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Charged vortices and copper nuclear quadrupole resonance in the cuprates
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The charge density induced @t=0 by a vortex in a type-ll superconductor is studied, starting from the
Lagrangian for a nonlinear Schtimger equation. Coupled Bernoulli and Poisson equations are solved assum-
ing that the electrostatic screening length is much shorter than the superconducting coherence length. The sign
and magnitude of the charge accumulated in the vortex core agree with recent nuclear quadrupole resonance
data of Kumagai, Nozaki, and Matsuffghys. Rev. B33, 144502(2001)] on slightly overdoped YB&u;0;.
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[. INTRODUCTION crease of the charge density outside the core implies a de-
creaseincrease of the accumulated core chargjelence, by
A vortex line in a type-ll superconductor is associatedmeasuring the frequency differendevg=v4(0)—vo(H),
with electrostatic fields generated by the position-dependerihformation can be obtained about the quan@y.
Bernoulli potential. One part of this potential comes from the A nonvanishingA v, detected by Kumagai, Nozaki, and
kinetic energy of the rotating condensate. It has been preMatsuda below T, is a strong evidence for vortex-induced
dicted long ago by Londohand applied to the vortex line by charge density in YBCO. Most interesting and puzzling is
Vijfeijken and Staad. More recently, Khomskii and the sign of Avg. In underdoped YB#u,Og, Avg
Freimuti considered another contribution to the Bernoulli ~50 kHz is found atT=0, while in slightly overdoped
potential that is due to the position-dependent density of suYBa,Cu;0;, Avg~—25kHz. Assuming thatAvg for
perconducting electrons. The local charge modulation pro®3Cu(2) increases with the number of holes in the GuO
duced by this effect has been further studied by Blaiter?  planes, positiveA vg found in the underdoped material im-
These authors consider a BCS superconductor and calculgities a decreased hole density outside the core and gives
the charge accumulation within the vortex core under the),>0. By the same token, vortices in the slightly overdoped
assumption that the superconducting coherence leéigsh  sample should produc®,<O0.
much larger than the Thomas-Fermi screening length. According to Eq.(1), we have
Using the BCS expression for the transition temperalire

the accumulated charge per layer of thickness given by dinT, dT.
sgn Q) =sg =—son 45/ @
2ekes (A e)2dInT,
75 1 Tg ) din w' () wheresis the concentration of the holes. The minus sign on

the right-hand sidéRHS) of this equation is due to the fact

wherekg is the Fermi wave vector, the charge-0, andu is  that the chemical potential decreases upon doping with holes.
the chemical potential. The quantityin T./dIn u plays an  Now, the empirical relation betweeRh. and é is such that
important role as it determines the sign@f. It is propor-  dT./dé>0 for underdoped samples, whitél./dé<0 for
tional to the derivative of the density of states at the Fermthe overdoped onés.
level, specifying the particle-hole asymmetry due to band With these data, Eq?2) yields a negativépositive) vortex
structure. As pointed out by Khomskii and Freimdth,is  core charge for underdope@verdopedl samples, in dis-
energetically favorable to transfer some charge carriers fromgreement with experiment. Moreover, the observed core
the core to the outside region, where the amplitude of theharge is one to two orders of magnitude above the value
condensate wave function is larger. If the charge carriers angredicted by Eq(1).
electrons, and the derivative of the density of states at the This disagreement prompts us to consider an alternative
Fermi level is positive, expressiofil) yields Q,>0, in  approach to studying the charge distribution due to a vortex.
agreement with this prediction. In the present paper we adopt a model of repulsively inter-

Since Q. &2, high-T. superconductors may be good acting Bose gas. This choice is motivated mostly by the trou-
candidates for the detection of vortex charge owing to theibling sign of the observed charge. In a BCS theory this sign
short coherence length. is coupled, via Eq(2), to the slope of thd .(6) curve. This

Recently, Kumagai, Nozaki, and Matstddaudied the ac- can be traced to the particle-hole symmetry-breaking terms
cumulated vortex charge in YB@u;0, and YBgCu,Og by  in the effective actiorf. These terms, being proportional to
measuring the nuclear quadrupole frequency’ifu(2), a  the derivative of the density of statali, link the coupling
quantity sensitive to the charge density at the copper site dfietween charge density and potential to the band structure.
the CuQ planes. In the vortex state obtained by applying aOn the other hand, the effective action of a Bose condensate
field H<H.,, only the nuclei outside the vortex core are contains large electrostatic coupling term that is independent
detected owing to the relative smallness of the core regionaf band structuré=® Hence, the constraint posed by E8)
In view of the overall charge neutrality an increa@ie- is avoided.
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At zero temperature, the dynamics of repulsively interact- —42 q \?
ing Bose gas is described by a time-dependent nonlinear ﬁZW[P(Vﬁ— %A) +Vpl/2'VP1/2}
Schralinger (TDNLS) equation: the Gross-Pitaevskii
equation'®! The same kind of dynamics has been proposed @
for superconductors, in the presence of an external gauge —QPV(T)—E(P—Po)Z- )
field, by Feynmaf.By expressing the Lagrangian as a func-
tional of superfluid density, Feynman derives a BernoulliThe nuclear quadrupole resonaribQR) experiment is con-
equation for the electrostatic potential. ducted in an external magnetic figtk<H.,. Hence, forr of

In this paper, we study a charged vortex, starting with thehe order of the coherence length, we has#icV o<1
same Lagrangian. By combining the equation for the Ber-The effect of the magnetic field is to introduce a cutoff on the
noulli potential with the Poisson equation, we obtain acirculating supercurrent atof the order of the London pen-
“screened” differential equation for the potential, in which etration depth\| . Since we are dealing with the case of
the kinetic energy and the quantum pressure act as an extex; > §¢, we neglect the vector potential in what follows.
nal source. To estimate the vortex-induced charge density, we The variational principlesL/dp=0 yields, with the use
follow an approximate method similar to that of Ref. 4. First, of Eq. (5), an equation for the Bernoulli potential
we assume that the electrostatic screening length is much
shorter than the superfluid coherence length. In this approxi-
mation, the screening term in the Poisson equation dominates
and the charge density is obtained by a straightforward itera-
tion procedure. @ _

The paper is organized as follows. In Sec. Il we review q Lp(1)=pol- ©
Feynman’s derivation of the Bernoulli potential and obtain I . .
theyPoisson equation with screening. Spolution of this equa--rhe compressibility t_erm on the RHS. of this equgtlon can be
Lo o : related to the potential using the Poisson equation
tion in the presence of a vortex and derivation of the induced
chargeT density are presented in Sec. Ill. Sepﬂon IV contains eVAV(r)=—4mq[p(r)— pol, @
an estimate of the charge accumulated within the vortex core
and a discussion of the validity of the iteration procedurewhere € is the dielectric constant due to bound electrons.
Ramifications of our results for the dynamics of supercon-Combining Eqs(6) and(7), we obtain
ductors and some conjectures on charged vortices in the un-
derdoped regime are presented in Sec. V. (Vz—)\gz)V(r)=

#? 1

V(r)=— (V9)2— —V? +i(V )?
Zm*q 2p p 4p2 1Y

2
Sz | (V)P = iV2P+ i(VP)2
2m* grg 2p 4p?
Il. BERNOULLI POTENTIAL AND POISSON EQUATION =F(r), (8)

The Bernoulli potential for a repulsively interacting Bose where\, is a Debye-like screening length given by
fluid can be found from a variational principle starting with

the Lagrangian density for the time-independent Sdimger 2 _ €«
: ANo=7—2- 9
equatiofl 47q
Substituting for @ the expression(4), we see that\3
h? iq ’ 2_ % p2 2 =eNfe
L=- 2m* V_%A Wi —qV(n)|¥| _E(M —Po)”, Equation (8) has the form of a Poisson equation with

(3) screening. The last equality defines the source fundgian)
generated by the first term of the Lagrangi@y It is pro-

whereW(r) is the condensate wave functioh,is the vector portional to a sum of the kinetic energy and the quantum

. : . . . ressure.
potential, V(r) is the electrostatic potential, ang}, is the pressur . . .
equilibrium condensate density. For Cooper pairs in a hole- Itis interesting to compare E¢B) with the screened Pois-

_ tion recently derived from a generalization of the

doped superconductor, the charge-2|e| and m* =2m. son equa < ; 2

The last term on the RHS of E@3) is the compressibility szburg-LgndaL(GL) theory by Kolaek and Lipavsky .

energy with coeﬁicienty—(sz)*l x being the compress Thus far, this is a most complete treatment of the Bernoulli
- 0 y - . . . . .

ibility of the fluid. An explicit form for this coefficient has potential in a BCS superconductor. In a sense, it also inspired

been found by Stodeusing Fermi surface bosonization for °U" approach to the Bose superconductor. There are similari-
) Dy Slo g rermr. . ties and differences with respect to our E8). First, the
fermions with localized attractive interaction

screening potential in Ref. 14 is generated by varying the
internal energy with respect to the density. In our derivation

m* 2 this corresponds to the variation of compressibility energy.
a=—Z-—. (4)  Also their kinetic-energy term is similar except for a correc-
Po tion due to the density dependencenaf. Since the density

takes the status of a dynamical variabtéjs correction does

V2¢10 the Lagrangian densit{8) becomes  not appear in the variation of the Lagrangié). Like the

If we set¥=p
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inverse compressibilityy, the effective massn* is a func-  Evaluating the RHS of this equation with the use of Edf),
tion of the equilibrium density,, which is not subject to a we obtain the charge density as a functiorr of
variation.

The most important difference between the GL thébry eh?
and our boson theory is that the term due to density depen- Ope(r)= 27m*q
dence of the condensation energy is not present in(&q. _ _ o N
We note that in the work of Blattest al* the charge distri- This charge density satisfies the condition of perfect screen-
bution around the vortex is determined mainly by this term.ing: Explicit integration of Eq.(17) over infinite volume
Being proportional to the derivative of the density of states at/i€lds exactly zero. The density igativefor r <0.7% and
the Fermi energy, this term contributes only if particle-holethe charge accumulated in this region is canceled bytse
symmetry is being broken. tive charge from the region af>0.75¢. Forr>¢, the func-

In contrast, the source terf(r) in our Eq.(8) is of tion (17) behaves asymptotically as . The latter property
purely kinetic origin and its sign is independent of theis also shared by the induced charge density calculated in
particle-hole asymmetry due to band structure.rldepen- Ref. 4.
dence in the presence of a vortex is derived below.

r4+12r282-7¢
(r2+ 52)4 . (17)

IV. VORTEX CORE CHARGE

Il. VORTEX-INDUCED CHARGE DENSITY . L .
© UCED € G S To obtain the charge accumulated within the dger unit

For an isolated vortex line, the condensate wave functiofength of the vortex ling we integrate the charge density

takes the form (17) over the volume of a cylinder of radius
Y(r)=pgf(r)e’=p(r)"%", (10 ¢ eh?
o _ _ QC=2wf Spo(rrdr==5_5 . (18)
where (,60) are polar coordinates arfdr) is a real function 0 m*q¢

approaching 1 ag—. The actuakchargedensity is given Sinceq>0, the RHS of Eq.(18) is negative. This agrees

by with the charge sign determined via NQR on slightly over-
Spe(1)=q[p(r) = pol, (12) doped YB.QC%O7.5 Note thgt distinct from Eq.l1), Eq.(18)

) ) ) does not involve the quantity In T./dIn u. Nevertheless, at
wherep(r) is found by solving the coupled equatiof@ and  |east for a parabolic band, E(L) can be brought to a form
(8). o _ ~ similar in structure to Eq(18). This is surprising in view of

To the lowest order of iteration, we start with the densitythe fact that the charge of E€l) is generated by position-
pO(r) corresponding to the solution of E¢6) in the ab-  dependent condensation energy whereas that of (Eg).
sence of electrostatic potentlal. We use an apprOXImatlon bﬁomes from a combination of kinetic energy and quantum

Fetter® pressure.
To clarify this point, we consider in Eq1) the product
0) re keA2.. For a free-electron gas we habe
p (r)=p0m, (12) FATF g
2
where¢ is the coherence length given by kﬁ\%p: 4h _ (19)
mme
h2
§sz- (13 Introducing this result into Eq1), we have
With this ansatz, the source functi¢i(r) of Eq. (8) is Q= h*es dInT, 20
approximated by E2m°mee dinp
© h? r2+4¢2 On the other hand, letting* =2m and q=2e, the charge
FP(r)= 22 2q) (121 82" (149 per sheet according to EL8) is given by
The solution of Eq(8) is considerably simplified in the e fi*es
] \ Qi=5Q=— =—z€. (21)
limit of N\p/é<1. Then the first term on the LHS can be 8mee

neglected. Invoking the approximate source function of Eq. ) .
(14), the potentiaN(r) is given by For a parabolic band, we obtain with the use of the BCS

expression foiT,
V(r)=—N\3FO(r). (15

Using Egs.(7), (11), and(15), the net charge density in the
presence of a vortex is

dinT,
dinu

=(2gN,) %, (22)

whereg is the constant of attractive interaction. We note that
the quantity on the RHS of this equation is of order one.
Now we see that the only distinction between E@f) and

e)\% 5 (0
5pc(r)=EV FO). (16)
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(21) is the presence af in Eq.(21). However, if the quantity <4 is required to explain the measured core charge from Eq.
\2.in Eq. (1) is replaced by\3= e\ 2., even this distinction  (23), we see that the criterion for validity of the iteration
is erased. scheme is met in this material.

It should be stressed that such enhancement of the screen-
ing Iength by polarization of bound ellectrons should be in- V. DISCUSSION
cluded in any theory of charged vortices. It becomes espe-
cially important in superconducting cupratésSince e In the preceding section, we came to the conclusion that
~10-1G, the disagreement between the BCS théamyd the NQR experiment on charged vortices in slightly over-
the experimental magnitude of the core charge is removedioped YBCO can be explained using a model of repulsively
However, the difficulty with the charge sign remains unre-interacting Bose superfluid. We now discuss relevance of this
solved within the BCS approach. result for superconducting dynamics of cuprates.

For a rough estimate of the magnitude of the accumulated In BCS theory, there is a coupling of the hole density to
core charge in slightly overdoped YBau;O; we use¢  the superconducting energy gap when the particle-hole sym-
=1.6x10 ' cm ands=2x 10"’ cm. With these values, the metry is broken owing to a nonzero value of the quantity
accumulated core charge per sheet according taZyg.is N;L . In contrast, the Lagrangian of charged Bose superfluid
. contains a large electrostatic coupling term independent of
Qs~—5ex10 . (23 N/’L. Consequently, the sign of the charge induced in the

The core charge per sheet observed in this sample rang®grtex core becomes decoupled from the BCS constraint of
from —5x 10 3e to —2x 10 2e.® We see that Eq23) can  EQ. (2). In this way, the present theory yields a core charge
explain this result withe ranging from 1 to 4. that is in agreement with the NQR data on %Ba;O,.°

It remains to enquire about the validity of the iterative If we consider a generalization of E¢3) to a time-
approach used to solve the Poisson equation with screeningependent condensate, then the electrostatic coupling term
We now show that there is a limiting value of the ratig/¢? ~ appears in a gauge-invariant combinatipqV—d6/dt).
above which the iteration scheme breaks down. To determin&his topological term is present, since the bosonic field itself

this value, we investigate the actual boson dengify) can be_regarded as the o_rder p_aram7eslé'me corresponding
=|W(r)|? in the presence of the charged vortex. From Eg.dynamics is that of a Galilean-invariant TDNLS equatich.

(12) we see that, for a neutral superfluid, this quantity isSade Melo, Randeira, and Engelbrethstudied the cross-
equal to zero for =0. The effect of the potential in the OVer between the weak-coupling BCS and the Bose conden-

charged superfluid is to fill the vortex core with bosons. ItSation using functional integral formulation. In the extreme
turns out that the iterative approach is most accurate wheirong-coupling limit, they find that the dynamics is de-

the core is nearly completely filled. This corresponds to theScribed by a Galilean-invariant TDNLS equation. However,
strong screening limit. We can see this by calculatipfy Stoné has shown that the dynamics of a BCS condensate at

—0) using Egs(11) and(17), T=0 is described by this dynamics even in the weak-
coupling case. This result is of importance for vortex dynam-
\3 ics in connection with the problem of the Magnus fote.
)2P0<1—28?)- (24 The agreement of the vortex charge derived from E3.
with the NQR experiment on slightly overdoped YBCO
We used the screening and the coherence lengths given iends support to the conclusions of Stén&pparently, the
Egs.(9) and(13) to obtain the expression on the RHS of Eq. electrostatic potential in the gauge-invariant topological term
(24). According to this expression the quantii¢0) becomes s at work in overdoped YBCO.
negative Whem%/§2>§. This signals a breakdown of the It has been pointed out by Uemdtahat overdoped cu-
iteration scheme, since the boson density, being equal tprates are characterized by a BCS condensation correspond-
|W|?, is necessarily positive or zero. ing to simultaneous pair formation and condensatioii at
For values ofA3/£2> %, the full Eq. (8) including the  That Bose condensation is relevant for both underdoped and
V2V(r) term must be solved. In the limit ofy/&>1, the overdoped cuprates has been argued by Schneider and
second term on the LHS of this equation can be neglecteBederseR? These authors used the model of an interacting
and the induced charge densifp.(r)~ —eF©(r)/(4m). charged Bose gas and found compatibility with empirical
According to Eq.(14), this expression is negative for all trends of various thermodynamic properties of cuprate super-
values ofr. This may be of relevance for the interpretation of conductors.

Th2e

N

the NQR data on underdoped YBQ6ee Sec. V. This brings us to the question of the sign of vortex charge
Let us estimate the RHS of Eq24) for slightly over-  observed by Kumagai, Nozaki, and Matstaunderdoped
doped YBaCu;O,. From Eqgs.(9) and(13) we obtain YBCO. Due to close proximity to the Mott insulator, physi-
cal properties in this regime are highly anomalous. One out-
)\% eh? standing feature is the existence of the pseudogap regime
EZ‘“ W- (25 observed below some temperature ab®ye As pointed out

by Lee and Wen! the pseudogap is expected to persist in the
Using é~1.6x10 ' cm andp~5x10°°cm™3, we obtain  core region of a superconducting vortex. It is possible that
from Eq. (25), \5/&2~8X 10 °e. For e~1(?, this ratio  the charge-sign anomaly is caused by this modification of the
amounts to about of the critical value 3.% 10 2. Sincee  vortex core. Strong correlation physics must be used, such as
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thet-J model, to describe the vortex structure in the undercompressibility of the cuprates near the Mott transition is
doped regimé! Another possibility is to assume that the still an unsettled topic, so that this idea lacks a firm numeri-
ratioAp/&>1, owing to a strong reduction of the compress-cal evidence.
ibility of the Fermi gas by Coulomb correlatioA%As shown

below Eq.(24), under this assumption the charge density

remains negative even far outside the vortex core. Noting

that the nuclei contributing to the NQR signal come just )
from this region, the positive sign afvq observed in the I thank Dr. Jan Kolaek for inspiring correspondence and
underdoped YBCO would be explained. Unfortunately, thefor sending preprints.
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