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First-order homogeneous electron gas model of semiconductors at finite temperatures
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The homogeneous electron gas model extensively used in semiconductor physics is extended, leading to the
first-order homogeneous electron gas model. The model explicitly accounts for the gradient of potential energy
to the first order and is applicable to semiconductors at finite temperatures. With this model, the density of
states and the carrier density can be calculated by analytic formulas without having to solve tltin§ehro
equation.
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I. INTRODUCTION solving the Schidinger equation for the normalized wave

function (pi(F) with eigenenergy; and, then, summing over
The homogeneous electron gadEG) model of solid-  all of the squared moduli of the wave functions weighted by
state theory has been extensively utilized in standard semi-the Fermi-Dirac distributiof.Alternatively, the carrier den-
conductor textbooks? In the HEG theory, the electrons are sity may be calculated by integrating over energy the product
treated as independent particles with a constant potential eaf the density of statesDOS and the Fermi-Dirac
ergy. Since the potential energy is assumed to be independegfistribution’” 18
of the position, all orders of position derivatives of the po-

tential energy identically vanish but the zeroth order. The - -5 -

potential energy operator thus commutes with the kinetic en- ”(r)ZZZ lei(r)] f(si)=f deD(r,e)f(e), (1)
ergy operatof. Hence, the HEG can be considered as a

zeroth-order theory. wheref(g)=1/[1+ef~*F] is the Fermi-Dirac distribution

Phenomenologically, the potential energy becomes posiwith Fermi leveler and 8=1/kT, and the DOS is obtained
tion dependent when an electric figld or a compositional ~ from the nonlocal density of statésILDS),
variation'®=*3or a doping gradiefitis present and introduces
band-bending in semiconductors. Under such circumstances,
the potential energy operator and the kinetic energy operator
no longer commuté,and, rigorously speaking, the zeroth- R )
order HEG is no longer valid, either. by lettingr’ approactr. The factor of 2 is to account for the

Furthermore, tunneling tails of wave functions into the electron spin. If the eigenenergy is replaced by a symme-
band edge are known to introduce nonvanishing density ofrized Hamiltonian[H(r)+HT(r')], as in Refs. 15 and 186,
states to the forbidden band gap at the presence of bar{Hen the algebraic proper@(F,F’,s)*=D(F’,F,s) is pre-

bending?"* This tunneling effect cannot be modeled by theserved and the reality of the DOS may be ensured in the
HEG theory because of its complete negligence of the pOtens'ubseciuent approximation

tial gradient. Invoking the integral representation of&function and
owing the treatments in Refs. 15, 16, and 19-21, the

tial energy to first ordet>5the nonlocal density of state was ©<2Ch but unsolvable, NLDS can be obtained. By retaining
9y ! y only terms with a first-order derivative of the potential en-

employed to facilitate finite-temperature formulatigrt® . : .
In this article, the techniques developed in the symme-ergy’ an approximate expression may be obtained,

trized Hamiltoniah®®and the nonlocal density of statés? q 495
are combined and utilized to modify the HEG theory, leading D(F,g)ng halad P
to the first-order homogeneous electron gdSOHEG 2m) (2xh)°

model. The FOHEG model explicitly includes the gradient of . .

the potential energy to first order and is applicable to semi- xex;{ iw( . p’ )_ 'ﬁzwg(vv)z}

D(F,F',s>=22i S(e—e)ef (r)ei(r), )

conductors at finite temperatures. With this approximation, %—V(r) 24m
the density of states and the carrier density can be computed
by compact analytic formulas without having to explicitly )
solve the Schidinger equation. whered is the dimensionality of the physical system. This
approximation only retains the first-order derivative of the
potential energy. Hence, it is called the first-order homoge-
neous electron gas approximation in this work.
By using mathematical techniques in Refs. 22—-24, the
In the theory of homogeneous electron gas, the carrieabove integral may be performed, and the DOS is obtained in
concentration of a quantized system is usually calculated bg rather compact form

Il. FIRST-ORDER HOMOGENEOUS ELECTRON GAS
THEORY
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m

_dt
27h?

—&

D

2 dr2
(r.e)= F(d/2)( ) b™

X Ai(t)(t+e)9271, (4)

where b3=#%2|VV|%8m, ande=(e—V)/b. Ai and T are

Airy and gamma functions, respectively. At the flat-band

limit VV—0, the DOS becomes

dr2

D(r,e)— (e—\)¥2"19(e—V), (5)

I'(d/2)

2ah?

which is the DOS of the homogeneous electron gas model of

semiconductoré?

The carrier density of a quantized system follows from
Egs. (1) and (4) by interchanging the order of the double

integral,
m d/r2 -
n(ry=2 fthitf_ bt+ec—V)],
(r) (2wh2ﬁ> - (1) Farp—1[ B( eg—V)]
(6)
where
1 Fd t!
A= o e

is the Fermi-Dirac integral of ordgrand argumenk.?®

The relations of the FOHEG carrier density in Ef) to
other theories will be illustrated in the rest of this section.
First of all, a comparison between the NLDS in E2). of

this work and the density matrix of Ref. 15 is made. When
changing to a consistent set of notations, the density matri

in Eq. (9) of Sec. 1.1 of Ref. 15 is expressed a&,r’)

=23,0(sr—¢&) ¥ (r')@i(r). The carrier density of Ref. 15,
p(r)=lim;_;p(r,r'), is related to that of this work in Eq.
(1) by p(r)=lim__ n(r). Therefore, the carrier density cal-

culated in Ref. 15 is at zero temperature, whereas the carri
density presented in this work is a generalization of Ref. 1

work, it can be shown that, ab—0 or 8—, the carrier
density expression in Eq@6) reduces to the one-dimensiona
zero-temperature results given in E¢§6) and (17) of Sec.
1.4 of Ref. 15.

At the flat-band limit ¥ Vando— 0) or at the high-Fermi-
level limit (e>V), it follows immediately from Eq(6) that

dr2
n(F)HZ( ) Far-1[B(eg=V)], (7)

2mh?B

which is indeed the carrier density of the homogeneous ele

tron gas>*

IlI. RESULTS AND DISCUSSIONS

In contrast to the conventional HEG theory, the FOHEG
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FIG. 1. The normalized density of states is plotted as a function
of the normalized energysE= (¢ —V)/b). The DOS calculated by
the FOHEG and HEG methods are sketched by solid and dashed
lines, respectively.

carrier density obtained by both methods will be compared in
this section. For illustrative purposes, only three-dimensional
(d=3) results are presented.
The DOS obtained by the FOHEG method in E4). and

by the HEG in Eq.(5) are plotted in Fig. 1 by solid and
dashed lines, respectively. In this plot, the DOS is normal-
ized by (4k/m)(m/27%2)%? 2 and the normalized energy
scale ise = (e — V)/b with b3>=#%2|VV|?/8m. Comparison of
the DOS calculated by the FOHEG and HEG methods shows
two features. First, the potential gradient causes the waviness

f the DOS curve. And the waviness gradually diminishes as
the normalized energy increases, indicating that the effects of
the potential gradient decrease with increasing energy. Simi-
lar results were reported in the high-field work of Ref. 5.
Second, at an energy below the band edge ¥ or £<0),
the HEG method predicts vanishing DOS, whereas the
EOHEG shows that the potential gradient introduces states in

glqe forbidden band gap of the flat-band theory. These in-

-guced states are due to quantum tunneling of wave functions
beyond the classical turning point. The tunneling effectively

| lowers the band edge and consequently reduces the band

gap, leading to a phenomenon called the tunneling-induced
band-gap narrowingTIBGN) in this work. Similar tunneling
effects were reported in Ref. 14. The conventional HEG
theory cannot account for this tunneling effect due to its
negligence of the potential gradient.

In order to study the validity of the FOHEG and HEG
methods, the carrier densities obtained by both approxima-
tions are computed and compared for systems with analytic
C@olutions. The exact solution to an ideal spherical quantum

dot with the confinement potential ®(r) = :mw?r? is used
as a test vehicle, whem, w, andr are the effective mass,
the angular frequency, and the radial distance from the ori-
gin, respectively®!!

In this article, the ideal quantum dot is assumed to be

theory of this work explicitly takes the first-order gradient of manufactured by continually changing the compositoof
the electron potential energy into account. The DOS and th&l,Ga, _,As crystal from 0 to 0.4 in the radial direction,
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resulting in a parabolic confinement potential. If the compo- P2 o L L
sitional dependence of the effective mass of@¢;, _,As is 3
ignored, the ideal quantum dot is essentially a three-
dimensional simple harmonic oscillator with eigenenergy of
E,=fw(n+3), wheren=0,1,2... andn=0 corresponds

to the ground staté.

Since AlGa _,As with x<0.4 is a direct semiconductor
and the conduction-band-edge difference between
Aly Gay As and GaAs is about 324 mé¥; 28 the angular
frequency of this ideal spherical quantum dot is taken so that
hw=30.3649 meV to have enough quantum levels within
the confinement potential. The temperature of 300 K and the
GaAs effective mass ah=0.067m, is used in the compu-
tation, wherem, is the electron rest mass.

The carrier densities obtained by the exact solution, the
FOHEG, and the HEG approximations to the above hypo-

CARRIER DENSITY (10%/cm?)

thetic quantum dot are plotted in Fig. 2 by solid, dashed, and 3 EL&A%T

dotted lines, respectively, for Fermi energies-a100 meV, 074 |--- FOHEG

the zeroth E;=45.548 meV, ground levglthe fourth €, 3

=167.01 meV), and the eighttEg=288.47 meV) quan- 078 P S N S

tum levels of the quantum dot. Three features are observed in LOCATION (nm)

the figure. First, both the FOHEG and the HEG deviate from

the exact solution at low Fermi energi€®r instance,sg FIG. 2. The carrier densities of an ideal spherical quantum dot

=—100 meV andE,). There must be a large enough num- obtained by the exact solution, the FOHEG method, and the HEG
ber of quantum levels below the Fermi level for the FOHEGMethod are plotted as functions of location by solid, dashed, and
prediction to sufficiently approach the exact solutior in-  dotted lines, respectively, for Fermi energies-a100 meV, the
stance,er=E, and Eg). Second, the FOHEG results with 2eroth €,=45.548 meV, ground levgl the fourth €,
successively higher Fermi levelsg{=E,,E,4, andEg) show =167.01 meV), and the eighttEg=288.47 meV) quantum lev-
that the approximation works better for systems with more®!s Of the ideal quantum dot.
guantum levels below the Fermi level. Third, at a radial lo-
cation exceeding the classical turning point associated witlgas theory by this work. The FOHEG theory is applicable to
the Fermi energy, = \2&¢ /mw?, the HEG starts to deviate semiconductors with band bending at finite temperatures.
from the exact solution more significantly, whereas theThe DOS and the carrier density are expressed by the ana-
FOHEG better matches the exact results. This is because thgic formulas given by Eqs(4) and(6), respectively. Com-
tunneling of wave functions beyond the classical turningparison with the exact solution to an ideal spherical quantum
point is included in the theory of FOHEG as illustrated in dot shows that the FOHEG calculation better matches the
Fig. 1. exact results than the HEG, especially at a location beyond
the classical turning point.

IV. CONCLUSIONS
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