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Eigenfrequency and decay factor of the localized phonon in a superlattice with a defect layer
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We theoretically study the localized vibrational modes in a superlattice with a defect layer. In particular, we
derive simple formulas for the eigenfrequency of this localized mode and the corresponding decay factor. Our
formulas show explicitly how these quantities depend on the constituent layers of the superlattice and also the
width of the defect layer. These formulas are useful for systematic understanding of the localized acoustic
phonons in superlattice.
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In the last two decades, extensive stutifebave been double-barrier system for phondrns be used for the detec-
devoted to understand quantum transport properties relatdin or generation of quasimonochromatic acoustic phorons.
to the electron tunneling through the potential barriers. Esin the present paper, we derive an explicit expression for the
sentially, the tunneling occurs as a result of the wave naturéigenfrequency of this localized mode. The expression for
of electrons. Thus, it should also occur for classical wavesthe corresponding decay parameftarlocalization degrees
such as light and sound waves, and their quanta, i.e., photo@s0 derived. Furthermore, the periodicity of the resonant
and phonons. To see the tunneling effect in the phonon sydtequency and the decay factor as a function of the width of
tem, we should prepare the opaque barrier for phonons. AHie defect layer is discussed. Though this periodicity was
example is the superlattidSL) structure. The key idea is to Pointed out in Ref. 6, no physical explanation was given.
utilize the fact that in a periodic SL Bragg reflection occurs A Schematic picture of the system we consider is illus-
for phonons with the frequency inside the frequency gap inirated in Fig. 2, where the defect layer is artificially embed-
duced by a periodicity much longer than the lattice spacingded in the infinite SL. Throughout the paper, we consider the
The amplitude of these phonons decays exponentially insidéase where the wave vector of phonons is perpendicular to
the SL; i.e., the wave vectors of these phonons have afhe interfaces of the layer. In this case, three phonon modes
imaginary part. Thus, we can regard the SL as a barrier fofre decoupled from eaph other if the interfaces are a mirror-
phonons. Furthermore, a double-barrier system for phonon@ymmetry plane. That is, we can treat only one mode, e.g.,
can be realized by connecting SLs in series. The propagatiof€ longitudinal mode. Also, the continuum model which
of the acoustic phonons in this system was studied in oughould be valid for sub-THz phonons is assumed for each
previous Wor|é In this paper, the transmission rate was Ca|_C0nStituent Iayer. In the continuum mOdel, the lattice dis-
culated and the existence of the resonant peaks inside tidacementU;(z) and stress5(z) for the acoustic mode are
frequency gap was shown theoretica”y_ When the frequenc?Xpressed in terms of linear combinations of the transmitted
of the incident phonon coincides with a resonant frequencyand reflected waves:
the phonon can go through the whole system without attenu-

ation. This resonant frequency is equivalent to the eigenfre- Ui(z)=clekiz+cle ki, )

quency of the vibrational mode confined in the bulk part

sandwiched between the SL's. Figure 1 illustrates the simi- S(2)=iwz;(clekiz—clekiz) )
1 I I :

larity between the SL-bulk-SL structure and the double-
barrier quantum-well structure for electrons. The above cony
fined mode can be also regarded as a vibrational mod
localized at a “defect layerTi.e., the sandwiched bulk part
breaking the periodicity of the SL Very recently, Chen
et al* numerically studied the property of the localized
acoustic phonons in SL's with defect layers using a transfe
matrix method. They discussed how the eigenfrequency an
decay factor of localized mode change with the constituen
layers of SL's and also the widths of the defect lagies., the
distance between two SlisHere, it should be noted that the
results they calculated are reproducible with the use of the
general equation obtained in Ref. 3. Since this equation has a - -
complicated and no explicit form, the eigenfrequencies were
graphically (and numerically examined in previous paper
(Fig. 7 in Ref. 3. The simple expression for the eigenfre- | H]]]]]]]]]]] ﬂ]]]]]]]]]]] |
guency is useful not only for systematic understanding of the SL Buk SL

localized acoustic phonons in SL's with a defect layer but

also for the design of the phonon tunneling devitke FIG. 1. Double-barrier system for phonons.

ere,i is an index specifying constituent layecs andc! are

fhe amplitudes of the transmitted and reflected waves, re-
spectively,k; is the wave numberZ;=p;v; is the acoustic
impedance given by the product of the mass densitgnd

the sound velocityy;, and w=Kkjv; is the frequency. The
[&\ttice displacement and stress should be continuous at the
%nterfaces of adjacent layers. From this condition, we can
obtain the equation governing the lattice displacenient:
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D=da+ds de Equation(9) ensures that the phonon displacement is local-
ized at the defect layer. Substituting E8) into Eq. (7), we
have the equations

AlslalBlaAalsB c AlBla|BlA|B AZ_(M"')\)A"‘]-:O, (10)
j-1 j j+1 j+2

J J J J A?—(u+N+20coty) A+ uh—o?+(u+\)ocoty=0.

FIG. 2. Schematic of a superlattice with a defect layer. (11
Equation(10) leads to the expression for the decay param-
LU, - hJr“”‘l)u 3 e
O-n n+1 (-Tnfl n—1 o-n O-nfl n- ,
. . . - mt A Mt

Here, U, is the displacement at theth interface, which is = * > -1, (12

numbered in Fig. 2. Herk,, o,,, andu,, are the elements of
the transfer matrix of the segment betweeh and (+1)th  and therefore the conditiof®) requires that
interfaces: if thejth segment is a defect layer consisting of

the single layerC (see Fig. 2 A\;=uj=cosy and o; Mt ~1 (13)
=siny, where y=wdc/vc andd¢ is the thickness of the 2 '
defect layer; if then(# j)th segment is a constituent bilayer . . .
of SL y (#1) g y In this case, the decay paramet&r can be written in a
’ simpler form
Z -
A= COSa cosB—Z—Asina sinB=\, (4) A=+e? (14
B
by defining the positive variablé as
=gj + Zn inB= 5 +\
o,=Sina cosp Za cosa sinB=ao, (5) ,U«Z — + coshd, (15
Zg L where the upper sign corresponds to the case X)/2>1
Mn=COSar COS5— z, Sne sinB=wu, ®)  and the lower sign to+\)/2< — 1. This positive valued

represents the decay factor or the imaginary part of the wave
where a=wdp/va and B=wdg/vg, andda (dg) is the  pnumber, because the complex wave numkeran be ex-
thickness of layerA (B). More explicitly, Eq.(3) can be  pressed akD=m=+i6, by putting Eq.(14) in the form
written as A=¢e*P, whereD=d,+dj is the length of a unit period of
the SL. The frequency range satisfying E#j3) defines the
U .. =0 frequency gap(or phonon stop bandbecause the corre-
Jrim sponding phonon displacement decays exponentially away
from the defect layer. On the other hand, for the phonon

o whose frequency satisfies the inequality
Wij—()\+UCOt’y)Uj+l+ Uj+2=O,

o
Uj_l—(,u,‘f'O'COt’y)Uj'f'SiTy

JTR N
. 2 <1, (16)
Up1—=(u+MUp+Up =0 (n#],j+1), (7)

where we assumed that the material of the impurity layer idt IS €asily shown thatA[=1 (i.e., the phonon displacement
the same as that of layé (i.e., Zc=Z,), for simplicity. In does not decgyand therefore Eq16) defines the frequency

Ref. 3, Eqs(7) are examined in terms of the transfer matrix and..
method and Green's function method. In the present paper, With the use of Eq(14), Eq. (11) becomes
after reproducing the fundamental results with intuitive —o

method without the Green’s function, we will derive the ex- +_2 =—cot{wdc/ve), (17

plicit expressions for the eigenfrequency and decay factor of 2 sinhé

the localized phonons, which were not obtained in the previyhere

ous papers.

We seek the solution to Eqé7) of the form _ Zg .
_ {=—sina cosﬁ—z— cosa sinB. (18
AT,y for n=j+1, A
Up= A-ODU;  for n=j, ®  The solution of Eq.(17) gives the eigenfrequency of the

localized mode. The right-hand side of Efj7) depends only

where on the parameters of the defect layer, and the left-hand side
depends on those of the unit period of the SL. In Ref. 3, Eq.

|A]<1. 9 (17) was graphically examined.
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Our aim in the present paper is to derive the explicit ex-
pressions for the decay factérdefined in Eq.(15) and the
solution to Eq.(17). From Eqgs.(4) and(6), we have

=

wherew,=m(ds/va+dg/vg) 1is the first-order Bragg fre-
quency ance =Zg/Z,—1 represents the acoustic mismatch
between constituent layess and B.” For the majority of
SL’s, this acoustic mismatch is small, i.es|<1. Therefore,
Eqg. (13) is satisfied for the frequencies close to timth
Bragg frequencyw,,=mw,, which corresponds to the center
of the mth frequency gap. Expanding E¢L9) around w,
and also neglecting the higher ordersgfwe obtain

82

C2(1+e)

mEN
> =Co

mw

sina sin B,
0)1 B

(19

2

2
g

82

2

JTRDN

5 =(-1" 1~

(0—wy)?+ = Sif(wndalva) |
(20

From this equation, it is shown that E.3) is satisfied for
the frequency window:
om—An<0<on+Ap, (21)
where
An=(w1/m)|e siwydalva)l. (22

In other words, Eq.(22) gives half of the width of the

mth-frequency gap. In this frequency gap, the right-hand side

of EqQ. (15) can be also expanded as

A 1
“Tz(—l)m 1+ 23

|

Here, the signt in Eq. (15) has been replaced by-(1)™,
because E(20) ensures that the sign ofu(+\) nearw,, is
(—1)™. Comparing Eqs(20) and(23), we have the expres-
sion of 6:

0= \/szsinz(

Next, we examine Eq(17). Within the present approxi-
mation, we have

2
wmdA/UA)_E(w_wm)z-
1

(24

o—{ T
TE(—l)mw—(w—wm), (25
1
and Eq.(17) becomes
T
—(w—wy,)=6coflwdc/ve), (26)
wq

where sinhg has replaced by because the maximum value
of @ is an order ok (<1) within the frequency gajsee Egs.
(21), (22), and(24)]. Substituting Eq(24) into Eqg. (26), we
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FIG. 3. Eigenfrequencya) and decay facto® (b) versus the
width of the defect layer. The open circles are calculated from the
approximated expressiori&qgs. (29) and (30)] and broken lines
are calculated from the exact expressigiss. (17) and (15)].

The region between two soli@otted horizontal lines means fre-
guency gap calculated from the approximated form@® [exact
formula (13)].

Ogefect= Om* (w1/m)e SiI(wynda/va)COL wndc/vc),

(27)

where

*e Sin((,!)mdA/UA)Sin((I)mdc/Uc)>0 (28)

should be satisfied becaugés defined to be positive so that
Eqg. (8) represents the localized solution. Combining Egs.
(22), (27), and (28), we obtain a final expression for the
eigenfrequency:

Wdefect™ wm+Am|Sin(wde/UC)|C0t(wde/UC)- 29
29

Also, by inserting Eq(29) into Eq.(24), the decay factor of
this localized mode can be written in the simple form
0=|e sin(wmdalva)sifwndec/ve)l. (30

As a numerical example, we considef1®0GaAs/AlAs
SL with a defect layer consisting of GaAs. The unit period of
the SL is assumed to be (GaAg)AIAS) ;5. In Fig. @), we
plot the eigenfrequency of the localized phonon within the
lowest-frequency gap as a function of the width of the
defect layeIC. The dashed lines are calculated from Eky)
and open circles are calculated from the approximated for-
mula, Eq.(29). The region between two solidlashed hori-
zontal lines means the lowest-frequency gap calculated from
the approximated formulé2l) [exact formula(13)]. The ap-
proximated results are in good agreement with the exact one.
By increasingd¢, the eigenfrequency decreases and this lo-
calized mode merge into the lower-frequency band. Then,
the other mode is extracted from the upper-frequency band.

have an expression for the eigenfrequency of localized phd-igure 3b) shows thed. dependence of the decay factr

non:

This decay factor has the maximum value when the eigen-
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frequency is located in the center of the frequency gap. Thigap the number of the standing waves in a constituent bilayer
is clearly understood with the use of Eq®9) and (30). ism.

Figure 3 shows thabyeteciand @ are periodic functions of In the present numerical example, we show only the re-
dc. This periodicity was first pointed out in Ref. 6, and Sults within the lowest-frequency gap, but our formulas are
similar periodicity was seen in Refs. 8 and 9 of the modegpplicable to not only the lowest-frequency gap but also the
localized at a free surface, when varying the width of theother gaps. In fact, it is confirmed that the previous results
surface layer. This periodic behavior can be well explained@lculated numerically for the second gaps of some SL's with

with our formulas. From Eq€29) and(30), it is found that & defect layetare well reprodu_ced from our formulas. Simi-
the period Ofwgeree(OF 0 is given by larly, the dependence of the eigenfrequency and decay factor
erec

on the parameters of the constituent bilayer of SL can be well

explained by using our general formulas.
ve. (31) In conclusion, we have derived the explicit expressions
for the eigenfrequency and corresponding decay factor of the
phonon localized at the defect layer embedded in SL's. From
these expressions, we can clearly understand how the eigen-
frequency depends on the parameters of the defect layer and
also constituent bilayer of SL’s. In particular, their periodic
behavior was discussed, based on the expression of the pe-
. : riod we derived. Our results suggest the potential for design-
non to go through laye (B). This result means that a width ing phonon tunneling device to be used for the detection or

Increase Ofdp, is equivalent to an Increase of a ConSt'tuentgeneration of quasimonochromatic acoustic phonons.
bilayer of SL's, for a change in the phase of the phonon

displacement. In other words, the number of nodes of the This work was partly supported by a Grant-in-Aid for
phonon displacement within the defect layer increases by 1 i§cientific Research from the Ministry of Education, Culture,
the width of the defect layer increases by. The factor  Sports, Science, and Technology of Japé®Brant No.
m~1in Eq. (31) is due to the fact that in theath-frequency 13650001

P wn ¢ m

_’7T _1<dA dB

Uan U

In the lowest-frequency gap, E(B1) can be written as
dp=(tattg)vc, (32)

whereta=ds/va (tg=dg/vg) is the time needed for a pho-
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