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Spatial frequency mixing by nonlinear charge transport in photorefractive materials
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We present a theoretical investigation of the nonlinear phenomenon of spatial frequency mixing in photo-
refractive materials. In particular, we study the kinetics of the second harmonics and the sum and difference
~combinational! gratings when two photorefractive gratings are recorded in the material. The physical origin of
the new gratings is extensively discussed. The formalism is applied to investigate multiple recording in
LiNbO3 as a material relevant for applications. The influence of the multiple-recording method~either sequen-
tial or simultaneous! on the generation of second-order gratings is analyzed. We found remarkable differences
in the kinetics of these gratings depending on the multiplexing procedure. Our theoretical predictions are in
good agreement with a number of previously reported experimental results.
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I. INTRODUCTION

The photorefractive~PR! effect1 consists of a change in
the refractive index induced by inhomogeneous illuminat
of a photoconductor and electro-optic material. In typical
experiments, a sinusoidal pattern, obtained by the inter
ence of two plane waves, is used. As a result, a sinuso
diffraction grating, or phase hologram, is recorded in
material. PR media have been proposed for several h
graphic applications, such as interferometry by real-time
lography, optical storage, interconnects, etc.

The physical mechanism of the PR effect involves
redistribution of charge in the material that gives rise to
spatially varying internal electric field. Then this intern
electric field leads to the generation of the correspond
refractive index pattern via the electro-optic effect. T
former process consists of three steps:~1! optical and/or
thermal excitation of carriers from the filled traps,~2! migra-
tion of the free carriers in the conduction~or valence! band,
and, finally,~3! subsequent recombination of the free carri
at the acceptor sites.

All these three processes—free charge generation, tr
port, and recombination—take place through a nonlin
mechanism. For single grating recording, a number of p
nomena arising from this nonlinearity have been previou
investigated~see, for instance, Refs. 2–6 and referen
therein!. However, many situations—e.g., holographic st
age or optical interconnects—involve not just one, but s
eral PR holograms~gratings!. In suchmultigratingsituations,
the nonlinear PR response leads to the mutual coupling
the involved gratings and so to new nonlinear PR pheno
ena. But unlike the single-grating case, less attention
been paid to these nonlinear multigrating effects. Some y
ago the so-callednonlinear grating cross talkwas first ob-
served in the simultaneous recording of two gratings in
BSO crystal.7 This effect was interpreted as mutual coupli
through the nonlinear photoinduced current8,9 and was fur-
ther investigated in subsequent works.10,11On the other hand
Frieset al. reported the generation of a difference grating
0163-1829/2002/65~19!/195117~8!/$20.00 65 1951
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sequential recording of two hologram gratings in lithium ni
bate (LiNbO3).12 More recently, the sum grating has bee
observed in the simultaneous recording of two gratings
BSO.13 Finally, experimental measurements of multiple sp
tial frequency mixing involving up to fourth-order combina
tions in the sequential recording of two gratings in LiNbO3
have been published.14 However, a detailed theoretical analy
sis of these frequency-mixing problems is still needed.
fact, general theoretical frameworks to describe PR mate
nonlinearities have been proposed and applied to a variet
parametric processes.14–16Unfortunately, they have not bee
specifically applied to investigate the present problem a
only a first simple approach to calculate the kinetics of
frequency-mixing gratings was reported in Ref. 12 for t
case of sequential recording.

In this paper we present a general but simple phenome
logical approach to account for the dynamics of nonline
combinational gratings that provides a clear insight into
physics of the involved phenomena. Our approach is an
tension of that used in Ref. 12 that includes not only the s
and difference gratings, but also second harmonics. Mo
over, the formalism is also applied to investigate the sim
taneous recording case that had not considered in that w
Additionally, a more detailed description of the mathemati
formalism and discussion of the obtained equations are
vided. We will obtain the full kinetics of all second-orde
gratings ~second harmonics and sum and difference ho
grams!. The formalism is specifically applied to photovolta
PR crystals such as LiNbO3, which is one of the best can
didates for PR holographic storage. We will identify the re
evant parameters and analyze their influence on the nonli
processes. A comparison between sequential and sim
neous recording is also provided. Special attention is pai
compare our prediction with recent experimental results.

Our analysis also provides important information for t
practical use of PR materials in applications. In particul
results should be relevant for storage and interconnect
vices where these higher-order gratings behave as cohe
optical noise. On the other hand, the nonlinear mechani
©2002 The American Physical Society17-1



h

a
ta

l f
e
ns
tio

ed
ry

io
rre
ng

.

s
o

in

ion

e

f-

t
he
e

ed
has

on
les

ty

the

-

e
nd

ons

ss

e
,
re-

ev-
ess

rise
fre-
his

d

at-
e

re
e

ay
we

urier
and

J. LIMERESet al. PHYSICAL REVIEW B 65 195117
provide a new way to record gratings withK vectors that
could be difficult to reach directly by two-wave mixing wit
simple geometrical configurations.14 Therefore it is useful to
provide an analysis of the strength of nonlinear effects, p
ing attention to the influence of material and experimen
parameters on the amplitude of nonlinear gratings.

II. THEORETICAL FORMALISM

We base our study on the usual band transport mode
the PR effect17 whose main features were already mention
in the Introduction. Specifically, we consider charge tra
port processes in a photoconductor crystal under illumina
with an inhomogeneous light pattern,I (r ). Only one kind of
optically active trap, with two oxidation states, is assum
This one-trap model is generally accepted in many PR c
tals.

The inhomogeneous illumination induces a redistribut
of the space-charge density within the crystal. The co
sponding mathematical formulation includes the followi
rate equations:

]NA~r ,t !

]t
5sI~r ,t !@N2NA~r ,t !#2gn~r ,t !NA~r ,t ! ~1!

and

]n~r ,t !

]t
5

]NA~r ,t !

]t
1

1

e
“̄ j ~r ,t !, ~2!

which, respectively, describe the time evolution ofNA , the
concentration of acceptors, andn, the free charge density
Heree is the absolute value of the electron charge,N is the
total concentration of traps,s is the photoexcitation cros
section, andg is the trapping coefficient. Hence the tw
terms on the right-hand side of Eq.~1! correspond to the
optical excitation of electrons and its subsequent recomb
tion, respectively. In Eq.~2! the additional term involving the
gradient of the current density,j , accounts for the migration
of carriers. The time derivative]n/]t in this equation is usu-
ally neglected. This is the so-called adiabatic approximat
which relies on the fact that the charge carrier densityn
reaches equilibrium much faster than the other involv
physical variables.

The total current densityj inside the PR crystal is the
result of three contributions: ~a! the drift termjdrift , ~b! the
current due to diffusionjdiff , and~c! the photovoltaic contri-
bution jPV for materials that exhibit a bulk photovoltaic e
fect:

j5 jdrift1 jdiff1 jPV5emnE1eD“̄n1esILPV~N2NA!,
~3!

wherem is the electronic mobility,D is the diffusion constan
and LPV is the photovoltaic length, which characterizes t
photovoltaic effect in a given crystal. Finally, the spac
charge fieldE and the charge densityr inside the medium
are related through the Poisson equation
19511
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“̄E5
r

««0
, ~4!

where the charge densityr is given byr5e(NA2^NA&). As
usual, use of brackets^ & denotes the average of the enclos
variable. In this expression the density of free electrons
been neglected in comparison with (NA-^NA&) as is usual for
low and moderate light intensities.

Equations~1!–~4! describe the space-charge redistributi
taking place during PR recording. Our independent variab
are the space-charge fieldE, the free charge carriers densi
n, and the concentration of acceptorsNA .

To solve these equations one should take into account
continuity of current:

“̄ j 1
]r
]t 50, ~5!

From Eqs.~3!, ~4!, and~5! one arrives at a very useful equa
tion for the time evolution of the space-charge fieldE:

]E~r ,t !

]t
1

1

««0
j ~r ,t !5 j0 , ~6!

«0 and « being the vacuum dielectric permitivity and th
relative dielectric constant of the medium, respectively, a
j0 is a constant to be determined by the boundary conditi
of the problem.

Origin of nonlinear multigrating effects

Let us examine the form of Eqs.~1! and ~3!. Notice that
they containfour nonlinear terms, i.e., terms including cro
products of spatially modulated quantities. First, Eq.~1! in-
cludes the photoexcitation termsINA and the trapping term
gnNA . In turn, Eq.~3! for the current density contains th
productsn•E and I •NA in the drift and photovoltaic terms
respectively. These nonlinear contributions are actually
sponsible for the nonlinear coupling of gratings. When s
eral spatial frequencies are involved in the recording proc
~as is the case of multiplexing of holograms!, the cross prod-
ucts couple the different spatial components, thus giving
to the generation of new combinational gratings whose
quencies are linear combinations of the initial ones. T
phenomenon ofspatial frequency mixing, which has been
already observed experimentally~see, e.g., Refs. 7, 12, an
14!, is the main concern of this paper.

Let us consider the PR recording of two sinusoidal p
terns ~phase holograms! which is the simplest case wher
multigrating effects take place. LetK1 andK2 be the spatial
frequencies of the two intentionally recorded~primary! grat-
ings. For simplicity, the fringes of both light patterns a
taken to be parallel to each other and perpendicular to thX
axis ~see Fig. 1!. Then only variation along theX direction
must be considered and our mathematical formulation m
be scalar. In order to solve the nonlinear PR equations
express the dynamic variables as a one-dimensional Fo
expansion in terms of the two fundamental frequencies
including nonlinear combinations of them:
7-2



n
rie
w
-

ie

ri
ra
p

s
he
ra
lly

e

s

-
o
d

th

ng
-
ex-
of

ent

er-
nd
cu-
the
the
or
yze
ill
pi-
h
-

i-

of

ul-
the
u-

d
the
re-

he

ncy
he
f
rin-

t

re-
tern

ion
to

oce-
ur
his

ur
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E~x,t !5(
n,m

EnK11mK2
~ t !ei ~nK11mK2!•x1c.c., ~7a!

NA~x,t !2NA
05(

n
NnK11mK2

~ t !ei ~nK11mK2!•x1c.c.,

~7b!

n~x,t !2^n~x,t !&5n~x,t !2n0

5(
n

nnK11mK2
~ t !ei ~nK11mK2!•x1c.c.

~7c!

In order to keep the degree of complexity of the calculatio
below a reasonable level, we will assume that the Fou
terms higher than second order are negligible. That is,
will only keep in our formulation the two fundamental fre
quenciesK1 and K2 and their second harmonics 2K1 and
2K2 , plus the two second-order combinational frequenc
K1[K11K2 ~sumfrequency! andK2[K12K2 ~difference
frequency!. This assumption is in accordance with expe
mental data reported in Ref. 12 in which second-order g
ing amplitudes are much greater than higher-order com
nents. After substitution of expressions~7! into the set of
equations~1!, ~2!, ~3!, and~6!, a number of coupled relation
would be obtained, which would allow one to calculate t
kinetics of the different fundamental and second-order g
ings. In the next section the formalism will be specifica
applied to multiple recording in LiNbO3, one of the most
useful PR media for storage applications. From the theor
cal point of view, the situation in LiNbO3 permits a further
simplification because the dominant nonlinear term isnE and
the other ones can be neglected~see below!. Besides, this
material has been used in several previous experiment
the behavior of combinational gratings,12,14 whose results
may be compared with the theoretical predictions.

III. RESULTS: APPLICATION TO LiNbO 3

Usually, in Fe-doped LiNbO3 the donor and acceptor con
centrations are high enough so that after recording the c
trast of the trap gratings is low. Then the second-order mo
lated terms originating fromgnNA andsINA are negligible
in comparison with the second-order terms arising from

FIG. 1. Schematics of the considered experimental config
tion.
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drift term emnE. Estimates of these modulated terms usi
experimental parameters of LiNbO3:Fe samples are pre
sented in Ref. 14, confirming our assumption. Hence, in
pression~7b!, we only keep the nonmodulated component
NA , whereas the other expansions forn and E are un-
changed. This simplifies much of the mathematical treatm
as we will see in the next subsections.

Two main procedures are typically used to record a c
tain number of holograms in a PR material: sequential a
simultaneous recording. In the former, the crystal is conse
tively exposed to the two sinusoidal patterns, whereas in
latter the two gratings are simultaneously recorded in
medium. These two methods imply different conditions f
the generation of second-order gratings, so we will anal
them separately in Secs. III A and III B, respectively. We w
discuss in detail the kinetics of the different gratings for ty
cal LiNbO3:Fe crystals. The results will be illustrated wit
some figures for which we will take the following param
eters: EPV5100 kV/cm and K157 mm21 and K2
510mm21. Anyhow, it should be noted that for these typ
cal values of the photovoltaic field and gratingK vectors one
hasED!EPV, and the curves will be nearly independent
the values ofK1 andK2 .

A. Sequential recording

Sequential recording is the usual method to record m
tiple holograms for storage applications. In this case
crystal is consecutively illuminated by a number of sin
soidal patterns:

I j~x!5
I 0

2
~11mje

iK j•x!1c.c., ~8!

where j 51,2... . Usually, it is desirable that all the store
holograms have the same diffraction efficiency, and so
exposure times of holograms have to be progressively
duced following a determined time schedule.18

As previously mentioned, our analysis will consider t
sequential recording of two hologramsG1 andG2 with grat-
ing K vectorsK1 and K2 . After writing a first PR grating
~gratingG1! in the medium, the physical variables (n,NA ,E)
become spatially modulated with fundamental frequencyK1 .
During recording of the second grating~gratingG2!, the light
pattern is again characterized by one single spatial freque
K2 . However, now the material is already imprinted with t
previous fundamental frequencyK1 , so that combinations o
gratings may appear as discussed above. Note that in p
ciple a second-harmonic grating 2K1 would be also presen
in the material. LetEK1

0 and E2K1

0 be the fundamental- and

second-harmonic initial amplitudes of these gratings.
To obtain the dynamical equations during the second

cording process we put the corresponding intensity pat
~8! ~with j 52! into expression~3! for the current density;
then, we introduce the latter into the time evolution equat
~6!. Finally, we bring together the terms corresponding
each spatial component of the space-charge field. The pr
dure is similar to that followed in Ref. 12, although in o
formalism second-harmonic gratings are not neglected. T

a-
7-3
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J. LIMERESet al. PHYSICAL REVIEW B 65 195117
is in accordance with experimental results,14 which show that
second-harmonic amplitudes are comparable to those
combinational gratings. The obtained set of coupled dyna
cal equations is written as

dEK1

dt
1

1

t
EK1

52
1

t
~m2* EK1

1m2EK2
!, ~9a!

dE2K1

dt
1

1

t
E2K1

50, ~9b!

dEK2

dt
1

1

t
EK2

52
1

t
~m2* E2K2

1m2Eeff
K2!, ~9c!

dE2K2

dt
1

1

t
E2K2

52
1

t
m2EK2

, ~9d!

dEK1

dt
1

1

t
EK1

52
1

t
m2EK1

, ~9e!

dEK2

dt
1

1

t
EK2

52
1

t
m2* EK1

, ~9f!

where t5««0 /emen0 is the dielectric relaxation time an
Eeff

K25iED
K21EPV, ED

K25(KBT/e)K2 and EPV5(LPVg/m)NA

being the so-called diffusion and photovoltaic fields~see, for
instance, Ref. 19!. In the expression of the diffusion field,KB
is obviously the Boltzman constant andT the absolute tem-
perature. Because the formalism is derived for the spa
charge field components, we will use the term grating am
tudes in order to refer to the space-charge field gra
amplitudes in the rest of the paper.

These equations must be solved with the following init
conditions:

EK1
~ t50!5EK1

0 , E2K1
~ t50!52K1

0 ,

EK2
~ t50!5E2K2

~ t50!5EK1
~ t50!5EK2

~ t50!50.
~10!

First of all, let us briefly consider the structure of set~9!.
Equations~9a! and ~9b! describe the erasure of the fund
mental and second harmonic of the first recorded grat
whereas Eqs.~9c! and ~9d! describe the buildup of the fun
damental and second harmonic components of the se
recorded hologram. These latter equations~9c! and ~9d! are
not coupled with the other equations, so that gratingsEK2

andE2K2
develop independently just as if they were alone.

other words, they are not affected by nonlinear interact
effects. Conversely, the spatial componentsK1 , K2 @Eqs.
~9e! and~9f!# andK1 undergo nonlinear feedback through
number of coupling terms placed on the right-hand side
the corresponding equations. These terms are responsib
the generation of mixing gratings as well as for modificatio
in the erasure behavior of gratingG1 . Finally, the second-
harmonic grating of hologramG1 @Eq. ~9b!# is erased with-
out any coupling to other components. Hence it follows
19511
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typical optical erasure under homogeneous illumination.
us analyze in detail the kinetics of the different gratings:

1. Combinational gratings

The kinetics of these gratings is controlled by Eqs.~9e!
and ~9f! coupled to Eq.~9a!. Both equations are formally
identical, so both gratings have the same time evolution.
instance, let us look at the equation forK1 : the driving term
of this grating is (m2 /t)EK1

. Then the generation of combi
national gratings is determined by the presence in the m
rial of grating G1 and by the illumination with an intensity
pattern with modulationm2 . Note that, unexpectedly, th
space-charge fieldEK2

does not play any role. One can eas

solve the set of three coupled equations forK1 , K1 , and
K2 . The analytical solution forK1 is written as

EK1
~ t !5eifEK1

0 ~e2~12um2u/& !t/t2e2~11um2u/& !t/t!,

~11!

whereeif is a phase factor that accounts for the phase of
light pattern.

Formula~11! contains the difference of two decaying e
ponential terms with different characteristic time constan
both depending onm2 . In turn, the preexponential factor an
so the amplitude of the sum component depend linearly w
the initial amplitude of the fundamental gratingK1 . The time
evolution of the sum grating has been plotted in Fig. 2~solid
line! for the maximum value of the modulationm251 to-
gether with curves corresponding to the evolution of bo
fundamental gratings~dashed line!. The time scale is normal
ized to the dielectric relaxation timet. The initial growth of
EK1

stops at a point that approximately coincides with t
crossing point of both fundamental amplitudes. At this po
the amplitudeEK1

approaches a significant value arou
40% of the fundamental gratings. Note that it is at this po
when the recording of the second gratingK2 should be
stopped in the usual sequential recording experiments
cause there the two fundamental amplitudes are appr
mately equal. This occurs at a time

FIG. 2. Time evolution of the grating amplitudes in sequent
recording (m15m251).
7-4
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tmax5
t

um2u&
lnU11um2u/&

12um2u/&
U . ~12!

The corresponding maximum amplitude for the sum grat
is

EK1

max5
1

&
eifEK1

0 1

A12um2u2/2
U11um2u/&

12um2u/&
U21/um2u/&

.

~13!

Then the maximum value ofEK1
is linear withEK1

0 as was

found in experimental results reported in Refs. 12 and
The dependence onm2 seems to be much more complicate
but it results in being almost linear within a very high degr
of accuracy. This linear dependence onm2 is evident in the
short-writing-time limit expression that corresponds to t
initial part of the solid curve in Fig. 3, which is written as

EK1
5

um2u
t

eifEK1

0 t. ~14!

This kind of dependence has been also experiment
observed.14

2. Second-harmonic gratings

It is also worthwhile to compare the time behavior of bo
kinds of second-order gratings, i.e., second-harmonic
combinational gratings. The analytic solution for amplitu
E2K2

is given by

E2K2
~ t !5

m2
2/2

12um2u/2
Eeff

K2

3F11S 1

um2u
2

1

2Dexp@2~11um2u/2!t/t#

2S 1

um2u
1

1

2Dexp@2~12um2u/2!t/t#G . ~15!

This kineticsE2K2
was also illustrated in Fig. 2~dashed line!

where it may be compared with the time evolution of t
sum grating. This latter grating exhibits a nonzero init
slope and, at short times, is generated much faster than
second harmonic. This is due to the distinct source terms
the two gratings which are affected byEK1

in the case of the

combinational grating and byEK2
in that of the second har

monic. In particular, at the timetmax the amplitude of the
second harmonic is lower than that of the sum and differe
gratings. The situation changes at longer times where
combinational gratings decrease to zero due to the deca
K1 , whereas the second-harmonic gratings still progress
higher steady level asK2 keeps increasing. This differen
behavior is also in accordance with previous experime
data.14

3. Effects on the fundamental gratings

As previously mentioned, the kinetics of the second fu
damental grating@Eq. ~9b!# is not influenced by nonlinea
19511
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grating interactions. However, the decay of the first fund
mental grating@Eq. ~9a!# is slowed down by the nonlinea
feedback coming from the cross productsm2* EK1

1m2EK2
. In Fig. 3, EK1

(t) has been plotted together wit

the evolution ofEK2
(t). For comparison, the simple single

grating optical erasure~dashed line! is also plotted. Note tha
the time at which both fundamental gratings are equa
smaller and the corresponding amplitudes slightly lar
~;5%! than in the linear case. Hence these predictions m
affect the optimum time schedule for sequential recording
multiple holograms in LiNbO3.

B. Simultaneous recording

Let us consider now the generation of second-order g
ings during simultaneous recording, i.e., when the two lig
patterns with spatial frequenciesK1 andK2 illuminate at the
same time the PR crystal. To avoid the buildup of unde
able gratings the light beams used to record each gra
must be incoherent with those generating the other one. T
is the situation for wavelength multiplexing where the inc
herence requirement is inherent to the experimental te
nique. In angular multiplexing, configurations keeping the
mutual incoherence conditions have been used for the im
mentation of optical light interconnects20 or optical process-
ing operations such as matrix multiplication.21

Let us consider for simplicity a recording light patte
consisting of two parallel sinusoidal patterns with freque
ciesK1 andK2 :

I ~x!5
I 0

2
~11m1eiK 1•x1m2eiK 2•x!1c.c. ~16!

In this case the gratings are generated at the same time,
them starting from zero initial conditions. Analogously
Sec. III A, we obtain the following set of equations descr
ing the kinetics of the grating amplitudes:

FIG. 3. Time evolution of grating amplitudesEK1
~solid line!

and EK2
~dotted line! during sequential recording. Dashe

line: single-grating optical erasure kinetics of the gratingK1

(m15m251).
7-5
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dEK1

dt
1

1

t
EK1

52
1

t
~m1* E2K1

1m2* EK1
1m2EK1

* 1m1Eeff
K1!,

~17a!

dEK2

dt
1

1

t
EK2

52
1

t
~m2* E2K2

1m1* EK1
1m1EK2

1m2Eeff
K2!,

~17b!

dE2K1

dt
1

1

t
E2K1

52
1

t
m1EK1

, ~17c!

dE2K2

dt
1

1

t
E2K2

52
1

t
m2EK2

, ~17d!

dEK1

dt
1

1

t
EK1

52
1

t
~m1EK2

1m2EK1
!, ~17e!

dEK2

dt
1

1

t
EK2

5
1

t
~m1* EK2

1m2EK1
* !. ~17f!

Compared with Eqs.~9!, these equations show a number
differential features. First of all, the equations forG1 and
G2—Eqs. ~17a! and ~17b!—are formally identical, as they
correspond to an equal physical situation for both gratin
Second, the dynamics of both fundamental gratings is
fected by nonlinear terms associated with all seco
harmonic gratings. Finally, the time evolution of all secon
order gratings~either harmonics or combinational! is coupled
via the fundamental gratings.

1. Combinational and second-harmonic gratings

Let us further analyze the dynamics of the second-or
gratings. The numerical solution of Eqs.~17! is presented as
curves plotted in Fig. 4 for maximum light modulatio
depths that in simultaneous recording correspond tom1
5m250.5. Let us consider now carefully the behavior
each grating.

FIG. 4. Time evolution of the grating amplitudes during simu
taneous recording (m15m250.5).
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As in sequential recording, the amplitudes of both su
and difference gratings follow identical kinetic behavior
but in this case, the combinational components are not t
sient because now none of the fundamental gratings is b
erased during the recording process. In the steady state
amplitudesEK1

andEK2
are 50% of the fundamental one

10% higher than in sequential recording. Finally, at varian
with sequential recording the maximum value of combin
tional gratings is substantially greater than that of seco
harmonics. Although there are no available experimen
data for simultaneous recording in LiNbO3, this latter result
is in qualitative accordance with some observations
BSO,13 in which the sum grating was substantially grea
than the second harmonic.

Equations~17! may be analytically solved, but the solu
tion is too complicated to be useful. However, it is possib
to obtain very simple expressions for the second-order g
ings under a quite drastical approach. The procedure i
follows: the linear solutions of the fundamental gratings
i.e., the ones obtained by neglecting all second-order te
in Eqs.~17a! and ~17b!—are introduced into Eqs.~17e! and
~17f!. Then these latter equations are immediately solv
leading to approximate analytical expressions for all seco
order gratings. This approximation is strictly valid as long
both second-harmonic and spatial-mixing gratings are m
smaller than the fundamental gratings. The approximated
pressions for the sum and difference gratings are writt
respectively,

EK1
~ t !5m1m2~Eeff

K21Eeff
K1!F12S 11

t

t Dexp~2t/t!G ,
~18a!

EK2
~ t !5m1* m2~Eeff

K21E
eff
K1* !F12S 11

t

t Dexp~2t/t!G ,
~18b!

and for the second harmonics,

E2K1
~ t !5m1

2Eeff
K1F12S 11

1

t Dexp~2t/t!G , ~19a!

E2K2
~ t !5m2

2Eeff
K2F12S 11

t

t D exp~2t/t!G . ~19b!

All second-order components exhibit the same time dep
dence, although for combinational gratings there are t
nonlinear contributions, whereas for the second harmon
there exists only one. This is the reason for the higher ste
level of combinational gratings. On the other hand, t
strength of nonlinear gratings is controlled by the square
the light modulation depths. To evaluate the accuracy of
proximate solutions we compared them with the exact so
tions in Fig. 5. There the sum and difference kinetics
plotted for maximum (m15m250.5) and intermediate (m1
5m250.3) light modulations. Note that for the latter mod
lations the deviations between the approximate and e
7-6
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curves are very small. For maximum modulations the t
curves are very close at short times, but differ significan
~;30%! in the steady state.

2. Fundamental gratings and nonlinear cross talk

It is also interesting to evaluate the influence of nonlin
coupling on fundamental grating amplitudes. We presen
Fig. 6~a! the exact multigrating solution for the fundamen
amplitudesEK1

andEK2
~solid lines! together with the single

grating approximation~i.e., neglecting combinational gra
ings! for the same modulations. Notice that, unlike the ca
of sequential recording,EK2

as well asEK1
are significantly

affected by nonlinear interactions. This effect, callednonlin-
ear cross talk, has been previously investigated though
different situations and materials.7,22 Notice that nonlinear
feedback leads to an enhancement of 30% of the fundam
tal grating amplitudes. A similar amplification effect ha
been experimentally observed in simultaneous recording
an analogous configuration but in barium titanate crystal22

It is worthwhile to point out that the final amplitude o
second harmonics is also markedly influenced by multig
ing interactions. This is shown in Fig. 6~b! where the multi-
grating solution for the second harmonics~solid line! is plot-
ted together with the single-grating case~dashed line!. It is
clearly seen that, as in the case of fundamental compon
nonlinear cross talk leads to an enhancement of the sec
harmonic amplitudes.

IV. DISCUSSION AND CONCLUSIONS

Spatial frequency mixing in photovoltaic materials lik
LiNbO3 has been theoretically investigated. This pheno
enon takes place in multigrating experiments due to the n
linear mechanisms for charge transport in PR materials.

For our analysis we use a simple approach that inclu
the fundamental intentionally recorded gratings together w
all terms up to second order. Within this mathematical fram
work the time-dependent solutions for the amplitudes of
gratings have been obtained.

FIG. 5. Time evolution of the combinational grating amplitud
during simultaneous recording form50.5 and 0.3. Solid line: ex-
act numerical solution. Dashed line: approximate analytical so
tion ~see text!.
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We have considered the two main typical methods
multiple hologram recording: i.e., sequential and simul
neous operations. For both methods, the combinational g
ing amplitudes reach very significant relative values w
regard to the fundamental ones—40% and 50% for sequ
tial and simultaneous operations, respectively—and they
substantially greater than second harmonics.

For simultaneous recording, as may be expected fr
analogy with nonlinear effects in single-grating recordin
the key parameters that control the generation of comb
tional gratings are the modulations of light patterns. Ho
ever, for sequential operation, the controlling parameters
the amplitude of the first grating and the modulation of t
second light pattern, whereas the contrast of the first li
pattern is not relevant. On the other hand, we have obta
that the relative amplitude of combinational gratings do
not depend on material parameters and gratingK vectors.

There are still a number of other features that are differ
depending on the multiplexing method.

~a! Regarding the kinetics of combinational gratings, t
initial slope is larger for sequential recording, whereas
final amplitude is greater~a factor of;1.7! in simultaneous
recording. This different behavior has been illustrated in F

-

FIG. 6. ~a! Time evolution of the fundamental grating ampl
tudes.~b! Time evolution of the second-harmonic amplitudes. So
line: simultaneous recording kinetics. Dashed line: sing
grating recording (m15m250.5).
7-7



ot
im
-

s

-

talk
am-

nd-
gs,

al

o-
eri-

as
.
ep-

ear
eri-

iO

an-

l-

J. LIMERESet al. PHYSICAL REVIEW B 65 195117
7. Notice that the sequential-recording kinetics@curve ~a!#
has been drawn as a solid line until the time for which b
fundamental gratings have the same amplitude. At this t
the recording of the gratingK2 is stopped in typical sequen
tial multiplexing experiments.

~b! The existence of nonlinear interactions only show

FIG. 7. Time evolution of the combinational gratings in simu
taneous@curve~a!# and sequential@curve~b!# recording. In the case
of sequential recording, the solid-line curve ends at pointA ~when
the amplitudes of the fundamental gratings are equal!, the rest of the
kinetics being given as the dashed line~see text!.
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very small effect~less than 5%! on the fundamental ampli
tudes of sequentially multiplexed holograms~see Fig. 3!. On
the other hand, in simultaneous recording grating cross
effects are important and markedly enhance the grating
plitudes~30%!.

~c! In simultaneous recording the behaviors of all seco
order gratings are coupled via the fundamental gratin
whereas in sequential recording~and always within our de-
gree of approximation! second harmonics and combination
gratings behave independently.

It is worthwhile to remark that, as mentioned, our the
retical results are in good agreement with available exp
mental data for sequential recording in LiNbO3. Moreover,
our approach could be fully applied to other PR media
long as the condition of low trap modulation is fulfilled
However, for materials such as BSO and BTO whose acc
tor concentration is usually low (;1016 cm23), it is neces-
sary to apply the general framework preserving all nonlin
terms. Nevertheless, qualitative agreement with some exp
mental results of simultaneous recording in BSO and BaT3
have been also obtained.
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