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By deriving and studying the coordinate representation for the one-spinon one-holon wave function we show
that spinons and holons in the supersymmaetdcmodel with 12 interaction attract each other. The interac-
tion causes a probability enhancement in the one-spinon one-holon wave function at short separation between
the particles. We express the hole spectral function for a finite lattice in terms of the probability enhancement,
given by the one-spinon one-holon wave function at zero separation. In the thermodynamic limit, the spinon-
holon attraction turns into the square-root divergence in the hole spectral function.
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. INTRODUCTION of the Haldane-Shastry mod¢HSM),2%'! a model for a
strongly correlated 1D system with no charge degrees of
Landau’s Fermi-liquid theory applies to interacting elec-freedom. We showed that spinons interact, although in the
tron systems that can be adiabatically deformed to a Fernthermodynamic limit the energy of a many-spinon solution is
gas. If the interaction is smoothly switched off, the spectrumadditive. We also showed that their interaction is responsible
of a Fermi liquid reduces to the spectrum of a noninteractingor the lack of integrity of spin waves against decay into
fermionic system. The excitations of a Fermi-liquid are givenspinons, the true low-energy excitations of the system.
by quasiparticles and quasiholes. Although their lifetime may In this paper we generalize the formalism introduced in
be short, it always becomes infinite at the Fermi surfage.  Ref. 9 to study the interaction between spinons and holons in
one is concerned only with energies close to the Fermi suran exact closed-form solution of the supersymmetric exten-
face, Fermi-liquid’s picture applies to a wide class of corre-sion of the HSM: the supersymmetrie] model with 1f2
lated systems. Experimentally, Landau quasiparticles are obnteraction[Kuramoto-YokoyamaKY) model?]. The KY-
served as a resonant peak at the Fermi surface in the spectrabdel is a system of electrons located at the sites of a circu-
density of states measured at fixed momentum. lar lattice, where double occupancy of a site is forbidden by
Nevertheless, there are several low-dimensional stronglgtrong Coulomb repulsion. Charge hopping, Coulomb inter-
correlated systems where Landau’s picture breaks down. laction, and spin-spin antiferromagnetic interaction are all in-
Luttinger liquids the spin and charge degrees of freedonversely proportional to the square of the chord between the
“separate” and the quasiparticles and quasiholes are noorresponding sites. Charge vacancies at some @itde9
longer elementary excitatiods.The same phenomenon was may be created by filling the system with fewer electrons
discovered by means of Bethe-ansatz-like technigues in exhan the number of sites. In the KYM one is concerned with
actly solvable models, e.g., the supersymmetsit model  both spin and charge degrees of freedom.
with 1/r? interaction, which we study in this papkr. We investigate the basic features of the KY model at half-
Physically a particle or a hole injected in a strongly cor-filling by employing a formalism based on analytic variables
related chain breaks up into particles carrying spin, but n@n the unit radius circle. As in the case of the HSM, it is
charge(spinong and charge, but no spiimolong. The quan- easier to construct and visualize the spinon and holon exci-
tum numbers of particles and holes “fractionalize.” Spinonstation by using a real-space formalism than by using the
and holons are the true elementary excitations of the stronglgethe-ansatz formalism. Within our formalism we derive a
correlated chain® When widely separated one from each “real-space” representation of the one-spinon one-holon
other, spinons and holons propagate independently, in gemvave function as a solution of an appropriate equation of
eral, with different velocities. Such a phenomenon is usuallynotion.
referred to as “spin-charge separation.” As a consequence of By taking the thermodynamic limit of the exact solution
spin-charge separation, the quasiparticle peak disappears aofithe equation of motion, we find that the probability of
is substituted by a broad spectrum. This was experimentallfinding a spinon and a holon at large separations from each
detected in angle-resolved photoemission spectroscopy ewther is independent of the distance between the particles,
periments on quasi-1[one-dimensionalsamples. while it is greatly enhanced when the two particles are on top
Using Bethe-ansatz solutions of 1D models, one can worlof each other, a phenomenon we refer to as “short-distance
out the energy of a many-spinon many-holon state. In thepinon-holon probability enhancement.” In the thermody-
thermodynamic limit the total energy is the sum of the enernamic limit, the spinon-holon interaction assumes the same
gies of each isolated particle. However, this does not implyform as the spinon-spinon interaction derived in Ref. 8, al-
that spinons and holons do not interact. In recent pdgers though the corresponding equations of motion are com-
we carefully studied spinon interaction in an exact solutionpletely different. The physical interpretation is the same as in
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the case of the spinon-spinon interaction: a spinon and ampty. The number of empty sites can be tuned by means of
holon do not interact when they are widely separated fronan external chemical potential that fixes the total charge of
each other, while they exhibit a short-range attraction at shothe system. The Kuramoto-Yokoyama Hamiltorifais a
separations® generalization of the Haldane-Shastry Hamiltorniah:

To show the effects of spinon-holon interaction on thewhere charge dynamics is also taken into account. It takes
hole spectral densit,(w,q), we exactly calculate the con- the form
tribution to Ap(w,q) from one-spinon one-holon states,

AP"Y w,q). The spinon-holon interaction has important con- 2 2N
HKY:J(W)

1 . - 1
E —P[Sa‘sﬂ_ig (CZ(O'CBO')

sequences on the functional form Af""{w,q). The prob- = 2=z,
a a" Zp

ability enhancement causes the overlap between the wave
function for the localized hole and that for a spinon-holon 1 1

pair to be significant, although not enough to form a spinon- + 5 (Nt Ng)= 7NaNg— Z} P, 1)
holon bound state. The corresponding matrix element is

enhanced—despite the fact that low-energy density of stat§3nare the Gutzwiller's projector

is uniform at lower energies—so as to make the hole excita-

tion fully unstable to decay into a spinon-holon pair. Taking

the thermodynamic limit of our result, we show that, as the P=]1 (1_CZTCZijlCaT) 2
size of the system increases, spinon-holon interaction turns @

into a square-root singularity at the one-spinon one-holon for th doubl .
creation threshold. Correspondingh”"{w,q) shows no aC(_:rohunts_ or the no-dou g—oc_cupancy constraint. b
Landau quasiparticle’s peak, but it rather exhibits a sharp € site occupation and spin operators are given by
singular threshold, followed by a broad branch ¥u&imilar

features have also been found in the electron addition spec- M= Cg1Cat*Cq Cal » &)
tral function of the KYM at generic filling>

The paper is organized as follows: In Sec. Il we shortly Sa_1 E t a
review the KY Hamiltonian and its supersymmetry; in Sec. Y =, CaoTo01Cac’ s (4)

Il we introduce the ground state of the KY model at half-

filling and its representation as a function of analytic vari-where r®,a=x,y,z, are Pauli matrices. An empty site corre-
ables on the unit circle. At half-filling, the ground state is thesponds to a charge-1 hole that can tunnel to nearby sites by
same as the ground state of the HS model—a disordered spineans of the same inverse-square matrix element character-
singlet. We will briefly review some properties of the groundizing the spin exchange and the charge-repulsion term in
state, already discussed at length in Ref. 9. In Sec. IV we+,. .

analyze the one-spinon solution and review its relevant prop- Usual bosonic symmetries of &-{)-like model are total
erties. In Sec. V we focus on the one-holon solution a”dspin, corresponding to the operat&==,S,, and total
derive its relevant properties. In Sec. VI we derive the actionparge, corresponding to the operatdi==,n,. The

of My on the one-spinon one-holon states, the energy eigensqyivalence of energy scales for magnetism, charge trans-
values, the corresponding eigenvectors, and their norm; iot and charge interaction causes the KY Hamiltonian to be

Sec. VIl we write the Schudinger equation for the one- g,persymmetric, in the sense that it commutes with the elec-
spinon one-holon wave function, whose solutions are simplg.,, or hole injection operatorsQ, =3 Pc,,P,Q"
(o a aog’ o

polynomials. From the behavior of the one-spinon one-holon:2 pct p
H H 1 H a ao "

wave function, we mfer the nature of the mtgracnon betwe_en As in the Haldane-Shastry Hamiltonian, since the com-
spinons and holons: a short-range attraction. The physical iablez li h it circle #* —7- 1) the |
consequences of such an interaction are discussed at Iengﬁl?x.va”a ez lies on the unit circle ¢ —Z ), the Interac-
. . : ion is an analytic function of the coordinates, that is,
in Sec. VIII, where we rederive an exact expression for the
contribution of one-spinon one-holon states to the hole spec-
tral function in terms of the spinon-holon wave functions and 1 ___ Za%B
rigorously prove that this contribution is completely deter- |z, — 2|2 (z,—25)%

; . . . a =B a “p
mined by the spinon-holon interaction. In the thermody-
namic limit spinon-holon interaction turns into the square-Throughout the paper we use the representation in terms of
root divergence in the hole spectral function, obtained in Refthe analytic variableg,, .1®° This turns out to be very useful
14. In Sec. IX we provide our main conclusions. for describing the properties of spinons and holons in real

space.

II. KURAMOTO-YOKOYAMA HAMILTONIAN

. . . Ill. GROUND STATE
The Kuramoto-Yokoyama model is defined on a lattice

with periodic boundary conditions. Sites are parametrized by In this section and in the following one we discuss the
the Nth roots of unity,z, (=1, ... N.) Strong electron ground-state and the one-spinon eigenstates of the KY model
repulsion forbids double occupancy at each site. Thereforet half-filling. At half-filling the KY model reduces to the HS
sites can be occupied by dnor a| electron, or they can be Hamiltoniart®!!
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22N & .8 As W gis a spin singlet, it takes exactly the same form if
HHSZJ(W) a—ﬁz. (5)  expressed either in terms of thé-spin coordinates
a<p |z, 24 Zy, ...,2Zy, or of the | -spin coordinatesy, . ..,ny, that

Both the ground-state and the one-spinon eigenstates are ti¥e

same as for the HS model. Since in Ref. 9 we have already

applied our formalism to study basic properties of the HS

model, here we will only briefly review the main results in Vedzy, oo Zm)=Yed( 71, - - 1) 9
view of their extension to states where holon excitations are

present. . . . . .
Equation(9) is proved in Appendix A, where we derive the

formulas to relate the representation of the states of the sys-

tem in terms of]-spin coordinates to the representation in
Let N be even. We first give the representation of theterms of | -spin coordinates.

ground statd W) in terms of thez coordinates and then In the thermodynamic limit, half-odd spin chains exhibit a

derive its energy|W g9 is defined in terms of its projection gapless spectrum, although they are not allowed to dfder.

onto the set of states withl = N/2 spins up and the remain- Accordingly,| ¥ s is a disordered spin liquid state, and the

A. Ground-state wave function

ing spins down. Ifzy, ... ,zy are the coordinates of the spin-spin correlation function, x(2,)
up-spins, one defines the statéz;,...,zy) as: =(V¥gdS;S,|Veo/(Vsd¥sy, falls off with the distance
|z, ... zwy=T1}", S TI_,cl |0) where|O) is the empty as (~1)*/x, thus showing absence of spin order.

state. The projections are given by

C. Ground-state energy

At half-filling, |Wsg is the ground state oftxy, with
eigenvalue

M M
Vedzy, ... ’ZM):JEK (zj—zk)zj[[1 z;, (6)

where W5 is a polynomial in the analytic variables
Zy,....Zy. Its norm was first computed by Wilsbhby

using the following identity: 2 5
" HKY|‘I’GS>=HHS|‘I’GS>:_J<2_4 N+J Ves).
cu= > Il lz—-z* (10
21, .y Zm 1<j
M M 2 . . -
[N dz dzy 1- Zi Equation(10) has been derived originally by Haldane and
“\2mi 7, T zv i z Shastry’** In Ref. 9, we rederived it by means of our own
technique, consisting in substituting sums over spins on the
w (ZM)! lattice with derivative operators acting on the analytic exten-
=N I (7). sion of Wz, . .. zy). Thezj's are allowed to take any

value on the unit circle. After computing the derivatives, we
Basic properties o’ s follow in this section, together with  constrain them again to lattice sites. In this section we review
their derivation. our technique, in view of its generalization to the case where
the filling is #1/2 and the dynamics of the system is de-
scribed by the full KY Hamiltonian.
Since[S;S;\IfGS](zl, ...,Zy) is identically zero unless
The ground state is a spin single¥ s is annihilated by  one of the arguments,, . .. ,zy equalsz,, we have
both S* and S™. S W9 =0 becausg¥ g has an equal
N s's;
2 T _ |0 \PGS (211 s 1ZM)

B. Singlet state

number off and| spins, while

a=1
SR _gg:;\lfs(z Zj_1,23,Z Zn)
:Ilml 1|—|[21ZLJ =1 57 |Zj_ZIB|2 G 1y - b =114815 41 - - - &M
z;—0'= |l a=
N—2
| _ z Z}+1A i' (\PGS(Z:L, e ,ZM)] (11)
X—Wedzy, ... .zZw)=0, “s 1 Jz z '
Z;
8
® The coefficientd\| are calculated in Ref. 9. They are zero for
sinceEZ‘zlz'a=N5|0(mod N). N>I>2. Therefore, Eq(11) can be rewritten as
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M ((N=1)(N-5)
3 | s,

1 \I}GS(Zla e 1ZM)
+-7—
2 J(QZ Zj

_[N(N—l)(N—S)

24 2

2z

M
+J¢2m(21 Zk)(zj Zm)

XWedZy, -+ - Zy)

N &
8 i*k|Zj_Zk|2

]\Pes(zl, co0Zy). (12

The “Ising-spin term,” on the other hand, provides:

N Z oz
§S
|:{2 Bz]‘yGS (ZZI.!"'!ZM)
B#a |Za_zﬁ|

_[_N(N2—1)+§ 1

Adding up Egs(12) and(13) provides(10).

Using the factorization property ¢fs, Shastry proved

that| ¥ sg) is the actual ground state &f, at half-filling.*°

The same proof can be rephrased within our formalism, a

discussed in Ref. 9.
The crystal momentum of the state, is defined(mod
21r) by the equation

Vooz1Z, ... Zw2)=€Wsdzy, ... Zv), (14

wherez=exp(27i/N) . From Eq.(14) g can be either 0 orr,

according to whetheN is divisible by 4 or not. In the former
caseWV s equals itself, when translated by one lattice con-
stant, while it equals negative value of itself in the latter

case.

Other relevant properties ¢¥ o) are discussed in detail

in Ref. 9 and will not be analyzed here.

IV. ONE-SPINON WAVE FUNCTION

PHYSICAL REVIEW B 65 195112

is created by constraining the spinsdb be |, in a surround-

ing spin singlet se¥>° Since correlations in the ground
state are short ranged, in the thermodynamic limit it makes
no difference whether one begins with an odd or an even
number of sites. Therefore, in the thermodynamic limit, there
is no way to distinguish between chains with odd number of
sites or chains with even number of sites. States with half-
odd spin are alleged eigenstatesffy at half-filling with an

odd number of spinons and no holons. In this section we
briefly review the one-spinon wave function and discuss its
properties. This was first studied by Haldane and Shatty,
and discussed at length in Ref. 9 within the framework of the
formalism of analytic variables.

A. One-spinon spin doublet

Let N be odd andV =(N—1)/2. The wave function for a
localized spinon as takes Haldane’s forfi!!

M M

YRz, ... ,zM)=]H1 (zj—s)zji];[j (zi—z)? (19
wherez,, ...z, denote again the position of thespins
andsis the coordinate of a lattice site where the spin is fixed
to be].

By definition, ¥'¢P is an eigenstate 08* with eigenvalue
—1/2. In order to prove that it is a spiii/2) state, we need
to show thatS™ annihilates it. Indeed, per E¢8) we have

E S e (16)
Zg#Zg
Which proves thatV'e? is the | -spin component of a spin
doublet.
WAzy, ... ,zw) is a polynomial of degree less thah
+1 in each variableg;. Therefore, we may again apply
Taylor's expansion technique used to calculate the ground-
state energy. Doing so, we find

)H-E(NZ 1)

J[2m\?

HKYW?p:E(W)
M N

+€(4M2—1)—§M2]\If§p, (17)

provided that\ satisfies the following eigenvalue equation
for dP=11}"(z,—s):

The elementary excitations above the ground state of a ) 2 N-3 . .
correlated 1D electron system are not Landau’s quasiparti- M(M—-1)—s"— -~ 2 M- S7s P=ADS
cles, but rather spinons and holons. Spinons have been iden- (18)

tified as the elementary excitations of a sflii2) 1D anti-

ferromagnet. They can be thought of as localized spin defects One-| -spinon energy eigenstates are given by propagating
carrying total spincl/2), embedded in an otherwise feature- one-spinon plane waves,

less disordered singlet spin sea. As spinon excitations appear
in the KY chain at any filling, we study spinons at filling- 1

(1/2), when the KY model reduces back to the HS model. m(Zes - Z) = N z (s )" Nz, .o 2w).
One-spinon states appear as states of the chain with an odd (19)
number of sites. In this case, the minimum possible value for
the total spin is 1/2, and the state for a localized spinos at  The energy eigenvalue is
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2 1\ J(2m\?
spy ) 1| _ (= S| spy sp 2
Hiv| Vo) | J<24)(N N)+ 2( N ) (PR Zle’ZM U zy, - zw)]? (29
N—1 s For the Haldane-Shastry model, we derived the formula for
AMl———m v (200 Eq. (25) in Ref. 9. By employing a recursion relation be-
. tween(W WP and (WP | PP 1), we expressed all the
with 0O=sm=(N—1)/2 and\ =m[(N—1)/2—m]. norms in terms ofn and of the constant,, introduced in
As the total crystal momentum of the sta:") is given  Eq. (7). The induction relation is
by
1) (M +1)
T 2m 1 SPp S LY -m
P=—N——| m+—| (mod 2m), (22 (Yl ve) = 2 (26)
2 N 4 PSP |\prsP 1 !
(W WE) m( M= m+
the total energy may be rewritten as 2
which recursively gives
s w2 5 3 s s
7_[KY|\I,m =1-J ﬁ N+N_m +E(Qmp) |‘Pmr>’ 1 1
22 F[M+1]T|m+ 5 |T|M—m+ 5
that is, the sum of a ground-state contribution, plus the ki- F[—}F M+ Z|T[m+1]T[M—m+1]
netic energy of the propagating spinon. The one-spinon dis- 2 2
persion relation is correspondingly provided by (27)
I[ ()2 V. ONE-HOLON WAVE FUNCTION
s3] ~@moam. @3

Holons are charged, spin-0 elementary excitations of the
As extensively discussed in Refs. 10, 11, and 9, the ong<uramoto-Yokoyama Hamiltonian. They are constructed by
spinon dispersion relation shows the typical features ofémoving an electron from the center of a spinon. The state
spinon excitations. It spans only the inner or outer half of thefor a localized holon ahy is given bycy  [¥32;, ), where
Brillouin zone, depending on whethbr—1 is divisible by 4 | W) is the state defined in E¢L5). By construction, in the

or not, which corresponds to the absence of negative-energyy model, the holon is the supersymmetric partner of the
states, i.e., to the absence of “antispinons.” The spinon disspinon. However, unlike in the spinon case, the Brillouin

persion at low energies is linear nwith a velocity zone for one-holon states is not halved, as both negative- and
positive-energy holons can be constructed. In this section, we

T are concerned mainly with holon “kinematics.” We derive
vSpi”O”ZEJ' (24 the one-holon eigenstates, their norm, their energy, and their

crystal momentum. In particular, we focus on negative-
The half-bands of single elementary excitations for boafe  energy one-holon states, since these states are the ones rel-
the only S=1/2 states without extra degeneracies. Theevant to the spinon-holon interaction. In the following sec-
ground state of the odi¥-spin chain is fourfold degenerate tions we analyze holon and spinon dynamics—the
and is given by|¥;") for m=0 and (N—1)/2 and their] interaction between spinons and holons and its relation to the
counterparts. This corresponds physically to a “leftover” instability of the hole excitations in the KY model.
spinon with momentumt 7.

The spin density in the stat# as a function of the A. One-holon spin singlet

spinon position is uniformly zero, as appropriate for the dis-
ordered spin singlet, except for an abrupt dip centered at
=s.9 The dip is identified with a localized spinonsfThere-
fore, ¥'3” may be thought of as the wave function for a lo-

Let N be odd andV =(N—1)/2. The wave function for a
propagating, negative-energy holon is given by

M M
calized spinon as. Starting from such an interpretation, in whoz, zM|h)=(h)”H (z-—h)z-H (zi—2,)?
Ref. 9 we showed that, although spinons are collective exci- ne ' o UPTR '
tations of a strongly correlated system, they can still be (28

treated as real quantum-mechanical particles. In this paper

we will generalize our formalism to states where bothWhereZl’ o ,zM.clienote the positions of th: sites anch
spinons and holons are present denotes the position of the empty site, all others bejing

Also, 0=n=<(N+1)/2. Different from the spinon case, in
Eq. (28) the holon coordinaté is not a quantum number but

B. The norm a coordinate variable. Therefore, unlike localized one-spinon
The squared norm of the one-spinon energy eigenstates &gigenstates¥ ° takes a well-defined crystal momentum, as
defined as the scalar product we will show later.

195112-5



B. A. BERNEVIG, D. GIULIANO, AND R. B. LAUGHLIN PHYSICAL REVIEW B 65 195112

WM is a spin-singlet state. Indeed, by definition its total [hy¥"%)(z,, . .. zu|h)
component of the spin alorgis zero. Following the same
steps leading to Eq16), we also get _ 1 b E(H fng- En 0
@B |za—2zg? 127 Plog s

SWNO=g pho=, (29)

3
_ - ho
which proves thatll° is a spin singlet. 4} Py ](Zl' - zulh)

1—N?2
B. Negative one-holon energy eigenstates = 54 \[rﬂo(zl, cooZulh). (34

|-charge kinetic energy

[hgqf';"](zl, Cozulh)

\Ifﬂo is an eigenstate dfty with energy eigenvalue given
by

Hicy| Wh [ J("Z)<N l) r
Kyl¥n/)=) 7Y\ 51 N Pc, C
2 N = —mzqfﬂ‘)](zl, o zulh)
J(2m\? +1)) 78 | |2a= 24
+ | — ——{|¥
2N ) n(n 2 )}| n0>1 (30) _ M+1 Zg(zﬁ_h)k(i)k[wgo(zln o ,ZM|h)]
where 0sn<(N+1)/2. z57h k=0 k!|zz—h[2 | dh hn
In order to prove Eq(30), let us first splitH xy as follows: B N2-1 n(n—N) . N1 hn+1‘9
I e ) L
ﬁHKY =hZ+h¥+hy+hb+hl (31)
J[2m sTUS T INTTR TR 1, ||z, ... zulh)
2N T o : (35

We define the various terms when calculating their contribud -charge kinetic energy

tions to the total energy. hLh h
Spin-exchange term (ho¥al(zy, - zulh)

Pc,c

[hiwhe)(z zulh) =3 [ Aol (z,, L zylh). (36)

s¥nll4Ly - vlm T |Za_zﬁ|2

PS; SeP o To properly work out the contribution in E¢B6), we have to

- 78 |z~ 2 |2\Pn (z1, - zulh) expressl’ﬂoin terms of the| -spin coordinatesy,, ... ,7y -

@ B In Appendix A we prove that

1-N2 X ho _yho
= >4 -2 5 h" ‘“I,n (Zl,...,ZMlh)—\Pn(ﬂl,...,77M|h). (37)
1 |z~ Therefore, we obtain

N-3 d 2wz, ... zulh) 2
4 hnt1 2 _pn2 2 n _ L ah _|[N“=1 n(n—N) N—-1
2 ah ahZ]{ hn [hQ\Ifno](Zl, PR ,ZM|h)— 12 + 2 hn_ 2
(32 21 (oh
L -n h”+1i+lh“+2&_ Yol - -l
Spin-Ising term oh 2 oh? hn )
By using the identity
PSZSEP ho ho
=| 2 Wl (zg, . zulh) L 0 [, )
a#p |z,—2g] hhtl—
dh hn
_{M 1w 1 N(Nz—l)] 1 Mo
7 lz—z* T |z—h? 48 :[T_; h_zl]\lfﬂc’(zl, . zulh)
j
XUz, . zulh). (33 )
_[(N_l) hn_hn+1i} \I;nO(Zl’ EC !ZMlh) (39)
Electrostatic repulsion energy 2 dh h" '
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and the identity

hn+2i \1,20(771,...
dh? h"

(N-1)(N-2) & [ h \?2]
=H—3 +2;<h_zj) h

Jd
_ _ n+1___
(N=Dh"

2| [ Wz, ... zylh)
hn+2 , 40
ath h" 40

we finally derive

,77M|h)J

[hQ‘I’ho] (z1, - .. .zulh)
= n(n 1 % hn+2 hn+li
T (h—z )2 h
1 9?
+= h”+2 ]\I’h"(zl, ..zulh). (41)
oh?
Adding Eqgs.(32)—(35) and Eq.(41) all together, we find that
[Hiy 0124, . . . zulh)
_J(2m\?[ N(N*-1) M1
“2\N) |7 e MY
XUz, . zulh). (42)

This is the formula we had to prove.

C. Crystal momentum

The state] W) is a propagating holon with crystal mo-

mentum

2
qn :_N+W

n— E) (mod 2m), (43

with the definition

W(z,7, ... zuzlh2)=expigl)W(z,, . .. zy|h).

(44)
Rewriting the eigenvalue as

2

ar
HKY|‘I’20>:[ - ( 24

5 3
N+ Nz) +E<q2°)] wRe),
(45)
we obtain the dispersion relation

J[ [ a\? ho
(E) _(Qn )2

E(ap0)=—5

> (mod ). (46)
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2 i
<Q, > [~ AOS Oy R <>
. .
ob ‘ R -
—4r/N -2n/N 0 0 2n/N  4n/N
0.5 -
<, > G oo
0
05 . . . o]
—4r/N -2n/N 0 0 2n/N  4n/N

FIG. 1. Spin and charge profiles of the localized holdrﬂg)

defined by Eq(47). 6 is defined a®¥= —iln(zZhy), wherez is the
independent variable.

persion relation around the band minimum is quadratiq, in
while it is linear ing near/2, where the band closes.

Positive-energy one-holon eigenstates may be constructed
by supersymmetrically rotating one-spinon eigensttftes.
Their energy is given byE(q'°)| and the momentum spans
the remaining half of the Brillouin zone. The corresponding
dispersion relation is plotted in Figs. 1 and 2. Since for the
purpose of studying spinon-holon interaction we need
negative-energy holon states only, we do not discuss here
positive-energy holon states. We also need the wave function
for a localized holon at sitho,|\lfﬂg>, which is obtained by

Fourier transforming the propagating holon wave function to
real space,

(N+1)/2
wo= >  hy"whe, (47
0 n=o0
2 .
<Q, > S At O R -
. .
oL | o B
“4n/N -2n/N 0 0 2n/N 4n/N
05| ' N
<sh > |- SOSEE SO O mmmeeee <& --
0
05 | .

“4n/N -2r/N ) 0 2n/N  4rn/N

FIG. 2. Upper graph, holon dispersion relation. Positive-energy

We worked out Eq(46) for the case of negative-energy one- holons are unstable towards decay into spinons; Lower, configura-
holon eigenstates. Unlike in the spinon case, the holon distion space foN=9 andN=11 sites
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D. The norm The Ising term gives

The norm of the stat&!° is defined as

2__
[h\S’\PQ](zl,...,zM|h):{Z ! %N 1

(URIwR)= 2 Wz, 2wl 49) AR z-g? 2 12
29,y Zp :h
From the definition of the norm it immediately follows that + E (52)
(WM W) does not depend am The formula for W1 ¥ h°) = |z— h|2

is worked out in Appendix B and is given by
The Coulomb potential term acting on the one-spinon

r E}F[M +1] one-holon wave function reads
2M)!
(w1t M) 1 (49) N
VI. ONE-SPINON ONE-HOLON WAVE FUNCTION The | -spin contribution to the charge kinetic energy gives
As for many-spinon configurations, spinons and holons i h
maintain their integrity when many of them are present in the[ Q¥sl(z, - zu|h)
same state. Therefore, we can diagonafigg, within sub- z,h
spaces with a fixed number of spinons and holons. =_ _ B Nz, ... 2Zml2Zp)
In this section we derive the action &fxy on the one- 2p#h (25— h)?
spinon one-holon eigenstates, diagonalize the corresponding ) N
matrix, and work out the norm of the states. _|NL n(n—N) o N—1 ol ? Vs
12 2 2 dh\ pn
A. Action of Hyy on one-spinon one-holon states ) .
. . N4
To construct one-spinon one-holon eigenstateX pf we +lhn+28_(_s) . (54)
start with states in a mixed representatid#y}, where the 2 h=\ h"
spinon is localized at sitg but the holon is propagating with
momentumqﬂ". For N even andM =N/2—1, we have In order to manipulate thg-spin contribution to the
charge kinetic energy, we need to expr&&¥z,, . .. ,zy|h)

in terms of the|-spin coordinatesy. As in the one-holon
iz, .. ,leh)=h“H (z,——s)(z,——h)zjj];[k (zj— 2%, case, we obtain

(50

where I=n<M + 2. To derive the action of the KY Hamil-
tonian on;, we split it as in Eq(31).
The action of spin-exchange term dr{ provides

’\Pg(zl! L aZMlh):\Pg(Wla e 177M|h)

Therefore, we have

[hXW (2, . . . zy|h) [h5W (71, - . . .7ulh)
72 hz
ZiZg B
—— — I Wiz, ... 24, ... == 2 SV, - l2Zp)
JZT z;azﬂj (7= 2p)? o oI 257h (h=2p)? g
2N+5)Wi— > ! — Pl (M-1) — V(7 7ls)
v i1=1 |- z|? (s—hy2 =
d 9 (Wl N2—1 n(n—N) N—1 Pl
n +1 S — n__ _ n+1
X S—\I’ +h" (9h(h_>‘| [ 12 + 2 \PS 2 h hn
P @ [l 1(h+s 1 7 (Ve sh
2l g2 2 | s, o102 +—h"t2—| —=| + VX ny, ... mmlS).
S &SZWS h ah2< hn)+ Z(h—s) 2 &hz( hn (S-h)z 3(771 77M| )
] PR A (55
X|s—=Wl-h"1—| — (51) , , , ,
dJs dh\ pn By going back tof-spin coordinateg, Eq. (55) provides
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h+s 3 g [Pl
n - n+1 S
s Vs 127 )h ah( )

hn+1i \P_g
oh\ pn

2 n
+£hn+2&_ E)_z 1 P
2 gh2\ h" ) Z |z—h? ®

sh (s)”l .
el (56)

n?—2n+1 (1—n

n
7 Vst

N hs
(h—s)?

h+s
h-s

Adding up all the contributions together, we obtain

v
2

+(M —1)si‘lf”—sz(9—‘1'”
Js S (932 s

— N3+ 19N N
2

hKY\I,rS](Zl, A ,ZM|h):[T+ n---1

1h+s

- S(s—\lf”+(1 n)‘lf”)

s n—-1
qu—(ﬁ) «pg}.

(57)

In the following section we will will solve Eq(57) by work-

N hs
(h—s)?

ing out the basis of one-spinon one-holon states that diago-

nalizehyy .

B. One-spinon one-holon energy eigenstates

To diagonalizehyy, we introduce the propagating one-

spinon one-holon energy eigenstates

S
,zM|h)=2s — Vi@, ... zulh).

(58)

Vn(Ze, - ..

The second and the third rows of E§7) are diagonal in
the basis of the state¥ ,,, and their contribution is given

by
N
€t+n n—1—5)+m(M—m) Vi (59
where
— N3+ 19N
60:4—8

On the other hand, the diagonalization of the “interaction”

term, given by the fourth and the fifth rows of E(b7),

needs further work. By using a straightforward, although te-

PHYSICAL REVIEWGS 195112

h+s
> s l e s—\lf”+(1 n)\If“}
sesN
hs s\t
(h—s)? \Pg_(ﬁ) \PEH
1/h+s d
_ -m] — AN _ n
_;hs {2 oS Vst (2 n)‘Ifs}
. hs - s”‘qun i . 1(h+s
(h—s2l > [n) “hjfT I T 2lhs

=
>
|
[
<
o>
(A
N——

X 7 P+ (1-n)Pl |+ hs Pyl S
S(?S S ( n) S (h-S)Z S h
m

N
=—5(m-n+ 1)«Irmn+;0 N(M=n+1)W o

(60)
if n—m-1>0, and
N M—m
— 5 (=M= W+ ,—20 N(N=m=1)W 0y
(61)

if n—m—1=<0. Therefore the action dfxy on ¥, is given
by

N
[hkyWmnl=| €0t M(M—m)+n n—]_—E”\Ifmn
1
—E(n—m—l)\lfmn
m
_(n—m—1)j2l Vo in | 62)
if m—n+1<0, and
N
[hicyWmn] =| €+ MM —m)+n|{ n=1-=] | ¥y,

1
— E(m—n+ DV i

M-m
—(m—n+1) ,Zl | (63)

if m—n+1=0. Since the Hamiltonian matrix is uppéor

lower) triangular, complete diagonalization is possible. The

energy eigenstates will be linear combinationsity,,

m
:;o aj"l,m_j’n_j (64)

dious, application of basic identities proved in the Appendix

of Ref. 9, one obtains

if m—n+1<0, and
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M-m states by means of mathematical induction. The calculation
D= > aGVmijng (65  is presented in detail in Appendix C. The basic induction
=0 relation in the case—k+1<0 is given by
if m—n+1=0, corresponding to the energy eigenvalues ( 1 3
3| Mo 3
o _J[2m)? " N (Pur Pre) |~ 2 2 72
m=g| ) [t mMmmEnin=img (P 1Py 1) KM—k+1)
1 which provides the formula for the norm of the one-spinon
- E(n— m— 1)} one-holon energy eigenstates
1
if m—n+1<0, and ol _NM+1(2M)! M+1 I'M—k+1]T k+§
- _J 2m) ® N il = kil 2 FM—k+31‘k+1.
Emn_E N €otm(M—m)+n n—l—E > [ ]
(73
+ E(n—m— 1)} In the complementary case;—k+1=0, we obtain
if m—n+1=0. The coefficients, are defined by the recur- (Pucn| Pren) =( Pt -0l Pra k1)
sion relation
1 M 1
1 oM 2
a=— 5 Z aka0=1. (66)
2l =0
1
In terms of spinon and holon moment,,, andE_,, take | M—k+ S |T[k+1]
the same fornk,,,, given by X (74)
. ) ] |q§§3_ 20 F[M—k+1]F k+§
Emn: EGS+ E(Qmp)+E(Qno)_WT- (67)

) ) VII. SPINON-HOLON ATTRACTION
Ennis the sum of the ground-state energy, the energies of an ) ) ) i
isolated spinon and an isolated holon plus a negative inter- N this dsecrt:oln Wt? analyze the Elteracltlon between a
action contribution that becomes negligibly small in the ther-SPINon and a holon by constructing the real-space represen-

T . : tation of the one-spinon one-holon wave function, and by
modynamic limit. Equation$64) and (65) can be inverted. studying the behavior of the corresponding probability as a

The result is function of the separation between the two particles. Our
m exact results show that a spinon and a holon interact through
Vo= bi® e jnmj (68) @ short-range attraction identical, in the thermodynamic

j=0 ' limit, to the atraction between two spinons.

The state for a localized spinon at sgg&and a localized

if m—-n+1<0, and holon at siteho,‘lfsh0 is defined as the Fourier transform of

M—m W1 back to coordinate space
Wnn= j§=:o qu)m+j,n+j (69) M+2
Yo = ho "o, 75
if m—n+1=0. The coefficients are given by sho nzl o 7 (79

1 FoIIowing8 the same steps as for the two-spinon wave
Tlj+= functions>® we define the real-space coordinate representa-
b = 2 (70 tion for a spinon-holon pais™h, "pa(s/hg), as follows:
I 1 '
F|:_:|F[J+1] M+2 n-2 - m
2 ‘Pshoz E E Smho nE bjq)mfj,nfj
=1 m=0 j=0
C. The norm M+2 M M-m
The squared norm of the stafe,,, is defined as + nZl m:2n—1 s™h, " JZO By P jn+j
) M+2 n-2 s
(Cud®n= X [ @iz, 2wl (7D S smhonpmn(_ o,
1 M n=1 m=0 hO
In Fig. 1 we plot the charge and spin profiles for a one-holon M+2 M S
state. In a similar fashion to the two-spinon case discussed in +> > Smhanpr,nn( _) D, (76)
Ref. 9, we compute the norm of the one-spinon one-holon =1 m=n-1 h
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where|® ) is an eigenstate df{xy with eigenvalueE,,,, 10
that is

(@i HKY|\I’sh0> = Emn<q)mn|q'sh0>- (77) p 1% ! ,.’

mn (Y

The matrix elementd | Hyy| sy ) can be written as a ., i,

differential operator acting on the analytic extension of i, R

(®mn| Wsh,), Wheres and hy are understood to take any 0 o —— \

value on the wunit circle. Therefore, by equating 0 n 0 T

(@ mn Hicy| Vshy) 10 Eqn{ P Wsny ), it is straightforward to 0

write down the equation of motion for the one-spinon one- FIG. 3. Left panel|pn(€'?)|? versusg for m=M,n=0; right

holon wave function, which reads panel, the same plot on a log-log scale. The dashed straight line is a

plot of 1/6. The points show small oscillations abou®10scilla-

(Emn— EGs)<q’mn|‘I'sho> tions decrease with the separation between spinon and holon, as it

may be seen by comparison with the dashed line.
=(Pmnl(Hky— EGS)|q’sho>

1
- 2.7\ 2 g\ 9 M-m-1 Fk—l—z
AN ([IM795)%5 Pan(@)= 2 g 2 (8
i P N0 >+1(ho+s) FHF["H]
% dho 2" %dho/ " 2\ho—s for Eq. (79) and
i h i 1) (D P 1
X878 Thogn, ™ (P mn W) lkt5| e
h v Prn(2)= > ————| = (82)
SRRl 2D 78 ot z
s—hy | hy) (PmnlWgn) [ (78) I| 5 Tlk+1]

wherev=M if m—n+1<0, v=0 otherwise. In the differ- for Eq.(80).

ential operator in Eq(78), we recognize the sum of the en- ~ The value of the spinon-holon wave function at zero sepa-
ergies of the free spinon and holon, a velocity-dependerftion between the particles is derived in Appendix D. It is
interaction, which diverges at small spinon-holon separationgiven by

and another term that takes into account the correction for

the case when the spinon and the holon are at the same F[M—m+£
position. By using Eqs(76)—(78), we find the following 1)=2 2 83
equations for the “relative wave functionsp,,,(z) and Pmn(1)= 1 (83)
Pmn(2) (z=s/hy): r|5[TM—m]

d M-m-1 and

dz (12 Pmn(2) + men(lF0 (79 2
. ' m+ E
if m—n+1<0, and Ph(1)=2 (84)

1ym F{E I'Im+1]
d z)

2 -~ bl (2)+ p. (1)=0 Within the framework of our formalism, it is possible to treat
1 1y mm 1) mn spinons and holons, collective excitations of strongly corre-
dl 5 1- z 1- z lated one-dimensional electron systems, as actual quantum-
(80) mechanical particles. We were first able to associate a two-
particle wave function to a spinon-holon pair and to write
if m—n+1=0. down the corresponding equation of motidggs. (76) and
Equationg79) and(80) are first-order “Dirac-like” equa- (78)]. We then worked out the exact wave functions corre-
tions. They are first order because the spinon and the holosponding to each energy eigenva[ls. (81) and (82)].
energy bands have opposite curvature. In this respect, they The squared modulus for the spinon-holon wave function,
differ from the differential equation obtained in the two- |p,n(2)|?, gives the probability for a spinon and a holon
spinon case, which was second ordigéiThe corresponding configuration as a function of the separation between the two
solutions are given by particles. In Fig. 3 we plotp,n(€'?)|? versus the distance
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between the spinon and the holgh,From Fig. 3 the nature e 2
of the interaction between a spinon and a holon may be eas- <X|h2 (ho) ¥cny | Ves)
ily inferred. While at large separatiohp,(e'?)|?> does not AP w,g)=Im| X .

depend o, as it is appropriate for noninteracting particles, " X TN(XIXN(PedVes)

at small separations it shows a remarkable enhancement.

This corresponds to a huge increase in the probability of

configurations with the spinon and the holon on top of each 1

other. The enhancement does not depend on the holon mo- oy 7—(Ex—Ego |’
mentum. AsN gets larger, the probability enhancement peaks

up. It survives the thermodynamic limit, even though the

interaction energy goes to zero, and the total energy becomeghere |X) is an exact one-spinon one-holon eigenstate of
the sum of the energies of the isolated spinon and holon.-|KY,|q>mn> with energyEy=E,,,, andq=2wk/N [below

However, the attraction is not strong enough to create ge discuss why only forward-propagating states contribute
spinon-holon bound state, even in the thermodynamic limitys Eq. (85)].

This corresponds to the absence of a low-energy stable hole Using Aﬁp'h"(w,q) instead of An(w,q) is equivalent to
excitation, and it is what causes the quasiparticle peak t
disappear.

An intriguing feature of the spinon-holon interaction in
the thermodynamic limit is that it has the same power-law M+2 n—2
form as the spinon-spinon interaction derived in Refs. 8 and -~ _ m-n
9. In the right panel of Fig. 3 we pldpmq(e'?)|? on a log- Crgi| V69 ~Fingn,= 25 2: No" Pl 1) Pmn
log scale and compare it with&/The probability falls off as Mi2 M
the first power of the separation between the two particles. YN
This shows that, although the equation of motion for a
spinon and a holon is quite different from the one for two
spinons, the interaction in both cases results in a short-range
attraction, and its effects on the corresponding two-particl¢ Equation(86) basically amounts to neglecting contributions
wave function are basically the same. to ¢y 1| ce) coming from multi-spinon one-holon statps.

Since’Hyy contains the Gutzwiller projectd?, its matrix
elements between states with at least a doubly occupied site
are zero. Therefore, at half-filling,(q,w) takes contribu-

In this section we work ou:” "{w,q), the one-spinon tions only from forward-propagating hole states. Hence, us-
one-holon contribution to the hole spectral functioning Egs.(85 and(86) we obtain
An(w,q). We show that this contributiofwhich provides
guite a good approximation tA,(w,q) for q~0] depends
only on thep,,'s and thep/, s calculated az=1 (that is, as o.h S—m1P2 (1)
the spinon and the holon lay at the same)sitais allows us AR Mw,q)=Im— 242 =0 otin—(En—Eg9)
to obtain for any finiteN a simple closed-form expression for m

(89

gpproximating

he "Prn(D)®mn.  (86)

n=1 m=n-1

VIIl. HOLE SPECTRAL FUNCTION

M+2 1-2

AP " w,q), and to relate it to the spinon-holon interaction. Mz M S ma(pL)A(L)

In the thermodynamic limit, we obtain the previously known + 2 < w+i7—(Emn—Ego)
formula for the contribution of the one-spinon one-holon =1 met g mn 6

states t0AS "{w,q).2* The formula in Ref. 14 shows that (P i P )

there is no low-energy hole pole in the hole spectral function, m (87)

but rather a sharp square-root singularity followed by a
branch cut. These features have also been experimentally

detcted by means of ARPES experiments on quasi-1lEquation(87) shows that only they,,s atz=1 determine

insulator. . . the spinon-holon contribution to the hole spectral function.
The branch cut corresponds to the lack of integrity of theTherefore, the contribution is completely determined by the

hole excitation, which breaks up into a spinon and a holongpinon-holon interaction.

Here we will show that, in the thermodymanic limit, the | et us now analyze the thermodynamic limit of E§7).

probability enhancemenpy,(1) [pyma(1)] turns into the |n the thermodynamic limit, th& functions can be approxi-
square-root singularity at threshold for a spinon-holon pairmated by using Stirling’s formula

As a consequence, we prove that the square-root singularity
in the hole spectral function is a direct consequence of the
interaction between spinons and holons. Therefore, it can be I[z]~m(z—1)* Y~ D), (88)
directly experimentally measured.
We begin with the calculation o&%* "{w,q) for a finite
lattice. In Lehman representation we obtain From Eqs.(87) and(88) we get, in the thermodynamic limit,

195112-12



COORDINATE REPRESENTATION OF THE ONE-SPINON.. ..

M+2 -2
5r—m+|

PHYSICAL REVIEW@ES 195112

equation, whose solution is the spinon-holon wave function
in real space coordinates. By means of a careful study of the
real-space one-spinon one-holon wave function, we show the

AP g, w)~

m(M+1) IZZ m=0 @ +i7—=(Enn—Egs

existence of the spinon-holon interaction and its survival in

the thermodynamic limit. Spinon-holon interaction generates
M a short-range enhancement in the probability for a spinon
and a holon to be on the same site. The attraction, however,
is not strong enough to form a spinon-holon bound state,
which would correspond to a Landau quasihole resonance.

m+ 1 This makes, in the thermodynamic limit, the hole excitation
% Or—m+1 2 89) fully unstable against decay in one-holon multi-spinon states
w+in—(Enn—Egs) M—m and the quasiparticle peak disappear. Correspondingly, in the

) ) N ] thermodynamic limit, the probability enhancement develops
(Notlce_that, in order to s_tablllze the hole occgpa’qon atl, Wenio g square-root singularity followed by a branch cut,
had to introduce a chemical potenti®/4, which is added \pich reflects the ful instability of the hole excitation.
to the en_er_gleEmn.) . . Hence, by means of a sequence of exact, straightforward

By defining the auxiliary variables steps, we prove that spinon-holon attraction is what makes
Landau’s Fermi-liquid theory break down inD1 strongly
correlated electron systems.

21 21
Gsp= 7 ™ Qho:WIa

Eq. (89), in the thermodynamic limit, may be written in the
form already obtained in Ref. 14.

A0 | (nodlsp [7—0
sp h _ o Sp Sp
AP "w,q) 2|mf0 p- “'0 p 9

sp
7d
[ [ S
dho ™ ¥ T Asp
5(q_qsp+qho)

o—ptin— E(qspvqho) .
In the region B=qg= = the integration of Eq(90) gives
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APPENDIX A: FUNCTIONS EXPRESSED IN TERMS
OF |-SPIN COORDINATES

In this section we prove the formulas that express the
states of the KY model in terms of thegspin coordinates,
once the expression in terms of thespin coordinates is

m\?2 m? known. The starting point is the following identity (,z
N _ _ _ : CB
2) G)[J z Talm q)] w. O zreNth roots of the identity,
This formula shows that the spinon-holon probability en-
hancemenlpﬁm(l) turned into a square-root singularity in N_1 N
AP " w,q) at the threshold energy for creation of a spinon- H (24— 2p)= M ———=—. (A1)
holon pair. Because the spinon-holon joint density of states is *ZaT g zozg” B OB

uniform, the main conclusion we trace from our calculation
is that the sharp nonanalytic threshold A" "{w,q) is the

: . : \ The ground-state wave function at half-filling expressed in
direct consequence of spinon-holon interaction.

terms of the]-spin coordinates is given by

IX. CONCLUSIONS

In this paper, we have extended the formalism introduced
in Ref. 9 to analyze spinon interaction in the Haldane-
Shastry model, to the case where also charge degrees of free-
dom are involved. Our formalism allows us to define a
guantum-mechanical real-space representation of the onehereN is even andM =N/2. Let 74, ... ,py be the]-spin
spinon one-holon wave function. We construct a Dirac-likecoordinates. Upon applying EAL), we get

M M
Veozg, ... ’ZM):iEIj (Zi—Zj)Zl—t[ Z, (A2)
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this proves that?{%(z,, ... ,zulh) =¥ (5., . . . .gmlh).
H (zi—z) H zy=(—1)MM= 1)/21_[ (z; —Z,)H z; The one-spinon one-holon staté2(zy, ...,zylh) is
<) " given by
z
_ M(M+1)/21_t[ tH Zt) M
=(-1) - V(zy, ... ,zM|h):h”H (zj—s)(zj—h)
Il (7
Zj 7
i , xH(z—z)Hzt, (A6)
=11 (=211 =, (A3) <
i<j t
which proves thaW ¢((zy, . .. zv) =Yos( 71, - - - 7m)- where N is even,M=N/2—1, s is the coordinate of the
The one-holon wave function is given by 1-spin, andh is the location of the empty site. As in the

previous cases, we have

M M M
oz, ... ,zM|h)=h“1_j[ (zj—h)ill[j (zi—zj)ZH z,

(A4) h" H (ZJ_S) h)H (ZI_Z] H Z;
where nowN is odd, M =(N—1)/2 andh is the coordinate M M
of the empty site. 1T 211 (_)
The same steps as fdf 55 apply to the one-holon wave _nng MM+ 1)2 " t\A
; =h"(—1) ———  h
function. We have
H (zj— )
M M M iz
Il (z=mIl (z-2)%[] = i i i
j <] t <IT (mi=s) (=M1 (= 2?11 .
M M N i 1<j t
I 210 H (A7)
—hN(—1)MM+ D)2 ¢ t 4
1 Equation (A7) provides the proof thaWi(zy, ... ,zy|h)
g 7 =Wnn, ).
The last identity we need refers to the case where the
—hn _h N2 ; A5 spinon and holon are at the same site, which we had to con-
l_i[ (n=m1L (7= 1:[ K (AS) sider in deriving Eq(56). We have
|
M M M
V(zy, ... ,zM|s)=s”H (zj—s)zL[j (zi—zj)ZH z
M M
N
v oo T (Y
—§"(— 1)MM- 1)/21‘[ —s) \ ¢ vt
(Z, h)
H (zj—m)
Zj i
M M
e 2T
H 2 h ) L H (=) 2H (m=s) (7= h)
i
l_i[ (ﬂi)
g\n-1 M M
=—(H) h"LL (=021 = m*I 1 e (A8)
|
Equation(A8) proves the identity APPENDIX B: THE NORM OF ONE-HOLON WAVE
FUNCTION
n—-1

In this appendix we discuss in detail the calculation of the
norm of the negative-energy one-holon statels"? W),

\Pg(zl ..... ZM|S):_(H \Pﬂ(nl llll anh)
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(Uplwy)= 2 ¥z, .zl (8D

Let Pn(z1, - .. ,Zy) be themth degree symmetric polyno-
mial inz,, ... ,zy . One obtain$
M
WOz, ... ,zM|h)=mE:O h™ P (Zy, ... \Zm)
M
XH (Zi_Zj)z. (BZ)
i<j
From Egs.(B1) and(B2), we derive
M M
(‘I}20|\IIEO>ZNE |Pm(zlv '-'sz)|2]._.[ |Zi_zj|4
m=0 2zq,..., M <]
M
= NmE:O (TSP (B3)

The norm of one-spinon wave functioné¥ H¥», has
been derived in Ref. 9, where it has been shown that

1 1
oo TM 1] r m+§F{M_m+§ L (2M)!
(Wl ¥im) = { 1} I[m+1]T[M—m+1] oM
M+
2
(B4)
Therefore, we can rewrite EGB3) as
1](2M)!
<*If2°|‘lf2°>=r[§ —m Imo(D), (B5)

where the polynomiad,,,(z) is the two-spinon relative wave
function, denoted by,,(2) in Ref. 9,

I'I'm—n+1]
Imn(2) = 1 1
F[E}F[m—m— E

1
k+-

2
szo I[k+1]T[m—n—k+1] . (B6)

m-n T

1
F[m—n—k+—

By means of generic properties of hypergeometric

functiong® one gets

1
rHr[m—nH]

Omn(1) = (B7)

r 1
m n+§

Therefore, we obtain
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1
(2M)! FHF[MH]

M

(WO oy = NM+1 vn. (B8)

''Mm+ =

2

APPENDIX C: THE NORM OF ONE-SPINON ONE-HOLON
ENERGY EIGENSTATES

In this section we generalize the recursion procedure in-
troduced in Ref. 8 and 9 to calculate the norm of one-spinon
and two-spinon wave function to the calculation of the norm
of one-spinon one-holon energy eigenstates. As in the calcu-
lation in Refs. 8 and 9, the key operator is given by
e (zq, ...,2Zy), defined as
(CY

e(zy,....Z2yw)=21+ - +2zy.

The state for one holon and one spinon localizesliatgiven
by
‘1’2(21, e ,Zm):(bg(zl, FN

czmlVed(zy, ... Zw),

(C2

where

M
Dz, ... ,zM|h)=h”H (zj—s)(z;—h).

OnW¥{(z, ...,zy), e, acts as a ladder operator, as we are
going to show next.

In order to work out the action dfixy on holon eigen-
state, we split it into five termsHKY/(JIZ)(ZTr/N)zzhg
+hd+hy+hs+hg, . Among those five terms, the only ones
that do not commute witle; are the spin-exchange operator
hg and theT-spin charge propagation operalm(%. On the
stateW?, h{ is realized as

M 2 M 2

1 Z; 0
hiw =¥ .o constr = >, 22— +2 L
S¥s GS| 2 Z ! azlz % Zi - Zj &Zi

N—3

d
5 E z?a—zi ®7. (C3)

From Eg.(C3), we derive that

[hie,®1Wss]—e; @A hiPed]

=Vss

3 M
M—E eld>2+zi leﬁ_Zl(DQ]

=V¢s

1
M+ e P+ M(s+h)d?

)

In the sense clarified by EqC4), e; commutes withhy,
hy, and hé. On the other hand, it does not commute with

J J
2 n n+2
—2—@I-h"2
Js S

dh (€4
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h,- Indeed, since, in order to derive the actiorhgfon W]  which implies

we have to express the state in terms of thepin coordi-

nates, we must do the same wih. In order to do so, we

notice that{z;}, {n;}, h, ands taken all together are the set ez, ... zw)=—e€yn1, ...,pw)—h=s. (CH
of the Nnth roots of 1. Therefore, we obtain

zi+--tzyt gt +pyt+th+s=0, The action ofng one, ¥ gives

N2=1 n(n—N) N—1 d ®2({n}h)
[h&eﬂ‘l’g:‘l’es[ 12 + 2 elfbg({n}lh)—[T—n h“+1§—h“—h—s—; 771') hn
1 & & @] sh
+ Ehn+zﬁ|:( _h_s_; 7’]) : hn + (S_h)z[_; 7]]_25 ®2({ﬂ}|5)
- d [ P ny, - mulh)
:\IIGSel[thI)g](nl, ool + T—n h®dS (7, ... ,77M|h)—hn+2%( s -
h n+1
+E(I)S (7711 177M|S) (CG)
|
Equation(C6) yields the result h sk

h—s
[hg,el]\l’QZ‘IfGS|h% (132(21, s ,ZM|h) s n—k s m—k
HG
S
h

M hl+m7k h
s\" = 0 _
—(—) Dz, ... ,zylh) mEZO mooN %} S
h -1 --1
h
J q)n(Zl, ces ,ZM|h) n—1 n-m-1 _
n+2 7 s 1 g\ mtr k
e e LSy s TS
m=0 {s/h} r=0 h
n 1 M m-n-1 g\ n+rk
—nhdY(zy, ... 2yl €7 sy gy S (_) _
N mZn+1 {s’/h} r=0 h
Upon summing Eqgs(C4) and(C7), we derive the basic re- (C9

lation we need in order to work out the recursion relations,
(The symbolZyn means that we have to sum ovelh

ol M S ey M(s+hyw? esh.
J2m\ 28| FsT 7|8 Vs tM(s+)Ws Suppose, nown—k+1<0. In this case, the sum in Eq.
§<W) (C9) over m from n+1 to M will give 0, while the second
" sum will be reduced to
h
2 n
S 8S‘Ps+hh—3 mE:o k ’ n-m-1 g\ mHr—k
1+m-—
s\n mE:O Wmah {%} =0 (h)
X sm—(ﬁ h™| ¥~ nhW¥g,
(C8) On the other hand, ds—n+1=0, the only nonzero term in
the sum will be given by
where we have introduced the one-spinon one-holon plane
wavesV ,,, defined in Sec. VIB. M m—n—1 n—ktr
In order to further manipulate terms in E(¢C8), let us _ E W hl+m—k2 2 (E)
consider, now, the identity maks1 " &y i=o \h
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In order to write down the action ¢Hy ,e;] on the plane-
wave statesl,,, we multiply both members of E4C7) by
s X and sum oves. By using Eq.(C9), it is straightforward
to derive the following equations.

If k—=n+1<0,

HKY
J7o. 28 Win
g

1
M + E) el\Pkn‘l'(M _k+ 1)\I,k71,n

k-1 hl+m7k
M=+ D)MWyt 2 Wiy ——
m=0
n-m-1 g\ m-k+r
X > (—) (C10
(M r=o \h
If k=n+1=0
k
HKY HKY
m,el (Dknzzo a 3727 2,€1 | Vi n-
2\ N 2\ N
k 1 k-1
=2, M+
IZO ! 2 =0

k-1 k-I-1

1
+z q E ‘Pm,n+1+m—k
=0 m=0

From Eq.(C12), we get

(Ekfl,n_ Ekn_ M — %)<q)kfl,n|e1|q)kn>

k—1 k

n—m
N 2

{s/h}
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HKY
J72,28 | Ykn
2N
1
=M+ 3 |erpnt (M—k+ D)Wyt (M—mh¥y,
M hl+m—k m-n-1 g\ n—ker
33 3 [ en
m=k+1 {s/h} r=0

Let us now work out the basic recursion relation in both

cases.
Case k-n+1<0.
In this case energy eigenstates are given by

K
q)kn:Z'o Dy -

(see Sec. VIB for the definition of the coefficierty .
Therefore, we have

k

eV int |E a(M _k+|+1)\1’k—1—|,n—|+|20 qM=—n+1+1)W |41

(C12

-1 (s)mk+r
r=0 h .

= |=20 a(M—k+1+ 1)<¢k—1,n|‘1’k—1—|,n—|>+2}) a(M—n+1+1)(DPy_1p| Vi nr1-1) H{( Pro1n V1.0

=[M—k+2+b;(M=n+1)+a;(M—n+2) (D 1Py 10)=(M—k+ 3P 1|Py_1),

(notice that, from their definition, we hava;=—1/2b;

=1/2). Equation(C13 may be recast in the following com-

pact form:

<q)k—1,n|el|q)kn>:_ M_k+%
<(Dkfl,n|q)k71,n> 2(M—k+1)°

(C14

Case k-n+1=0.
In this case we have

M-k
D= IZO Pyt -

Equation(C12 now takes the form

(C13

e1Viiini

|V|+1
2

2_77211 kn “h |
N

N &
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From Eq.(C15 and by working exactly as in the previous holon wave functionsp,,,(2),pi(2)- In order to do so, let
case, we get the identity us consider first the cagse—n+1<0, in which we express
. the solution to Eq(79) as a power series &
(Ek—l,n_ Ekn_ M— Z)<q)k— 1,n|el|q)kn>

_ k
= (M =K+ 1)(D) 1| Py 1), (C16 Pmn(2)= 25 a2 (1)
which yields the relation From Eq.(D1), we get the following equation for the coef-
(PiiplenlPp) M-kl 17 ficlentsa:
(P 10| Prc— 1) 2<M_k+% ' —2Ek kak+1zk+; (2|<—1)akz'<—zM*mEk a,=0.
In order to complete the recursion procedure, we need onx K he foll | (D2) h
more induction relation that is derived by inserting in the S h\ll\g m, the following recursion relation between the
product(®,,|e,|Pq) the producteyey, =1, where olds:
eM(Zl,...,ZM):Zl"‘ZM. a k+ =
From the definition of scalar product, E@5), it is straight- Kl P (D3)
forward to show that ) ] o &
) 5 Equation(D3) is satisfied by
<q)ab|el|q)cd>:<[(eM) q)ab:”el“:(eM) q)cd]>
=(Py-cm-delPyv-am-b). (C18 Ilk+3
By applying Eqs(C18) to (C13), and by using Eq(C17), we &= - (D4)
obtain r > ITk+1]
(P 1n/€1| Prn) =(Pm—km—nl€Pm -kt 1Mm—n) To calculateay, _ 1, we need the following identity, valid
Kk | for any positive integeR (C, is a closed path centered at
== (Pyn| Picry)- (C19 z=0):
1
] 1
( 2 R Ikt R dz 1 1
By putting together EqgC15) and(C19), one finally obtains E _Z
1 3 k=0 [k+1] k=0 C02’7T| Zk+1 JV1—12z
k— —) ( M—k+ =
(Pien| Pier) _ ( 2 2 (20 B 3€ dz -1 1
<q)k—1,n|q)k—l,n> k(M —k+ 1) ' o C027TiZR+1 z—1 Vi—2z
which provides the formula for the norm of the one-spinon
one-holon energy eigenstates in the cksen+1<0, B dz 1
IIM =K+ 11T ket = ff%zml%i (1=
g (2M)! 1)t ke 1
<q)kn|q)kn>:N 2—M M+§ [ 3} . r R+§ 1
I''M—k+=|T[k+1]
2 2F[R+1] R+ (D5)

(C21
In the complementary cask;-n+1=0, we may follow the
same step to prove that

<q)kn|q)kn>:<¢)M—k,M—n|(DM—k,M—n>

Since the recursion relation fen, _, is

—2(M—m)ay - m+2(M—m—3ay_m-1— > a=0,
k

(D6)
[M k+ F[k+1] equation(D5) impliesay _,=0 and
:NM‘*'lM(M_;_E)
2" FIM—k+ 1] K+ — vo e
2 Pmn(2)= kZO zZ. (D7)

Equation (D7) provides the formula forp,,(z) used
throughout the paper.
The same steps followed in the case-n+1<0 allow
us to find the spinon-holon wave function in the casen
In this appendix we will derive the solution to the equa- +1=0, provided the coordinate is substituted with¢
tion of motion for the relative coordinate part of the spinon-=1/z.

APPENDIX D: SOLUTION OF THE EQUATION
OF MOTION FOR THE ONE-SPINON ONE-HOLON
WAVE FUNCTION

195112-18



COORDINATE REPRESENTATION OF THE ONE-SPINON.. ..

1L.D. Landau, Zh.'lk'sp. Teor. Fiz.30, 1058 (1957 [Sov. Phys.
JETP3, 920 (1957]; Zh. Eksp. Teor. Fiz.32, 59 (1957 [Sov.
Phys. JETR, 101 (1957]; Zh. Eksp. Teor. Fiz.35, 97 (1958
[Sov. Phys. JETR, 70(1958].

23.M. Luttinger, J. Math. Physl, 1154(1963.

3D.C. Mattis and E.H. Lieb, J. Math. Phy8, 304 (1965; S. To-
monaga, Prog. Theor. Phys,. 544 (1950.

4Y. Kuramoto and Y. Kato, J. Phys. Soc. Jid, 4518(1995; Y.
Kato and Y. Kuramotabid. 65, 1622(1996.

SP.A. Bares and G. Blatter, Phys. Rev. Lé&4, 567 (1990.

6Z.N.C. Ha and F.D.M. Haldane, Phys. Rev. L&, 2887(1994).

’C. Kim et al, Phys. Rev. B56, 15 589(1997.

8B.A. Bernevig, D. Giuliano, and R.B. Laughlin, Phys. Rev. Lett.
86, 3392(2001)).

°B.A. Bernevig, D. Giuliano, and R.B. Laughlin, Phys. Rev6&
024425(2001).

10F D.M. Haldane, Phys. Rev. Le®0, 635 (1988.

PHYSICAL REVIEWGS 195112

11B.S. Shastry, Phys. Rev. Lei0, 639 (1988.

12y, Kuramoto and M. Yokoyama, Phys. Rev. L&, 1338(1991).

13B.A. Bernevig, D. Giuliano, and R.B. Laughlin, Phys. Rev. Lett.
87, 177206(2001).

14y, Kato, Phys. Rev. Lett31, 5402(1998.

15M. Arikawa, Y. Saiga, and Y. Kuramoto, Phys. Rev. L&, 3096
(2002).

16R. B. Laughlinet al, Field Theory for Low-Dimensional Systems
edited by G. Morandget al, Springer Series in Solid State Sci-
ences Vol. 13XSpringer, Berlin 2000

17K.G. Wilson, J. Math. Phys3, 1040(1962.

18E D.M. Haldane, Phys. Rev. Letg0, 1153 (1983; Phys. Lett.
93A, 464(1983.

19B.S. Shastry, Phys. Rev. Lei9, 164 (1992.

20Handbook of Mathematical Functionedited by M. Abramowitz
and L. A. Stegur(Dover, New York, 1964

195112-19



