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Roton backflow and quasiparticle scattering at 4He surfaces
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We study the effect of roton backflow on the scattering of quasiparticles and atoms at the free surface of
superfluid 4He at T50 K. As a starting point, we use Beliaev’s formalism and include backflow semiphe-
nomenologically in the form of a backflow potential. We derive equations of motion for the bulk quasiparticles
and the free atoms. Assuming that all the quasiparticles travel ballistically, we solve the equations of motion
numerically for oblique incidence and calculate probabilities for all the one-to-one surface scattering processes
allowed by the conservation laws. We compare the results with those obtained when backflow is neglected. Use
of some of the calculated rates in the simulations of experiments shows that the calculated scattering rates with
backflow included are in improved agreement with experiments.
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I. INTRODUCTION

Since its discovery,1 the superfluidity of4He has been a
topic of considerable interest, largely because of the fact
it is an ideal system on which to test the fundamental c
cepts of quantum mechanics. One of the principal notion
a many-body system in the quantum regime is that of La
au’s quasiparticles,2 which holds that the excited states of th
fluid should exhibit particlelike properties. That this is th
case has long been established by neutron-scatte
experiments.3 The interaction between these quasipartic
and the free surface of a superfluid sample, giving rise to
evaporation of atoms into the vapor, has recently been in
tigated in a number of experiments.4–10 These experiments
have been developed to such a degree that they now pro
a good means of probing the nature of the quasiparticl10

and how they interact with one another.
At low temperatures, superfluid4He exhibits the peculiar

phenomenon of quantum evaporation. Elementary exc
tions propagate in the liquid with long mean free paths a
with an energy that can exceed the binding energy of
atoms in the liquid. When such an excitation impinges on
free surface it may eject an atom through a quantum proc
The process of quantum evaporation and the reverse pro
of quantum condensation have been studied extensively
the years. Wyborn and Wyatt9 established that the process
conserve energy and momentum parallel to the surface.
of the difficulties with experiments on quantum evaporat
is in the calibration of the detectors; for various reasons,
difficult for experimentalists to deduce absolute values
the probabilities of quasiparticle evaporation. This emp
sizes the need for theoretical predictions.

Over the years, there have been several theore
studies11–19 of one-to-one quasiparticle scattering at the fr
surface. Recently, Sobnack and co-workers20–22 adapted Be-
liaev’s theory23 to the inhomegeneous superfluid4He system
with a free surface atT50 K and calculated probabilitie
for the one-to-one surface scattering processes as a fun
of energy. The use of their calculated probabilities in sim
0163-1829/2002/65~18!/184521~9!/$20.00 65 1845
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lations of experiments20,22,24 showed that, while the calcu
lated probability of evaporation by phonons show very go
agreement with experiments, the calculations underestim
the evaporation efficiencies ofR1 rotons—the probabilities
were too small at low roton energies, thus highlighting t
need for a better description of the roton and a better the

One of the physical ingredients not present in Belia
formalism is roton backflow. The concept of backflow w
introduced by Feynman and Cohen25 when it was realized
that the roton minimum was too high in the earlier Feynm
theory.26 It has subsequently become accepted that ro
backflow should be considered in order to have a quantita
and physical understanding of the excitations in superfl
helium. One would, therefore, expect that backflow effe
will be important at the liquid-vapor interface. In this pape
we develop a perfectly general extension of Beliaev’s the
to include a semiphenomenological mean-field backflow
fect by developing some of the ideas from the polarizatio
potential ~PP! theory27 of the 1970s. We neglect inelasti
processes and assume that all the quasiparticles are s
and travel ballistically. We investigate the one-to-one scat
ing processes at bulk energies\v covering the range from
just above the binding energyum0u57.16 K to energies
higher than the maxon energyDm;13.85 K. For prelimi-
nary results of this study, see Refs. 28–30.

The paper is organized as follows. In Sec. II, we pres
the method we use and derive the equations of motion.
solutions to the equations are presented in Sec. III. We
give our calculated scattering rates and compare them
those published and those from experimental simulatio
We conclude in Sec. IV with some remarks.

II. FORMALISM

We give briefly below the general ideas of Beliaev
theory23 relevant to the present study. This is followed b
some ideas from the polarization-potential theory of Aldri
and Pines27 and then we discuss how we incorporate ba
flow into our formalism.
©2002 The American Physical Society21-1
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A. Beliaev theory

Beliaev’s theory23 is based on Bogoliubov’s
assumptions31 that the condensate~the state of zero momen
tum! is macroscopically occupied and that the excited sta
are dominated by scatterings involving two condensate
ticles. With these assumptions, Beliaev identified that
Feynman diagrams for the system consist of three irreduc
self-energy diagrams:S11, the sum of all self-energy dia
grams with equal numbers of incoming and outgoing c
densate lines,S02, the sum of all self-energy diagrams
which the number of incoming condensate lines exceeds
number of outgoing ones by two, andS20, which has two
more outgoing condensate lines than incoming ones. The
perfluid 4He system has two propagators, the usual sing
particle Green’s functionG(k,v) and the ‘‘anomalous’’
Green’s functionF(k,v). The Feynman diagrams give a pa
of coupled Dyson–Beliaev equations forG andF in terms of
the self-energiesS11, S20, andS02, the condensate densit
r, and the free-particle Green’s function

G0~k,v!5F\v2S \2k2

2m
2m D1 idG21

. ~1!

In the low-density~Bogoliubov! limit, the first-order dia-
grams for the irreducible self-energies give

S115rV~0!1rV~k! and S025S205rV~k!, ~2!

where V(k) is the Fourier transform of the helium-helium
potential.G andF then have poles at\v56EB , whereEB
is the Bogoliubov spectrum31

EB~k!5F\4k4

4m2 12r
\2k2

2m
V~k!G1/2

. ~3!

This formula gives quite a good fit to the experimenta
observed spectrum ifV(k) is taken to be the Brueckne
potential32 V0k21sin(a0k), with V0517.0 K Å21 and a0
52.26 Å.

B. The polarization-potential theory

Aldrich and Pines27 developed a phenomenological theo
to evaluate the contribution of short-range correlations, ro
backflow, and multiphonon excitations to the superfluid h
lium density-fluctuation spectrum at both SVP and at
creased pressures. They suggested that, in analogy with
mons in metals, the restoring force for the dens
oscillations may be regarded as a ‘‘polarization potential

Fpol~k,v!5 f k
s^r~k,v!&, ~4!

where f k
s is a phenomenological parameter proportional

the strength of the induced fluctuations. In the absence
backflow and multiphonon excitations, the linear response
the system to this potential and a weak external probe,Fext,
is given by the screened density-density response func
xsc

rr , ~see, for example, Ref. 33!, i.e.,

^r~k,v!&5xsc
rr~k,v!@Fpol~k,v!1Fext~k,v!#. ~5!
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The density-density response function is defined as
strength of the system response toFext alone,

^r~k,v!&5x~k,v!Fext~k,v!, ~6!

and from Eqs.~4!–~6! it follows that

x~k,v!5
xsc

rr~k,v!

12 f k
sxsc

rr~k,v!
. ~7!

In a system without backflow and without contributions fro
the multiphonon excitations,xsc

rr contains pairs of free par
ticles excited from the condensate,

xsc
rr~k,v!5

r\2k2/m

\2v22\4k4/4m2
, ~8!

wherer is the density. The density-fluctuation spectrum
found in the poles ofx and is given as

\v5F\4k4

4m2
1r

\2k2f k
s

m G 1/2

. ~9!

This is none other than the Bogoliubov spectrum withf k
s

replacingV(k) in Eq. ~3!. f k
s is interpreted as the effectiv

interaction between atoms in the liquid and it is assumed
short-range correlations renormalize the hard core in the
teraction to a soft core. This is equivalent to the extend
Bogoliubov approximation used by Sobnacket al.20

Aldrich and Pines27 introduced a mean field backflow e
fect into their theory by assuming that the density fluctu
tions are also affected by an additional vector polarizat
potentialApol , which couples to the current fluctuationsj in
the liquid,

Apol~k,v!5 f k
v^ j ~k,v!&. ~10!

The net response is then given by Eq.~5! with an additional
term xsc

r j (k,v)Apol(k,v) on the right-hand side. The cont
nuity equation and the relationships between the correla
functions33 give the density-density response function@Eq.
~6!# as

x~k,v!5
xsc

rr~k,v!

12~ f k
s1v2f k

v/k2!xsc
rr~k,v!

, ~11!

where the free-particle response functionxsc
rr now has poles

associated with pairs of free particles with ak-dependent
effective massm* . Using the high-frequency limit of this
density-density response function,34 the vector polarization
parameterf v

k can be expressed in terms of the ‘‘free’’-partic
effective massm* ,

r f k
v5mk* 2m5Dm. ~12!

The strength of the backflow potential is thus proportiona
the extra mass from the interaction, which is responsible
the backflow. The poles of the density response functionx
then give the density fluctuation spectrum in the new
proximation containing the backflow effect,
1-2
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ROTON BACKFLOW AND QUASIPARTICLE SCATTERING . . . PHYSICAL REVIEW B65 184521
\v5F \4k4

4mmk*
1r

\2k2f k
s

m G 1/2

. ~13!

C. Beliaev theory including the backflow effect

In the absence of backflow and multiphonon contrib
tions, the PP theory reduces to the extended Bogoliubov
proximation in the sense that the interaction term inclu
the short-range renormalized core, i.e., the interaction te
f k

s and V(k) are equivalent. When backflow is included
the PP theory, the single particle aquires an additional m
proportional to the strength of the coupling to the curre
fluctuations.

It is reasonable to expect35 that one can derive a field
theory incorporating the backflow based upon ‘‘free’’ pa
ticles, which have an effective massm* and define a new
free-particle propagatorG0 accordingly,

G0~k,v!5F\v2S \2k2

2mk*
2m D 1 idG21

. ~14!

This Green’s function however is not a ‘‘true’’ free-partic
Green’s function in the sense that its poles are no longer
bare free particles. That is, we are using a ‘‘backflow’’ qu
siparticle as the basis of our field theory. A truly microscop
theory would require a derivation of the effective mass
rameter from first principles and the trueG0 would contain
poles that were free particles. Equation~12!, however, en-
sures that the pole will be a single bare atom when the d
sity r is zero. The theory, therefore, has the correct e
points in density.

The second effect of the introduction of backflow in t
PP theory is to replace35 the interactionf k

s with

f k
s1

v2

k2
f k

v .

One then finds that with the approximations

S115rS V~k!1
v2

k2
f k

vD 1rS V~0!1 lim
v,k→0

v2

k2
f k

vD ,

~15!

S205S025rS V~k!1
v2

k2
f k

vD ,

for the self-energies, along with Eq.~14!, the poles ofF and
G will then be equivalent to Eq.~13!. These approximations
together with Eq.~15!, are, therefore, equivalent to those
Aldrich and Pines including backflow and neglecting m
tiphonon contributions, due to the fact that the poles ofF, G,
and x coincide—all correlation functions have coinciden
poles within an equivalent order of approximation in Bo
systems.36 The quasiparticles of the system are now non
teracting quasiparticles that contain the backflow contri
tion.

The main effect of them* term in the excitation spectrum
@Eq. ~13!#, is to lower the roton minimum in energy, leavin
the maxon energy largely unaffected. In the original
18452
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theory, a good fit to the experimental spectrum is found
including multiphonon contributions. Our objective here is
examine solely the effect of backflow and we deliberat
neglect this contribution. We find that Eq.~13!, with the
potential32 V0k21sin(a0k), with V0515.2 K Å21 and a0

52.1 Å, for f k
s andmk* 51.4m, gives a very good fit to the

experimental spectrum.29 For simplicity, we takem* to bek
independent.

With the inclusion of the backflow potential\2v2W(k),
where W(k)5Dm/\2k2, the two Beliaev ‘‘coupled dia-
grams’’ for the two propagatorsG(k,v) andF(k,v) of the
superfluid 4He system give, in real space, the equations
motion

F\v2m~r !1
\2

2m*
¹2Gf~r !2E

2`

1`

@Ar~r !V~r2r 8!Ar~r 8!

1\2v2W~r2r 8!#@f~r 8!1c~r 8!#d3r 850,
~16!

F2\v1m~r !1
\2

2m*
¹2Gc~r !

2E
2`

1`

@Ar~r !V~r2r 8!Ar~r 8!1\2v2W~r2r 8!#

3@f~r 8!1c~r 8!#d3r 850

for the ‘‘particle-hole’’ wave functionf(r ) ~associated with
G) and the ‘‘hole-particle’’ wave functionc(r ) ~associated
with F) valid in bulk, through the surface and in the vacuu

As before,20,22the functionm(r ) describes the variation o
the binding energy. It changes from 0~in bulk! to um0u ~in the
vacuum! across the surface.m0527.16 K is the condensate
chemical potential. In deriving the above equations, we h
allowed the condensate densityr(r ) to vary with position so
that the equations may be used to tackle the general inho
geneous problem such as the free surface. Deep in the b
the density has the value of bulk superfluid condensate,
r5r0 ~constant!, and high above the surface it has th
vacuum valuer50. We take m* 5m1Dmr(r )/r0. The
equations then are the Schro¨dinger equations for the quas
particles ~of energy \v) in bulk, and in the vacuum the
Schrödinger equations for the free atom~of energy \v
2um0u).

III. SOLUTION OF THE EQUATIONS AND RESULTS

Because the surface scattering processes conserve
mentum parallel to the surface, the density profiler(r ) de-
pends only onz, the component ofr5(R,z) normal to the
interface, i.e.,r5r(z). We give the quasiparticles a mome
tum \Q parallel to the surface and look for solutions of th
form

f~r !5eiQ•Rf~z! and c~r !5eiQ•Rc~z!,

where R5(x,y). This reduces Eqs.~16! to the one-
dimensional equations
1-3
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F\v2m~z!2aQ21a
d2

dz2Gf~z!

2E @Ar~z!V~Q,z2z8!Ar~z8!1\2v2W~Q,z2z8!#

3@f~z8!1c~z8!#dz850, ~17!

F2\v1m~z!2aQ21a
d2

dz2Gc~z!

2E @Ar~z!V~Q,z2z8!Ar~z8!1\2v2W~Q,z2z8!#

3@f~z8!1c~z8!#dz850,

wherea5\2/2m* . V has the same functional form as in Re
20, but nowV0515.2 K Å21 anda052.1 Å. The backflow
potential\2v2W takes the form

W~Q,z2z8!5
Dm

\2

exp2Quz2z8u
2Q

,

whereQ5uQu.
m(z)5um0u f (z) gives the variation in the binding energ

as discussed in Ref. 20. As before, we solve the equation
motion for f(z) and c(z) numerically in a box of size
2L (2L1s<z<L1s, with the surface centered atz50
and bulk helium inz,0) for a given energy\v and either
for fixed parallel momentum\Q or for fixed angle of inci-
denceu in using a fermi function for the surface profiler(z)
and taking the surface to have a 90%–10% width of 6.5 Å37

A numerical procedure is used to extract the~real! ampli-
tudesf i andc i @ i 5p ~phonons!, 2 (R2 rotons!, 1 (R1

rotons!, a ~atoms!# of the wave functions of the various qua
siparticles i and these are used to calculate the currenj i
associated with each quasiparticle/atom from

j i5
1

2
vi~f i

22c i
2!, ~18!

where, because of the energy-dependent backflow pote
\2v2W, vi has the definition

vi5
m

m*
“kv~k! ~19!

instead of the usual group velocityvi
g5“kv(k) for the total

quasiparticle current( i j i( i 5p,2,1) to be conserved~see
the Appendix!. For the free atoms (m5m* ), va5\ka /m.
The currents are then used to calculate the probabilitie
the various one-to-one surface scattering processes~see, for
example, Ref. 17!.

We have calculated the scattering ratesPi j ~probability of
state i scattering into statej ) as a function of energy fo
various fixed parallel wave vectors and angles of inciden
We present some of our results below.
18452
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A. Fixed parallel momenta

Figures 1–3 show the calculated probabilitiesPi j as a
function of energy~relative to the zero in bulk! of the differ-
ent transitions available to atoms,R2 rotons, andR1 rotons
incident on the free surface with a fixed parallel wave vec
uQu50.75 Å. Conservation of energy and parallel mome
tum exclude phonons from the scattering processes for
energies less than the phonon thresholdDp512.1 K. Simi-
larly there is a cutoff for atom states atDa510.6 K ~relative
to bulk!. These figures are the same as in Refs. 28–30 bu
included here for completeness. We only summarize
main results here. The corresponding results without ba
flow are given in Figs. 8, 9 and 10 of Ref. 20. Figure
compares the probabilitiesPa j ( j 5a,2,1) presented in
this study with those obtained without backflow~Ref. 20!.

FIG. 1. The probabilitiesPa j as a function of bulk energy for an
atom incident on the free surface with a parallel wave vectoruQu
50.75 Å21. Da , Dp , andDm are, respectively, the atom threshol
the phonon threshold, and the maxon energy.

FIG. 2. The probabilitiesP2 j as a function of energy for an
incidentR2 roton. uQu50.75 Å21.
1-4
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ROTON BACKFLOW AND QUASIPARTICLE SCATTERING . . . PHYSICAL REVIEW B65 184521
Backflow increases the probabilityPa1 of atoms con-
densing asR1 rotons at all energies between the roton mi
mum D and the maxonDm ~Figs. 1 and 4!; decreases the
atomic reflectivity Paa so that Paa now decreases muc
faster as a function of energy~Figs. 1 and 4!; decreases the
specular reflectivityP22 of R2 rotons incident on the sur
face ~Fig. 2!; decreases the probabilityP2a of R2 rotons
evaporating atoms at all energies, butP2a is finite ~Fig. 2!;
considerably increases the probabilityP1a (5P1a) of R1

rotons quantum evaporating~Figs. 3 and 4!. The last two
features suggest that with backflow included, the ra
P2a /P1a is considerably reduced, as indeed is clear fr
Fig. 4, more in line with the experimental estimates
Tucker and Wyatt.38

FIG. 3. The probabilitiesP1 j as a function of energy for an
incidentR1 roton. uQu50.75 Å21.

FIG. 4. The probabilitiesPa j as a function of energy for an
incident atom.uQu50.75 Å21. Solid lines, with backflow included
~as in Fig. 1!; dashed lines, without backflow~Ref. 20!
18452
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B. Fixed angles of incidence

To enable comparison with experiments on quant
evaporation we have calculated the scattering probabili
Pi j for fixed angles of incidenceu in . In these experiments
the bolometer producing the quasiparticles is fixed at a gi
position in bulk helium and the beam of quasiparticles p
duced is collimated so that all the bulk excitations are in
dent on the surface at the same~fixed! angle. For a fixed
angle of incidenceu in , different excitations incident on the
surface have different parallel momenta\Q(u in ,\v).

Figures 5, 6, and 7, respectively, give the calculated pr
abilities for phonons,R2 rotons, andR1 rotons incident at
u in514° ~dotted lines! and u in525° ~solid lines!. D
;8.7 K and Dm;13.7 K are the roton minimum and
maxon energies.D2a(25°) andD2p(25°) are the atom and
phonon thresholds forR2 coming in at 25°, and similarly,
R1 rotons incident at 25° cannot evaporate atoms at ener
less thanD1a(25°) and cannot reflect as phonons for en
gies less thanD1p(25°).

As for the case when backflow is neglected, the res
show that the calculated probabilities have a definite ang
dependence, contrary to some of the other studies.19 In par-
ticular, the probabilityPpp of a phonon reflecting as a pho
non or the probabilityPpa of evaporating an atom depend
quite strongly on the angle of incidence for energies up
about 11 K~Fig. 5!. The mode change from reflection pho
non to R2 roton, however, is independent of the angle
incidence—the change in~normal! momentum involved in
this reflection does not depend very strongly on the angle
incidence.

For incidentR2 rotons~Fig. 6!, the probability of reflect-
ing as a phonon is essentially independent of the angle
incidence. The probability of anR2 roton quantum evapo
rating depends strongly on the incident angle: at 12.0 K,
example,R2 rotons are about four times as likely to evap

FIG. 5. The various scattering probabilitiesPp j as a function of
bulk energy for a phonon incident on the surface atu in514° ~dotted
lines! andu in525° ~solid lines!. D andDm are the roton minimum
energy and the maxon energy, respectively.
1-5
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rate atoms at 25° than at 14°. Again, we find that, just as
fixed parallel momenta, the probability of evaporation byR2

rotons is smaller than when backflow is neglected~Fig. 13 of
Ref. 20!, but P2a is still finite.

Direct comparison of Fig. 7 with Fig. 14 of Ref. 20~as
shown in Fig. 8, where we plotP12 andP1a for R1 rotons

FIG. 6. The various scattering probabilitiesP2 j as a function of
bulk energy for anR2 roton incident on the surface atu in514°
~dotted lines! and u in525° ~solid lines!. D2a(25°) andD2p(25°)
are, respectively, the atom and phonon threshold whenR2 rotons
are incident at 25°.D andDm are the roton minimum energy an
the maxon energy, respectively.

FIG. 7. The various scattering probabilitiesP1 j as a function of
bulk energy for anR1 roton incident on the surface atu in514°
~dotted lines! and u in525° ~solid lines!. Dm is the maxon energy
andD1a(25°) andD1p(25°) are, respectively, the atom and ph
non threshold whenR1 rotons are incident at 25°.
18452
r

incident atu in525° calculated in this study with the corre
sponding probabilities calculated when backflow is n
glected! shows that backflow has a large effect on the pro
abilities for incomingR1 rotons: incidentR1 rotons are
more efficient at quantum evaporating with backflow i
cluded, with, for example, atu in525°, P1a;0.6 at \v
513.0 K with backflow compared toP1a;0.2 without
backflow. At all energies betweenD1a(25°) and the maxon,
backflow increasesP1a and the same result is true forR1

rotons incident at 14° for all energies between the ro
minimum and the maxon. Also, the mode change reflectiv
P12 decreases faster with energy with backflow included

For incidentR1 rotons, the probabilities of all the pos
sible transitions are strongly dependent on the angle of i
dence. The probabilityP12 of an R1 roton reflecting as an
R2 roton falls off more rapidly and the probabilityP1a of
quantum evaporation rises much faster with energy at
than at 14°. This is in sharp contrast with the scattering ra
calculated when backflow is neglected. There the probab
of quantum evaporation byR1 rotons was independent o
the angle of incidence.

Attempts to measure the absoluteR1 roton evaporation
probabilitiesP1a by indirect experiments39–41 seem to sug-
gest a value, typically'0.3, which increases with the wav
vector. There have been no successful direct measurem
because there is no independent method of determining
spectrum and flux of rotons generated by the pulsed thin-
heaters used in the experiments. However, the wave-ve
~or energy! dependence of the evaporation probability p
dicted in this paper can be compared with the experiment
Brown and Wyatt8 by using a detailed numerica
simulation.24,42 This assumes that the number densityn(q)
of positive-group-velocity rotons generated with wave-vec
magnitudeq is

n1~q!dq}
qldq

exp@\v~q!/Teff21#
with l52.

FIG. 8. The probabilitiesP12 andP1a for anR1 roton incident
on the surface atu in525°. Solid lines, with backflow included~as
in Fig. 1!; dashed lines, without backflow~Ref. 20!.
1-6
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The shape of this distribution is dominated by the value
the parameterTeff and is insensitive to the value of th
density-of-states parameter for values 1<l<3. The value of
the parameterTeff is selected to fit the time-of-fligh
measurements—it increases with heater power and lies
tween 1.0 K and 1.5 K. It can be seen~see Fig. 9! that, for
the present purposes, the simulation is not sensitive to
precise value ofTeff . The figure compares the measured a
gular distribution~circles! of atoms evaporated atu in514° to
the surface normal withR1 roton evaporation measuremen
of Brown and co-workers,8,42 with the simulations assumin
a constant evaporation probability~thin lines! P1a(q,u in)
51. The main features of Fig. 9 arise from the collimati
geometry and the kinematics of quantum evaporation,
most significant for this paper is the fact that atoms detec
at large values of the detector angleuB originate fromR1

rotons with relatively low energies. The measured valu
lie progressively below the simulation asuB increases above
40°, indicating thatP1a(q,u in) increases with increasingq.

The thick lines in Fig. 9 are the results of using the pro
abilities P1a for u in514° calculated~shown in Fig. 7! using
the theory described in this paper in the simulation. Co
parison of this result with that presented in Fig. 14 of Ref.
shows that the agreement of the probabilities calculated
the present study with experiments is better as a resu
including backflow. However, for evaporation angles le
than 40°, there is a small, but obvious, discrepancy betw
simulation and experiment. This is because the theory
off the evaporation probability too sharply at low energie
This interpretation is confirmed by an analysis of the tim
of-flight information, which will be presented elsewhere.43

FIG. 9. The angular dependence of theR1→atom signal energy,
integrated up to 160ms after the heater input pulse. The angle
incidence isu in514°. The experiments used two different hea
powers,224 dB ~open circles! and 227 dB ~full circles!. The
thin curves are simulations usingP1a(q,u in)5const. and the thick
lines use the values reported in this work. The simulations
injected-roton spectra at two characteristic temperatures,Teff

51.0 K ~solid lines! andTeff51.5 K ~dotted lines!.
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IV. SUMMARY AND CONCLUDING REMARKS

It has long been recognized that roton backflow has to
included into any theory that deals with the dynamics
superfluid 4He. In this paper, we have improved on the e
lier theory of Sobnack and co-workers20–22 by including
backflow semiphenomenologically in the form of a backflo
potential and calculated scattering rates for all the allow
one-to-one surface scattering processes as a function o
ergy, both for fixed parallel momenta and fixed angles
incidence.

The results show that backflow increases the evapora
efficiencies ofR1 rotons. In particular, at small roton ene
gies, the efficiency of quantum evaporation byR1 rotons is
much larger with backflow included. The other salient effe
of backflow is to decrease the probabilitiesP2a of evapora-
tion by R2 rotons, butP2a is still nonzero at energies a
which the conservation laws do not exclude phonons fr
the surface scattering processes, in agreement
experiments.44 There are no measured probabilities wi
which to compare the efficiencies calculated in the pres
study. We have used the predictedR1→atom evaporation
probabilitiesP1a in simulations of experiments, and a com
parison of the calculatedR1→atom signal to the experimen
tally observed signal shows that including backflow im
proves the agreement of the scattering rates w
experiments. However, the simulations also show that
theory still underestimates the efficiency of quantum eva
ration byR1 rotons at low roton wave vectors/energies.

There are limitations to the theory presented here,
main one being that it is not applicable at normal inciden
This is due to the fact that we have used a constant effec
massm* @the backflow potential\2v2W(Q,k) diverges in
the limit Q5uQu→0], a restriction that needs to be remove
by taking into account thek dependence of the vector pola
ization parameterf v

k . Another limitation is that backflow in
the sense of Aldrich and Pines, as we have used here,
not lead to phonon splitting and inelastic processes.

The work presented here is a study of one-to-one sca
ing processes. Liquid4He is a dynamic, many-body system
and incoming particles may scatter into states other than
elastic channel. Recently, Campbell and co-workers45 have
studied the transmission of4He atoms through a helium sla
and found that inelastic processes dominate
scattering—at around the roton minimum energy, the cal
lated signal has a sharp dip, showing that, at that ene
inelastic processes take up to about 90% of the energy o
incoming atoms.

Indeed, any realistic theory of the dynamics of quasip
ticles in superfluid4He has to include a more rigorous inclu
sion of roton backflow and has to take into account inela
processes~phonon decay processes, decay into the ripp
channels!. Work along this direction is currently under wa
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APPENDIX

In this appendix, we show that the current density is giv
by Eqs.~18! and~19!. We follow Ref. 17. With the definition
a5\/2m* , Eqs.~16! takes the form

@\v1a¹2#f~r !2E
2`

1`

@rV~r2r 8!1\2v2W~r2r 8!#

3@f~r 8!1c~r 8!#d3r 850, ~A1!

@2\v1a¹2#c~r !2E
2`

1`

@rV~r2r 8!1\2v2W~r2r 8!#

3@f~r 8!1c~r 8!#d3r 850, ~A2!

well into the bulk, where the condensate densityr5const
and the functionm(r )50. Include a time dependence in th
definitions off andc of the form

f~r ,t !5f~r !e2 ivt, c~r ,t !5c~r !e2 ivt. ~A3!

Then Eqs.~A1! and ~A2! become, respectively,

2 i\
]f

]t
~r ,t !5a¹2f~r !2E

2`

1`

@rV~r2r 8!1\2v2W~r

2r 8!#@f~r 8,t !1c~r 8!#d3r 8 ~A4!

and

i\
]c

]t
~r ,t !5a¹2c~r !2E

2`

1`

@rV~r2r 8!1\2v2W~r2r 8!#

3@f~r 8!1c~r 8!#d3r 8, ~A5!

where we have omitted thet dependence in the arguments
f andc on the right-hand side. Next subtractf* (r ,t) times
Eq. ~A4! from f(r ,t) times the complex conjugate of Eq
~A4!, and similarly for Eq.~A5! andc(r ,t). Adding the re-
sulting equations, one ends up with

i\
]

]t
@ uf~r ,t !u22uc~r ,t !u2#

5a“•@f~r !¹f* ~r !2f* ~r !¹f~r !1c~r !¹c* ~r !

2c* ~r !¹c~r !#2E
2`

1`

@rV~r2r 8!1\2v2W~r2r 8!#

3@f~r !f* ~r 8!2f* ~r !f~r 8!1f~r !c* ~r 8!

2f* ~r !c~r 8!1c~r !f* ~r 8!2c* ~r !f~r 8!

1c~r !c* ~r 8!2c* ~r !c~r 8!#d3r 8. ~A6!

f(r ,t) andf(r ,t) are plane waves,f(r )5feik•r andc(r )
5ceik•r, so the kinetic term on the right-hand side of E
~A6! reduces to
18452
.

n

.

22ia@ ufu21ucu2#“•k52 i\“• j kin , ~A7!

where

j kin5~ ufu21ucu2!
\

m*
k. ~A8!

To deal with the terms involving the interactions, we u
the Fourier decomposition

F~r !5
1

~2p!3E F~k8!eik8•rd3k8 ~A9!

and take the limitf(k8)5(2p)3fd (3)(k82k) at the end.
We write the terms on the right-hand side of Eq.~A6! involv-
ing the interactions as

E
2`

1`

@rV~r2r 8!1\2v2W~r2r 8!#@f~r !f* ~r 8!

2f* ~r !f~r 8!1f~r !c* ~r 8!2f* ~r !c~r 8!

1c~r !f* ~r 8!2c* ~r !f~r 8!1c~r !c* ~r 8!

2c* ~r !c~r 8!#d3r 8

5
1

~2p!6E @r$V~k8!2V~k1!%

1\2v2$W~k8!2W~k1!%#ei (k12k8)•r@f~k1!f* ~k8!

1f~k1!c* ~k8!1c~k1!f* ~k8!

1c~k1!c* ~k8!#d3k1d3k8. ~A10!

Now considerf(k1) and c(k1) as d functions. Then the
above reduces to

i“•~f1c!~f* 1c* !@r¹kV~k!1\2v2¹kW~k!#
~A11!

and Eq.~A6! becomes

i\
]

]t
@ uf~r ,t !u22uc~r ,t !u2#

52 i\“• j kin2 i“•@~f1c!2$r¹kV~k!

1\2v2¹kW~k!%#, ~A12!

where we have assumed, without loss of generality, thaf
andc are real. It is easily shown from Eqs.~A4! and ~A5!
that f andc satisfy

f21c25
m*

\vk2 Fv21S \k2

2m*
D 2G ~f22c2!,

~f1c!25
\k2

2m* v
~f22c2!.

Using these together with the dispersion relation

\2v25a2k412ak2@rV~k!1\2v2W~k!# ~A13!
1-8
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gives, after some algebra,

i\
]

]t
~f22c2!52 i\~f22c2!“•F S 12

\2k2

m*
W~k!D“kv

1
1

k2 S v2
\2k4

4m* 2v
2

k2

m* v
@rV~k!

1\2v2W~k!# D kG
52 i\¹•F12

\2k2

m*
W~k!G ~f22c2!“kv,

~A14!

where we have used the dispersion relation~A13!. Hence, if
we interpret
A

ri,

ri,

.

S.

18452
~f22c2!5%, ~A15!

as the density of elementary excitations, then% satisfies the
continuity equation

]

]t
%1“• jex50, ~A16!

where the current densityjex is given by

jex5v% ~A17!

with

v5F12
\2k2

m*
W~k!G“kv5

m

m*
“kv, ~A18!

sinceW(k)5(m* 2m)/\2k2.
, J.

p.

rt 1
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