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First-order homogeneous electron gas model of semiconductors at finite temperatures
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The homogeneous electron gas model extensively used in semiconductor physics is extended, leading to the
first-order homogeneous electron gas model. The model explicitly accounts for the gradient of potential energy
to the first order and is applicable to semiconductors at finite temperatures. With this model, the density of
states and the carrier density can be calculated by analytic formulas without having to solve the Schro¨dinger
equation.
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I. INTRODUCTION

The homogeneous electron gas~HEG! model of solid-
state theory1 has been extensively utilized in standard sem
conductor textbooks.2,3 In the HEG theory, the electrons ar
treated as independent particles with a constant potentia
ergy. Since the potential energy is assumed to be indepen
of the position, all orders of position derivatives of the p
tential energy identically vanish but the zeroth order. T
potential energy operator thus commutes with the kinetic
ergy operator.4 Hence, the HEG can be considered as
zeroth-order theory.

Phenomenologically, the potential energy becomes p
tion dependent when an electric field5–9 or a compositional
variation10–13or a doping gradient14 is present and introduce
band-bending in semiconductors. Under such circumstan
the potential energy operator and the kinetic energy oper
no longer commute,4 and, rigorously speaking, the zerot
order HEG is no longer valid, either.

Furthermore, tunneling tails of wave functions into t
band edge are known to introduce nonvanishing density
states to the forbidden band gap at the presence of b
bending.5,14 This tunneling effect cannot be modeled by t
HEG theory because of its complete negligence of the po
tial gradient.

In the literature, the symmetrized Hamiltonian was us
to account for the position dependence of the electron po
tial energy to first order;15,16the nonlocal density of state wa
employed to facilitate finite-temperature formulation.17,18

In this article, the techniques developed in the symm
trized Hamiltonian15,16 and the nonlocal density of states17,18

are combined and utilized to modify the HEG theory, lead
to the first-order homogeneous electron gas~FOHEG!
model. The FOHEG model explicitly includes the gradient
the potential energy to first order and is applicable to se
conductors at finite temperatures. With this approximati
the density of states and the carrier density can be comp
by compact analytic formulas without having to explicit
solve the Schro¨dinger equation.

II. FIRST-ORDER HOMOGENEOUS ELECTRON GAS
THEORY

In the theory of homogeneous electron gas, the car
concentration of a quantized system is usually calculated
0163-1829/2002/65~19!/193203~4!/$20.00 65 1932
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solving the Schro¨dinger equation for the normalized wav
functionw i(rW) with eigenenergy« i and, then, summing ove
all of the squared moduli of the wave functions weighted
the Fermi-Dirac distribution.1 Alternatively, the carrier den-
sity may be calculated by integrating over energy the prod
of the density of states~DOS! and the Fermi-Dirac
distribution,17,18

n~rW !52(
i

uw i~rW !u2f ~« i !5E d«D~rW,«! f ~«!, ~1!

wheref («)51/@11eb(«2«F)# is the Fermi-Dirac distribution
with Fermi level«F andb51/kT, and the DOS is obtained
from the nonlocal density of states~NLDS!,

D~rW,rW8,«!52(
i

d~«2« i !w i* ~rW8!w i~rW !, ~2!

by letting rW8 approachrW. The factor of 2 is to account for the
electron spin. If the eigenenergy« i is replaced by a symme
trized Hamiltonian,12 @Ĥ(rW)1Ĥ†(rW8)#, as in Refs. 15 and 16
then the algebraic propertyD(rW,rW8,«)* 5D(rW8,rW,«) is pre-
served, and the reality of the DOS may be ensured in
subsequent approximation.

Invoking the integral representation of ad function and
following the treatments in Refs. 15, 16, and 19–21,
exact, but unsolvable, NLDS can be obtained. By retain
only terms with a first-order derivative of the potential e
ergy, an approximate expression may be obtained,

D~rW,«!'2E dv

2pE ddpW

~2p\!d

3expF ivS «2
pW 2

2m
2V~rW ! D 2

i\2v3

24m
~¹V!2G ,

~3!

whered is the dimensionality of the physical system. Th
approximation only retains the first-order derivative of t
potential energy. Hence, it is called the first-order homo
neous electron gas approximation in this work.

By using mathematical techniques in Refs. 22–24,
above integral may be performed, and the DOS is obtaine
a rather compact form
©2002 The American Physical Society03-1
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D~rW,«!5
2

G~d/2! S m

2p\2D d/2

bd/221E
2 «̄

`

dt

3Ai ~ t !~ t1 «̄ !d/221, ~4!

where b35\2u¹Vu2/8m, and «̄5(«2V)/b. Ai and G are
Airy and gamma functions, respectively. At the flat-ba
limit ¹V→0, the DOS becomes

D~rW,«!→ 2

G~d/2! S m

2p\2D d/2

~«2V!d/221u~«2V!, ~5!

which is the DOS of the homogeneous electron gas mode
semiconductors.2,3

The carrier density of a quantized system follows fro
Eqs. ~1! and ~4! by interchanging the order of the doub
integral,

n~rW !52S m

2p\2b
D d/2E

2`

`

dtAi ~ t !Fd/221@b~bt1«F2V!#,

~6!

where

Fj~x!5
1

G~ j 11!
E

0

`

dt
t j

11et2x

is the Fermi-Dirac integral of orderj and argumentx.25

The relations of the FOHEG carrier density in Eq.~6! to
other theories will be illustrated in the rest of this section

First of all, a comparison between the NLDS in Eq.~2! of
this work and the density matrix of Ref. 15 is made. Wh
changing to a consistent set of notations, the density ma
in Eq. ~9! of Sec. 1.1 of Ref. 15 is expressed asr(rW,rW8)
52( iu(«F2« i)w i* (rW8)w i(rW). The carrier density of Ref. 15

r(rW)5 limrW8→rWr(rW,rW8), is related to that of this work in Eq
~1! by r(rW)5 lim

T→0
n(rW). Therefore, the carrier density ca

culated in Ref. 15 is at zero temperature, whereas the ca
density presented in this work is a generalization of Ref.
to be at a finite temperature. Moreover, after some algeb
work, it can be shown that, asT→0 or b→`, the carrier
density expression in Eq.~6! reduces to the one-dimension
zero-temperature results given in Eqs.~16! and ~17! of Sec.
1.4 of Ref. 15.

At the flat-band limit (¹Vandb→0) or at the high-Fermi-
level limit («F@V), it follows immediately from Eq.~6! that

n~rW !→2S m

2p\2b
D d/2

Fd/221@b~«F2V!#, ~7!

which is indeed the carrier density of the homogeneous e
tron gas.2,3

III. RESULTS AND DISCUSSIONS

In contrast to the conventional HEG theory, the FOHE
theory of this work explicitly takes the first-order gradient
the electron potential energy into account. The DOS and
19320
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carrier density obtained by both methods will be compared
this section. For illustrative purposes, only three-dimensio
(d53) results are presented.

The DOS obtained by the FOHEG method in Eq.~4! and
by the HEG in Eq.~5! are plotted in Fig. 1 by solid and
dashed lines, respectively. In this plot, the DOS is norm
ized by (4/Ap)(m/2p\2)3/2b1/2, and the normalized energ
scale is«̄5(«2V)/b with b35\2u¹Vu2/8m. Comparison of
the DOS calculated by the FOHEG and HEG methods sh
two features. First, the potential gradient causes the wavin
of the DOS curve. And the waviness gradually diminishes
the normalized energy increases, indicating that the effect
the potential gradient decrease with increasing energy. S
lar results were reported in the high-field work of Ref.
Second, at an energy below the band edge («,V or «̄,0),
the HEG method predicts vanishing DOS, whereas
FOHEG shows that the potential gradient introduces state
the forbidden band gap of the flat-band theory. These
duced states are due to quantum tunneling of wave funct
beyond the classical turning point. The tunneling effective
lowers the band edge and consequently reduces the
gap, leading to a phenomenon called the tunneling-indu
band-gap narrowing~TIBGN! in this work. Similar tunneling
effects were reported in Ref. 14. The conventional HE
theory cannot account for this tunneling effect due to
negligence of the potential gradient.

In order to study the validity of the FOHEG and HE
methods, the carrier densities obtained by both approxi
tions are computed and compared for systems with ana
solutions. The exact solution to an ideal spherical quant
dot with the confinement potential ofV(rW)5 1

2 mv2r 2 is used
as a test vehicle, wherem, v, and r are the effective mass
the angular frequency, and the radial distance from the
gin, respectively.10,11

In this article, the ideal quantum dot is assumed to
manufactured by continually changing the compositionx of
Al xGa12xAs crystal from 0 to 0.4 in the radial direction

FIG. 1. The normalized density of states is plotted as a func

of the normalized energy («̄5(«2V)/b). The DOS calculated by
the FOHEG and HEG methods are sketched by solid and da
lines, respectively.
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resulting in a parabolic confinement potential. If the comp
sitional dependence of the effective mass of AlxGa12xAs is
ignored, the ideal quantum dot is essentially a thr
dimensional simple harmonic oscillator with eigenenergy
En5\v(n1 3

2 ), wheren50,1,2, . . . andn50 corresponds
to the ground state.4

Since AlxGa12xAs with x<0.4 is a direct semiconducto
and the conduction-band-edge difference betw
Al0.4Ga0.6As and GaAs is about 324 meV,26–28 the angular
frequency of this ideal spherical quantum dot is taken so
\v530.3649 meV to have enough quantum levels with
the confinement potential. The temperature of 300 K and
GaAs effective mass ofm50.067m0 is used in the compu
tation, wherem0 is the electron rest mass.

The carrier densities obtained by the exact solution,
FOHEG, and the HEG approximations to the above hy
thetic quantum dot are plotted in Fig. 2 by solid, dashed,
dotted lines, respectively, for Fermi energies at2100 meV,
the zeroth (E0545.548 meV, ground level!, the fourth (E4
5167.01 meV), and the eighth (E85288.47 meV) quan-
tum levels of the quantum dot. Three features are observe
the figure. First, both the FOHEG and the HEG deviate fr
the exact solution at low Fermi energies~for instance,«F
52100 meV andE0). There must be a large enough num
ber of quantum levels below the Fermi level for the FOHE
prediction to sufficiently approach the exact solution~for in-
stance,«F5E4 and E8). Second, the FOHEG results wit
successively higher Fermi levels («F5E0 ,E4, andE8) show
that the approximation works better for systems with m
quantum levels below the Fermi level. Third, at a radial
cation exceeding the classical turning point associated w
the Fermi energy,r F5A2«F /mv2, the HEG starts to deviate
from the exact solution more significantly, whereas t
FOHEG better matches the exact results. This is becaus
tunneling of wave functions beyond the classical turn
point is included in the theory of FOHEG as illustrated
Fig. 1.

IV. CONCLUSIONS

In this article, the conventional homogeneous electron
theory is extended to explicitly include the effects of t
first-order derivative of the potential energy, leading to
approximation called the first-order homogeneous elec
19320
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gas theory by this work. The FOHEG theory is applicable
semiconductors with band bending at finite temperatu
The DOS and the carrier density are expressed by the
lytic formulas given by Eqs.~4! and ~6!, respectively. Com-
parison with the exact solution to an ideal spherical quant
dot shows that the FOHEG calculation better matches
exact results than the HEG, especially at a location bey
the classical turning point.
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FIG. 2. The carrier densities of an ideal spherical quantum
obtained by the exact solution, the FOHEG method, and the H
method are plotted as functions of location by solid, dashed,
dotted lines, respectively, for Fermi energies at2100 meV, the
zeroth (E0545.548 meV, ground level!, the fourth (E4

5167.01 meV), and the eighth (E85288.47 meV) quantum lev-
els of the ideal quantum dot.
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