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Spin-dependent analysis of two-dimensional electron liquids
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Two-dimensional electron liqui®D EL) at full Fermi degeneracy is revisited, giving special attention to the
spin-polarization effects. First, we extend the recently proposed classical-map hypernetted=¢idio)
technique to the 2D EL, while preserving the simplicity of the original proposal. An efficient implementation
of CHNC is given utilizing Lado’s quadrature expressions for the isotropic Fourier transforms. Our results
indicate that the paramagnetic phase stays to be the ground state until the Wigner crystallization density, even
though the energy separation with the ferromagnetic and other partially polarized states become minute. We
analyze compressibility and spin stiffness variations with respect to density and spin polarization, the latter
being overlooked until now. Spin-dependent static structure factor and pair-distribution functions are com-
puted; agreement with the available quantum Monte Carlo data persists even in the strong-coupling regime of

the 2D EL.
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[. INTRODUCTION results. Variational QMC simulations by Cepeflégdicated

the ferromagnetic phase to be stable abowel3. Later on

A growing number of experimental reports making spin aTanatar and Ceperléysing more accurate fixed-node diffu-
tangible quantity, in particular, injection of sizeable percent-sion Monte Carlo simulations found the unpolarizgdra-
age of spin-polarized carriers to semiconductossirged a magneti¢ phase to be the ground state till Wigner crystalli-
new wave of research efforts. Accordingly, the spin has bezation that is predicted to occur at=37. In contrast,
come the central entity in the recently flourishing field of Rapisarda and Senatdfagain by means of diffusion Monte
spintronics? On the technological side, much longer spin- Carlo simulations found a first-order phase transition from
relaxation time as compared to energy or momentum of #he unpolarized to the fully polarized phaserat 20, and
carrier, suggests information to be transmitted and processestry recently upon including the backflow corrections the
utilizing the spin degrees of freedom. Whereas on the basitransition point has moved to,= 30, quite close to Wigner
science side, the emerging possibility is that spin can play arystallization density: An earlier work that included the
nontrivial role even in the “nonmagnetic” phenomena. backflow correlations did not find such a transitfgn.

Meanwhile, two-dimensional(2D) electronic systems For homogeneous classical fluids interacting through ef-
have been of considerable interest because of technologictdctive two-body forces, a technique known as hypernetted-
relevance to high-mobility transistor geometry and becausehain (HNC) approximation has been widely used. A set of
of novel physics brought by the enhanced role of many-bodyoupled integral equations related to the pair-distribution
effects in lower dimensions. A current example is the recenfunction forms the basis of the HNC framewdrkOver the
interest in the experimentally observed metal-insulator tranprevious decades several variants of HNC have been intro-
sition in Si MOSFETs at very low temperaturéhe spin  duced to deal witiquantumliquids, such as the EL. In par-
polarization of the two phases is believed to help uncover théicular, the Fermi hypernetted-chain method provides a sys-
responsible mechanisf. Historically, the relevant ground tematic way to improve the ground-state wave function
state of the 2D electronic systems has attracted theoreticathile summing the bridge diagrams in classical statistical
attention through the idealized model of the electron liquidmechanics, a formidable taskAlong this line simplifica-
(EL). In this model, positive ionic lattice is smeared out into tions were offered, such as the Jastrow variational HNC for
an inert background, preserving the overall charge neutralitydealing with the EL problen® More recently another formu-
The quantum many-body system is formed by electrons regation was proposed resulting in a single zero-energy
resenting the conduction electrons of a metal or a dope&chralinger-like equation for the pair-distribution functidh.
semiconductor. EL at zero temperature is characterized b@uite recently, Dharma-wardana and Pef®iP) suggested
two parametersg and{, describing inverse density and spin to examine quantum liquids again through a similar HNC
polarization. Over several decades polarization nature of thisamework!’ They envisioned this as a mapping of the quan-
ground state of the 2D EL has been a debated issue. Withitum many-body system at zero temperature, to the CF at a
the Hartree-Fock approximation ground state becomes fullparticular temperaturéthe so-called quantum temperature
polarized (ferromagnetit for rg>2, whereas using the Tg, such that when the pair-distribution functions computed
random-phase approximatidgRRPA) the transition point in- via HNC integral equations for the CF were used for the EL
creases to 2.3Ref.6). A more refined approach including at zero temperature yield the correct correlation energy at
self-consistent local field correctiohsas determined a tran- that density. Availability of several QMC data, as mentioned
sition to the ferromagnetic state {=5.5. In the lack of above, for the unpolarized and fully polarized EL renders the
direct experimental verification, quantum Monte Carloextraction ofT, possible. DwP’s basic conjecture is that with
(QMC) simulations are believed to produce the most reliableT; determined as such, more exotic cases like the partially

0163-1829/2002/68.9)/1951167)/$20.00 65195116-1 ©2002 The American Physical Society



C. BULUTAY AND B. TANATAR PHYSICAL REVIEW B 65195116

polarized and finite temperature EL will be readily accessible 2 d

through the same HNC machinery. In a subsequent papery(rs):E[(1+§)3’2+(1—§)3’2]——W[rgEC(rs)].
considering 3D EL, they have reported about the finite tem- 242 drs

perature case with applications to Kohn-Sham calculatidns. (©)

It needs to be mentioned that a theoretical proof is currently-ynctional forms forE, has been obtained in a number of
lacking for such a temperature mapping of a quantum system\c simulationd™° We extractT,, by fitting over a broad
to a classical one, and the consequences must also be C”Hinge ofr  values(from r = 0.25 to 40 to theunpolarized

cally examined. E. expression proposed by Rapisarda and Sen&toceint-

In this paper, we extend the classical-map HMEHNC)  jng on its acclaimed accuracy. The result can be represented
approach of DwP to the 2D EL at zero temperature to exampy 5 functional form

ine the nature of ground state. The finite temperature calcu-

lations for 2D EL including higher-order correlatiofisridge Tq 1+arg

term9 have recently been performé&dln our calculation the E. b+or.

bridge terms are not included to provide a quantitative as- F S

sessment of their importance. We find that in the absence ofith a=1.470342,0=6.099 404, and¢=0.476 465. A simi-

bridge corrections the 2D electron system remains to be itar expression was obtained by DwP for the 3D EL. How-

the paramagnetic fluid phase. Based on the results of groungver, we stress that this equation should not be read as a

state energies in the spin-polarized and unpolarized states We(rs) relation. Especially, when it comes to the partially

also calculate the compressibility and spin susceptibility ofpolarized EL two different Fermi levels exidEr; and Eg,

the 2D EL. for the two spin populations. Therefore, we propose to ex-
The paper is organized as follows. In the following sec-tend the above expression by introducing-aeighted Fermi

tion, we first describe our procedure for the extractiopf  level as(Er)=x,Er1+Xx,Eg,, wherexs=ng/n, so that we

and outline the CHNC technique for the 2D EL. Section Ill use

presents our results and comparison to QMC data whenever

possible. Our conclusion and discussions are given in Sec. Tq _1+ars

IV followed by the Appendix discussing an efficient imple- (Ef) b+cry’

mentation of the CHNC technique.

4

with the same numerical values far b, andc.
The spin-resolved pair-distribution function between spins

. THEORY i andj is given within the HNC framework as

We consider a partially polarized 2D EL at full Fermi
degeneracy(i.e., zero temperaturehaving areal electronic gij(p) =exd — Beij(p) +hij(p) —cij(p)], )
densitiesn, (n,) for the majority (minority) spins(i.e., ny  where le/-rq,ZO hij(p)=0ij(p)—1, andc;; is the direct
=ny), with the total densityn=n;+n,, and {=(ny correlation function. Note that this HNC form fgr; assures
—ny)/n; the coupling parameter of the many-body system isits positiveness at any coupling strength, a condition severely
given byr =1/{mnag®. Hereas=e/m*e” is the effective  violated by most other techniqué$in Eq. (5) ¢;; is the pair
Bohr radius(we takef =kg=1). The associated correlation potential between the spin specieandj. Following DwP’s
energy (per particle in 3D effective Rydberg units R* approach for the 3D EL,
=e?/2¢ea}) is given by

®ij(p)="P(p) 6ij+Vcoup), (6)
442 ;
E(re,0)= V2 [(1+ )%+ (1- )37 where Veou(p)=(eXep)[1—exp(—p/rp)]  with Ay
37l = Ji?Bl7m*; hence this is the Coulomb potential including

23 (r the additional thermal diffraction correctiGhyhich ensures
2N ey the correct behavior ofj;,(p—0).1” P(p) is the so-called
| drinrl). (1) : : ] ; _

re Jo Pauli potential accounting for the exchange interaction be-

i _ . _ tween like spins, which is extracted from the knd&wnon-
The first term on right-hand side corresponds to the ”egat"’%teracting[i.e.,VCou(p)EO] case(designated by the super-
of the exchange energy andis defined as script 0 belowy

= f “da[1-S(au)]. @ BP(p)=-In[gi(p)]+hi(p)=ci(p). ()
0

We compare in Fig. 1 the Pauli potentials in 3D and 2D
whereS(-) is the static structure factor any, is the wave displaying the long-range behavior in the latter case.
number normalized tounpolarized Fermi wave number, Another set of equations follow from the Ornstein-
Key=+2mn. The coupling-constant integration in E€L) Zernike relation, which for a homogeneous system is utilized
requiresy for a range of  values. This is not very desirable after transforming to wave numberspace as
for our fitting procedure to extract the quantum temperature

T_q. Rathe_r a Io_cal(_in ry) expression can be obtained by Hij(a)=Ci;(q)+ 2 xsHis(@) (), ®)
differentiation, yielding s=1.2
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BP(r)

FIG. 1. Pauli potentials for the 2D and 3D electron liquids.

where we use the Fourier transformH;;(q)
=nSh;;(p)e'9Pdp, and similarly for the other quantities. We
solve these two sets until self-consistency is achieiseg
the Appendix for details of the implementatjon
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FIG. 2. y(r¢) for the unpolarized and fully polarized phases.

where ko=nre/2(1+¢%) in af?/R* units and xp
=m* gz,u§/47rh2 are the corresponding quantities for the 2D
ideal (noninteracting Fermi gas at the sanrg and{ values;
ac=d"E./3{%|;_is the spin stiffness that contains effects

Spin-resolved static structure factors are determined viabeyond the Hartree-Fock approximation.

31<Q>—5u=ﬁ;f dp{gij(p)—1]€'*2. 9

IIl. RESULTS

For a chosen average electron, the probability of finding an- As it forms the core of oufT, extraction procedure, in

other electron(for either spin projectionat a distancep

Fig. 2 we ploty(rg) as defined by Eq3) for {=0,1 values.

away is given by the spin-averaged pair-distribution func-Since the energies are calculated usi{gs) very high ac-

tion, g(p) as

1
g(p) Z[(1+ 0)20911(p) +2(1- %) 914p)

+(1-0)2024p)]; (10

its Fourier transform gives the spin-averaged static structur

factor,S(q) — 1=nfdp[g(p) —1]e'9? whose integral oveq
relates toy(rg) used in the correlation energy. The ground-
state energy per particlén R*) is given as

4.2

—37Trs

1+£2

E(red)= =~ [(1+ )%+ (1- ¥+ E,.

(11)

Thermodynamic compressibilityx) and the static spin sus-
ceptibility (xs) are obtained by densityr{) and magnetiza-
tion ({) derivatives of the energy resulting in

Ko Is
Ko_,_ 1 324 (1— )32
- ﬁw(1+§2)[( +O)¥H(1-0)7]
re #PE, 1 9E,
+8(1+§2) o2 rgorg| 2
Xp s ~1/2 —u s
Pk L el Gl St e L

curacy is needed. In Fig. (@ we show CHNC pair-
distribution function of the unpolarized phase gt:1, 5, 10,

and 20, and compare with the tabulated QMC reststgain
considering the unpolarized phase, the spin-dependent com-
ponentsg;; , are shown in Fig. &) atrs=40 together with

the QMC fluid phase results of Rapisarda and Senafore.
Figure 4 illustrates the the family of curves for the pair-
fistribution function ar =1 obtained by varying from 0

to 1. These results establish the overall reliability of the
CHNC method.

The contact value of the paramagnetic pair-distribution
function, i.e., g(p=0)=3g,x0) is also of special
importance'® Very recently a model expression fg(0) was
offered®® interpolating between the high-density and close to
Wigner crystallization regimes, expressed as

~ 1/2
1+1.3724,+0.0832

9(0) (14

In Fig. 5 we compare this expression with that extracted
from CHNC. Agreement is seen to exist only in the high-
density region. The available QMC data further suggest that
the interpolation given by Eq14) overestimates the contact
value for the low-density regime.

One can also calculate the spin-resolved static structure
factors[See Eq.(9)]. Choosingr =10 case for illustration
purposes, Fig. 6 displays the unpolarized and fully polarized
phases, again comparing with the tabulated QMC tatae
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FIG. 3. Unpolarized phase pair-distribution functioe: spin-
averagedy(p) for rg=1, 5, 10, and 20, comparing CHNGolid
lines) and Tanatar and Ceperley's QMC resultircles; (b) spin-
dependentg;;(p) at rs=40, comparing CHNC(solid lineg and
Rapisarda and Senatore’s QMC resuitscles. Curves in(a) are
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pkey

FIG. 4. Family of pair-distribution functions at=1 for (=0,
0.3, 0.5, 0.7, 0.9, and lrespectively from top to bottom on the
left-hand side of the figulekg,=v27n is the unpolarized Fermi
wave number.

backflow corrections and three-body and higher
correlation*?® unaccounted in the CHNC case. Neverthe-
less, as compared to other techniques that predict a transition
to ferromagnetic phase at higher densifié§HNC provides

a remarkable improvement.

Figure 8 shows the dependence of inverse compressibility
onr for the unpolarized and fully spin-polarized cases. The
latter has lower compressibility predominantly following
from the increased exchange pressure. The inert nature of the
positive background of the EL model accounts only for the
electronic contribution to compressibility; this is seen to be-
come negative at;=2.04 and 3.07 for the unpolarized and
fully polarized cases, respectively. Finally, in Fig. 9 we dis-
play the spin susceptibility of the unpolarized phase. The
Hartree-Fock susceptibility is seen to reverse signat2 in
accordance with the associated phase transition to the ferro-

successively vertically displaced by 0.5 unit for clarity; QMC data magnetic state. The CHNC result initially shows an enhance-

in (b) is based on our graphical readings from Ref. k@
=+/2mn is the unpolarized Fermi wave number.

shift in the peaks o5(q) mainly results from using the un-
polarized Fermi wave numbé&g, normalization also for the
fully spin-polarized case.

As mentioned above, variation of the total energy of the
2D EL with respect to density and spin polarization has beena
particularly needed in addressing the debated nature of it<5

ground state. Rapisarda and Sendtband more recently
Varsano and co-workefshave reported the ferromagnetic

phase to be the ground state towards the Wigner crystalliza Polini et af
tion densities. Even though we have fitted to their unpolar- /

ized correlation enerd{ while extracting the quantum tem-
peratureT,, CHNC results shown in Fig. 7 indicate the

0.5

CHN

unpolarized phase to be the ground state well up to the 0 2 4 6 8 10

Wigner density, in agreement with the QMC results of Tana-

tar and Ceperléyand Kwon*? However, the energy differ-

ence between the paramagnetic and ferromagnetic phases ap-FIG. 5. Contacti.e., p=0) value of the pair-distribution func-
proaches 1 mRysee, Fig. 7 insgt and such an accuracy of tion of the unpolarized phase: CHNC versus model interpolation
the CHNC results can be questionable, especially with thexpression of Ref. 22.
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FIG. 6. Spin-dependent and spin-averaged static structure fac- FIG. 8. Inverse compressibility normalized to 2D free fermion
tors atr ;=10 for the unpolarized and fully polarized phases. Tana-value (x,) of the unpolarized and fully polarized phases.
tar and Ceperley’'s QMGS(q) data(circles are also included for

comparisonkey = y2mn is the unpolarized Fermi wave number. given the fact that for more involved problems like double-

layer systems, inclusion of bridge terms becomes less

Lnenrt over tEeWH?/rt:ee-ll\jvock rfsrﬂlti:il;t thenitrir\}onoi:]onlcall)r/ traightforward. We have also analyzed the compressibility
ecreases, NOWEVer, always remaining posiuve, accorg,q spin susceptibility of the 2D EL.

with our previous finding that the CHNC unpolarized phase The ground state of the 2D EL comes out to be the unpo-

is the ground state for all the densities consideiszke Fig. : : : ; )
7). The inset in Fig. 9 shows behavior of the associatecLanzed phase, while the energy difference with the ferromag

R - etic phase diminishes to a milliRydberg value where such
CHNC spin stifiness coefficient. an ach:)uracy of the CHNC results isymootg However, a similar
concern can be addressed for the QMC simulations that are
IV. CONCLUSION done for a finite number of particleNj, with N~100 and
extrapolations to bulk limitN—o are obtained following
In this work we proposed an extension and efficientsome ansatz2’ Hence, decreasing the error bars becomes a
implementation of the CHNC technique to 2D while retain- daunting task, while still leaving doubts over the final results.
ing its original simplicity. A recent calculation by DWPalso  Our preliminary assessment here suggests CHNC as a prac-
discusses the the 2D and finite temperature extension of thdiical alternative for the QMC simulations, whereas other
CHNC technique. At variance with this work, for the parallel techniques fall far too short, producing negative pair-
spin interactions they include the bridge téfrof the HNC  distribution functions and transitions to fully polarized phase
technique. The agreement of our resultséthout the bridge  at unrealistically high densities. Several issues on CHNC re-
correction with the available QMC data is quite suggestive, main to be dealt in near future. Most important is a better
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FIG. 7. Total energy of the unpolarized and fully polarized FIG. 9. Spin susceptibility normalized to 2D noninteracting
phases. Inset illustrates how much the fully polarized phase i®auli value §p) calculated via CHNC and Hartree-Fock methods.
higher in energy in milliRydbergs from the unpolarized phase. Inset shows the CHNC spin stiffness, in units of Rydberg.
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theoretical understanding for the temperature mapping of thezansform of functions having no angular dependefiee,
quantum many-body system to a classical fluid. Similarly, aisotropig, Lado has offered simple quadrature expressns.
rigorous dielectric formalism for CHNC will be essential for The only approximation follows from setting (pmax
analyzing collective excitations and also including effects of=F(Q,,5,) =0 at some presumably large,,, andQ ., val-
the disorder which generally lead to nontrivial outcomes. Fi-ues. For a total number d&f points—same in both spaces—
nally, addressing finite-temperature effects is highly desirthe grid points are allocated @§=(u,/un)pPmax and gm
able which becomes fairly easy within the proposed CHNC= (um/pmax = (m/ tin) Qmax, Where u,, is the mth posi-

framework. tive root of the zeroth-order Bessel functidg(-). Lado’s
quadrature expressions for the 2D Fourier transform pair
ACKNOWLEDGMENTS then become
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APPENDIX: SOME DETAILS ON THE IMPLEMENTATION =1

The crux of the HNC framework is formed by Eqs)  Where
and(8) in the coordinate ) and wave vectord) spaces to

be solved self-consistently. From the computational perspec- Ap = 2 , (A5)
tive this necessitates an efficient implementation of the Fou- Q2 ax21[J1(Qmaxor) 12
rier transform, the rest of the operations being solely alge-
braic. As we mention in the main text, for convenience we 2
prefer to use Fourier transforms scaled by theal areal AQn=—; > (AB)
electronic density, so that PmadmlI1(dmpmax ]
It needs to be mentioned that the Coulomb potential is long
1 d?q —ipq ranged and sudden truncation of the integrals at spmg
flp)= ﬁj (27)? F(a)e : (AL value results in rapid oscillations in its Fourier transform. We

remedy this by first windowing it by a cosine square profile
' such thatVeoeu(p) — Veou(p) X COST(7/2pmanp]. FOr the un-
F(q)=nf d?pf(p)e'’ . (A2)  polarized case we typically usd=2800, Q=P max=50.
To assure that long-range tails are not affected by such a
In the remaining part of this Appendix we shall use wavechoice, we doubled the size of the window Bs= 3200,
numberg(distancesnormalized tkgy (1/Kkgy), the unpolar- Q.= pmax= 100, and found that the change in the results
ized Fermi wave numberkgy=+2mn). For the Fourier were indiscernible.
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