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Eigenfrequency and decay factor of the localized phonon in a superlattice with a defect layer

Seiji Mizuno
Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

~Received 3 December 2001; published 22 April 2002!

We theoretically study the localized vibrational modes in a superlattice with a defect layer. In particular, we
derive simple formulas for the eigenfrequency of this localized mode and the corresponding decay factor. Our
formulas show explicitly how these quantities depend on the constituent layers of the superlattice and also the
width of the defect layer. These formulas are useful for systematic understanding of the localized acoustic
phonons in superlattice.
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In the last two decades, extensive studies1,2 have been
devoted to understand quantum transport properties rel
to the electron tunneling through the potential barriers.
sentially, the tunneling occurs as a result of the wave na
of electrons. Thus, it should also occur for classical wav
such as light and sound waves, and their quanta, i.e., pho
and phonons. To see the tunneling effect in the phonon
tem, we should prepare the opaque barrier for phonons
example is the superlattice~SL! structure. The key idea is to
utilize the fact that in a periodic SL Bragg reflection occu
for phonons with the frequency inside the frequency gap
duced by a periodicity much longer than the lattice spaci
The amplitude of these phonons decays exponentially in
the SL; i.e., the wave vectors of these phonons have
imaginary part. Thus, we can regard the SL as a barrier
phonons. Furthermore, a double-barrier system for phon
can be realized by connecting SL’s in series. The propaga
of the acoustic phonons in this system was studied in
previous work.3 In this paper, the transmission rate was c
culated and the existence of the resonant peaks inside
frequency gap was shown theoretically. When the freque
of the incident phonon coincides with a resonant frequen
the phonon can go through the whole system without atte
ation. This resonant frequency is equivalent to the eigen
quency of the vibrational mode confined in the bulk p
sandwiched between the SL’s. Figure 1 illustrates the si
larity between the SL-bulk-SL structure and the doub
barrier quantum-well structure for electrons. The above c
fined mode can be also regarded as a vibrational m
localized at a ‘‘defect layer’’~i.e., the sandwiched bulk par
breaking the periodicity of the SL!. Very recently, Chen
et al.4 numerically studied the property of the localize
acoustic phonons in SL’s with defect layers using a trans
matrix method. They discussed how the eigenfrequency
decay factor of localized mode change with the constitu
layers of SL’s and also the widths of the defect layer~i.e., the
distance between two SL’s!. Here, it should be noted that th
results they calculated are reproducible with the use of
general equation obtained in Ref. 3. Since this equation h
complicated and no explicit form, the eigenfrequencies w
graphically ~and numerically! examined in previous pape
~Fig. 7 in Ref. 3!. The simple expression for the eigenfr
quency is useful not only for systematic understanding of
localized acoustic phonons in SL’s with a defect layer b
also for the design of the phonon tunneling device~the
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double-barrier system for phonons! to be used for the detec
tion or generation of quasimonochromatic acoustic phono5

In the present paper, we derive an explicit expression for
eigenfrequency of this localized mode. The expression
the corresponding decay parameter~or localization degree! is
also derived. Furthermore, the periodicity of the reson
frequency and the decay factor as a function of the width
the defect layer is discussed. Though this periodicity w
pointed out in Ref. 6, no physical explanation was given.

A schematic picture of the system we consider is illu
trated in Fig. 2, where the defect layer is artificially embe
ded in the infinite SL. Throughout the paper, we consider
case where the wave vector of phonons is perpendicula
the interfaces of the layer. In this case, three phonon mo
are decoupled from each other if the interfaces are a mir
symmetry plane. That is, we can treat only one mode, e
the longitudinal mode. Also, the continuum model whi
should be valid for sub-THz phonons is assumed for e
constituent layer. In the continuum model, the lattice d
placementUi(z) and stressSi(z) for the acoustic mode are
expressed in terms of linear combinations of the transmi
and reflected waves:

Ui~z!5ci
teikiz1ci

re2 iki z, ~1!

Si~z!5 ivZi~ci
teikiz2ci

re2 iki z!. ~2!

Here,i is an index specifying constituent layers,ci
t andci

r are
the amplitudes of the transmitted and reflected waves,
spectively,ki is the wave number,Zi5r iv i is the acoustic
impedance given by the product of the mass densityr i and
the sound velocityv i , and v5kiv i is the frequency. The
lattice displacement and stress should be continuous at
interfaces of adjacent layers. From this condition, we c
obtain the equation governing the lattice displacement:3

FIG. 1. Double-barrier system for phonons.
©2002 The American Physical Society02-1
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1

sn
Un111

1

sn21
Un215S ln

sn
1

mn21

sn21
DUn . ~3!

Here,Un is the displacement at thenth interface, which is
numbered in Fig. 2. Hereln , sn , andmn are the elements o
the transfer matrix of the segment betweennth and (n11)th
interfaces: if thej th segment is a defect layer consisting
the single layerC ~see Fig. 2!, l j5m j5cosg and s j
5sing, whereg5vdC /vC and dC is the thickness of the
defect layer; if then(Þ j )th segment is a constituent bilaye
of SL,

ln5cosa cosb2
ZA

ZB
sina sinb[l, ~4!

sn5sina cosb1
ZA

ZB
cosa sinb[s, ~5!

mn5cosa cosb2
ZB

ZA
sina sinb[m, ~6!

where a5vdA /vA and b5vdB /vB , and dA (dB) is the
thickness of layerA (B). More explicitly, Eq. ~3! can be
written as

U j 212~m1s cotg!U j1
s

sing
U j 1150,

s

sing
U j2~l1s cotg!U j 111U j 1250,

Un212~m1l!Un1Un1150 ~nÞ j , j 11!, ~7!

where we assumed that the material of the impurity laye
the same as that of layerA ~i.e., ZC5ZA), for simplicity. In
Ref. 3, Eqs.~7! are examined in terms of the transfer mat
method and Green’s function method. In the present pa
after reproducing the fundamental results with intuiti
method without the Green’s function, we will derive the e
plicit expressions for the eigenfrequency and decay facto
the localized phonons, which were not obtained in the pre
ous papers.

We seek the solution to Eqs.~7! of the form

Un5H Ln2 j 21U j 11 for n> j 11,

L2(n2 j )U j for n< j ,
~8!

where

uLu,1. ~9!

FIG. 2. Schematic of a superlattice with a defect layer.
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Equation~9! ensures that the phonon displacement is loc
ized at the defect layer. Substituting Eq.~8! into Eq. ~7!, we
have the equations

L22~m1l!L1150, ~10!

L22~m1l12s cotg!L1ml2s21~m1l!s cotg50.
~11!

Equation~10! leads to the expression for the decay para
eter,

L5
m1l

2
6AS m1l

2 D 2

21, ~12!

and therefore the condition~9! requires that

Um1l

2 U.1. ~13!

In this case, the decay parameterL can be written in a
simpler form

L56e2u ~14!

by defining the positive variableu as

m1l

2
56coshu, ~15!

where the upper sign corresponds to the case (m1l)/2.1
and the lower sign to (m1l)/2,21. This positive valueu
represents the decay factor or the imaginary part of the w
number, because the complex wave numberk can be ex-
pressed askD5mp1 iu, by putting Eq.~14! in the form
L5eikD, whereD5dA1dB is the length of a unit period o
the SL. The frequency range satisfying Eq.~13! defines the
frequency gap~or phonon stop band! because the corre
sponding phonon displacement decays exponentially a
from the defect layer. On the other hand, for the phon
whose frequency satisfies the inequality

Um1l

2 U<1, ~16!

it is easily shown thatuLu51 ~i.e., the phonon displacemen
does not decay!, and therefore Eq.~16! defines the frequency
band.

With the use of Eq.~14!, Eq. ~11! becomes

6
z2s

2 sinhu
52cot~vdC /vC!, ~17!

where

z52sina cosb2
ZB

ZA
cosa sinb. ~18!

The solution of Eq.~17! gives the eigenfrequency of th
localized mode. The right-hand side of Eq.~17! depends only
on the parameters of the defect layer, and the left-hand
depends on those of the unit period of the SL. In Ref. 3,
~17! was graphically examined.
2-2



x

ch

r

id

-

-

e

h

t
qs.
e

of

he

for-

rom

ne.
lo-
en,
nd.

en-

the

-

BRIEF REPORTS PHYSICAL REVIEW B 65 193302
Our aim in the present paper is to derive the explicit e
pressions for the decay factoru defined in Eq.~15! and the
solution to Eq.~17!. From Eqs.~4! and ~6!, we have

m1l

2
5cosS pv

v1
D2

«2

2~11«!
sina sinb, ~19!

wherev15p(dA /vA1dB /vB)21 is the first-order Bragg fre-
quency and«5ZB /ZA21 represents the acoustic mismat
between constituent layersA and B.7 For the majority of
SL’s, this acoustic mismatch is small, i.e.,u«u!1. Therefore,
Eq. ~13! is satisfied for the frequencies close to themth
Bragg frequencyvm[mv1, which corresponds to the cente
of the mth frequency gap. Expanding Eq.~19! aroundvm
and also neglecting the higher order of«, we obtain

m1l

2
>~21!mF12

p2

2v1
2 ~v2vm!21

«2

2
sin2~vmdA /vA!G .

~20!

From this equation, it is shown that Eq.~13! is satisfied for
the frequency window:

vm2Dm<v<vm1Dm , ~21!

where

Dm5~v1 /p!u« sin~vmdA /vA!u. ~22!

In other words, Eq.~22! gives half of the width of the
mth-frequency gap. In this frequency gap, the right-hand s
of Eq. ~15! can be also expanded as

m1l

2
>~21!mF11

1

2
u2G . ~23!

Here, the sign6 in Eq. ~15! has been replaced by (21)m,
because Eq.~20! ensures that the sign of (m1l) nearvm is
(21)m. Comparing Eqs.~20! and ~23!, we have the expres
sion of u:

u5A«2sin2~vmdA /vA!2
p2

v1
2 ~v2vm!2. ~24!

Next, we examine Eq.~17!. Within the present approxi
mation, we have

s2z

2
>~21!m

p

v1
~v2vm!, ~25!

and Eq.~17! becomes

p

v1
~v2vm!5u cot~vdC /vC!, ~26!

where sinhu has replaced byu because the maximum valu
of u is an order of«(!1) within the frequency gap@see Eqs.
~21!, ~22!, and~24!#. Substituting Eq.~24! into Eq. ~26!, we
have an expression for the eigenfrequency of localized p
non:
19330
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vde f ect5vm6~v1 /p!« sin~vmdA /vA!cos~vmdC /vC!,
~27!

where

6« sin~vmdA /vA!sin~vmdC /vC!.0 ~28!

should be satisfied becauseu is defined to be positive so tha
Eq. ~8! represents the localized solution. Combining E
~22!, ~27!, and ~28!, we obtain a final expression for th
eigenfrequency:

vde f ect5vm1Dmusin~vmdC /vC!ucot~vmdC /vC!.
~29!

Also, by inserting Eq.~29! into Eq. ~24!, the decay factor of
this localized mode can be written in the simple form

u5u« sin~vmdA /vA!sin~vmdC /vC!u. ~30!

As a numerical example, we consider a~100!GaAs/AlAs
SL with a defect layer consisting of GaAs. The unit period
the SL is assumed to be (GaAs)15(AlAs) 15. In Fig. 3~a!, we
plot the eigenfrequency of the localized phonon within t
lowest-frequency gap as a function of the widthdC of the
defect layerC. The dashed lines are calculated from Eq.~17!
and open circles are calculated from the approximated
mula, Eq.~29!. The region between two solid~dashed! hori-
zontal lines means the lowest-frequency gap calculated f
the approximated formula~21! @exact formula~13!#. The ap-
proximated results are in good agreement with the exact o
By increasingdC , the eigenfrequency decreases and this
calized mode merge into the lower-frequency band. Th
the other mode is extracted from the upper-frequency ba
Figure 3~b! shows thedC dependence of the decay factoru.
This decay factor has the maximum value when the eig

FIG. 3. Eigenfrequency~a! and decay factoru ~b! versus the
width of the defect layer. The open circles are calculated from
approximated expressions@Eqs. ~29! and ~30!# and broken lines
are calculated from the exact expressions@Eqs. ~17! and ~15!#.
The region between two solid~dotted! horizontal lines means fre
quency gap calculated from the approximated formula~21! @exact
formula ~13!#.
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frequency is located in the center of the frequency gap. T
is clearly understood with the use of Eqs.~29! and ~30!.
Figure 3 shows thatvde f ect andu are periodic functions of
dC . This periodicity was first pointed out in Ref. 6, an
similar periodicity was seen in Refs. 8 and 9 of the mod
localized at a free surface, when varying the width of t
surface layer. This periodic behavior can be well explain
with our formulas. From Eqs.~29! and ~30!, it is found that
the period ofvde f ect or u is given by

dp5
p

vm
vC5

1

m S dA

vA
1

dB

vB
D vC . ~31!

In the lowest-frequency gap, Eq.~31! can be written as

dp5~ tA1tB!vC , ~32!

wheretA5dA /vA (tB5dB /vB) is the time needed for a pho
non to go through layerA (B). This result means that a widt
increase ofdp is equivalent to an increase of a constitue
bilayer of SL’s, for a change in the phase of the phon
displacement. In other words, the number of nodes of
phonon displacement within the defect layer increases by
the width of the defect layer increases bydp . The factor
m21 in Eq. ~31! is due to the fact that in themth-frequency
um

.
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gap the number of the standing waves in a constituent bila
is m.

In the present numerical example, we show only the
sults within the lowest-frequency gap, but our formulas a
applicable to not only the lowest-frequency gap but also
other gaps. In fact, it is confirmed that the previous resu
calculated numerically for the second gaps of some SL’s w
a defect layer4 are well reproduced from our formulas. Sim
larly, the dependence of the eigenfrequency and decay fa
on the parameters of the constituent bilayer of SL can be w
explained by using our general formulas.

In conclusion, we have derived the explicit expressio
for the eigenfrequency and corresponding decay factor of
phonon localized at the defect layer embedded in SL’s. Fr
these expressions, we can clearly understand how the ei
frequency depends on the parameters of the defect layer
also constituent bilayer of SL’s. In particular, their period
behavior was discussed, based on the expression of the
riod we derived. Our results suggest the potential for desi
ing phonon tunneling device to be used for the detection
generation of quasimonochromatic acoustic phonons.
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