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Roton backflow and quasiparticle scattering at*He surfaces
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We study the effect of roton backflow on the scattering of quasiparticles and atoms at the free surface of
superfluid*He atT=0 K. As a starting point, we use Beliaev’s formalism and include backflow semiphe-
nomenologically in the form of a backflow potential. We derive equations of motion for the bulk quasiparticles
and the free atoms. Assuming that all the quasiparticles travel ballistically, we solve the equations of motion
numerically for oblique incidence and calculate probabilities for all the one-to-one surface scattering processes
allowed by the conservation laws. We compare the results with those obtained when backflow is neglected. Use
of some of the calculated rates in the simulations of experiments shows that the calculated scattering rates with
backflow included are in improved agreement with experiments.
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I. INTRODUCTION lations of experiment?%24showed that, while the calcu-
lated probability of evaporation by phonons show very good
Since its discovery,the superfluidity of*He has been a agreement with experiments, the calculations underestimate
topic of considerable interest, largely because of the fact thahe evaporation efficiencies &" rotons—the probabilities
it is an ideal system on which to test the fundamental conwere too small at low roton energies, thus highlighting the
cepts of quantum mechanics. One of the principal notions ofeed for a better description of the roton and a better theory.
a many-body system in the quantum regime is that of Land- One of the physical ingredients not present in Beliaev
au’s quasiparticledwhich holds that the excited states of the formalism is roton backflow. The concept of backflow was
fluid should exhibit particlelike properties. That this is the introduced by Feynman and Coligmwhen it was realized
case has long been established by neutron-scatterirf§at the roton minimum was too high in the earlier Feynman
experiment€. The interaction between these quasiparticlesheory?® It has subsequently become accepted that roton
and the free surface of a superfluid sample, giving rise to th&®ackflow should be considered in order to have a quantitative
evaporation of atoms into the vapor, has recently been invegind physical understanding of the excitations in superfluid
tigated in a number of experimerts'® These experiments helium. One would, therefore, expect that backflow effects
have been developed to such a degree that they now providdll be important at the liquid-vapor interface. In this paper,
a good means of probing the nature of the quasipartities we develop a perfectly general extension of Beliaev's theory
and how they interact with one another. to include a semiphenomenological mean-field backflow ef-
At low temperatures, superfluitHe exhibits the peculiar fect by developing some of the ideas from the polarization-
phenomenon of quantum evaporation. Elementary excitaPotential (PP theory’’ of the 1970s. We neglect inelastic
tions propagate in the liquid with long mean free paths androcesses and assume that all the quasiparticles are stable
with an energy that can exceed the binding energy of th@nd travel ballistically. We investigate the one-to-one scatter-
atoms in the liquid. When such an excitation impinges on théng processes at bulk energigé® covering the range from
free surface it may eject an atom through a quantum procesiist above the binding energlu|=7.16 K to energies
The process of quantum evaporation and the reverse proceRigher than the maxon energy,,~13.85 K. For prelimi-
of quantum condensation have been studied extensively ovéary results of this study, see Refs. 28—30.
the years. Wyborn and Wyatestablished that the processes The paper is organized as follows. In Sec. II, we present
conserve energy and momentum parallel to the surface. Ortbe method we use and derive the equations of motion. The
of the difficulties with experiments on quantum evaporationsolutions to the equations are presented in Sec. Ill. We also
is in the calibration of the detectors; for various reasons, it igive our calculated scattering rates and compare them with
difficult for experimentalists to deduce absolute values forthose published and those from experimental simulations.
the probabilities of quasiparticle evaporation. This emphaWe conclude in Sec. IV with some remarks.
sizes the need for theoretical predictions.

Over the years, there have been several theoretical Il. EORMALISM
studie$' 1% of one-to-one quasiparticle scattering at the free '
surface. Recently, Sobnack and co-work&r& adapted Be- We give briefly below the general ideas of Beliaev's

liaev's theon?® to the inhomegeneous superflitle system  theory?® relevant to the present study. This is followed by
with a free surface aT=0 K and calculated probabilities some ideas from the polarization-potential theory of Aldrich
for the one-to-one surface scattering processes as a functiamd Pine¥’ and then we discuss how we incorporate back-
of energy. The use of their calculated probabilities in simu-flow into our formalism.
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A. Beliaev theory The density-density response function is defined as the

Beliaev's theori® is based on Bogoliubov's Strength of the system responsedtq,; alone,

ass:umptiorfs1 that the condensafghe state of zero momen- _
tum) is macroscopically occupied and that the excited states (p(k,0))=x(K,)PexK, ), (6)
are dominated by scatterings involving two condensate pafand from Eqs(4)—(6) it follows that
ticles. With these assumptions, Beliaev identified that the
Feynman diagrams for the system consist of three irreducible XK, w)
self-energy diagrams%,;, the sum of all self-energy dia- x(K,w)= —————. (7
. . . : 1—fx22(k,w)
grams with equal numbers of incoming and outgoing con-
densate lines},, the sum of all self-energy diagrams in In a system without backflow and without contributions from
which the number of incoming condensate lines exceeds thgie multiphonon excitationsy?? contains pairs of free par-
number of outgoing ones by two, alily, which has two ticles excited from the condensate,
more outgoing condensate lines than incoming ones. The su-
perfluid *He system has two propagators, the usual single- ph2k2/m
particle Green’s functionG(k,») and the “anomalous” x&(Kw)=———""7", 8
Green’s functiorF(k,w). The Feynman diagrams give a pair A —7K"/Am
of coupled Dyson—Beliaev equations férandF in terms of  wherep is the density. The density-fluctuation spectrum is
the self-energiex 11, 2,0, andX,, the condensate density found in the poles of and is given as
p, and the free-particle Green’s function
TR LG bl
+p

21,2
K 4m? m

5 -1 ho=
@ 2m K

.Y

©)

Go(k,w)= +ié8

i . o . ) This is none other than the Bogoliubov spectrum wih

In the low-density(Bogoliuboy limit, the first-order dia-  repjacingv(k) in Eq. (3). f§ is interpreted as the effective
grams for the irreducible self-energies give interaction between atoms in the liquid and it is assumed that
short-range correlations renormalize the hard core in the in-
21=pV(0) FpV(K) and 2op=22=pV(K), (2 oraciion %o a soft core. This is equivalent to the extended

where V/(k) is the Fourier transform of the helium-helium Bogoliubov approximation used by Sobnagkal °

potential.G andF then have poles dtw=*Eg, whereEg Aldrich and Pine¥ introduced a mean field backflow ef-
is the Bogoliubov spectruth fect into their theory by assuming that the density fluctua-
tions are also affected by an additional vector polarization

K4 h2k? 12 potential Ay, which couples to the current fluctuatiop
Ea(k)=| 7= +2p 5 —V(K)| . @) the liquid,
This formula gives quite a good fit to the experimentally Apoi(k,0) =T (j(k,w)). (10

observed spectrum i¥/(k) is taken to be the Brueckner . . . .
potentiaf? Vok~lsin(ak), with Vo=17.0 KA and a, The net response is then given _by ED). with an addltlonall
—226 A term x£i(k,w)Apo(k, ) on the right-hand side. The conti-
nuity equation and the relationships between the correlation
B. The polarization-potential theory lzlé;\]cgg@ give the density-density response functideyg.
Aldrich and Pine%’ developed a phenomenological theory
to evaluate the contribution of short-range correlations, roton X2 (K, o)
backflow, and multiphonon excitations to the superfluid he- x(k,w)= S 2e02 ,
X . : L 1—(f+ o R/ k) x2E (K, w)
lium density-fluctuation spectrum at both SVP and at in
creased pressures. They suggested that, in analogy with plagnere the free-particle response functigif now has poles
mons in metals, the restoring force for the density;gqaciated with pairs of free particles withkedependent
oscillations may be regarded as a “polarization potential” factive massn® . Using the high-frequency limit of this
density-density response functishthe vector polarization
_£S
Ppo(k, ) =fi{p(k,w)), ) parametef'v‘ can be expressed in terms of the “free”-particle

where f$ is a phenomenological parameter proportional toeffective massn*,

the strength of the induced fluctuations. In the absence of o

backflow and multiphonon excitations, the linear response of ple=m—m=Am. (12)

the system to this potential and a weak external prdg;,  The strength of the backflow potential is thus proportional to

is given by the screened density-density response functiofhe extra mass from the interaction, which is responsible for

X4t . (see, for example, Ref. 33i.e., the backflow. The poles of the density response funcgion
then give the density fluctuation spectrum in the new ap-

(p(k,0))=xg (K, 0)[Ppo(k,0) + Pey(k,0)].  (5)  proximation containing the backflow effect,

11)
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74K 72K2f S 12 theory, a good fit to the experimental spectrum is found by
ho= +p (13 including multiphonon contributions. Our objective here is to
4mng; m examine solely the effect of backflow and we deliberately

neglect this contribution. We find that E¢13), with the
C. Beliaev theory including the backflow effect potentiaf? Vok sin(agk), with Vo=15.2 KA™! and a,

=2.1 A, for f; andmj =1.4m, gives a very good fit to the

In the absence of backflow and multiphonon contribu- wperimental truRd. For simplicity. we takem® to bek
tions, the PP theory reduces to the extended Bogoliubov ape'dpeepengena't spectrum.For simpficity, we takem™ to be

TS ; : ; n
proximation in the sense that the interaction term included"C¢F . . o 9

the short-range renormalized core, i.e., the interaction terms hW'tth/hE 'ECA'”S;%Qk‘;f t?r? b?Ckﬂ%erOtenPal wlvg(kg_,
fx and V(k) are equivalent. When backflow is included in where W(k)=Am » the two ‘bellaev coupled: dia-

the PP theory, the single particle aquires an additional maS%rams" for the two propagator§ (k, ) andF (k,») of the

. 4 . . .
proportional to the strength of the coupling to the currentsuperfIUId He system give, in real space, the equations of

fluctuations.

It is reasonable to expectthat one can derive a field
theory incorporating the backflow based upon “free” par-
ticles, which have an effective mass* and define a new
free-particle propagatdg, accordingly,

motion

ﬁ2
fow—u(r)+——V?
w(r) py—

#0= [ pOVr=) o)

+RZPW(r =) [ (r)+ p(r)]dr ' =0,

o (16)

Go(k,w)= +is (14) ,
—fho+u(r)+—V?

2m*

21,2
ho— —
(zm; g

%(r)

This Green’s function however is not a “true” free-particle
Green'’s function in the sense that its poles are no longer the .
bare free particles. That is, we are using a “backflow” qua- _f [Vp(OV(r—r")Jp(r") +H20®W(r—r")]
siparticle as the basis of our field theory. A truly microscopic

theory would require a derivation of the effective mass pa- , a3
rameter from first principles and the tr@, would contain XLb(r')+g(r)]dor’=0

poles that were free particles. Equatidt®), however, en- ¢ yhq “narticle-hole” wave functiong(r) (associated with
sures that the pole will be a single bare atom when the de%) and the “hole-particle” wave function)(r) (associated
;‘?i’n{; s jﬁ,ﬂi}Jhe theory, therefore, has the correct endyiv, £y vajid in bulk, through the surface and in the vacuum.
: . . . As before?®?2the functionu(r) describes the variation of
TI;]e sec.ond effelctégfhthg mtrodgc::f%n (_)fhbackflow in the ye binding energy. It changes fron(i@ bulk) to | x| (in the
PP theory is to replacethe interactionf, wit vacuum across the surface.,=—7.16 K is the condensate
2 chemical potential. In deriving the above equations, we have
s, @ allowed the condensate densitfr) to vary with position so
fet+t —fh. ) !
2 that the equations may be used to tackle the general inhomo-
geneous problem such as the free surface. Deep in the bulk,
the density has the value of bulk superfluid condensate, i.e.,
2 ) p=po (constant, and high above the surface it has the

—o0

One then finds that with the approximations

2

S=p| V(K)+ %fﬁ +p| V(0)+ lim w_zfﬁ vacuum valuep=0. We takem* =m+Amp(r)/py. The

©,k—0 equations then are the Schinger equations for the quasi-
(15) particles (of energyfw) in bulk, and in the vacuum the
w? , Schradinger equations for the free atofof energy 7w
2= 2= p| V(K) + ka , — | pol)-
for the self-energies, along with E@L4), the poles of and IIl. SOLUTION OF THE EQUATIONS AND RESULTS

G will then be equivalent to Eq13). These approximations,
together with Eq(15), are, therefore, equivalent to those of Because the surface scattering processes conserve mo-
Aldrich and Pines including backflow and neglecting mul-mentum parallel to the surface, the density profi(e) de-
tiphonon contributions, due to the fact that the pole&,d5, pends only org, the component of =(R,z) normal to the
and y coincide—all correlation functions have coincidental interface, i.e.p=p(z). We give the quasiparticles a momen-
poles within an equivalent order of approximation in Bosetum 7 Q parallel to the surface and look for solutions of the
systems® The quasiparticles of the system are now nonin-form
teracting quasiparticles that contain the backflow contribu-
tion. p(r)=e'VRp(z) and y(r)=e'?Fy(2),

The main effect of then* term in the excitation spectrum
[Eq. (13)], is to lower the roton minimum in energy, leaving where R=(x,y). This reduces Eqs(16) to the one-
the maxon energy largely unaffected. In the original PRdimensional equations
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d? i
ﬁw—,u(Z)—an-i-aF &(2) A,
z
0.8 |
_f [Vp(2)V(Q,z—2')p(Z' )+ h20®W(Q,z—2)]
X[¢(z2')+(z')]dz' =0, (17) % 0.6 & }
a2 gl |
—ﬁw-i—,u(Z)—an-i-a—z W(2Z) '
dz
—f [Vp(2V(Q,z—2')p(Z') + H20®W(Q,2~2')] 0271 P 1
XL E()+9(z)]dz =0, 0 o 130 4.0 15.0
wherea=#2/2m* . V has the same functional form as in Ref. Energy (K) A,

20, but now,=15.2 KA *anday,=2.1 A. The backflow

potentialfzzwzw takes the form FIG. 1. The probabilitie®,; as a function of bulk energy for an

atom incident on the free surface with a parallel wave vef@ir
=0.75 A1 A4, A,, andA, are, respectively, the atom threshold,

Am exp— Q|Z—Z'| the phonon threshold, and the maxon energy.
W(Q,z—2")= —2 20
h Q :
A. Fixed parallel momenta
whereQ=|Q). Figures 1-3 show the calculated probabilitieg as a

u(2)=|wolf(2) gives the variation in the binding energy function of energy(relative to the zero in bujkof the differ-
as discussed in Ref. 20. As before, we solve the equations @it transitions available to atonR; rotons, andR™ rotons
motion for ¢(z) and ¢(z) numerically in a box of size jncident on the free surface with a fixed parallel wave vector
2L (—L+ssz<L+s, with the surface centered a=0 |Q|=0.75 A. Conservation of energy and parallel momen-
and bulk helium inz<0) for a given energyiw and either  tym exclude phonons from the scattering processes for all
for fixed parallel momenturkQ or for fixed angle of inci-  energies less than the phonon threshblg-12.1 K. Simi-
denced;, using a fermi function for the surface profii€z)  |arly there is a cutoff for atom states &t=10.6 K (relative
and taking the surface to have a 90%—10% width of 6.5” A. to bulk). These figures are the same as in Refs. 28—30 but are

A numerical procedure is used to extract thea) ampli-  included here for completeness. We only summarize the
tudes¢; andy; [i=p (phonong, — (R™ rotong, + (R™  main results here. The corresponding results without back-
rotons, a (atomg] of the wave functions of the various qua- flow are given in Figs. 8, 9 and 10 of Ref. 20. Figure 4
siparticlesi and these are used to calculate the curjent compares the probabilitieB,; (j=a,—,+) presented in
associated with each quasiparticle/atom from this study with those obtained without backfléRef. 20.

1
Ji=5 Vil =), (18

where, because of the energy-dependent backflow potentic 0.8
h2w?W, v; has the definition

o
o

m
Vi=—*ka(k) (19)
m

Probability

o
'S

instead of the usual group velocity =V w(k) for the total

quasiparticle currenk;j;(i=p,—,+) to be conservedsee

the Appendix. For the free atomsni=m*), v,=#Ak,/m. 0.2

The currents are then used to calculate the probabilities o

the various one-to-one surface scattering proce&sas for

example, Ref. 1)/ 0
We have calculated the scattering rags (probability of

statei scattering into statg¢) as a function of energy for

various fixed parallel wave vectors and angles of incidence. FIG. 2. The probabilities?_; as a function of energy for an

We present some of our results below. incidentR™ roton.|Q|=0.75 AL

11.0 12.0 13.0 14.0

Energy (K)
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0.8

o
o

Probability

0.4

0.2

1 12.0

A,

11.0 12.0 13.0

Energy (K)

15.0

FIG. 3.
incidentR" roton.|Q|=0.75 AL

Backflow increases the probability,, of atoms con-

The probabilitiesP , ; as a function of energy for an

PHYSICAL REVIEW B5 184521

0.8

Probability
[=]
[=>]

o
'S

0.2

feo 100 110 120 130 T 14.0
Energy (K
A gy (K) A
FIG. 5. The various scattering probabilitieg; as a function of
bulk energy for a phonon incident on the surfac®,gt 14° (dotted
lines) and 6;,=25° (solid lineg. A andA,, are the roton minimum
energy and the maxon energy, respectively.

densing aR™" rotons at all energies between the roton mini-
mum A and the maxom\, (Figs. 1 and % decreases the
atomic reflectivity P,, so thatP,, now decreases much
faster as a function of enerd¥igs. 1 and #% decreases the
specular reflectivityP _ _ of R™ rotons incident on the sur-
face (Fig. 2); decreases the probability_, of R™ rotons
evaporating atoms at all energies, Igut, is finite (Fig. 2);

B. Fixed angles of incidence

To enable comparison with experiments on quantum
evaporation we have calculated the scattering probabilities
Pj; for fixed angles of incidencé;,. In these experiments,
the bolometer producing the quasipatrticles is fixed at a given

iderably | th babil _p ¢ R position in bulk helium and the beam of quasiparticles pro-
considerably increases the probabilRy, , (=P.,) o duced is collimated so that all the bulk excitations are inci-

rotons quantum evaporatingrigs. 3 and % The last two  gent on the surface at the sartfixed) angle. For a fixed
features suggest that with backflow included, the ratiogngle of incidences,,, different excitations incident on the

P_a/P.4 is considerably reduced, as indeed is clear fromsyrface have different parallel mome®@(6;,.% o).
Fig. 4, more in line with the experimental estimates of

Tucker and Wyatt®

1 - *
f
Aa
0.8 - |
> 06 r b
= B
©
o
e
@ 04 1
0.2 1
i pt . ow
[ L St S I I ) 1~ o
11.0 12.0 13.0 h4.0 15.0
Energy (K) A

m

FIG. 4. The probabilitiesP,; as a function of energy for an
incident atom|Q|=0.75 A~1. Solid lines, with backflow included
(as in Fig. 3; dashed lines, without backflo@Ref. 20

Figures 5, 6, and 7, respectively, give the calculated prob-
abilities for phononsR™ rotons, andR™ rotons incident at
0,,=14° (dotted line$ and 6,,=25° (solid lines. A
~8.7 K and A,~13.7 K are the roton minimum and
maxon energiesA _,(25°) andA _,(25°) are the atom and
phonon thresholds foR™ coming in at 25°, and similarly,
R™" rotons incident at 25° cannot evaporate atoms at energies
less thamA , ,(25°) and cannot reflect as phonons for ener-
gies less tham , ,(25°).

As for the case when backflow is neglected, the results
show that the calculated probabilities have a definite angular
dependence, contrary to some of the other studiés.par-
ticular, the probabilityP,, of a phonon reflecting as a pho-
non or the probabilityP,, of evaporating an atom depends
quite strongly on the angle of incidence for energies up to
about 11 K(Fig. 5. The mode change from reflection pho-
non to R~ roton, however, is independent of the angle of
incidence—the change imorma) momentum involved in
this reflection does not depend very strongly on the angle of
incidence.

For incidentR™ rotons(Fig. 6), the probability of reflect-
ing as a phonon is essentially independent of the angle of
incidence. The probability of aR™ roton quantum evapo-
rating depends strongly on the incident angle: at 12.0 K, for
example,R™ rotons are about four times as likely to evapo-
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A_a(l25°) A_(25Y)
|

T
A
08 _
2
2
f 0.6 - N .g
o o
[
=]
]
& 04 .
02 _
9.0 10.0 11.0 12.0 13.0 I14.o
Energy (K
gy (K) A,
on

FIG. 6. The various scattering probabilitis ; as a function of
bulk energy for anR™ roton incident on the surface &,=14°
(dotted lineg and #;,=25° (solid lineg. A_,(25°) andA _,(25°)
are, respectively, the atom and phonon threshold wRerrotons
are incident at 25°A and A, are the roton minimum energy and
the maxon energy, respectively.
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1.0

o
»
T

o
~
T

02 r

0.0
9.0

Energy (K)

FIG. 8. The probabilitie®, _ andP. , for anR™ roton incident
the surface a#;,=25°. Solid lines, with backflow includeths

in Fig. 1); dashed lines, without backflo@Ref. 20.

incident at#,,=25° calculated in this study with the corre-
sponding probabilities calculated when backflow is ne-
glected shows that backflow has a large effect on the prob-
abilities for incomingR™ rotons: incidentR™ rotons are

more efficient at quantum evaporating with backflow in-
rate atoms at 25° than at 14°. Again, we find that, just as fogjuded, with, for example, a#,,=25°, P,,~0.6 atfw

fixed parallel momenta, the probability of evaporationRy
rotons is smaller than when backflow is negledt€ig. 13 of
Ref. 20, but P_, is still finite.

Direct comparison of Fig. 7 with Fig. 14 of Ref. 2@s
shown in Fig. 8, where we pld®, _ andP_, for R rotons

=13.0 K with backflow compared td ,~0.2 without
backflow. At all energies betweek, ,(25°) and the maxon,
backflow increase® . , and the same result is true f&"
rotons incident at 14° for all energies between the roton
minimum and the maxon. Also, the mode change reflectivity

P, _ decreases faster with energy with backflow included.

A,,(25°) A,(25)

1 |

g - : ] ’/:,47—-—

/

+
|
s

0.8

Pt of

Probability
o
o

o
'
T
e
L

For incidentR" rotons, the probabilities of all the pos-

sible transitions are strongly dependent on the angle of inci-
dence. The probabilitf . _ of anR" roton reflecting as an
R-

I gquantum evaporation rises much faster with energy at 25°
than at 14°. This is in sharp contrast with the scattering rates
calculated when backflow is neglected. There the probability

roton falls off more rapidly and the probability , , of

quantum evaporation bR* rotons was independent of

the angle of incidence.

Attempts to measure the absolUR roton evaporation

probabilitiesP , , by indirect experiment§~*! seem to sug-
gest a value, typically=0.3, which increases with the wave

0.2 - a

(K)

15

NV vector. There have been no successful direct measurements

because there is no independent method of determining the
spectrum and flux of rotons generated by the pulsed thin-film
heaters used in the experiments. However, the wave-vector
(or energy dependence of the evaporation probability pre-
dicted in this paper can be compared with the experiments of
Brown and Wyaft by using a detailed numerical
simulation®*“? This assumes that the number density)

of positive-group-velocity rotons generated with wave-vector

FIG. 7. The various scattering probabilitis ; as a function of
bulk energy for anR™ roton incident on the surface &,=14°
(dotted line$ and 6,,=25° (solid lines. A, is the maxon energy
and A, ,(25°) andA , (25°) are, respectively, the atom and pho-
non threshold wheiR* rotons are incident at 25°.
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1 IV. SUMMARY AND CONCLUDING REMARKS

It has long been recognized that roton backflow has to be
included into any theory that deals with the dynamics of
superfluid*He. In this paper, we have improved on the ear-
lier theory of Sobnack and co-worké?s?? by including
backflow semiphenomenologically in the form of a backflow
potential and calculated scattering rates for all the allowed
one-to-one surface scattering processes as a function of en-
ergy, both for fixed parallel momenta and fixed angles of
incidence.

The results show that backflow increases the evaporation
efficiencies ofR™ rotons. In particular, at small roton ener-
gies, the efficiency of quantum evaporation Ry rotons is
D much larger with backflow included. The other salient effect
. s T of backflow is to decrease the probabilities , of evapora-

0 20 40 60 80 tion by R™ rotons, butP_, is still nonzero at energies at
Bolometer angle, 6, which the conservation laws do not exclude phonons from
the surface scattering processes, in agreement with

FIG. 9. The angular dependence of Re—atom signal energy, experiment4* There are no measured probabilities with
integrated up to 16@s after the heater input pulse. The angle of which to compare the efficiencies calculated in the present
incidence is@;,=14°. The_ experiments used two qn‘ferent heaterstudy_ We have used the predict®d —atom evaporation
powers, —24 dB (open circle and —27 dB (full circles). The —  ,papijitiesP ., , in simulations of experiments, and a com-
t_hln curves are simulations u5|@a(q,0in)=const. ar_1d the_thlck arison of the calculate™ — atom signal to the experimen-
!ln_es use the values reported in this Wor_k._The simulations us ally observed signal shows that including backflow im-
injected-roton spectra at two characteristic temperatuies, : .
~1.0 K (solid line§ andTo=1.5 K (dotted lines proves the agreement of. the .scatterlng rates with

experiments. However, the simulations also show that the

theory still underestimates the efficiency of quantum evapo-
The shape of this distribution is dominated by the value ofration byR* rotons at low roton wave vectors/energies.
the parametef; and is insensitive to the value of the  There are limitations to the theory presented here, the
density-of-states parameter for values 1< 3. The value of main one being that it is not applicable at normal incidence.
the parameterTy; is selected to fit the time-of-flight This is due to the fact that we have used a constant effective
measurements—it increases with heater power and lies b&assm* [the backflow potentiafi?w?W(Q,k) diverges in
tween 1.0 K and 1.5 K. It can be seésee Fig. 9that, for  the limit Q=[Q[— 0], a restriction that needs to be removed
the present purposes, the simulation is not sensitive to thy taking into account thi dependence of the vector polar-
precise value off ;. The figure compares the measured an-ization parametefl'f. Another limitation is that backflow in
gu]ar distributior(cirdeg of atoms evaporated dtn: 14° to the sense of Aldrich and Pines, _as we _have used here, does
the surface normal witR* roton evaporation measurements Not léad to phonon splitting and inelastic processes.
of Brown and co-worker§/? with the simulations assuming _ The work presented here is a study of one-to-one scatter-
a constant evaporation probabilitshin lines P. .(q, 6;) ing processes. L|q_U|dHe is a dynarr_uc, many-body system
—1. The main features of Fig. 9 arise from the collimation and incoming particles may scatter into states other than the

geometry and the kinematics of quantum evaporation, bu‘?IaStIC channel. Recently, Campbell and co-workermve

most significant for this paper is the fact that atoms detecteat#(;j'ecfiotgr? dtrar:rs]?[lss:gglggi atorposcggrsoeugh 3;‘;2'#;?;'6‘?%
at large values of the detector anglg originate fromR" cattering—at around the roton Fr)ninimum energy, the calcu-
rotons with relatively low energies. The measured value 9 gy:

lie progressively below the simulation &g increases above _ated §|gnal has a sharp dip, showing that, at that energy,
O . L . inelastic processes take up to about 90% of the energy of the
40°, indicating thatP, ,(q, 6;,) increases with increasingy

The thick lines in Fig. 9 are the results of using the prOb'mCI?wrglenegdafnrgsr.ealistic theory of the dynamics of quasipar-
abilities P, , for 6,,=14° calculatedshown in Fig. J using '

. . ) . : . ticles in superfluid*He has to include a more rigorous inclu-
the theory described in this paper in the simulation. Com-_. , . .
sion of roton backflow and has to take into account inelastic

parison of this result with that presented in Fig. 14 of Ref. 20 ) -
-processegphonon decay processes, decay into the ripplon
shows that the agreement of the probabilities calculated i TP
) . . hannels Work along this direction is currently under way.
the present study with experiments is better as a result 0

including backflow. However, for evaporation angles less

than 40_°, there is a s_mall, but c_Jb\_/lous, discrepancy between ACKNOWLEDGMENTS

simulation and experiment. This is because the theory cuts
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APPENDIX

fi
jkin:(|¢|2+|‘r/f|z)§k- (A8)

In this appendix, we show that the current density is given To deal with the terms involving the interactions, we use

by Egs.(18) and(19). We follow Ref. 17. With the definition
a=h12m*, Egs.(16) takes the form

“+ oo

[ﬁw+aV2]¢(r)—f [pV(r—r")+h20®W(r—r")]

X[(r')+y(r')]d* ' =0, (A1)

[—ho+aV2]p(r)— jjm[pV(r—r’)+ﬁ2w2W(r—r’)]

X[p(r')+(r")]d% ' =0, (A2)

well into the bulk, where the condensate dengity const
and the functionu(r)=0. Include a time dependence in the
definitions of and ¢ of the form

dry=¢(ne " y(rt)=y(re 't
Then Eqs(A1) and (A2) become, respectively,

(A3)

+ oo

[pV(r—r")+#2w®W(r

J
—iﬁa—(f(r,t)zaV%(r)—f

=rOILp(r" O +y(r')]dr’ (Ad)

and
iﬁi—lt//(f,t)=aV2¢(f)— rm[pv(r—r’)+ﬁ2w2W(f—f')]

X[p(r")+p(r')]d3, (A5)

where we have omitted thedependence in the arguments of
¢ and ¢ on the right-hand side. Next subtragt (r,t) times
Eq. (A4) from ¢(r,t) times the complex conjugate of Eq.
(A4), and similarly for Eq.(A5) and i(r,t). Adding the re-
sulting equations, one ends up with

)
ih (D12 =|u(r, 0]
=aV [$(N)V* (1) = ¢* (NV () +y(r)Vy* (1)
—w*(r)w(rn—f_:[pV(r—r')+ﬁ2w2W(r—r’>]

X[p(r)gp*(r')—*(r)p(r')+p(r)y*(r')
—* () P(r' )+ (r)d* (r')—y* (r)p(r')
F ()P (r) =g () (r')]d3r . (AB)

#(r,t) and ¢(r,t) are plane wavesp(r) = ¢e'" and y(r)
= €', so the kinetic term on the right-hand side of Eq.
(A6) reduces to

the Fourier decomposition

F(r)y= (A9)

3J F(k/)eik/~rd3k/

(2m)

and take the limitp(k’)=(2m)3¢5®)(k'—k) at the end.
We write the terms on the right-hand side of E&6) involv-
ing the interactions as

|t nzemwi —eia )

—d*(N)G(r" )+ d(r)F*(r')— ™ (N (r’)
TP d*(r' )= (1) p(r" )+ (r) g (r")
— (N y(r')]d%’
1
(2P

[ totveer vy

+ 720 {W(K') —W(ky)}]e'Cr™ D) T (k) p* (k')

+ d(k) ™ (K') + (ky) p* (K')

+ (ky) y* (k') ]d%k, 03k (A10)
Now consider¢(k,) and ¢(k,) as é functions. Then the
above reduces to

V- (¢t ) (¢* + )WV (K) + 520 TW(K) ]
(Al1)

and Eq.(A6) becomes

0
it [b(r 02 =[¢(r,0]%]

—ihV jiin =iV -[(+ ) pWV(K)
+ 1202V W(K)}], (A12)

where we have assumed, without loss of generality, #hat
and ¢ are real. It is easily shown from Eq&4) and (A5)

that ¢ and ¢ satisfy
nk

2m

* 2

m
24 2=
¢y f wk?

*

2
) 1((752—1//2).
k2
(¢t )= ——($*— 4.
2m* w
Using these together with the dispersion relation

h2w?= a’k*+2ak?[ pV(K) +h2w®W(k)]  (A13)
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gives, after some algebra,

2 (67— 0P) =~ (2= 4V

*

h2K?
m

1 n2k4 k2
O [pV(K)

J’_ —_ —
k2 Am*20 Mo

+ﬁ2w2W(k)]>k1

h2k2

=iV 1- —*W<k>]<¢2— Vo,
m

(A14)
where we have used the dispersion relatiat3). Hence, if

we interpret

PHYSICAL REVIEW B5 184521

(¢*—yP)=0, (A15)

as the density of elementary excitations, tlgesatisfies the
continuity equation

%Q+V-jex=0, (A16)
where the current densify* is given by
j¥=ve (A17)
with
v= 1—%W(k) vszm—nlvkw, (A18)

sinceW(k) = (m* —m)/%2k2.
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