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Antiresonance scattering at defect levels in the quantum conductance of a one-dimensional system
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For the ballistic quantum transport, the conductance of each channel is quantized to a vadti ofr2the
presence of defects, electrons will be scattered such that the conductance will deviate from the values of the
quantized conductance. We show that amiresonancescattering can occur when axtra defect level is
introduced into a conduction band. At the antiresonance scattering, exactly one quantum conductance of a
one-dimensional wire disappears, in good agreement alithnitio calculations. The conductance takes a
nonzero value when the Fermi energy is away from the antiresonance scattering.
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A large number of studies have been focused on electroniout changing the total number of orbitals. This may be
transport in quantum wires in recent years as we move intachieved by substituting one atom by a foreign at@wh
the era of nanoscience and nanotechnology. This is largelgourse, an electronic structure does not necessarily change in
due to its academic interests and great importance in applthe same way as its atomic structuréhe other is to add an
cations of the nanoscale electronic devices. Interesting phé&xtra orbital into the band by, for example, doping an impu-
nomena, such as quantized conductadf@nd 0.7 anomaly ity into a sample. We shall show that the two types of de-
in conductancé? were discovered. In this area, one of im- fects affect electronic transport in a quasi one-dimensional
portant subjects is the quantum transport properties of a sy§onduction band differently.
tem related to the motion of a single or a few electrons in a In order to consider the effects ah extra defect levedn
single or a few conducting channels. The conductance of &lectronic-transport properties, we model the one-
nanosystem with a few channels is best described by th@dimensional metallic tube by a conventional one band tight-
Landauer formulaG = (2e%/h) Tr(t*t), wheret is the trans-  binding Hamiltonian on a chain. The Fermi energy will be
mission matrix. Thus, the conductance can be obtained frorfestricted within the band. An extra defect state of enerigy
a microscopic quantum-mechanical calculation of transmisplaced at site=0. The nature of locality of the defect is
sion coefficients. An individual defect or impurity is ex- modeled through a delta coupling of the defect state with
pected to modify substantially the properties of such aconduction states &t=0. The Hamiltonian of this system

system. can be written as
Among many systems, carbon nanotubes have received a
particular attention because it is a new fofjother than H=t2 clei q+udide+vctdo+c.c., (1)
|

graphite, diamond, and fullerenesf carbon’ and because of
great progress in carbon nanotube fabrications. Carbon nano- T ) _
tubes have very rich atomic and electronic structures. For th@herec; andc; are the creation and annihilation operators
atomic structure, the tubes can be both single and multipléor an atomlike orbital centered at sitedg andd, are the
walls. The diameter of the tubes can vary within a single tube&reation and annihilation operators of the defect state at the
or from one tube to another. The nanotube structures can alsgigin. v is the coupling coefficient between the localized
be manipulated. For the electronic structure, a carbon nandlefect state and band state at the origin. For simplicity, only
tube can be either an insulator or a metal, depending on ho#ie nearest-neighbor hopping is included in this model. In
the nanotube is wrapped up from a graphite sheet. Regardirfgct, the dynamical impurity problem described in the Hamil-
the electronic transport, early experiments observed quarionian could be generated effectively by a static impurity in a
tized electronic conductant such tubes at room tempera- quantum wire. Assume that there is a static impurity poten-
ture. Recently, there amb initio calculations on the effects tial around the origin of a wire. This impurity potential may
of impurities and local structural defects on the conductancéreate an extra impurity stat{(x,y) in the wire. The wave
of metallic carbon nanotubes. It was shown that the condudunction of a conduction electron can be expressed as
tance is reduced by a quantum unitef2h) by a localized ~ ¢(X,y), which along they direction is dispersionleséere
defect when the Fermi energy is at this defect level. How-We consider only one subbandherefore, the wave function
ever, the conductance is only reduced by a fractional of the®(X,y) can be decomposed intog(X,y)=ac(X,y)
quantum conductance unit when the Fermi energy is away B8d(x,y), wherec(x,y) represent the conduction states of
from the defect level. Motivated by this discovery, we would @ pure wire, which itself can be decomposed into some local
like to investigate how a single local defect level affectsatomic orbits generated by creation operatnts « and
conductance of a conducting channel. are two normalization constants with|?+ |B|?=1. Assume
There are two types of defects in a conduction band. Onghat the static impurity will only mix those nearest local
is that an atomic orbital deviates from its original form with- atomic orbits ofc(x,y) with the impurity state, in the tight-
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binding representation, one obtains essentially the Hamilfrom c(T,|0> state tod'|0) state and back t@g|0) staten

tonian(1). In the case that the static impurity does not create; : ) ;
i ; ) imes with a strength difu?/[ 2t(e—u) V1 — (e/2t)?] in each
an extra impurity state, the same argument will lead to thqime. It is useful to notice that-2t are the edges of the

Ha\r/nv!![trf)n??r(ls) dst?dltedtkl]ater. tat f the Hamiltor(i® conduction band. In fact, the above interpretation is exactly
ithout the detect, tne eigenstates of the HamiftlonBn =\t the usual Green’s-function formalism would give.

are the Bloch wave functions, and the eigenenergies of the There are several nontrivial results in E@). First, an

Hamiltonian are e=2tcoskd), with k=nma/L, n antiresonancescattering occurs when the electron energy is
=0.12...N, _vvhere_a is the lattice constant and is the qual tou, the energy of the defect level. At the antireso-
Iength of the wire. Th's spegtrum Igads t_o an energy band g ance, the transmission coefficient vanishes. In other words,
width 4t. When this band is partially filled, it forms the w0 ¢onqycting channel is completely blocked by the defect
conduction band of the metallic wire. At zero temperature,, . the Fermi energy is right at the defect energy level.

there are two conducting channels at the Fermi energy. On?hus, the conductance of the wire is reduced by a quantum
propagates from the left to the right side, and the other in th%onductance unit, exactly what was observed inahénitio

opposite direction. The conductance should B8/ in the 0 jations It can be shown that the eigenfunction of
ballistic region where a conduction electron does not eXPerifamiltonian(1) for e=u is

ence any scattering. In the presence of a defect, the electron
will be scattered by the defect, and the conductance should

deviate from the quantized conductance unit according to the 2i 1 oy i 2t\2 [u\? ‘
Landauer formula. ¢=ﬁj=7 sin(kj)cj[0)— — <—> —(;) do|0).

The central physical quantity is the transmission coeffi- L v
cient of an electron propagating from the left to the right
sides of the chain through the defect. We assume that thEhis is a standing-wave-like state. The electron propagating
electron initially has momentumk and energy e from the left encounters the defect state, and then is com-
=2t coska) in the left hand side of the chain. In the tight- pletely reflected back to the left. The wave-function ampli-
binding formalism the wave function has the following form tude of the conduction state at the origin becomes zero, and
part of incoming electron is trapped in the defect state. Ac-
1 o o cording to Eq.(3), the transmission coefficient also becomes
¢p=-—= > (eM+Re )cl|0)+Ac]|0)+Bd)|0) zero at the band edge= +2t. However, it can be shown
Li=== that coefficients of bottA and B in wave function(2) are
1= zero in this case. Thus, no electron is trapped in the defect
4+ 2 TeichJ-T|0>, 2) state. This is different from the previous case of the antireso-
N nant scattering. This band-edge scattering effect is also con-
sistent with early numerical resBilthat an electron at the
band edges is completely reflected back at a boundary of a
narrow conductor and a wide contact. It reflects the fact that
states at band edges are fragile, and are easily influenced by
a perturbation. Another interesting result of E§) is that
transmission coefficient approaches zero as the coupling
> strengthv between the defect state and conduction levels
2t(e—u) /1_(i) goes to |r_1f|r_1|t_y. This is, in some sense, dl_Jfa to the equiva-
2t lence of infinitev and the hard-wall condition where the
. (3)  wave-function amplitude should be zero.
/ €\? The antiresonance scattering is due to phesence of an
2t(e—u) 1—(2—,[) —v?i extra defect stateln order to show the importance of the
extra defect level, we can examine another one impurity
Obviously, the transmission coefficient is unity when themodel. Consider the usual Anderson localization model with
coupling constant equals to zeroy =0 means that conduc- ©ne impurity,
tion band does not couple to the defect state. Thus a conduc-
tion electron will not experience any scattering. In order to
have a better understanding of the transmission coefficient H=t, ¢lc;,1+ucico+c.c., (5
formula, we rewrite Eq(3) for the weak coupling as !

-1

where R and T are the reflection and transmission coeffi-
cients, respectivelyA is the wave-function amplitude at the
origin from the conduction state, afmilis that of the defect
state. They can be obtained from equatitip=e¢. The
transmission coefficient is given by

T(e)=

” v? " which can describe a substituting impurity at the origin. The
T(e)=> i - (4)  defect is due to the imperfection of periodicity at the origin,

n=0 / €\? but the total number of orbitals does not change. Since there
2t(e—u)\/ 1~ 2t is only one level at the origin, it is impossible to have a

resonancdantiresonangescattering. The transmission coef-
Then, one can interpret E43) as the result of the sum of ficient of an electron with energyin the conduction band is
multiple-scattering process: an electron is virtually scatteredjiven by
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€2 >0. This two-band model can also be solved exactly. &or
2t 1_(_) <2|t,|, the electron transmission coefficient is given by
2t
T(e)= —. (6) L
€
2t 1—(—) —ui T(e)= . ,
2t vl

1-i
Clearly, there is no antiresonance for this model, but the v3 €\?
band-edge effects are still present as expected. 2ty E—U—+h 1-(—)
Furthermore, we would like to demonstrate that the anti- 2tzsinha 2t 10
resonance scattering is very robust as long as an extra defect (19
level exists in the conduction band. To do so, we generaliz?\/herea=cosh‘1(2|t1|+2|t2|+A—e/2t2). It is easy to show

the Hamiltonian(1) to the case that the defect level couplesthat Eq.(10) becomes Eq(3) when the coupling between the
also to conduction states at site- =1 besides the origin defect level and the second band is zero, g=0. Again

(1=0). The Hamiltonian reads antiresonance occurs when the electron energy is at a par-
ticular level given by the equatioa=u+v§/2tzsinha.
H=t, clc; 1+ (udd+vch+vicl+vicl )dotcoc,, The antiresonance is the physics of a quasi-one-
i

dimensional system when an extra defect level is introduced
(7)  into the energy band. This phenomenon does not occur if a
wherewv is the coupling constant between the defect statéjefeCt IS mtroduc_ed in such a way that the total number of
with the conduction states at =1. Similarly, we can ob- elect_rom(_: states in the band does_ not change, SL.‘Ch as the
tain the transmission coefficief( e) Hamlltonlan(S). We showed that t_hls phe_nomenon is robust
against the details of a microscopic Hamiltonian, whether the
extra defect level couples to a single gittamiltonian(1)] or
®) several siteéHamiItpnian(?)], or th_e def_ect couples to more
2 ' than one banfHamiltonian(9)]. This antiresonance can lead
to localization of electronic states in one-dimensional sys-
tems. Imagine a pair of identical defect levels are introduced
2} ( E ) 2 into a conduction band, an electron at antiresonance scatter-

1

T(e)=
U1

v+ —e
t

1-i

ing with the two defect levels will be localized between the
two defects since the electron will be fully scattered back and

1+

2t(e—u*)

2t
. . . forth. When defect levels are randomly introduced into a
with ”‘gfma"zed defect level u* =[u—(2vv1/)]/[1  gystem, then there is a probability of 1 to find a pair of levels
+(v,/t)°]. One can see, again, that an antiresonance scakt any given energy in the thermodynamic limit. Thus, one

tering exists at the normalized defect level. It recovers i expect all the states to be localized in one-dimensional
Eq. (3), u* =u, whenv;=0, while the antiresonance occurs system.

in the band centey* =0, whenv;—. It may be interest- We would like to make a comparison between the anti-
ing to notice that Eq(8) also contains a conventional reso- resonance studied here and the famous Fano resofance.
nance state at=—ut/v,, at whichT is unity. Like the Fano resonance, our antiresonance is also due to the

In reality, a carbon nanotube can have more than ongierference between electron path through the continuum of
band. The defect level can then couple to many bands. I8¢ateqconduction bandand scattering by the extra impurity
order to show that the antiresonance will not be affected byiate |t is well known that Fano resonance is a universal
existence of many bands. We consider the following Hamil-phenomenon that can be observed in various systems. It ex-
tonian for a two-band model, ists in strongly correlated systems. In fact, Coulomb interac-
tion is very often responsible to the coupling between the
continuum of states and localized impurity state. This cou-
pling, in turn, is responsible to the Fano resonance. Thus, we
should also expect that our antiresonance effect is universal,
S chcytec, (9 and survive from the electron-electron interaction. To ob-

T T2l ’ serve experimentally this antiresonance phenomenon, one
needs to have a clean one-dimensional system with precise
wherec! ; andc,; («=1,2) are the creation and annihila- doping. One of such systems is probably carbon nanotubes
tion operators for an atomlike orbital centered at sifer  because of great progress in its synthesis. The antiresonance
band a. In the absence of extra defect levé}|0), this  could be revealed through a nonlinear current-volummd/Y
Hamiltonian supports two energy bands with band widths oimeasurement at low temperature. Although our antireso-
4|t4| and 4t,|, respectivelyA is the energy gap between the nance may be due to the same physical origin as that of the
two bands. The defect level couples to these two bands at tieano resonance, the current phenomenon comes from the
origin (i=0) with v; andv, as the coupling coefficients, destructive interference rather than constructive one. Also,
respectively. In the following analysis, we shall assume the energy dependence of the transmission coefficient is

_ t + + +
H= tlZ CyiCrjt1t tzz C2iCoj+1+Udgdo+v1Cy Ao
| I

+0,C) do+2

42
|tq]+]to] >
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symmetric around antiresonance point. On the other hand, In summary, an antiresonance scattering can occur when

one important feature of the Fano resonance is the asymman extra defect level is introduced into the conduction band

try of physical quantities around the resonance point. of a one-dimensional system. At the antiresonance scattering,
Finally, it would not be complete if we do not point out the electron transmission coefficient vanlshe_s, leading to the

the differences between our interpretation and that in Ref. fliSappearance of quantum conductance. This result explains

about theab initio results. The explanation of Ref. 7 relies Well the ab initio calculation$ on conductance of metallic

on he specil band siucture of oaphite, ramel, zero gaf20" AN, Mol here are same smiartes be

semlcopductor in which the Ferml surface gon5|sts of onlytheir main features are clearly different.

two points of ke and —kg. Obviously, our interpretation

does not need to use this special property of graphite. Thus, This work was supported by grants from the Research

this can be used to test experimentally the correctness of o@Grant Council of HKSAR, China. Y. Wang was also sup-

prediction. ported by NSF of China under Grant No. 19845112.

1B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.W. William- Mace, and D.A. Ritchie, Phys. Rev. Le#7, 135 (1996.
son, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, °S. lijima, Nature(London 354, 56 (1991).

Phys. Rev. Lett60, 848(1988. 5p. Poncharal, Z.L. Wang, D. Ugarte, and W.A. de Heer, Science
2D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ritchie, 283 1513(1999.

and G.A.C. Jones, J. Phys.21, L209 (1988. 7H.J. Choi, J. Inm, S.G. Louie, and M.L. Cohen, Phys. Rev. Lett.
SN.K. Patel, J.T. Nicholls, L. Martin-Moreno, M. Pepper, J.E.F. 84, 2917(2000; P.L. McEuen, M. Bockrath, D.H. Cobden, Y.G.

Frost, D.A. Ritchie, and G.A.C. Jones, Phys. Rev4 13 549 Yoon, and S.G. Louieipid. 83, 5098(1999.

(1991 8A. Szafer and A.D. Stone, Phys. Rev. Leéi®, 300(1989.

4K.J. Thomas, J.T. Nicholls, M.Y. Simmons, M. Pepper, D.R. 9U. Fano, Phys. Rel24, 1866(1961.

193402-4



