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Coordinate representation of the one-spinon one-holon wave function and spinon-holon interactio
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By deriving and studying the coordinate representation for the one-spinon one-holon wave function we show
that spinons and holons in the supersymmetrict-J model with 1/r 2 interaction attract each other. The interac-
tion causes a probability enhancement in the one-spinon one-holon wave function at short separation between
the particles. We express the hole spectral function for a finite lattice in terms of the probability enhancement,
given by the one-spinon one-holon wave function at zero separation. In the thermodynamic limit, the spinon-
holon attraction turns into the square-root divergence in the hole spectral function.
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I. INTRODUCTION

Landau’s Fermi-liquid theory applies to interacting ele
tron systems that can be adiabatically deformed to a Fe
gas. If the interaction is smoothly switched off, the spectr
of a Fermi liquid reduces to the spectrum of a noninteract
fermionic system. The excitations of a Fermi-liquid are giv
by quasiparticles and quasiholes. Although their lifetime m
be short, it always becomes infinite at the Fermi surface.1 As
one is concerned only with energies close to the Fermi
face, Fermi-liquid’s picture applies to a wide class of cor
lated systems. Experimentally, Landau quasiparticles are
served as a resonant peak at the Fermi surface in the spe
density of states measured at fixed momentum.

Nevertheless, there are several low-dimensional stron
correlated systems where Landau’s picture breaks down
Luttinger liquids the spin and charge degrees of freed
‘‘separate’’ and the quasiparticles and quasiholes are
longer elementary excitations.2,3 The same phenomenon wa
discovered by means of Bethe-ansatz-like techniques in
actly solvable models, e.g., the supersymmetrict-J model
with 1/r 2 interaction, which we study in this paper.4

Physically a particle or a hole injected in a strongly co
related chain breaks up into particles carrying spin, but
charge~spinons! and charge, but no spin~holons!. The quan-
tum numbers of particles and holes ‘‘fractionalize.’’ Spino
and holons are the true elementary excitations of the stro
correlated chains.5,6 When widely separated one from ea
other, spinons and holons propagate independently, in
eral, with different velocities. Such a phenomenon is usu
referred to as ‘‘spin-charge separation.’’ As a consequenc
spin-charge separation, the quasiparticle peak disappear
is substituted by a broad spectrum. This was experiment
detected in angle-resolved photoemission spectroscopy
periments on quasi-1D~one-dimensional! samples.7

Using Bethe-ansatz solutions of 1D models, one can w
out the energy of a many-spinon many-holon state. In
thermodynamic limit the total energy is the sum of the en
gies of each isolated particle. However, this does not im
that spinons and holons do not interact. In recent pape8,9

we carefully studied spinon interaction in an exact solut
0163-1829/2002/65~19!/195112~19!/$20.00 65 1951
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of the Haldane-Shastry model~HSM!,10,11 a model for a
strongly correlated 1D system with no charge degrees
freedom. We showed that spinons interact, although in
thermodynamic limit the energy of a many-spinon solution
additive. We also showed that their interaction is respons
for the lack of integrity of spin waves against decay in
spinons, the true low-energy excitations of the system.

In this paper we generalize the formalism introduced
Ref. 9 to study the interaction between spinons and holon
an exact closed-form solution of the supersymmetric ext
sion of the HSM: the supersymmetrict-J model with 1/r 2

interaction @Kuramoto-Yokoyama~KY ! model12#. The KY-
model is a system of electrons located at the sites of a ci
lar lattice, where double occupancy of a site is forbidden
strong Coulomb repulsion. Charge hopping, Coulomb int
action, and spin-spin antiferromagnetic interaction are all
versely proportional to the square of the chord between
corresponding sites. Charge vacancies at some sites~holes!
may be created by filling the system with fewer electro
than the number of sites. In the KYM one is concerned w
both spin and charge degrees of freedom.

We investigate the basic features of the KY model at ha
filling by employing a formalism based on analytic variabl
on the unit radius circle. As in the case of the HSM, it
easier to construct and visualize the spinon and holon e
tation by using a real-space formalism than by using
Bethe-ansatz formalism. Within our formalism we derive
‘‘real-space’’ representation of the one-spinon one-ho
wave function as a solution of an appropriate equation
motion.

By taking the thermodynamic limit of the exact solutio
of the equation of motion, we find that the probability
finding a spinon and a holon at large separations from e
other is independent of the distance between the partic
while it is greatly enhanced when the two particles are on
of each other, a phenomenon we refer to as ‘‘short-dista
spinon-holon probability enhancement.’’ In the thermod
namic limit, the spinon-holon interaction assumes the sa
form as the spinon-spinon interaction derived in Ref. 8,
though the corresponding equations of motion are co
pletely different. The physical interpretation is the same a
©2002 The American Physical Society12-1
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the case of the spinon-spinon interaction: a spinon an
holon do not interact when they are widely separated fr
each other, while they exhibit a short-range attraction at s
separations.13

To show the effects of spinon-holon interaction on t
hole spectral density,Ah(v,q), we exactly calculate the con
tribution to Ah(v,q) from one-spinon one-holon state
Ah

sp,ho(v,q). The spinon-holon interaction has important co
sequences on the functional form ofAh

sp,ho(v,q). The prob-
ability enhancement causes the overlap between the w
function for the localized hole and that for a spinon-hol
pair to be significant, although not enough to form a spin
holon bound state. The corresponding matrix elemen
enhanced—despite the fact that low-energy density of st
is uniform at lower energies—so as to make the hole exc
tion fully unstable to decay into a spinon-holon pair. Taki
the thermodynamic limit of our result, we show that, as
size of the system increases, spinon-holon interaction tu
into a square-root singularity at the one-spinon one-ho
creation threshold. Correspondingly,Ah

sp,ho(v,q) shows no
Landau quasiparticle’s peak, but it rather exhibits a sh
singular threshold, followed by a broad branch cut.14 Similar
features have also been found in the electron addition s
tral function of the KYM at generic filling.15

The paper is organized as follows: In Sec. II we shor
review the KY Hamiltonian and its supersymmetry; in Se
III we introduce the ground state of the KY model at ha
filling and its representation as a function of analytic va
ables on the unit circle. At half-filling, the ground state is t
same as the ground state of the HS model—a disordered
singlet. We will briefly review some properties of the grou
state, already discussed at length in Ref. 9. In Sec. IV
analyze the one-spinon solution and review its relevant pr
erties. In Sec. V we focus on the one-holon solution a
derive its relevant properties. In Sec. VI we derive the act
of HKY on the one-spinon one-holon states, the energy eig
values, the corresponding eigenvectors, and their norm
Sec. VII we write the Schro¨dinger equation for the one
spinon one-holon wave function, whose solutions are sim
polynomials. From the behavior of the one-spinon one-ho
wave function, we infer the nature of the interaction betwe
spinons and holons: a short-range attraction. The phys
consequences of such an interaction are discussed at le
in Sec. VIII, where we rederive an exact expression for
contribution of one-spinon one-holon states to the hole sp
tral function in terms of the spinon-holon wave functions a
rigorously prove that this contribution is completely dete
mined by the spinon-holon interaction. In the thermod
namic limit spinon-holon interaction turns into the squa
root divergence in the hole spectral function, obtained in R
14. In Sec. IX we provide our main conclusions.

II. KURAMOTO-YOKOYAMA HAMILTONIAN

The Kuramoto-Yokoyama model is defined on a latt
with periodic boundary conditions. Sites are parametrized
the Nth roots of unity,za (a51, . . . ,N.) Strong electron
repulsion forbids double occupancy at each site. Theref
sites can be occupied by an↑ or a↓ electron, or they can be
19511
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empty. The number of empty sites can be tuned by mean
an external chemical potential that fixes the total charge
the system. The Kuramoto-Yokoyama Hamiltonian12 is a
generalization of the Haldane-Shastry Hamiltonian,10,11

where charge dynamics is also taken into account. It ta
the form

HKY5JS 2p

N D 2

(
a,b

N
1

uza2zbu2
PH SW a•SW b2

1

2 (
s

~cas
† cbs!

1
1

2
~na1nb!2

1

4
nanb2

3

4J P, ~1!

where the Gutzwiller’s projector

P5)
a

~12ca↑
† ca↓

† ca↓ca↑! ~2!

accounts for the no-double-occupancy constraint.
The site occupation and spin operators are given by

na5ca↑
† ca↑1ca↓

† ca↓ , ~3!

Sa
a5

1

2 (
s,s8

cas
† tss8

a cas8 , ~4!

whereta,a5x,y,z, are Pauli matrices. An empty site corr
sponds to a charge-1 hole that can tunnel to nearby site
means of the same inverse-square matrix element chara
izing the spin exchange and the charge-repulsion term
HKY .

Usual bosonic symmetries of a (t-J)-like model are total
spin, corresponding to the operatorSW 5(aSW a , and total
charge, corresponding to the operatorN5(ana . The
equivalence of energy scales for magnetism, charge tr
port, and charge interaction causes the KY Hamiltonian to
supersymmetric, in the sense that it commutes with the e
tron or hole injection operatorsQs5(aPcasP,Q s

†

5(aPcas
† P.

As in the Haldane-Shastry Hamiltonian, since the co
plex variablez lies on the unit circle (z* 5z21), the interac-
tion is an analytic function of the coordinates, that is,

1

uza2zbu2
52

zazb

~za2zb!2
.

Throughout the paper we use the representation in term
the analytic variablesza .16,9 This turns out to be very usefu
for describing the properties of spinons and holons in r
space.

III. GROUND STATE

In this section and in the following one we discuss t
ground-state and the one-spinon eigenstates of the KY m
at half-filling. At half-filling the KY model reduces to the HS
Hamiltonian10,11
2-2
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COORDINATE REPRESENTATION OF THE ONE-SPINON . . . PHYSICAL REVIEW B65 195112
HHS5JS 2p

N D 2

(
a,b

N
SW a•SW b

uza2zbu2
. ~5!

Both the ground-state and the one-spinon eigenstates ar
same as for the HS model. Since in Ref. 9 we have alre
applied our formalism to study basic properties of the
model, here we will only briefly review the main results
view of their extension to states where holon excitations
present.

A. Ground-state wave function

Let N be even. We first give the representation of t
ground stateuCGS& in terms of thez coordinates and then
derive its energy.uCGS& is defined in terms of its projection
onto the set of states withM5N/2 spins up and the remain
ing spins down. Ifz1 , . . . ,zM are the coordinates of th
up-spins, one defines the stateuz1 , . . . ,zM& as:
uz1 , . . . ,zM&5) j 51

M Sj
1)a51

N ca↓
† u0& where u0& is the empty

state. The projections are given by

CGS~z1 , . . . ,zM !5)
j ,k

M

~zj2zk!
2)

j 51

M

zj , ~6!

where CGS is a polynomial in the analytic variable
z1 , . . . ,zM . Its norm was first computed by Wilson17 by
using the following identity:

CM5 (
z1 , . . . ,zM

)
i , j

M

uzi2zj u4

5S N

2p i D
M R dz1

z1
••• R dzM

zM
)
iÞ j

M S 12
zi

zj
D 2

5NM
~2M !!

2M
. ~7!

Basic properties ofCGS follow in this section, together with
their derivation.

B. Singlet state

The ground state is a spin singlet.uCGS& is annihilated by
both Sz and S2. SzuCGS&50 becauseuCGS& has an equa
number of↑ and↓ spins, while

@S2CGS#~z2 , . . . ,zM !5 (
a51

N

^z2 , . . . ,zMuSa
2uCGS&

5 lim
z1→0

(
l 51

N21
1

l ! H (
a51

N

za
l J

3
] l

]z1
l
CGS~z1 , . . . ,zM !50,

~8!

since(a51
N za

l 5Nd l0(mod N).
19511
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As CGS is a spin singlet, it takes exactly the same form
expressed either in terms of the↑-spin coordinates
z1 , . . . ,zM , or of the↓-spin coordinates,h1 , . . . ,hM , that
is,

CGS~z1 , . . . ,zM !5CGS~h1 , . . . ,hM !. ~9!

Equation~9! is proved in Appendix A, where we derive th
formulas to relate the representation of the states of the
tem in terms of↑-spin coordinates to the representation
terms of↓-spin coordinates.

In the thermodynamic limit, half-odd spin chains exhibit
gapless spectrum, although they are not allowed to orde18

Accordingly, uCGS& is a disordered spin liquid state, and th
spin-spin correlation function, x(za)
5^CGSuS0

1Sa
2uCGS&/^CGSuCGS&, falls off with the distance

as (21)x/x, thus showing absence of spin order.9

C. Ground-state energy

At half-filling, uCGS& is the ground state ofHKY , with
eigenvalue

HKYuCGS&5HHSuCGS&52JS p2

24D S N1
5

ND uCGS&.

~10!

Equation~10! has been derived originally by Haldane an
Shastry.10,11 In Ref. 9, we rederived it by means of our ow
technique, consisting in substituting sums over spins on
lattice with derivative operators acting on the analytic exte
sion of CGS(z1 , . . . ,zM). The zj ’s are allowed to take any
value on the unit circle. After computing the derivatives, w
constrain them again to lattice sites. In this section we rev
our technique, in view of its generalization to the case wh
the filling is Þ1/2 and the dynamics of the system is d
scribed by the full KY Hamiltonian.

Since@Sa
1Sb

2CGS#(z1 , . . . ,zM) is identically zero unless
one of the argumentsz1 , . . . ,zM equalsza , we have

F H (
bÞa

N Sa
1Sb

2

uza2zbu2J CGSG ~z1 , . . . ,zM !

5(
j 51

M

(
bÞ j

N
1

uzj2zbu2
CGS~z1 , . . . ,zj 21 ,zb ,zj 11 , . . . ,zM !

5 (
l 50

N22

(
j 51

M zj
l 11

l
AlS ] l

]zj
l D H CGS~z1 , . . . ,zM !

zj
J . ~11!

The coefficientsAl are calculated in Ref. 9. They are zero f
N. l .2. Therefore, Eq.~11! can be rewritten as
2-3



, a

n
te

il

f
ar
ide

ec
e-
pe
-
e
o
fo

at

d
kes
ven
re
of

alf-

we
its

the

ed

y
nd-

n

ting

B. A. BERNEVIG, D. GIULIANO, AND R. B. LAUGHLIN PHYSICAL REVIEW B 65 195112
(
j 51

M H ~N21!~N25!

12
zj2

N23

2
zj

2 ]

]zj

1
1

2
zj

3 ]2

]zj
2J H CGS~z1 , . . . ,zM !

zj
J

5H N~N21!~N25!

24
2

N23

2 (
j Þk

M
2zj

zj2zk

1 (
j ÞkÞm

M 2zj
2

~zj2zk!~zj2zm!
1(

j Þk

M zj
2

~zj2zk!
2J

3CGS~z1 , . . . ,zM !

5H 2
N

8
2(

j Þk

M
1

uzj2zku2J CGS~z1 , . . . ,zM !. ~12!

The ‘‘Ising-spin term,’’ on the other hand, provides:

F H (
bÞa

N Sa
z Sb

z

uza2zbu2J CGSG ~z1 , . . . ,zM !

5H 2
N~N221!

48
1(

j Þk

M
1

uzj2zku2
J CGS~z1 , . . . ,zM !.

~13!

Adding up Eqs.~12! and ~13! provides~10!.
Using the factorization property ofHHS , Shastry proved

that uCGS& is the actual ground state ofHKY at half-filling.19

The same proof can be rephrased within our formalism
discussed in Ref. 9.

The crystal momentum of the state,q, is defined~mod
2p) by the equation

CGS~z1z, . . . ,zMz!5eiqCGS~z1 , . . . ,zM !, ~14!

wherez5exp(2pi/N) . From Eq.~14! q can be either 0 orp,
according to whetherN is divisible by 4 or not. In the former
caseCGS equals itself, when translated by one lattice co
stant, while it equals negative value of itself in the lat
case.

Other relevant properties ofuCGS& are discussed in deta
in Ref. 9 and will not be analyzed here.

IV. ONE-SPINON WAVE FUNCTION

The elementary excitations above the ground state o
correlated 1D electron system are not Landau’s quasip
cles, but rather spinons and holons. Spinons have been
tified as the elementary excitations of a spin-~1/2! 1D anti-
ferromagnet. They can be thought of as localized spin def
carrying total spin-~1/2!, embedded in an otherwise featur
less disordered singlet spin sea. As spinon excitations ap
in the KY chain at any filling, we study spinons at filling
~1/2!, when the KY model reduces back to the HS mod
One-spinon states appear as states of the chain with an
number of sites. In this case, the minimum possible value
the total spin is 1/2, and the state for a localized spinons
19511
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is created by constraining the spin ats to be↓, in a surround-
ing spin singlet sea.10,11,9 Since correlations in the groun
state are short ranged, in the thermodynamic limit it ma
no difference whether one begins with an odd or an e
number of sites. Therefore, in the thermodynamic limit, the
is no way to distinguish between chains with odd number
sites or chains with even number of sites. States with h
odd spin are alleged eigenstates ofHKY at half-filling with an
odd number of spinons and no holons. In this section
briefly review the one-spinon wave function and discuss
properties. This was first studied by Haldane and Shastry,10,11

and discussed at length in Ref. 9 within the framework of
formalism of analytic variables.

A. One-spinon spin doublet

Let N be odd andM5(N21)/2. The wave function for a
localized spinon ats takes Haldane’s form10,11

Cs
sp~z1 , . . . ,zM !5)

j 51

M

~zj2s!zj)
i , j

M

~zi2zj !
2, ~15!

wherez1 , . . . ,zM denote again the position of the↑-spins
ands is the coordinate of a lattice site where the spin is fix
to be↓.

By definition, Cs
sp is an eigenstate ofSz with eigenvalue

21/2. In order to prove that it is a spin-~1/2! state, we need
to show thatS2 annihilates it. Indeed, per Eq.~8! we have

(
zbÞzs

N

Sb
2Cs

sp50, ~16!

which proves thatCs
sp is the ↓-spin component of a spin

doublet.
Cs

sp(z1 , . . . ,zM) is a polynomial of degree less thanN
11 in each variableszj . Therefore, we may again appl
Taylor’s expansion technique used to calculate the grou
state energy. Doing so, we find

HKYCs
sp5

J

2 S 2p

N D 2H l1
N

48
~N221!

1
M

6
~4M221!2

N

2
M2J Cs

sp, ~17!

provided thatl satisfies the following eigenvalue equatio
for Fs

sp5) j
M(zj2s):

H M ~M21!2s2
]2

]s2
2

N23

2 FM2s
]

]sG J Fs
sp5lFs

sp.

~18!

One-↓-spinon energy eigenstates are given by propaga
one-spinon plane waves,

Cm
sp~z1 , . . . ,zM !5

1

N (
s

~s* !mCs
sp~z1 , . . . ,zM !.

~19!

The energy eigenvalue is
2-4



k
di

n
o

th

er
is

h
e

r’

is
at

o-
in
xc
b
p
th

es

for
-

the
by
tate

he
in
and

, we
e
heir
e-
s rel-
c-
he
the

n
t
on

as

COORDINATE REPRESENTATION OF THE ONE-SPINON . . . PHYSICAL REVIEW B65 195112
HKYuCm
sp&5H 2JS p2

24D S N2
1

ND1
J

2 S 2p

N D 2

3mS N21

2
2mD J uCm

sp& ~20!

with 0<m<(N21)/2 andl5m@(N21)/22m#.
As the total crystal momentum of the stateuCm

sp& is given
by

qm
sp5

p

2
N2

2p

N S m1
1

4D ~mod 2p!, ~21!

the total energy may be rewritten as

HKYuCm
sp&5H 2JS p2

24D S N1
5

N
2

3

N2D 1E~qm
sp!J uCm

sp&,

~22!

that is, the sum of a ground-state contribution, plus the
netic energy of the propagating spinon. The one-spinon
persion relation is correspondingly provided by

E~qm
sp!5

J

2 F S p

2 D 2

2~qm
sp!2G~mod p!, ~23!

As extensively discussed in Refs. 10, 11, and 9, the o
spinon dispersion relation shows the typical features
spinon excitations. It spans only the inner or outer half of
Brillouin zone, depending on whetherN21 is divisible by 4
or not, which corresponds to the absence of negative-en
states, i.e., to the absence of ‘‘antispinons.’’ The spinon d
persion at low energies is linear inq with a velocity

vspinon5
p

2
J. ~24!

The half-bands of single elementary excitations for oddN are
the only S51/2 states without extra degeneracies. T
ground state of the odd-N spin chain is fourfold degenerat
and is given byuCm

sp& for m50 and (N21)/2 and their↑
counterparts. This corresponds physically to a ‘‘leftove
spinon with momentum6p.

The spin density in the stateCs
sp as a function of the

spinon position is uniformly zero, as appropriate for the d
ordered spin singlet, except for an abrupt dip centeredz
5s.9 The dip is identified with a localized spinon ats. There-
fore, Cs

sp may be thought of as the wave function for a l
calized spinon ats. Starting from such an interpretation,
Ref. 9 we showed that, although spinons are collective e
tations of a strongly correlated system, they can still
treated as real quantum-mechanical particles. In this pa
we will generalize our formalism to states where bo
spinons and holons are present.

B. The norm

The squared norm of the one-spinon energy eigenstat
defined as the scalar product
19511
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^Cm
spuCm

sp&5 (
z1 , . . . ,zM

uCm
sp~z1 , . . . ,zM !u2. ~25!

For the Haldane-Shastry model, we derived the formula
Eq. ~25! in Ref. 9. By employing a recursion relation be
tween ^Cm

spuCm
sp& and ^Cm21

sp uCm21
sp &, we expressed all the

norms in terms ofm and of the constantCM introduced in
Eq. ~7!. The induction relation is

^Cm
spuCm

sp&

^Cm21
sp uCm21

sp &
5

S m2
1

2D ~M2m11!

mS M2m1
1

2D , ~26!

which recursively gives

^Cm
spuCm

sp&5

G@M11#GFm1
1

2GGFM2m1
1

2G
GF1

2GGFM1
1

2GG@m11#G@M2m11#

CM .

~27!

V. ONE-HOLON WAVE FUNCTION

Holons are charged, spin-0 elementary excitations of
Kuramoto-Yokoyama Hamiltonian. They are constructed
removing an electron from the center of a spinon. The s
for a localized holon ath0 is given bych0↓uCs5h0

sp &, where

uCs
sp& is the state defined in Eq.~15!. By construction, in the

KY model, the holon is the supersymmetric partner of t
spinon. However, unlike in the spinon case, the Brillou
zone for one-holon states is not halved, as both negative-
positive-energy holons can be constructed. In this section
are concerned mainly with holon ‘‘kinematics.’’ We deriv
the one-holon eigenstates, their norm, their energy, and t
crystal momentum. In particular, we focus on negativ
energy one-holon states, since these states are the one
evant to the spinon-holon interaction. In the following se
tions we analyze holon and spinon dynamics—t
interaction between spinons and holons and its relation to
instability of the hole excitations in the KY model.

A. One-holon spin singlet

Let N be odd andM5(N21)/2. The wave function for a
propagating, negative-energy holon is given by

Cn
ho~z1 , . . . ,zMuh!5~h!n)

j

M

~zj2h!zj)
j ,k

M

~zj2zk!
2,

~28!

wherez1 , . . . ,zM denote the positions of the↑ sites andh
denotes the position of the empty site, all others being↓.
Also, 0<n<(N11)/2. Different from the spinon case, i
Eq. ~28! the holon coordinateh is not a quantum number bu
a coordinate variable. Therefore, unlike localized one-spin
eigenstates,Cn

ho takes a well-defined crystal momentum,
we will show later.
2-5
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Cn
ho is a spin-singlet state. Indeed, by definition its to

component of the spin alongz is zero. Following the same
steps leading to Eq.~16!, we also get

SzCn
ho5S2Cn

ho50, ~29!

which proves thatCn
ho is a spin singlet.

B. Negative one-holon energy eigenstates

Cn
ho is an eigenstate ofHKY with energy eigenvalue given

by

HKYuCn
ho&5H 2JS p2

24D S N2
1

ND
1

J

2 S 2p

N D 2

nS n2
N11

2 D J uCn
ho&, ~30!

where 0<n<(N11)/2.
In order to prove Eq.~30!, let us first splitHKY as follows:

HKY

J

2 S 2p

N D 2 5hS
T1hS

V1hN1hQ
↓ 1hQ

↑ . ~31!

We define the various terms when calculating their contri
tions to the total energy.

Spin-exchange term

@hS
TCn

ho#~z1 , . . . ,zMuh!

5F (
aÞb

PSa
1Sb

2P

uza2zbu2
Cn

hoG ~z1 , . . . ,zMuh!

5H F12N2

24
2(

iÞ j

M
1

uzi2zj u2
Ghn

1
N23

2
hn11

]

]h
2hn12

]2

]h2J H Cn
ho~z1 , . . . ,zMuh!

hn J .

~32!

Spin-Ising term

@hS
VCn

ho#~z1 , . . . ,zMuh!

5F (
aÞb

PSa
z Sb

z P

uza2zbu2
Cn

hoG ~z1 , . . . ,zMuh!

5H (
iÞ j

M
1

uzi2zj u2
1(

j

M
1

uzj2hu2
2

N~N221!

48 J
3Cn

ho~z1 , . . . ,zMuh!. ~33!

Electrostatic repulsion energy
19511
l

-

@hNCn
ho#~z1 , . . . ,zMuh!

5H (
aÞb

1

uza2zbu2
PF1

2
~na1nb!2

1

4
nanb

2
3

4GPCn
hoJ ~z1 , . . . ,zMuh!

5
12N2

24
Cn

ho~z1 , . . . ,zMuh!. ~34!

↓-charge kinetic energy

@hQ
↓ Cn

ho#~z1 , . . . ,zMuh!

5 (
aÞb

F Pca↓cb↓
†

uza2zbu2
Cn

hoG ~z1 , . . . ,zMuh!

5 (
zbÞh

(
k50

M11 zb
n~zb2h!k

k! uzb2hu2
S ]

]hD kH Cn
ho~z1 , . . . ,zMuh!

hn J
5H FN221

12
1

n~n2N!

2 Ghn2FN21

2
2nGhn11

]

]h

1
1

2
hn12

]2

]h2J H Cn
ho~z1 , . . . ,zMuh!

hn J . ~35!

↑-charge kinetic energy

@hQ
↑ Cn

ho#~z1 , . . . ,zMuh!

5 (
aÞb

F Pca↑cb↑
†

uza2zbu2
Cn

hoG ~z1 , . . . ,zMuh!. ~36!

To properly work out the contribution in Eq.~36!, we have to
expressCn

ho in terms of the↓-spin coordinates,h1 , . . . ,hM .
In Appendix A we prove that

Cn
ho~z1 , . . . ,zMuh!5Cn

ho~h1 , . . . ,hMuh!. ~37!

Therefore, we obtain

@hQ
↑ Cn

ho#~z1 , . . . ,zMuh!5H FN221

12
1

n~n2N!

2 Ghn2FN21

2

2nGhn11
]

]h
1

1

2
hn12

]2

]h2J H Cn
ho~h1 , . . . ,hMuh!

hn J .

~38!

By using the identity

hn11
]

]h H Cn
ho~h1 , . . . ,hMuh!

hn J
5H N21

2
2(

j

M
h

h2zj
J Cn

ho~z1 , . . . ,zMuh!

5H S N21

2 Dhn2hn11
]

]hJ H Cn
ho~z1 , . . . ,zMuh!

hn J , ~39!
2-6
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and the identity

hn12
]

]h2 H Cn
ho~h1 , . . . ,hMuh!

hn J
5H F ~N21!~N22!

3
12(

j

M S h

h2zj
D 2Ghn

2~N21!hn11
]

]h

1hn12
]2

]h2J H Cn
ho~z1 , . . . ,zMuh!

hn J , ~40!

we finally derive

@hQ
↑ Cn

ho#~z1 , . . . ,zMuh!

5H n~n21!

2
hn1(

j

M
hn12

~h2zj !
2

2nhn11
]

]h

1
1

2
hn12

]2

]h2J Cn
ho~z1 , . . . ,zMuh!. ~41!

Adding Eqs.~32!–~35! and Eq.~41! all together, we find that

@HKYCn
ho#~z1 , . . . ,zMuh!

5
J

2 S 2p

N D 2H 2
N~N221!

48
1n~n2M21!J

3Cn
ho~z1 , . . . ,zMuh!. ~42!

This is the formula we had to prove.

C. Crystal momentum

The stateuCn
ho& is a propagating holon with crystal mo

mentum

qn
ho5

p

2
N1

2p

N S n2
1

4D ~mod 2p!, ~43!

with the definition

Cn
ho~z1z, . . . ,zMzuhz!5exp~ iqn

ho!Cn
ho~z1 , . . . ,zMuh!.

~44!

Rewriting the eigenvalue as

HKYuCn
ho&5H 2JS p2

24D S N1
5

N
2

3

N2D 1E~qn
ho!J uCn

ho&,

~45!

we obtain the dispersion relation

E~qn
ho!52

J

2 F S p

2 D 2

2~qn
ho!2G ~mod p!. ~46!

We worked out Eq.~46! for the case of negative-energy on
holon eigenstates. Unlike in the spinon case, the holon
19511
s-

persion relation around the band minimum is quadratic inq,
while it is linear inq nearp/2, where the band closes.

Positive-energy one-holon eigenstates may be constru
by supersymmetrically rotating one-spinon eigenstate16

Their energy is given byuE(qn
ho)u and the momentum span

the remaining half of the Brillouin zone. The correspondi
dispersion relation is plotted in Figs. 1 and 2. Since for
purpose of studying spinon-holon interaction we ne
negative-energy holon states only, we do not discuss h
positive-energy holon states. We also need the wave func
for a localized holon at siteh0 ,uCh0

ho&, which is obtained by

Fourier transforming the propagating holon wave function
real space,

Ch0

ho5 (
n50

(N11)/2

h0
2nCn

ho. ~47!

FIG. 1. Spin and charge profiles of the localized holonuCh0

ho&
defined by Eq.~47!. u is defined asu52 i ln(z/h0), wherez is the
independent variable.

FIG. 2. Upper graph, holon dispersion relation. Positive-ene
holons are unstable towards decay into spinons; Lower, config
tion space forN59 andN511 sites
2-7
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D. The norm

The norm of the stateCn
ho is defined as

^Cn
houCn

ho&5 (
z1 , . . . ,zM ;h

uCn~z1 , . . . ,zMuh!u2. ~48!

From the definition of the norm it immediately follows th
^Cn

houCn
ho& does not depend onn. The formula for̂ Cn

houCn
ho&

is worked out in Appendix B and is given by

^Cn
houCn

ho&5NM11
~2M !!

2M

GF1

2GG@M11#

GFM1
1

2G . ~49!

VI. ONE-SPINON ONE-HOLON WAVE FUNCTION

As for many-spinon configurations, spinons and holo
maintain their integrity when many of them are present in
same state. Therefore, we can diagonalizeHKY within sub-
spaces with a fixed number of spinons and holons.

In this section we derive the action ofHKY on the one-
spinon one-holon eigenstates, diagonalize the correspon
matrix, and work out the norm of the states.

A. Action of HKY on one-spinon one-holon states

To construct one-spinon one-holon eigenstates ofHKY we
start with states in a mixed representationCn

s , where the
spinon is localized at sites, but the holon is propagating with
momentumqn

ho. For N even andM5N/221, we have

Cs
n~z1 , . . . ,zMuh!5hn)

j

M

~zj2s!~zj2h!zj)
j ,k

M

~zj2zk!
2,

~50!

where 1<n<M12. To derive the action of the KY Hamil
tonian onCn

s , we split it as in Eq.~31!.
The action of spin-exchange term onCs

n provides

@hS
TCs

n#~z1 , . . . ,zMuh!

52(
j 5↑ (

zbÞzj

zjzb
2

~zj2zb!2
Cs

n~z1 , . . . ,zb , . . . uh!

1
M

12
~22N15!Cs

n2 (
iÞ j 5↑

1

uzi2zj u2
Cs

n1~M21!

3F s
]

]s
Cs

n1hn11
]

]h S Cs
n

hn D G
2s2

]2

]s2
Cs

n2hn12
]2

]h2 S Cs
n

hn D 1
1

2 S h1s

h2sD
3F s

]

]s
Cs

n2hn11
]

]h S Cs
n

hn D G . ~51!
19511
s
e

ing

The Ising term gives

@hS
VCs

n#~z1 , . . . ,zMuh!5H (
iÞ j 5↑

1

uzi2zj u2
2

M

2

N221

12

1(
j 5↑

1

uzj2hu2J Cs
n . ~52!

The Coulomb potential term acting on the one-spin
one-holon wave function reads

@hNCs
n#~z1 , . . . ,zMuh!5

12N2

24
Cs

n . ~53!

The↓-spin contribution to the charge kinetic energy giv

@hQ
↓ Cs

n#~z1 , . . . ,zMuh!

52 (
zbÞh

zbh

~zb2h!2
Cs

n~z1 , . . . ,zMuzb!

5FN221

12
1

n~n2N!

2 GCs
n2FN21

2
2nGhn11

]

]h S Cs
n

hn D
1

1

2
hn12

]2

]h2 S Cs
n

hn D . ~54!

In order to manipulate the↑-spin contribution to the
charge kinetic energy, we need to expressCs

n(z1 , . . . ,zMuh)
in terms of the↓-spin coordinatesh. As in the one-holon
case, we obtain

Cs
n~z1 , . . . ,zMuh!5Cs

n~h1 , . . . ,hMuh!.

Therefore, we have

@hQ
↑ Cs

n#~h1 , . . . ,hMuh!

52 (
zbÞh

hzb

~h2zb!2
Cs

n~h1 , . . . ,hMuzb!

1
sh

~s2h!2
Cs

n~h1 , . . . ,hMus!

5FN221

12
1

n~n2N!

2 GCs
n2FN21

2
2nGhn11

]

]h S Cs
n

hn D
1

1

2
hn12

]2

]h2 S Cs
n

hn D 1
sh

~s2h!2
Cs

n~h1 , . . . ,hMus!.

~55!

By going back to↑-spin coordinatesz, Eq. ~55! provides
2-8
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n222n11

2
Cs

n1S 12n

2 Dh1s

h2s
Cs

n1S 3

2
2nDhn11

]

]h S Cs
n

hn D
1

hs

~h2s!2
Cs

n1
1

2 S h1s

h2sDhn11
]

]h S Cs
n

hn D
1

1

2
hn12

]2

]h2 S Cs
n

hn D 2(
zj

1

uzj2hu2
Cs

n

2
sh

~s2h!2 S s

hD n21

Ch
n . ~56!

Adding up all the contributions together, we obtain

hKYCs
n~z1 , . . . ,zMuh!5H 2N3119N

48
1S n2

N

2
21D J Cs

n

1~M21!s
]

]s
Cs

n2s2
]2

]s2
Cs

n

1
1

2

h1s

h2s S s
]

]s
Cs

n1~12n!Cs
nD

1
hs

~h2s!2 FCs
n2S s

hD n21

Ch
nG .

~57!

In the following section we will will solve Eq.~57! by work-
ing out the basis of one-spinon one-holon states that dia
nalizehKY .

B. One-spinon one-holon energy eigenstates

To diagonalizehKY , we introduce the propagating one
spinon one-holon energy eigenstates

Cmn~z1 , . . . ,zMuh!5(
s

s2m

N
Cs

n~z1 , . . . ,zMuh!.

~58!

The second and the third rows of Eq.~57! are diagonal in
the basis of the statesCmn , and their contribution is given
by

Fe01nS n212
N

2 D1m~M2m!GCmn , ~59!

where

e05
2N3119N

48
.

On the other hand, the diagonalization of the ‘‘interactio
term, given by the fourth and the fifth rows of Eq.~57!,
needs further work. By using a straightforward, although
dious, application of basic identities proved in the Appen
of Ref. 9, one obtains
19511
o-

’

-
x

(
sPSN

s2mH 1

2 S h1s

h2sD Fs
]

]s
Cs

n1~12n!Cs
nG

1
hs

~h2s!2 FCs
n2S s

hD n21

Ch
nG J

5(
sÞh

s2mH 1

2 S h1s

h2sD Fs
]

]s
Cs

n1~12n!Cs
nG

1
hs

~h2s!2 FCs
n2S s

hD n21

Ch
nG J 1 lim

s→h
s2mH 1

2 S h1s

h2sD
3Fs

]

]s
Cs

n1~12n!Cs
nG1 hs

~h2s!2 FCs
n2S s

hD n21

Ch
nGJ

52
N

2
~m2n11!Cmn1(

j 50

m

N~m2n11!Cm2 j ,n2 j

~60!

if n2m21.0, and

2
N

2
~n2m21!Cmn1 (

j 50

M2m

N~n2m21!Cm1 j ,n1 j

~61!

if n2m21<0. Therefore the action ofhKY on Cmn is given
by

@hKYCmn#5Fe01m~M2m!1nS n212
N

2 D GCmn

2
1

2
~n2m21!Cmn

2~n2m21!(
j 51

m

Cm2 j ,n2 j ~62!

if m2n11,0, and

@hKYCmn#5Fe01m~M2m!1nS n212
N

2 D GCmn

2
1

2
~m2n11!Cmn

2~m2n11! (
j 51

M2m

Cm1 j ,n1 j , ~63!

if m2n11>0. Since the Hamiltonian matrix is upper~or
lower! triangular, complete diagonalization is possible. T
energy eigenstates will be linear combinations ofCmn

Fmn5(
j 50

m

ajCm2 j ,n2 j ~64!

if m2n11,0, and
2-9
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Fmn5 (
j 50

M2m

ajCm1 j ,n1 j ~65!

if m2n11>0, corresponding to the energy eigenvalues

Emn
1 5

J

2 S 2p

N D 2Fe01m~M2m!1nS n212
N

2 D
2

1

2
~n2m21!G

if m2n11,0, and

Emn
2 5

J

2 S 2p

N D 2Fe01m~M2m!1nS n212
N

2 D
1

1

2
~n2m21!G

if m2n11>0. The coefficientsal are defined by the recur
sion relation

al52
1

2l (
k50

l 21

aka051. ~66!

In terms of spinon and holon momenta,Emn
1 and Emn

2 take
the same formEmn , given by

Emn5EGS1E~qm
sp!1E~qn

ho!2
pJ

N

uqm
sp2qn

hou
2

. ~67!

Emn is the sum of the ground-state energy, the energies o
isolated spinon and an isolated holon plus a negative in
action contribution that becomes negligibly small in the th
modynamic limit. Equations~64! and ~65! can be inverted.
The result is

Cmn5(
j 50

m

bjFm2 j ,n2 j ~68!

if m2n11,0, and

Cmn5 (
j 50

M2m

bjFm1 j ,n1 j ~69!

if m2n11>0. The coefficients are given by

bj5

GF j 1
1

2G
GF1

2GG@ j 11#

. ~70!

C. The norm

The squared norm of the stateCmn is defined as

^FmnuFmn&5 (
z1 , . . . ,zM

uFmn~z1 , . . . ,zMu!u2. ~71!

In Fig. 1 we plot the charge and spin profiles for a one-ho
state. In a similar fashion to the two-spinon case discusse
Ref. 9, we compute the norm of the one-spinon one-ho
19511
an
r-
-

n
in
n

states by means of mathematical induction. The calcula
is presented in detail in Appendix C. The basic inducti
relation in the casen2k11,0 is given by

^FknuFkn&

^Fk21,nuFk21,n&
5

S k2
1

2D S M2k1
3

2D
k~M2k11!

, ~72!

which provides the formula for the norm of the one-spin
one-holon energy eigenstates

^FknuFkn&5NM11
~2M !!

2M S M1
1

2D G@M2k11#GFk1
1

2G
GFM2k1

3

2GG@k11#

.

~73!

In the complementary case,n2k11>0, we obtain

^FknuFkn&5^FM2k,M2nuFM2k,M2n&

5NM11
~2M !!

2M S M1
1

2D

3

GFM2k1
1

2GG@k11#

G@M2k11#GFk1
3

2G . ~74!

VII. SPINON-HOLON ATTRACTION

In this section we analyze the interaction between
spinon and a holon by constructing the real-space repre
tation of the one-spinon one-holon wave function, and
studying the behavior of the corresponding probability a
function of the separation between the two particles. O
exact results show that a spinon and a holon interact thro
a short-range attraction identical, in the thermodynam
limit, to the atraction between two spinons.

The state for a localized spinon at sites and a localized
holon at siteh0 ,Csh0

is defined as the Fourier transform o

Cs
n back to coordinate space

Csh0
5 (

n51

M12

h0
2nCs

n . ~75!

Following the same steps as for the two-spinon wa
functions,8,9 we define the real-space coordinate represe
tion for a spinon-holon pair,smh0

2npmn(s/h0), as follows:

Csh0
5 (

n51

M12

(
m50

n22

smh0
2n(

j 50

m

bjFm2 j ,n2 j

1 (
n51

M12

(
m5n21

M

smh0
2n (

j 50

M2m

bjFm1 j ,n1 j

5 (
n51

M12

(
m50

n22

smh0
2npmnS s

h0
DFmn

1 (
n51

M12

(
m5n21

M

smh0
2npmn8 S s

h0
DFmn , ~76!
2-10
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whereuFmn& is an eigenstate ofHKY with eigenvalueEmn ,
that is

^FmnuHKYuCsh0
&5Emn̂ FmnuCsh0

&. ~77!

The matrix element̂ FmnuHKYuCsh0
& can be written as a

differential operator acting on the analytic extension
^FmnuCsh0

&, where s and h0 are understood to take an
value on the unit circle. Therefore, by equatin
^FmnuHKYuCsh0

& to Emn̂ FmnuCsh0
&, it is straightforward to

write down the equation of motion for the one-spinon on
holon wave function, which reads

~Emn2EGS!^FmnuCsh0
&

5^Fmnu~HKY2EGS!uCsh0
&

5JS 2p

N D 2H F S M2s
]

]sD s
]

]s

1h0

]

]h0
S 11

N

2
1h0

]

]h0
D1

1

2 S h01s

h02sD
3S s

]

]s
1h0

]

]h0
11D G^FmnuCsh0

&

1
h0

s2h0
S s

h0
D n

^FmnuCh0h0
&J , ~78!

wheren5M if m2n11,0, n50 otherwise. In the differ-
ential operator in Eq.~78!, we recognize the sum of the en
ergies of the free spinon and holon, a velocity-depend
interaction, which diverges at small spinon-holon separat
and another term that takes into account the correction
the case when the spinon and the holon are at the s
position. By using Eqs.~76!–~78!, we find the following
equations for the ‘‘relative wave functions’’pmn(z) and
pmn8 (z) (z5s/h0):

F2
d

dz
2

1

~12z!Gpmn~z!1
zM2m21

~12z!
pmn~1!50 ~79!

if m2n11,0, and

F 2
d

dS 1

zD 2
1

S 12
1

zD G pmn8 ~z!1

S 1

zD m

S 12
1

zD pmn8 ~1!50

~80!

if m2n11>0.
Equations~79! and~80! are first-order ‘‘Dirac-like’’ equa-

tions. They are first order because the spinon and the h
energy bands have opposite curvature. In this respect,
differ from the differential equation obtained in the tw
spinon case, which was second order.8,9 The corresponding
solutions are given by
19511
f

-

nt
n,
or

e

on
ey

pmn~z!5 (
k50

M2m21 GFk1
1

2G
GF1

2GG@k11#

zk, ~81!

for Eq. ~79! and

pmn8 ~z!5 (
k50

m GFk1
1

2G
GF1

2GG@k11#

S 1

zD k

~82!

for Eq. ~80!.
The value of the spinon-holon wave function at zero se

ration between the particles is derived in Appendix D. It
given by

pmn~1!52

GFM2m1
1

2G
GF1

2GG@M2m#

~83!

and

pmn8 ~1!52

GFm1
3

2G
GF1

2GG@m11#

. ~84!

Within the framework of our formalism, it is possible to tre
spinons and holons, collective excitations of strongly cor
lated one-dimensional electron systems, as actual quan
mechanical particles. We were first able to associate a t
particle wave function to a spinon-holon pair and to wr
down the corresponding equation of motion@Eqs. ~76! and
~78!#. We then worked out the exact wave functions cor
sponding to each energy eigenvalue@Eqs.~81! and ~82!#.

The squared modulus for the spinon-holon wave functi
upmn(z)u2, gives the probability for a spinon and a holo
configuration as a function of the separation between the
particles. In Fig. 3 we plotupmn(e

iu)u2 versus the distance

FIG. 3. Left panel,upmn(e
iu)u2 versusu for m5M ,n50; right

panel, the same plot on a log-log scale. The dashed straight line
plot of 1/u. The points show small oscillations about 1/u. Oscilla-
tions decrease with the separation between spinon and holon,
may be seen by comparison with the dashed line.
2-11
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between the spinon and the holon,u. From Fig. 3 the nature
of the interaction between a spinon and a holon may be
ily inferred. While at large separationsupmn(e

iu)u2 does not
depend onu, as it is appropriate for noninteracting particle
at small separations it shows a remarkable enhancem
This corresponds to a huge increase in the probability
configurations with the spinon and the holon on top of ea
other. The enhancement does not depend on the holon
mentum. AsN gets larger, the probability enhancement pea
up. It survives the thermodynamic limit, even though t
interaction energy goes to zero, and the total energy beco
the sum of the energies of the isolated spinon and ho
However, the attraction is not strong enough to creat
spinon-holon bound state, even in the thermodynamic lim
This corresponds to the absence of a low-energy stable
excitation, and it is what causes the quasiparticle peak
disappear.

An intriguing feature of the spinon-holon interaction
the thermodynamic limit is that it has the same power-l
form as the spinon-spinon interaction derived in Refs. 8 a
9. In the right panel of Fig. 3 we plotupmn(e

iu)u2 on a log-
log scale and compare it with 1/u. The probability falls off as
the first power of the separation between the two partic
This shows that, although the equation of motion for
spinon and a holon is quite different from the one for tw
spinons, the interaction in both cases results in a short-ra
attraction, and its effects on the corresponding two-part
wave function are basically the same.

VIII. HOLE SPECTRAL FUNCTION

In this section we work outAh
sp, ho(v,q), the one-spinon

one-holon contribution to the hole spectral functi
Ah(v,q). We show that this contribution@which provides
quite a good approximation toAh(v,q) for q;0# depends
only on thepmn’s and thepmn8 ’s calculated atz51 ~that is, as
the spinon and the holon lay at the same site!. This allows us
to obtain for any finiteN a simple closed-form expression fo
Ah

sp, ho(v,q), and to relate it to the spinon-holon interactio
In the thermodynamic limit, we obtain the previously know
formula for the contribution of the one-spinon one-hol
states toAh

sp, ho(v,q).14 The formula in Ref. 14 shows tha
there is no low-energy hole pole in the hole spectral functi
but rather a sharp square-root singularity followed by
branch cut. These features have also been experimen
detcted by means of ARPES experiments on quasi
insulator.7

The branch cut corresponds to the lack of integrity of
hole excitation, which breaks up into a spinon and a hol
Here we will show that, in the thermodymanic limit, th
probability enhancementpmn(1) @pmn8 (1)# turns into the
square-root singularity at threshold for a spinon-holon p
As a consequence, we prove that the square-root singul
in the hole spectral function is a direct consequence of
interaction between spinons and holons. Therefore, it can
directly experimentally measured.

We begin with the calculation ofAh
sp, ho(v,q) for a finite

lattice. In Lehman representation we obtain
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Ah
sp, ho~v,q!5ImH (

X

U^Xu(
h0

~h0!2kch0↑uCGS&U2

pN^XuX&^CGSuCGS&

3
1

v1 ih2~EX2EGS!
J , ~85!

where uX& is an exact one-spinon one-holon eigenstate
HKY ,uFmn& with energyEX5Emn , and q52pk/N @below
we discuss why only forward-propagating states contrib
to Eq. ~85!#.

Using Ah
sp,ho(v,q) instead ofAh(v,q) is equivalent to

approximating

ch0↑uCGS&'Ch0h0
5 (

n51

M12

(
m50

n22

h0
m2npmn~1!Fmn

1 (
n51

M12

(
m5n21

M

h0
m2npmn8 ~1!Fmn . ~86!

@Equation~86! basically amounts to neglecting contribution
to ch0↑uCGS& coming from multi-spinon one-holon states.#

SinceHKY contains the Gutzwiller projectorP, its matrix
elements between states with at least a doubly occupied
are zero. Therefore, at half-filling,Ah(q,v) takes contribu-
tions only from forward-propagating hole states. Hence,
ing Eqs.~85! and ~86! we obtain

Ah
sp, ho~v,q!5Im

1

p H (
l 52

M12

(
m50

l 22 dk2m1 l pml
2 ~1!

v1 ih2~Emn2EGS!

1 (
l 51

M12

(
m5 l 21

M dk2m1 l~pml8 !2~1!

v1 ih2~Emn2EGS!
J

3
^FmluFml&

^CGSuCGS&
. ~87!

Equation~87! shows that only thepmn’s at z51 determine
the spinon-holon contribution to the hole spectral functio
Therefore, the contribution is completely determined by
spinon-holon interaction.

Let us now analyze the thermodynamic limit of Eq.~87!.
In the thermodynamic limit, theG functions can be approxi
mated by using Stirling’s formula

G@z#'Ap~z21!z21/2e2(z21). ~88!

From Eqs.~87! and~88! we get, in the thermodynamic limit
2-12
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Ah
sp,ho~q,v!'

2

p~M11!
H (

l 52

M12

(
m50

l 22
d r 2m1 l

v1 ih2~Emn2EGS!

3
AM2m2

1

2

m
1 (

l 52

M12

(
m5 l 21

M

3
d r 2m1 l

v1 ih2~Emn2EGS!
Am1

1

2

M2m
J . ~89!

~Notice that, in order to stabilize the hole occupation at 1,
had to introduce a chemical potentialJp2/4, which is added
to the energiesEmn .)

By defining the auxiliary variables

qsp5
2p

N
m, qho5

2p

N
l ,

Eq. ~89!, in the thermodynamic limit, may be written in th
form already obtained in Ref. 14.

Ah
sp ho~v,q!52ImE

0

pdqho

p H E
0

qhodqsp

p
Ap2qsp

qsp

1E
qho

p dqsp

p
A qsp

p2qsp
J

3
d~q2qsp1qho!

v2m1 ih2E~qsp,qho!
. ~90!

In the region 0<q<p the integration of Eq.~90! gives

Ah
sp ho~v,q!5

1

p2JqAJFq1
p

2 G2

2v

v2JFq2
p

2 G2QFv2JS q

2
p

2 D 2GQFJH p2

4
1q~p2q!J 2vG . ~91!

This formula shows that the spinon-holon probability e
hancementpmn

2 (1) turned into a square-root singularity
Ah

sp, ho(v,q) at the threshold energy for creation of a spino
holon pair. Because the spinon-holon joint density of state
uniform, the main conclusion we trace from our calculati
is that the sharp nonanalytic threshold inAh

sp,ho(v,q) is the
direct consequence of spinon-holon interaction.

IX. CONCLUSIONS

In this paper, we have extended the formalism introdu
in Ref. 9 to analyze spinon interaction in the Haldan
Shastry model, to the case where also charge degrees of
dom are involved. Our formalism allows us to define
quantum-mechanical real-space representation of the
spinon one-holon wave function. We construct a Dirac-l
19511
e

-

-
is

d
-
ee-

e-

equation, whose solution is the spinon-holon wave funct
in real space coordinates. By means of a careful study of
real-space one-spinon one-holon wave function, we show
existence of the spinon-holon interaction and its survival
the thermodynamic limit. Spinon-holon interaction genera
a short-range enhancement in the probability for a spin
and a holon to be on the same site. The attraction, howe
is not strong enough to form a spinon-holon bound sta
which would correspond to a Landau quasihole resonan
This makes, in the thermodynamic limit, the hole excitati
fully unstable against decay in one-holon multi-spinon sta
and the quasiparticle peak disappear. Correspondingly, in
thermodynamic limit, the probability enhancement develo
into a square-root singularity followed by a branch c
which reflects the full instability of the hole excitation
Hence, by means of a sequence of exact, straightforw
steps, we prove that spinon-holon attraction is what ma
Landau’s Fermi-liquid theory break down in 1D strongly
correlated electron systems.
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APPENDIX A: FUNCTIONS EXPRESSED IN TERMS
OF `-SPIN COORDINATES

In this section we prove the formulas that express
states of the KY model in terms of the↓-spin coordinates,
once the expression in terms of the↑-spin coordinates is
known. The starting point is the following identity (za ,zb
areNth roots of the identity!:

)
a:zaÞzb

~za2zb!5 lim
z→zb

zN21

z2zb
5

N

zb
. ~A1!

The ground-state wave function at half-filling expressed
terms of the↑-spin coordinates is given by

CGS~z1 , . . . ,zM !5)
i , j

M

~zi2zj !
2)

t

M

zt , ~A2!

whereN is even andM5N/2. Leth1 , . . . ,hM be the↓-spin
coordinates. Upon applying Eq.~A1!, we get
2-13
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)
i , j

M

~zi2zj !
2)

t

M

zt5~21!M (M21)/2)
iÞ j

M

~zi2zj !)
t

M

zt

5~21!M (M11)/2

)
t

M

zt)
t

M S N

zt
D

)
zj ,h i

~zj2h i !

5)
i , j

M

~h i2h j !
2)

t

M

h t , ~A3!

which proves thatCGS(z1 , . . . ,zM)5CGS(h1 , . . . ,hM).
The one-holon wave function is given by

Cn
ho~z1 , . . . ,zMuh!5hn)

j

M

~zj2h!)
i , j

M

~zi2zj !
2)

t

M

zt ,

~A4!

where nowN is odd,M5(N21)/2 andh is the coordinate
of the empty site.

The same steps as forCGS apply to the one-holon wave
function. We have

hn)
j

M

~zj2h!)
i , j

M

~zi2zj !
2)

t

M

zt

5hn~21!M (M11)/2

)
t

M

zt)
t

M S N

zt
D

)
h i ,zj

~zj2h i !

5hn)
i

M

~h i2h!)
i , j

M

~h i2h j !
2)

t

M

h t ; ~A5!
19511
this proves thatCh
ho(z1 , . . . ,zMuh)5Ch

ho(h1 , . . . ,hMuh).
The one-spinon one-holon stateCs

n(z1 , . . . ,zMuh) is
given by

Cs
n~z1 , . . . ,zMuh!5hn)

j

M

~zj2s!~zj2h!

3)
i , j

M

~zi2zj !
2)

t

M

zt , ~A6!

where N is even, M5N/221, s is the coordinate of the
↓-spin, andh is the location of the empty site. As in th
previous cases, we have

hn)
j

M

~zj2s!~zj2h!)
i , j

M

~zi2zj !
2)

t

M

zt

5hn~21!M (M11)/2

)
t

M

zt)
t

M S N

zt
D

)
h i ,zj

~zj2h i !

hn

3)
i

M

~h i2s!~h i2h!)
i , j

M

~h i2h j !
2)

t

M

h t .

~A7!

Equation ~A7! provides the proof thatCs
n(z1 , . . . ,zMuh)

5Cs
n(h1 , . . . ,hMuh).

The last identity we need refers to the case where
spinon and holon are at the same site, which we had to c
sider in deriving Eq.~56!. We have
Cs
n~z1 , . . . ,zMus!5sn)

j

M

~zj2s!2)
i , j

M

~zi2zj !
2)

t

M

zt

5sn~21!M (M21)/2)
j

M
~zj2s!

~zj2h!

S )
t

M

ztD F)
t

M S N

zt
D G

)
zj ,h i

~zj2h i !

5sn)
j

M
~zj2s!

~zj2h!

S )
t

M

ztD F)
t

M S N

zt
D G

)
i

M S N

h i
D )

i , j

M

~h i2h j !
2)

i

M

~h i2s!~h i2h!

52S s

hD n21

hn)
i

M

~h i2h!2)
i , j

~h i2h j !
2)

t

M

h t . ~A8!
he
Equation~A8! proves the identity

Cs
n~z1 , . . . ,zMus!52S s

hD n21

Ch
n~h1 , . . . ,hMuh!.
APPENDIX B: THE NORM OF ONE-HOLON WAVE
FUNCTION

In this appendix we discuss in detail the calculation of t
norm of the negative-energy one-holon states,^Cn

houCn
ho&,
2-14
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^Cn
houCn

ho&5 (
z1 , . . . ,zM ,h

uCn
ho~z1 , . . . ,zMuh!u2. ~B1!

Let Pm(z1 , . . . ,zM) be themth degree symmetric polyno
mial in z1 , . . . ,zM . One obtains9

Cn
ho~z1 , . . . ,zMuh!5 (

m50

M

hm1nPm~z1 , . . . ,zM !

3)
i , j

M

~zi2zj !
2. ~B2!

From Eqs.~B1! and ~B2!, we derive

^Cn
houCn

ho&5N (
m50

M

(
z1 , . . . ,zM

uPm~z1 , . . . ,zM !u2)
i , j

M

uzi2zj u4

5N (
m50

M

^Cm
spuCm

sp&. ~B3!

The norm of one-spinon wave functions,^Cm
spuCm

sp&, has
been derived in Ref. 9, where it has been shown that

^Cm
spuCm

sp&5
G@M11#

GFM1
1

2G
GFm1

1

2GGFM2m1
1

2G
G@m11#G@M2m11#

NM
~2M !!

2M
.

~B4!

Therefore, we can rewrite Eq.~B3! as

^Cn
houCn

ho&5GF1

2G~2M !!

2M
gM0~1!, ~B5!

where the polynomialgmn(z) is the two-spinon relative wave
function, denoted bypmn(z) in Ref. 9,

gmn~z!5
G@m2n11#

GF1

2GGFm2n1
1

2G

3 (
k50

m2n GFk1
1

2GGFm2n2k1
1

2G
G@k11#G@m2n2k11#

zk. ~B6!

By means of generic properties of hypergeome
functions20 one gets

gmn~1!5

GF1

2GG@m2n11#

GFm2n1
1

2G . ~B7!

Therefore, we obtain
19511
c

^Cn
houCn

ho&5NM11
~2M !!

2M

GF1

2GG@M11#

GFM1
1

2G ;n. ~B8!

APPENDIX C: THE NORM OF ONE-SPINON ONE-HOLON
ENERGY EIGENSTATES

In this section we generalize the recursion procedure
troduced in Ref. 8 and 9 to calculate the norm of one-spin
and two-spinon wave function to the calculation of the no
of one-spinon one-holon energy eigenstates. As in the ca
lation in Refs. 8 and 9, the key operator is given
e1(z1 , . . . ,zM), defined as

e1~z1 , . . . ,zM !5z11•••1zM . ~C1!

The state for one holon and one spinon localized ats is given
by

Cs
n~z1 , . . . ,zM !5Fs

n~z1 , . . . ,zMuh!CGS~z1 , . . . ,zM !,
~C2!

where

Fs
n~z1 , . . . ,zMuh!5hn)

j

M

~zj2s!~zj2h!.

On Cs
n(z1 , . . . ,zM), e1 acts as a ladder operator, as we a

going to show next.
In order to work out the action ofHKY on holon eigen-

state, we split it into five terms:HKY /(J/2)(2p/N)25hS
T

1hS
V1hN1hQ

↓ 1hQ
↑ . Among those five terms, the only one

that do not commute withe1 are the spin-exchange operat
hS

T and the↑-spin charge propagation operatorhQ
↑ . On the

stateCs
n , hS

T is realized as

hS
TCs

n5CGSH const1
1

2 (
i

M

zi
2 ]2

]zi
2

12(
iÞ j

M zi
2

zi2zj

]

]zi

2
N23

2 (
i

M

zi
2 ]

]zi
J Fs

n . ~C3!

From Eq.~C3!, we derive that

@hS
Te1Fs

nCGS#2e1Fs
n@hS

TCGS#

5CGSH FM2
3

2Ge1Fs
n1(

i

M

zi
2 ]

]zi
Fs

nJ
5CGSH S M1

1

2De1Fs
n1M ~s1h!Fs

n

2s2
]

]s
Fs

n2hn12
]

]h S Fs
n

hn D J . ~C4!

In the sense clarified by Eq.~C4!, e1 commutes withhS
V ,

hN , andhQ
↓ . On the other hand, it does not commute w
2-15
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hQ
↑ . Indeed, since, in order to derive the action ofhQ

↑ on Cs
n

we have to express the state in terms of the↓-spin coordi-
nates, we must do the same withe1. In order to do so, we
notice that$zj%, $h j%, h, ands taken all together are the se
of the Nnth roots of 1. Therefore, we obtain

z11•••1zM1h11•••1hM1h1s50,
-
s

lan

19511
which implies

e1~z1 , . . . ,zM !52e1~h1 , . . . ,hM !2h2s. ~C5!

The action ofhQ
↑ on e1Cs

n gives
@hQ
↑ e1#Cs

n5CGSH FN221

12
1

n~n2N!

2 Ge1Fs
n~$h%uh!2FN21

2
2nGhn11

]

]h F S 2h2s2(
j

h j DFs
n~$h%uh!

hn G
1

1

2
hn12

]2

]h2 F S 2h2s2(
j

M

h j DFs
n~$h%uh!

hn G1
sh

~s2h!2 F2(
j

h j22sGFs
n~$h%us!J

5CGSe1@hQ
↑ Fs

n#~h1 , . . . ,hMuh!1FN21

2
2nGhFn

s~h1 , . . . ,hMuh!2hn12
]

]h S Fs
n~h1 , . . . ,hMuh!

hn D
1

h

h2s
Fs

n11~h1 , . . . ,hMus!. ~C6!
.

Equation~C6! yields the result

@hQ
↑ ,e1#Cs

n5CGSH h
h

h2s FFs
n~z1 , . . . ,zMuh!

2S s

hD n

Fh
n~z1 , . . . ,zMuh!G

1hn12
]

]h S Fs
n~z1 , . . . ,zMuh!

hn D
2nhFs

n~z1 , . . . ,zMuh!J . ~C7!

Upon summing Eqs.~C4! and ~C7!, we derive the basic re
lation we need in order to work out the recursion relation

F HKY

J

2 S 2p

N D 2 ,e1GCs
n5S M1

1

2De1Cs
n1M ~s1h!Cs

n

2s2
]

]s
Cs

n1h
h

h2s (
m50

M

3Fsm2S s

hD n

hmGCmn2nhCs
n ,

~C8!

where we have introduced the one-spinon one-holon p
wavesCmn defined in Sec. VI B.

In order to further manipulate terms in Eq.~C8!, let us
consider, now, the identity
,

e

h
h

h2s (
s

s2k

N (
m50

M Fsm2S s

hD n

hmGCmn

5 (
m50

M

Cmn

h11m2k

N (
$s/h% F S s

hD n2k

s

h
21

2

S s

hD m2k

s

h
21

G
5

1

N (
m50

n21

Cmnh
11m2k (

$s/h%
(
r 50

n2m21 S s

hD m1r 2k

2
1

N (
m5n11

M

Cmnh
11m2k (

$s/h%
(
r 50

m2n21 S s

hD n1r 2k

.

~C9!

~The symbol($s/h% means that we have to sum overs/h
PSN).

Suppose, now,n2k11,0. In this case, the sum in Eq
~C9! over m from n11 to M will give 0, while the second
sum will be reduced to

(
m50

k

Cmnh
11m2k (

$s/h%
(
r 50

n2m21 S s

hD m1r 2k

.

On the other hand, ask2n11>0, the only nonzero term in
the sum will be given by

2 (
m5k11

M

Cmnh
11m2k (

$s/h%
(
r 50

m2n21 S s

hD n2k1r

.
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In order to write down the action of@HKY ,e1# on the plane-
wave statesCkn , we multiply both members of Eq.~C7! by
s2k and sum overs. By using Eq.~C9!, it is straightforward
to derive the following equations.

If k2n11,0,

F HKY

J

2 S 2p

N D 2 ,e1GCkn

5S M1
1

2De1Ckn1~M2k11!Ck21,n

1~M2n11!hCkn1 (
m50

k21

Cmn

h11m2k

N

3 (
$s/h%

(
r 50

n2m21 S s

hD m2k1r

. ~C10!

If k2n11>0
-
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F HKY

J

2 S 2p

N D 2 ,e1GCkn

5S M1
1

2De1Ckn1~M2k11!Ck21,n1~M2n!hCkn

2 (
m5k11

M

Cmn

h11m2k

N (
$s/h%

(
r 50

m2n21 S s

hD n2k1r

. ~C11!

Let us now work out the basic recursion relation in bo
cases.

Case k2n11,0.
In this case energy eigenstates are given by

Fkn5(
l 50

k

alFk2 l ,n2 l .

~see Sec. VI B for the definition of the coefficientsaj ).
Therefore, we have
F HKY

J

2 S 2p

N D 2 ,e1GFkn5(
l 50

k

alF HKY

J

2 S 2p

N D 2 ,e1GCk2 l ,n2 l

5(
l 50

k

al S M1
1

2De1Ck2 l ,n2 l1 (
l 50

k21

al~M2k1 l 11!Ck212 l ,n2 l1(
l 50

k

al~M2n1 l 11!Ck2 l ,n2 l 11

1 (
l 50

k21

al (
m50

k2 l 21

Cm,n111m2kF 1

N (
$s/h%

(
r 50

n2m21 S s

hD m2k1r G . ~C12!

From Eq.~C12!, we get

~Ek21,n2Ekn2M2 1
2 !^Fk21,nue1uFkn&

5 (
l 50

k21

al~M2k1 l 11!^Fk21,nuCk212 l ,n2 l&1(
l 50

k

al~M2n1 l 11!^Fk21,nuCk2 l ,n112 l&1^Fk21,nuCk21,n&

5@M2k121b1~M2n11!1a1~M2n12!#^Fk21,nuFk21,n&5~M2k1 3
2 !^Fk21,nuFk21,n&, ~C13!
~notice that, from their definition, we havea1521/2,b1
51/2). Equation~C13! may be recast in the following com
pact form:

^Fk21,nue1uFkn&

^Fk21,nuFk21,n&
52

M2k1 3
2

2~M2k11!
. ~C14!

Case k2n11>0.
In this case we have

Fkn5 (
l 50

M2k

alFk1 l ,n1 l .

Equation~C12! now takes the form
F HKY

J

2 S 2p

N D 2 ,e1GFkn5 (
l 50

M2k

al S M1
1

2De1Ck1 l ,n1 l

1 (
l 50

M2k

al~M2k2 l 11!Ck1 l 21,n1 l

1 (
l 50

M2k

al~M2n2 l !Ck1 l ,n111 l

2 (
l 50

M2k

al (
m5k1 l 11

M

Cm,n111m2k

3
1

N (
$s/h%

F (
r 50

m2n21 S s

hD n2k1r G . ~C15!
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From Eq.~C15! and by working exactly as in the previou
case, we get the identity

~Ek21,n2Ekn2M2 1
2 !^Fk21,nue1uFkn&

5~M2k11!^Fk21,nuFk21,n&, ~C16!

which yields the relation

^Fk21,nue1uFkn&

^Fk21,nuFk21,n&
52

M2k11

2S M2k1
1

2D . ~C17!

In order to complete the recursion procedure, we need
more induction relation that is derived by inserting in t
product^Fabue1uFcd& the producteMeM* 51, where

eM~z1 , . . . ,zM !5z1•••zM .

From the definition of scalar product, Eq.~25!, it is straight-
forward to show that

^Fabue1uFcd&5^@~eM !2Fab#ue1u@~eM !2Fcd#&

5^FM2c,M2due1uFM2a,M2b&. ~C18!

By applying Eqs.~C18! to ~C13!, and by using Eq.~C17!, we
obtain

^Fk21,nue1uFkn&5^FM2k,M2nue1uFM2k11,M2n&

52
k

2S k2
1

2D ^FknuFkn&. ~C19!

By putting together Eqs.~C15! and~C19!, one finally obtains

^FknuFkn&

^Fk21,nuFk21,n&
5

S k2
1

2D S M2k1
3

2D
k~M2k11!

, ~C20!

which provides the formula for the norm of the one-spin
one-holon energy eigenstates in the casek2n11,0,

^FknuFkn&5NM11
~2M !!

2M S M1
1

2D G@M2k11#GFk1
1

2G
GFM2k1

3

2GG@k11#

.

~C21!
In the complementary case,k2n11>0, we may follow the
same step to prove that

^FknuFkn&5^FM2k,M2nuFM2k,M2n&

5NM11
~2M !!

2M S M1
1

2DGFM2k1
1

2GG@k11#

G@M2k11#GFk1
3

2G .

~C22!

APPENDIX D: SOLUTION OF THE EQUATION
OF MOTION FOR THE ONE-SPINON ONE-HOLON

WAVE FUNCTION

In this appendix we will derive the solution to the equ
tion of motion for the relative coordinate part of the spino
19511
ne

-

holon wave functions,pmn(z),pmn8 (z). In order to do so, let
us consider first the casem2n11,0, in which we express
the solution to Eq.~79! as a power series ofz,

pmn~z!5(
k

akz
k. ~D1!

From Eq.~D1!, we get the following equation for the coe
ficientsak :

22(
k

kak11zk1(
k

~2k21!akz
k2zM2m(

k
ak50.

~D2!
As k<M2m, the following recursion relation between th
ak’s holds:

ak11

ak
5

k1
1

2

k11
. ~D3!

Equation~D3! is satisfied by

ak5

GFk1
1

2G
GF1

2GG@k11#

. ~D4!

To calculateaM2m11, we need the following identity, valid
for any positive integerR (C0 is a closed path centered a
z50):

(
k50

R GFk1
1

2G
G@k11#

5 (
k50

R R
C0

dz

2p i

1

zk11

1

A12z

5 R
C0

dz

2p izR11

zR1121

z21

1

A12z

5 R
C0

dz

zR112p i

1

~12z!3/2

52

GFR1
1

2G
G@R11# S R1

1

2D . ~D5!

Since the recursion relation foraM2m is

22~M2m!aM2m12~M2m2 1
2 !aM2m212(

k
ak50,

~D6!
equation~D5! implies aM2m50 and

pmn~z!5 (
k50

M2m21 GFk1
1

2G
GF1

2GG@k11#

zk. ~D7!

Equation ~D7! provides the formula forpmn(z) used
throughout the paper.

The same steps followed in the casem2n11,0 allow
us to find the spinon-holon wave function in the casem2n
11>0, provided the coordinatez is substituted withj
51/z.
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