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Spin-dependent analysis of two-dimensional electron liquids

C. Bulutay and B. Tanatar
Department of Physics, Bilkent University, 06533 Bilkent, Ankara, Turkey

~Received 22 September 2001; published 2 May 2002!

Two-dimensional electron liquid~2D EL! at full Fermi degeneracy is revisited, giving special attention to the
spin-polarization effects. First, we extend the recently proposed classical-map hypernetted-chain~CHNC!
technique to the 2D EL, while preserving the simplicity of the original proposal. An efficient implementation
of CHNC is given utilizing Lado’s quadrature expressions for the isotropic Fourier transforms. Our results
indicate that the paramagnetic phase stays to be the ground state until the Wigner crystallization density, even
though the energy separation with the ferromagnetic and other partially polarized states become minute. We
analyze compressibility and spin stiffness variations with respect to density and spin polarization, the latter
being overlooked until now. Spin-dependent static structure factor and pair-distribution functions are com-
puted; agreement with the available quantum Monte Carlo data persists even in the strong-coupling regime of
the 2D EL.

DOI: 10.1103/PhysRevB.65.195116 PACS number~s!: 71.10.Ca, 75.10.Lp, 75.30.Kz
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I. INTRODUCTION

A growing number of experimental reports making spin
tangible quantity, in particular, injection of sizeable perce
age of spin-polarized carriers to semiconductors,1 surged a
new wave of research efforts. Accordingly, the spin has
come the central entity in the recently flourishing field
spintronics.2 On the technological side, much longer spi
relaxation time as compared to energy or momentum o
carrier, suggests information to be transmitted and proce
utilizing the spin degrees of freedom. Whereas on the b
science side, the emerging possibility is that spin can pla
nontrivial role even in the ‘‘nonmagnetic’’ phenomena.

Meanwhile, two-dimensional~2D! electronic systems
have been of considerable interest because of technolo
relevance to high-mobility transistor geometry and beca
of novel physics brought by the enhanced role of many-b
effects in lower dimensions. A current example is the rec
interest in the experimentally observed metal-insulator tr
sition in Si MOSFETs at very low temperatures.3 The spin
polarization of the two phases is believed to help uncover
responsible mechanism.4,5 Historically, the relevant ground
state of the 2D electronic systems has attracted theore
attention through the idealized model of the electron liq
~EL!. In this model, positive ionic lattice is smeared out in
an inert background, preserving the overall charge neutra
The quantum many-body system is formed by electrons
resenting the conduction electrons of a metal or a do
semiconductor. EL at zero temperature is characterized
two parametersr s andz, describing inverse density and sp
polarization. Over several decades polarization nature of
ground state of the 2D EL has been a debated issue. W
the Hartree-Fock approximation ground state becomes f
polarized ~ferromagnetic! for r s.2, whereas using the
random-phase approximation~RPA! the transition point in-
creases to 2.3~Ref.6!. A more refined approach includin
self-consistent local field corrections7 has determined a tran
sition to the ferromagnetic state atr s55.5. In the lack of
direct experimental verification, quantum Monte Ca
~QMC! simulations are believed to produce the most relia
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results. Variational QMC simulations by Ceperley8 indicated
the ferromagnetic phase to be stable abover s.13. Later on
Tanatar and Ceperley9 using more accurate fixed-node diffu
sion Monte Carlo simulations found the unpolarized~para-
magnetic! phase to be the ground state till Wigner crysta
zation that is predicted to occur atr s.37. In contrast,
Rapisarda and Senatore10 again by means of diffusion Monte
Carlo simulations found a first-order phase transition fro
the unpolarized to the fully polarized phase atr s520, and
very recently upon including the backflow corrections t
transition point has moved tor s530, quite close to Wigner
crystallization density.11 An earlier work that included the
backflow correlations did not find such a transition.12

For homogeneous classical fluids interacting through
fective two-body forces, a technique known as hypernett
chain ~HNC! approximation has been widely used. A set
coupled integral equations related to the pair-distribut
function forms the basis of the HNC framework.13 Over the
previous decades several variants of HNC have been in
duced to deal withquantumliquids, such as the EL. In par
ticular, the Fermi hypernetted-chain method provides a s
tematic way to improve the ground-state wave functi
while summing the bridge diagrams in classical statisti
mechanics, a formidable task.14 Along this line simplifica-
tions were offered, such as the Jastrow variational HNC
dealing with the EL problem.15 More recently another formu
lation was proposed resulting in a single zero-ene
Schrödinger-like equation for the pair-distribution function.16

Quite recently, Dharma-wardana and Perrot~DwP! suggested
to examine quantum liquids again through a similar HN
framework.17 They envisioned this as a mapping of the qua
tum many-body system at zero temperature, to the CF
particular temperature~the so-called quantum temperatur!
Tq , such that when the pair-distribution functions comput
via HNC integral equations for the CF were used for the
at zero temperature yield the correct correlation energy
that density. Availability of several QMC data, as mention
above, for the unpolarized and fully polarized EL renders
extraction ofTq possible. DwP’s basic conjecture is that wi
Tq determined as such, more exotic cases like the parti
©2002 The American Physical Society16-1
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polarized and finite temperature EL will be readily accessi
through the same HNC machinery. In a subsequent pa
considering 3D EL, they have reported about the finite te
perature case with applications to Kohn-Sham calculation18

It needs to be mentioned that a theoretical proof is curre
lacking for such a temperature mapping of a quantum sys
to a classical one, and the consequences must also be
cally examined.

In this paper, we extend the classical-map HNC~CHNC!
approach of DwP to the 2D EL at zero temperature to exa
ine the nature of ground state. The finite temperature ca
lations for 2D EL including higher-order correlations~bridge
terms! have recently been performed.19 In our calculation the
bridge terms are not included to provide a quantitative
sessment of their importance. We find that in the absenc
bridge corrections the 2D electron system remains to b
the paramagnetic fluid phase. Based on the results of gro
state energies in the spin-polarized and unpolarized state
also calculate the compressibility and spin susceptibility
the 2D EL.

The paper is organized as follows. In the following se
tion, we first describe our procedure for the extraction ofTq ,
and outline the CHNC technique for the 2D EL. Section
presents our results and comparison to QMC data when
possible. Our conclusion and discussions are given in S
IV followed by the Appendix discussing an efficient impl
mentation of the CHNC technique.

II. THEORY

We consider a partially polarized 2D EL at full Ferm
degeneracy~i.e., zero temperature! having areal electronic
densitiesn1 (n2) for the majority ~minority! spins ~i.e., n1
>n2), with the total density n5n11n2, and z[(n1
2n2)/n; the coupling parameter of the many-body system
given by r s51/ApnaB*

2. HereaB* 5e/m* e2 is the effective
Bohr radius~we take\5kB51). The associated correlatio
energy ~per particle! in 3D effective Rydberg units (R*
5e2/2eaB* ) is given by

Ec~r s ,z!5
4A2

3pr s
@~11z!3/21~12z!3/2#

2
2A2

r s
2 E

0

r s
drs8g~r s8!. ~1!

The first term on right-hand side corresponds to the nega
of the exchange energy andg is defined as

g5
1

2E0

`

dqn@12S~qn!#, ~2!

whereS(•) is the static structure factor andqn is the wave
number normalized tounpolarized Fermi wave number,
kFU5A2pn. The coupling-constant integration in Eq.~1!
requiresg for a range ofr s values. This is not very desirabl
for our fitting procedure to extract the quantum temperat
Tq . Rather a local~in r s! expression can be obtained b
differentiation, yielding
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g~r s!5
2

3p
@~11z!3/21~12z!3/2#2

1

2A2

d

drs
@r s

2Ec~r s!#.

~3!

Functional forms forEc has been obtained in a number
QMC simulations.8–10 We extractTq by fitting over a broad
range ofr s values~from r s50.25 to 40! to theunpolarized
Ec expression proposed by Rapisarda and Senatore10 count-
ing on its acclaimed accuracy. The result can be represe
by a functional form

Tq

EF
5

11ars

b1crs
,

with a51.470 342,b56.099 404, andc50.476 465. A simi-
lar expression was obtained by DwP for the 3D EL. Ho
ever, we stress that this equation should not be read
Tq(r s) relation. Especially, when it comes to the partia
polarized EL two different Fermi levels exist:EF1 and EF2
for the two spin populations. Therefore, we propose to
tend the above expression by introducing az-weighted Fermi
level as^EF&[x1EF11x2EF2, wherexs[ns /n, so that we
use

Tq

^EF&
5

11ars

b1crs
, ~4!

with the same numerical values fora, b, andc.
The spin-resolved pair-distribution function between sp

i and j is given within the HNC framework as

gi j ~r!5exp@2bf i j ~r!1hi j ~r!2ci j ~r!#, ~5!

where b51/Tq ,20 hi j (r)5gi j (r)21, and ci j is the direct
correlation function. Note that this HNC form forgi j assures
its positiveness at any coupling strength, a condition seve
violated by most other techniques.6,7 In Eq. ~5! f i j is the pair
potential between the spin speciesi and j. Following DwP’s
approach for the 3D EL,

f i j ~r!5P~r!d i j 1VCou~r!, ~6!

where VCou(r)5(e2/er)@12exp(2r/l th)# with l th

5A\2b/pm* ; hence this is the Coulomb potential includin
the additional thermal diffraction correction,21 which ensures
the correct behavior ofg12(r→0).17 P(r) is the so-called
Pauli potential accounting for the exchange interaction
tween like spins, which is extracted from the known22 non-
interacting@i.e., VCou(r)[0# case~designated by the super
script 0 below!

bP~r!52 ln@gii
0 ~r!#1hii

0 ~r!2cii
0 ~r!. ~7!

We compare in Fig. 1 the Pauli potentials in 3D and 2
displaying the long-range behavior in the latter case.

Another set of equations follow from the Ornstei
Zernike relation, which for a homogeneous system is utiliz
after transforming to wave numberq space as

Hi j ~q!5Ci j ~q!1 (
s51,2

xsHis~q!Cs j~q!, ~8!
6-2
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where we use the Fourier transformHi j (q)
[n*hi j (r)eiq•rdr, and similarly for the other quantities. W
solve these two sets until self-consistency is achieved~see
the Appendix for details of the implementation!.

Spin-resolved static structure factors are determined v

Si j ~q!2d i j 5AninjE dr@gi j ~r!21#eiq•r. ~9!

For a chosen average electron, the probability of finding
other electron~for either spin projection! at a distancer
away is given by the spin-averaged pair-distribution fun
tion, g(r) as

g~r!5
1

4
@~11z!2g11~r!12~12z2!g12~r!

1~12z!2g22~r!#; ~10!

its Fourier transform gives the spin-averaged static struc
factor,S(q)215n*dr@g(r)21#eiq•r whose integral overq
relates tog(r s) used in the correlation energy. The groun
state energy per particle~in R* ) is given as

E~r s ,z!5
11z2

r s
2

2
4A2

3pr s
@~11z!3/21~12z!3/2#1Ec .

~11!

Thermodynamic compressibility (k) and the static spin sus
ceptibility (xs) are obtained by density (r s) and magnetiza-
tion (z) derivatives of the energy resulting in

k0

k
512

r s

A2p~11z2!
@~11z!3/21~12z!3/2#

1
r s

4

8~11z2!
F ]2Ec

]r s
2

2
1

r s

]Ec

]r s
G , ~12!

xP

xs
512

r s

A2p
@~11z!21/21~12z!21/2#1

r s
2

2
ac , ~13!

FIG. 1. Pauli potentials for the 2D and 3D electron liquids.
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where k05pr s
4/2(11z2) in aB*

2/R* units and xP

5m* g2mB
2/4p\2 are the corresponding quantities for the 2

ideal ~noninteracting! Fermi gas at the samer s andz values;
ac5]2Ec /]z2ur s

is the spin stiffness that contains effec
beyond the Hartree-Fock approximation.

III. RESULTS

As it forms the core of ourTq extraction procedure, in
Fig. 2 we plotg(r s) as defined by Eq.~3! for z50,1 values.
Since the energies are calculated usingg(r s) very high ac-
curacy is needed. In Fig. 3~a! we show CHNC pair-
distribution function of the unpolarized phase atr s51, 5, 10,
and 20, and compare with the tabulated QMC results.9 Again
considering the unpolarized phase, the spin-dependent c
ponents,gi j , are shown in Fig. 3~b! at r s540 together with
the QMC fluid phase results of Rapisarda and Senator10

Figure 4 illustrates the the family of curves for the pa
distribution function atr s51 obtained by varyingz from 0
to 1. These results establish the overall reliability of t
CHNC method.

The contact value of the paramagnetic pair-distribut
function, i.e., g(r50)[ 1

2 g12(0) is also of special
importance.18 Very recently a model expression forg(0) was
offered23 interpolating between the high-density and close
Wigner crystallization regimes, expressed as

g~0!5
1/2

111.372r s10.083r s
2

. ~14!

In Fig. 5 we compare this expression with that extrac
from CHNC. Agreement is seen to exist only in the hig
density region. The available QMC data further suggest t
the interpolation given by Eq.~14! overestimates the contac
value for the low-density regime.

One can also calculate the spin-resolved static struc
factors @See Eq.~9!#. Choosingr s510 case for illustration
purposes, Fig. 6 displays the unpolarized and fully polariz
phases, again comparing with the tabulated QMC data.9 The

FIG. 2. g(r s) for the unpolarized and fully polarized phases.
6-3
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C. BULUTAY AND B. TANATAR PHYSICAL REVIEW B 65 195116
shift in the peaks ofS(q) mainly results from using the un
polarized Fermi wave numberkFU normalization also for the
fully spin-polarized case.

As mentioned above, variation of the total energy of t
2D EL with respect to density and spin polarization has b
particularly needed in addressing the debated nature o
ground state. Rapisarda and Senatore10 and more recently
Varsano and co-workers11 have reported the ferromagnet
phase to be the ground state towards the Wigner crystal
tion densities. Even though we have fitted to their unpo
ized correlation energy10 while extracting the quantum tem
peratureTq , CHNC results shown in Fig. 7 indicate th
unpolarized phase to be the ground state well up to
Wigner density, in agreement with the QMC results of Tan
tar and Ceperley9 and Kwon.12 However, the energy differ-
ence between the paramagnetic and ferromagnetic phase
proaches 1 mRy~see, Fig. 7 inset!, and such an accuracy o
the CHNC results can be questionable, especially with

FIG. 3. Unpolarized phase pair-distribution functions:~a! spin-
averagedg(r) for r s51, 5, 10, and 20, comparing CHNC~solid
lines! and Tanatar and Ceperley’s QMC results~circles!; ~b! spin-
dependentgi j (r) at r s540, comparing CHNC~solid lines! and
Rapisarda and Senatore’s QMC results~circles!. Curves in~a! are
successively vertically displaced by 0.5 unit for clarity; QMC da
in ~b! is based on our graphical readings from Ref. 10.kFU

5A2pn is the unpolarized Fermi wave number.
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backflow corrections and three-body and high
correlations24,25 unaccounted in the CHNC case. Neverth
less, as compared to other techniques that predict a trans
to ferromagnetic phase at higher densities,6,7 CHNC provides
a remarkable improvement.

Figure 8 shows the dependence of inverse compressib
on r s for the unpolarized and fully spin-polarized cases. T
latter has lower compressibility predominantly followin
from the increased exchange pressure. The inert nature o
positive background of the EL model accounts only for t
electronic contribution to compressibility; this is seen to b
come negative atr s52.04 and 3.07 for the unpolarized an
fully polarized cases, respectively. Finally, in Fig. 9 we d
play the spin susceptibility of the unpolarized phase. T
Hartree-Fock susceptibility is seen to reverse sign atr s52 in
accordance with the associated phase transition to the fe
magnetic state. The CHNC result initially shows an enhan

FIG. 4. Family of pair-distribution functions atr s51 for z50,
0.3, 0.5, 0.7, 0.9, and 1~respectively from top to bottom on th
left-hand side of the figure!. kFU5A2pn is the unpolarized Fermi
wave number.

FIG. 5. Contact~i.e., r50) value of the pair-distribution func-
tion of the unpolarized phase: CHNC versus model interpolat
expression of Ref. 22.
6-4
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SPIN-DEPENDENT ANALYSIS OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 65 195116
ment over the Hartree-Fock result but then monotonica
decreases, however, always remaining positive, in acc
with our previous finding that the CHNC unpolarized pha
is the ground state for all the densities considered~see Fig.
7!. The inset in Fig. 9 shows behavior of the associa
CHNC spin stiffness coefficient.

IV. CONCLUSION

In this work we proposed an extension and efficie
implementation of the CHNC technique to 2D while reta
ing its original simplicity. A recent calculation by DwP19 also
discusses the the 2D and finite temperature extension of
CHNC technique. At variance with this work, for the paral
spin interactions they include the bridge term13 of the HNC
technique. The agreement of our results~without the bridge
correction! with the available QMC data is quite suggestiv

FIG. 6. Spin-dependent and spin-averaged static structure
tors atr s510 for the unpolarized and fully polarized phases. Ta
tar and Ceperley’s QMCS(q) data ~circles! are also included for
comparison.kFU5A2pn is the unpolarized Fermi wave number.

FIG. 7. Total energy of the unpolarized and fully polariz
phases. Inset illustrates how much the fully polarized phas
higher in energy in milliRydbergs from the unpolarized phase.
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given the fact that for more involved problems like doub
layer systems, inclusion of bridge terms becomes l
straightforward. We have also analyzed the compressib
and spin susceptibility of the 2D EL.

The ground state of the 2D EL comes out to be the un
larized phase, while the energy difference with the ferrom
netic phase diminishes to a milliRydberg value where su
an accuracy of the CHNC results is moot. However, a sim
concern can be addressed for the QMC simulations that
done for a finite number of particles (N), with N;100 and
extrapolations to bulk limitN→` are obtained following
some ansatz.9,10 Hence, decreasing the error bars become
daunting task, while still leaving doubts over the final resu
Our preliminary assessment here suggests CHNC as a p
tical alternative for the QMC simulations, whereas oth
techniques fall far too short, producing negative pa
distribution functions and transitions to fully polarized pha
at unrealistically high densities. Several issues on CHNC
main to be dealt in near future. Most important is a bet

c-
-

is

FIG. 8. Inverse compressibility normalized to 2D free fermi
value (k0) of the unpolarized and fully polarized phases.

FIG. 9. Spin susceptibility normalized to 2D noninteractin
Pauli value (xP) calculated via CHNC and Hartree-Fock method
Inset shows the CHNC spin stiffnessac , in units of Rydberg.
6-5
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C. BULUTAY AND B. TANATAR PHYSICAL REVIEW B 65 195116
theoretical understanding for the temperature mapping of
quantum many-body system to a classical fluid. Similarly
rigorous dielectric formalism for CHNC will be essential fo
analyzing collective excitations and also including effects
the disorder which generally lead to nontrivial outcomes.
nally, addressing finite-temperature effects is highly de
able which becomes fairly easy within the proposed CH
framework.
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APPENDIX: SOME DETAILS ON THE IMPLEMENTATION

The crux of the HNC framework is formed by Eqs.~5!
and~8! in the coordinate (r) and wave vector (q) spaces to
be solved self-consistently. From the computational persp
tive this necessitates an efficient implementation of the F
rier transform, the rest of the operations being solely al
braic. As we mention in the main text, for convenience
prefer to use Fourier transforms scaled by thetotal areal
electronic density, so that

f ~r!5
1

nE d2q

~2p!2
F~q!e2 i r•q, ~A1!

F~q!5nE d2r f ~r!ei r•q. ~A2!

In the remaining part of this Appendix we shall use wa
numbers~distances! normalized tokFU (1/kFU), the unpolar-
ized Fermi wave number (kFU5A2pn). For the Fourier
A

D

y

y

. P

tt

.

19511
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transform of functions having no angular dependence~i.e.,
isotropic!, Lado has offered simple quadrature expression26

The only approximation follows from settingf (rmax)
5F(Qmax)50 at some presumably largermax andQmax val-
ues. For a total number ofN points—same in both spaces—
the grid points are allocated atr l5(m l /mN)rmax and qm
5(mm /rmax)[(mm /mN)Qmax, wheremm is the mth posi-
tive root of the zeroth-order Bessel functionJ0(•). Lado’s
quadrature expressions for the 2D Fourier transform p
then become

f ~r l !5 (
m51

N21

DqmqmF~qm!J0~qmr l !, ~A3!

F~qm!5 (
l 51

N21

Dr lr l f ~r l !J0~qmr l !, ~A4!

where

Dr l[
2

Qmax
2 r l@J1~Qmaxr l !#

2
, ~A5!

Dqm[
2

rmax
2 qm@J1~qmrmax!#

2
. ~A6!

It needs to be mentioned that the Coulomb potential is lo
ranged and sudden truncation of the integrals at somermax
value results in rapid oscillations in its Fourier transform. W
remedy this by first windowing it by a cosine square profi
such that,VCou(r)→VCou(r)3cos2@(p/2rmax)r#. For the un-
polarized case we typically useN5800, Qmax.rmax550.
To assure that long-range tails are not affected by suc
choice, we doubled the size of the window asN53200,
Qmax.rmax5100, and found that the change in the resu
were indiscernible.
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