th@ensiond is given by?®

IV. PHASE DIAGRAM IN MAGNETIC FIELD
AND CRITICAL TEMPERATURE
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o 2 27T\ 22 055
x(q)=—sind I?(1—d)
A2 As 0.5
I'(d/2+ivql4nT) 12 0.451
X - : (22)
[(1—di2+ivql/4nT)| 0.4
wherev is the velocity in the charge sector. 0.351
0.3
A. Zero magnetic field; the critical temperature 0.25 1
and the vortex energy
0.2
Substituting Eq(22) with g=0 into Eqg.(19) we obtain 0 0.2 0.4 d 0.6 08 i
Ag[2dz, . T%d/2)T?(1-d) 1(2-2d) FIG. 1. Agraph off /M againsid. The valued=1 corresponds
= 2m| A, sinmr r2(1—di2) . (23)  to the BCS limit, decreasing corresponds to increasing repulsion.

. _ 2 . . - .
The scaling properties of this equation were calculated fot" @l thesie fquatlonsi—ﬁ /4 is the scaling dimension of
the first time in Ref. 8. the fielde'#?, and é=1/(2—d). These mean-field relations

Below the transition temperature the long-wavelength?"® Solved to give
fluctuations of superconducting order parameter are three di-

¢ . - Jz 1 7T§ 1/(2—2d)
mensional. The amplitude fluctuations are, however, mostly pM=A "%~ tan—
one dimensional and their spectral weight is concentrated As 2(d=2)7 2
above certain energy which plays a role of a pseudogap. The 1 ¢ (d—2)7 1/(1—d)
zero-temperature value of the pseudogap can be found from r(_+ 2
the mean-field theory combined with the exact results for the 7I'(1-d2) 2 2
sine-Gordon model. In this approach one approximates the r'dr2) 2I°(¢/2)
interchain interaction
(29
_ The ratioT./M which is often considered in the theory of
J(%) CoSB( = Pm) 24 superconductivity is plotted as a function @in Fig. 1. It's

numerical value in certain limits is

(Bp=\270O andB>=27K_') by

T V2
2 cOsB o, (25) v (d=0)=5~0.177, (30
where
Te 3 3#[[(2/3T(5/6)]3
B —(d=1/2)= — ~0.404. (31)
2p=1Jz,A4(cosB¢). (26) M 16 '(3/4)®
This expectation value is known exactfy: In the limit d—1 which corresponds to weak coupling, our
expressions forT, and M diverge in this approximation.
_(1+Hnl(1-d/2) However, their ratio can still be evaluated. Writing=1
(cosBe)= 16sinr el (d/2) —d and expanding all the gamma functions as Taylor series
in X gives us the BCS value
1 g g (d-2)
Flzta)ti 3 T, 1 L
X —(d—1)=—Ilim[1+(In2+ y)x]"*=—e"~0.567,
4\/; M 27, o T
m&\9 M\ @2
X| 2 sin7) (A_) , (27)  wherey=~0.57722 is Euler’s constant.
S

Notice that in comparing to experiments, one has to re-
whereM is the soliton mass in the SG model, and is relatedn®mber thaM is not the single particle gap. Single particle
to u by spectroscopies such as basic tunneling would see a gap much
closer toAg, the spin gap. To prob®l, one would have to
2-d look at experiments involving pairs of electrons, such as An-
) A2, dreev tunneling. In the context of the sine-Gordon mohlel,
is the soliton mass. Solitons correspond to spatial changes in
the superconducting pha&® and hence to vortices. There-
(28)  fore M is the minimal energy necessary to create a vortex. It

INGIZ) orer2) \ 7w
K= (1—dRR) 1 ¢ (
53]
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d=0.8 S
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d=0.6
d=0.5
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O 01 = -
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d=0.2 \
0.05 |
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0 0.2 0.4 0.6 0.8 1
Te/Te(0) d

FIG. 2. (a) The critical temperature as a function of magnetic field for various values (@) The critical magnetic field as a function
of d. The magnetic field is measured in the units efhBuv/c.

should also be noticed that dt<1 the sine-Gordon model At T.—0 Eqg. (33) can be solved analytically which al-
has not only solitons, but bound states which, being neutralpws us to extract the value of critical field at=0
should be interpreted as vortex-antivortex pairs.dAt1/2

the energy of the first bound state is smaller than the soliton. 27¢ T¢(0) (F(l— d/2)> 1/(1-d)

11 . . . . . - _
See Carlsoret al.~ for a nice discussion of the implications H.(0)= s o T(di2) (39

of having these two energy scales.

This is plotted in Fig. 2b) along with the numerical solution
B. Phase diagram in a magnetic field for HIM2,

To keep the calculations as simple as possible, let us con- (ii) Anisotropy of the phase diagram. Another prediction
sider the simplest possible situation when a given chain hafllowing from Eq. (33) is an anisotropy of the phase dia-
four nearest neighbors with Josephson coupliigandJ,  gram. This can be illustrated by an analytical solution for
and the magnetic field lays in thez plane. Combining Egs. T.—0 case. Settind.— 0 in Eq.(33) we find
(21) and(22) we obtain the equation for the critical tempera-

ture 3 . ), i c
of Te |®7P9_ | T(di2riabHy /Ty | (aH,b,)? 0D (aH,by) 2" [T(0)]2" 9
T.(0) CAT(1-di2+iab,H,/Ty)| (35
I'(di2+iabyH,/T,) |2 This is plotted in Fig. 3. We must be careful to remember

y F(l—d/2+iabyHZ/Tc)| however that this is a first order mean field calculation, and

2

I'(d/2
(d/2) , a=ev/2xcC. (33

C=tWIra=am)

The solution of this equation describes several interesting
effects.

(i) A possibility of a reentrance behavior. Let us consider
the case when in-plane interactions are isotrogje: J, ,b,
=b, and the magnetic field is directed at 45° angle
=H,=H. This gives it the maximal power to suppréss A
numerical solution of Eq(33) is plotted in Fig. 2a) for
various values of the scaling dimensidnWe see that there
is a range of magnetic fields for which the superconductivity
exists in an intermediate range of temperatures. To study the
stability of these solutions one needs to have a good descrip- FIG. 3. Angular dependence of the critical magnetic field. This
tion of the ordered state in magnetic field, which we hope tds plotted ford=1/2. The graph is qualitatively similar for other
obtain in the future. values ofd.
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FIG. 4. (a) The basic RPA diagramjp) The
Dyson series for RPA(c) The first correction
term. In these diagrams, the dashed lines repre-
sent the 1D chains, the dots indicate vertex op-
erators of¢ or # and the wiggly lines are the
interchain interactions, and each diagram is an
irreducible correlator.

further corrections will give a critical flux in all directions, can be investigated by looking at the first correction to the
even when the field is pointing directly along one of the RPA formula—Fig. 4c).
crystal axis. In terms of the fieldsp and 6, this diagram can be ex-
(iii) SC-CDW transition. The validity of the above calcu- pressed as
lations is limited by the range of temperatures where the A . . .
system is stable against CDW transition. Therefore, strictly ~ Sx=\V?z, [ (€27l 2T0(1)g=1\270(2)g =127 4 (b))
speaking, before th&,— 0 quantum critical point is reached — - R -
the system will undergo a transition into a CDW state. — (/2T EmI)) (gl Emille T EmOD) ]
X<e—wﬂa(1)ei ¢Eo(2)>
V. CORRECTIONS TO RPA 0 o o
' . . +J22L[<ei Zm(a) g \52w¢(l)efl\52w¢(2)eflv“2w¢(b)>
The analysis of the previous sections was based on RPA.
Since in realistic situations the number of nearest neighbors — (e 2T d(2)g= 12T (b)) (@ 2T H(1) g1 2T H(2))]
is never large, it is important to check how robust RPA is. We

will calculate corrections to RPA in the simplest case case of X<ef'“ﬂ¢(l)e' \%¢(2)>_ (36)

zero magnetic field. We shall also restrict ourselveKto ) . . )

=1 (d=1/2 for both interactions The revised RPA equation for the transition temperature is
The basic RPA calculation involves only the stronger of ) 5

the two interactions—for clarity let us again take this talbe 1= ‘]i A+ Al Iz, +AvV Z 37)

However, as we mentioned before we would expect the pres- T.|'° "1 T2 ! T2 )

ence of the other competing interaction of the same scaling o .

dimension to also play a role. In particular we expect there tavhere the coefficients are given by

be a mode with a gap af—V, seen in Eq(18) and in the

two chain mod_el. This will be very important ar_ound tr_]e Agzijﬂdew e 1 ' :iBZ(1/4,1/2,
point V=J as it will become massless thereby increasing mJo —w|sinN(x+i7)[ 2w

fluctuations and decreasing the transition temperature. This (38

1 (= * 1 1 [sinh(x,+i79)||siNh(Xpo+i742) |
AJz—f drdrdrf dx; d%,dXy— . _ _ _ _ -1,
Vgdo AR TR Sinh X+ i 7)| | sin xgpt i 745) |21 ISINNOG i 7o) [Sinh(Xpy +i 7y )|
(39
AVlfﬁdddFddd ! !
=— T1d7dT X1 0 X0 Xp— -
Vs )o TR ) LT sinh Xy + i )| [sinh(xgp+ i 710)|2
sinh(X, +1i 77)SiNh(X,— i ) SINK(Xp+ i 7,5) SINA(Xpg — i 1) | +2 20
sinh(x; —i7q)SiNh(X,+1i 75) SINN( X — i 7p2) SINN( X1+ 71h1) (40
|
with X,,=X,—X; and so on. Al=34.81+0.02,
The integrals are evaluated numerically be Monte Carlo
technique£? with values calculated over finite volumes then
scaled to infinity. The results are A\lfz —133.01+0.02. (42)
Ay=4.377, Hence the correction to the transition temperature is
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— RPA + first correction
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06008
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FIG. 5. (a) A plot of T, againstV andJ, (b) A cross section of . againstV along the linev+J=0.1. In these plots, we have taken=2
to allow these corrections to be clearly seen, although for this approach to be valid, we rgu8e

\Vj 2
0.42— 0.4(( j) .

This expression is valid fal>V. If V>J, the expression is

exactly the same, but witti< J. This is plotted in Fig. 5 and

gives a dip near the critical point as expected. 1

. It is |_nterest|ng to n_ote that in the alqsencg of the seco_nd /;:2 :§(3u¢i)2+3(¢i—¢i+1)z] (45)

interaction term, i.e.Y=0, these correction raise the transi- i

tion temperature above the RPA value. This differs from ith th If- tent relati

models of coupled spin chains where RPA tends to overesti" € self-consistent relation

mate the transition temperatuté’ )
J=JB%(cosB(pi— pi+1))

2
Tc 1t 1 42) —CoS¢p= %(co&ﬁ) (44)

J
AoJ ZL ZL

which comes from the diagrammatic expansion, we can write
this as

VI. AWORD ABOUT TWO DIMENSIONS 2y dqg, dq” 1—cosq,
=JBex T f
In two dimensions the RPA approach in the previous two 2m 27 wi+qf+43sir(q,/2) ]
sections must break down completely, as spontaneous sym- (46)

metry breaking is forbidden by the Mermin-Wagner theorem.

We can see how this comes about by looking at Fig).4

The correction we looked at involved only bare couplings to

the bare correlation function. The process of making these 2 4, 3¢

lines “thick” involves much numerical complication and J=JB%x B J,BZ( ) (47)

gives rise to only small corrections in three or higher 2 \/2—

dimensions. However in two dimensions, these corrections

have infrared divergences and drive the transition temperavhere d=B%/4w as before. AsT increases, the self-

ture back down to 0. consistent value o will decrease, but for an estimate of the
Nevertheless we still get a transition in two dimensions: itbehavior of the transition temperature this relation will suf-

is of the Kosterlitz-Thoule$$* type. Let us look closer at fice. The Kosterlitz-Thouless transition temperat@feT

Coulomb coupling in two dimensions. The Lagrangian for _ \/: hence we have
the coupled chains can be written

At T=0 this relation becomes

3\ M-2d)
) (48)

1 Ter~A <_
=2 |5(0up)? - IcodB(di—din)][. (43 T\ As
giving the same order of magnitude as the ordering tempera-
By making the approximation ture in higher dimension&3).
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()
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[

Tc E“
o
=
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Tc
QCP
\ SC
CDW
Pressure
v/

FIG. 7. Qualitative phase diagram for the spin gap and
FIG. 6. The modified phase diagram for our model in two superconducting transition temperature against pressure in
dimensions. S,Ca,ClpsOy1 -

Hence in two dimensions, although the nature of the tranmaterial are indeed governed by weakly interacting one-
sition is different, the energy scales involved are the same agimensional spin-gapped units.
in higher dimensions. The only major difference occurs when In Fig. 7 a qualitative phase diagram of this material is
approaching the S(@) critical point where the presence of a shown?’ This is explained in terms of our model. If we take
non-Abelian symmetry in two dimensions means that thek ~1 we have
transition temperature will drop to zero at this point. The
qualitative phase diagram in two dimensions is shown Je~t2Ag,
in Fig. 6.

Vet~ Vo(As/A). (49

VIl. AN EXAMPLE EXPERIMENTAL SYSTEM , ) , ,
The increase of spin gap leads to decrease in the effective

The class of materials §r ,CaCu,404; are built up from  interladder Josephson coupling. Hence eventually the inter-
alternating layers of weakly coupled CyQhains and ladder Coulomb interaction takes over and the superconduc-
Cu,O; two-leg ladders. The material shows a spin gap intivity disappears. In quasi-two-dimensions the SC and CDW
both of these one-dimensional unffsnaking it a prime can- regions of the phase diagram are separated by the quantum
didate for application of our model. Our theory is still valid critical point, as described in Sec. VI.
even if the superconductivity originates from the ladders. It would be interesting for this material to measure the

For x=11.5, these materials show superconductivity uncharge gap in the superconducting region. This may be
der pressuré*?® and NMR (Ref. 23 studies also indicate achieved via optical conductivity measurements. For the Lut-
possible charge ordering at low temperature and ambiertinger liquid parameteK.~1, our model then predicts the
pressure. Recent measurements of the electrodynamiatio T./A. to be the non-BCS value of order of 0.4.
respons® have confirmed the presence of CDW in this class  Also in this material, T, is very small in comparison to
of compounds. One of the most interesting measurementshe Fermi energy/a, so the magnetic field effects on the
however, is the dc resistivity. For SCa;1 {C,404; these  superconducting state should be strong. This would be an-

measurements show a number of features. other interesting experiment to perform.
(i) Below about 4 GPa pressure, the temperature depen-
dence of the resistivity perpendicular and parallel to the lad- VIIl. CONCLUSION

ders is different. This indicates that different mechanisms are

governing the transport in these two directions, consistent We have discussed a model with the following hierarchy

with the spin-gap concept. Above 4 GPa the temperaturef energy scales.

dependence of the resistivity anisotropy becomes weak, (1) The highest energy scale is the spin gap Below A

which indicates that single particle hopping between ladderthe system is described by competing CDW and SC

is now possible, i.e. the spin gap has vanished and we haveflactuations.

crossover to a conventional two-dimensional metallic behav- (2) There is a transition temperature at which either

ior. This is consistent with the pressure dependence of thécosy27®) or (cos\27®) are formed. According to the

spin gap observed in recent NMR experiméfits. mean field calculation, these order parameters cannot be
(i) At sufficiently high temperatures, coherent interladderformed simultaneously. Thus we are either in CDW or SC

charge dynamics is also seen. The temperature where thihase, but the temperature of their formation goes smoothly

occurs is consistent with the NMR determinations of the spirthrough the poiny/=J.

gap, so we may conclude that the transport properties of this (3) There is a third energy scale associated with the gap

195121-8
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for another mode which becomes soft at the critical pointin this paper, we will be keepings~1.
This mode is not seen in the first order RPA calculations, but In the case of the effective Josephson coupling, we start
it's effects can be noted by looking at the first correction tofrom a single particle hopping term in our bare Hamiltonian
RPA. density

Within the RPA approximation we calculated the transi-
tion temperature for generdl.. We calculated the ratio t
T./M whereM is the zero temperature gap in the charge Hhopping™ 54~ > {RIRp+ LMLk (A4)
sector. We saw that this decreases below the BCS value as 0 n#m
the coupling strength is increased. We also looked at the ) ] ) o .
properties of our model in a magnetic field, noting in particu-After opening the spin gap, the effective Hamiltonian density

lar the extreme anisotropy of the phase diagram. only involves pair hopping:
We then went on to calculate the first correctiong tan
the vicinity of the critical point which is decreased because 1
of the interplay between the two interactions. We also Hscz—_lJeﬁE :cog \/ﬂ(ﬁ)n—@m)]:. (A5)
showed that in two dimensions where RPA breaks down 244 n#m

completely, we get a transition of the Kosterlitz-Thouless

type which has the same energy scales as the ordering trahhese are virtual processes involving an intermediate energy
sition in higher dimensions. We also showed that the comAs, hence thele; will have a factort?/As. We must also
pound SyCa;,Cu,,0,; is likely to be described by our model remember to change the cutoff in the normal ordering, so the
and on this basis made further predictions about it’s properoverall expression is

ties and suggested that optical conductivity experiments

should be done on such a material. AL\ YKt 2
S
‘]effN 1 A_ (AG)
ao S
ACKNOWLEDGMENTS
S.T.C. acknowledges many useful discussions with Ralph APPENDIX B:
Werner. A.M.T. is grateful to Marc Bocquet for giving him MEAN EIELD SOLUTION FOR MANY CHAINS

his preprint before publication. The work was supported by
the U.S. DOE under Contract No. DE-AC02-98 CH 10886 In the mean field approximation, the interaction term is
and EPSRC Grant No. 99307266.

APPENDIX A: cim=§ {Vcog \2m(®,—® )]+ cog V2m(0,— 0 )]}
ESTIMATE OF THE EFFECTIVE COUPLINGS
~z,V(co§ V27 d])cog V27D ,]

The easiest case is that of the Coulomb coupling. In the

bare system, we have a term +2, )(sin 27O 1)sin 270 ,]. (B1)
Vo This can be written as
Heouoms= 5 2 Pr(X)Pm(X) (A1)
0 n#Fm

Li= VA?+B?Tr[ (cosyl +ialsiny)g+c.cl,
with p(x) the charge density on each chain, angis the

strength of the interchain Coulomb coupling. When we open A=Vz (co§\27®]), B=Jz (sif2707),
a spin gap, two things happen to this expression. First, any- B
thing involving the spin field is replaced by it's average tany= (B2)

value(cos(27d))~(As/ay *)¥s2 Secondly, the cutoff in A
the normal ordering of the charge sector is changed figm _ o
to Ag. This gives an extra factor ofAi/a, *)K<’2 for each The constant matrix can be removed by the redefinitiog. of

operator. Overall, we generate an effective interaction After thatz it b(zacorr;es evident that the free energy depends
only on R“=A“+B“. The mean field equations are

1V
Hoow=5 5 2 :C0§\2m(@n=p):,  (A2) Al vy F__y, A
Ag ™ n#m LA LR IR’
where JF B oF
BZ—JZJ_(?—B:—JZlﬁ{;—R. (BS)
A KetKe—1
Vst i) Vg. (A3) From this it is clear that the only case where batandB are
ao simultaneously nonzero =J.
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