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Ground-state vortex lattice structures in d-wave superconductors

Sudhansu S. Mandal* ,† and T. V. Ramakrishnan*
Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560 012, India

~Received 30 November 2001; published 25 April 2002!

We show in a realisticdx22y2 symmetry gap model for a cuprate superconductor that the clean vortex lattice
has discontinuous structural transitions~at and nearT50), as a function of the magnetic fieldB along thec
axis. The transitions arise from the singular nonlocal and anisotropic susceptibility of thedx22y2 supercon-
ductor to the perturbation caused by supercurrents associated with vortices. The susceptibility, due to virtual
Dirac quasiparticle-hole excitation, is calculated carefully and leads to a ground-state transition for the trian-
gular lattice from an orientation along one of the crystal axis to one at 45° to them, i.e., along the gap zero
direction. The field scale is seen to be 5 T;(D0 /ta)2F0, whereD0 is the gap maximum,t is the nearest-
neighbor hopping,a is the lattice constant, andF0 is the flux quantum. At much higher fields (;28 T) there
is a discontinuous transition to a centered square structure. The source of the differences from existing calcu-
lations and experimental observability are discussed, the latter especially in view of the very small~a few
degrees K per vortex! differences in the ground-state energy.

DOI: 10.1103/PhysRevB.65.184513 PACS number~s!: 74.60.Ge
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I. INTRODUCTION

An external magnetic field enters a~type-II! supercon-
ductor as a collection of quantized magnetic flux tubes. T
flux tubes with associated supercurrent vortices form a tr
gular lattice1 as is seen in conventional superconductors2,3

Deviations from this structure are of considerable interest
conventional superconductors, the observed deviations h
been attributed to the anisotropy of the underlying one e
tron energy spectrum. In heavy-fermion and high-Tc super-
conductors, an additional and potentially very interest
reason is the existence of an unconventional supercondu
order parameter, with gaps which have nodes and cha
sign. Indeed there is experimental evidence in the hea
fermion systems,4 in the exotic superconductor SrRuO4,5 and
in cuprate superconductors6,7 that the vortex lattice is no
triangular ~for some field and temperature regimes!. Re-
cently, measurements of small-angle neutron diffraction fr
untwinned YBa2Cu3O72d single crystals shows a very wel
formed triangular lattice that undergoes an orientational tr
sition from along thea axis to along theb axis for a 3 T
magnetic field at 33° to thec axis.8 The reasons for possibl
nontriangular structure as well as for the structural transit
are not fully established and are the subject of consider
theoretical work.9–13 In high-Tc superconductors, entropi
effects, abetted by a high transition temperature as well
weak interlayer coupling, play an important role, and t
classical statistical mechanics of interacting, meandering
lines, of the vortex fluid phase, and the solid fluid transiti
has developed into a major theoretical and experime
subfield.14

In this paper, we focus on the nature of the flux lattice
temperatures well below the superconducting transiti
where vortex configurational entropy effects mention
above are negligible. The ground-state structures and s
tural transition then directly reflect the electronic peculia
ties of the superconductor and, thus, probe the latter.
cuprate superconductors, a number of measurements s
that the superconducting gapDk has nodes,15 has a magni-
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e
-

n
ve
c-

g
ing
ge
y-

-

n
le

a

x

al

t
,

d
c-

-
or
ow

tude with a (D0/2)ucoskxa2coskyau dependence on the two
dimensional wave vectork across the Fermi surface,16 and
that transport lifetimes of quasiparticles are long17 for T
!Tc . Thus one can assume well-defined low-energy, no
quasiparticles, with an experimentally determined on
electron dispersionek ~Ref. 18! and gap functionDk .16 The
question of interest is the effect of the zero-gap, anisotro
Dirac-like linear quasiparticle excitation spectrum on the
teraction between vortices and, thus, on vortex lattice str
ture. There is considerable evidence, e.g., from magne
field-dependent electronic specific heat,19 electronic thermal
conductivity,20 and superfluid density21 measurements that a
external magnetic field going in as vortices has a strong
fect on electronic states, changing their density and lifetim
The relevant issue here is somewhat the reverse: namely
effect of the quasiparticles on the interaction between vo
ces. The order parameter phase associated with the vo
and the related magnetic vector potential together consti
the superfluid velocity fieldvs(r )@5( lvs(r2Rl)# where the
vortices are located at pointsRl . The extra superfluid kinetic
energy, being quadratic invs , clearly has a part that depend
on two vortex coordinates and is thus structure sensitive
addition to this ‘‘diamagnetic’’ term, which is the additiona
kinetic energy of the rigidly moving superfluid and which
minimized for a triangular lattice,1 there is another ‘‘para-
magnetic’’ term due to the perturbation of quasiparticles
the superfluid current via the termk•vs . This causes virtual
particle hole excitations; two vortices interact via the e
change of quasiparticle-quasihole pairs. This polarizat
term depends on the quasiparticle excitation spectrum.
cleans-wave superconductor, the process leads to an a
tional isotropic interaction between vortices of ord
(H/Hc2

) relative to the diamagnetic term. However, in
d-wave superconductor where the excitation gap vanis
along some~nodal! directions, one expects the nonlocal p
larizability to be larger as well as anisotropic; this gives r
to an interaction between vortices which depends on the
entation of the line joining them with the respect to cryst
©2002 The American Physical Society13-1
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ine axes and consequently, can be the cause of novel l
range positional order.

The ground-state energy arising from quasiparticle-ho
mediated interaction between vortices depends linearly
the nonlocal current susceptibilityxab

p (q), for wave vectors
q equal to the reciprocal lattice vectorsG of the vortex lat-
tice. Because the gap as well as the density of quasipar
states vanishes linearly near the node,xab

p (q) is proportional
to uqxu or uqyu for smallq. This nonanalytic behavior, notice
first by Kosztin and Leggett,22 has also been discussed b
Franzet al.12 who were the first to analyze microscopical
its effect, as well as of the anisotropy inxab

p , on vortex
lattice structure atT50. These authors found a rich pha
diagram in the field-temperature plane, with a centered r
angular lattice atT50 whose inner angle variescontinuously
as a function of field, as well as a sudden orientational tr
sition at higher temperatures and a transition to a cente
square lattice for very high fields and lowT. In obtaining
these results, Franzet al. made a ‘‘local’’ approximation for
the gap function, i.e., assumedDk5Dk1G , and more impor-
tantly they assumed a momentum-independent quasipar
current which leads to a response functionxxx

p (G)
5xyy

p (G). The anisotropy then enters only throughxxy
p (G).

We carry out here a more detailed and realistic calculation
the nonlocal susceptibility, considering the strongk depen-
dence of the gap functionDk and quasiparticle currentj k
properly, and using a realistic one-electron dispersion.
diagonal termsxxx

p and xyy
p are unequal and large, and th

anisotropy is seen to be the underlying cause of the trans
discussed below. The contibution of the off-diagonal susc
titiblity xxy

p is smaller than that of the diagonal susceptib
ties. Our results for structural stability~at T50) are there-
fore quite different from those of Franzet al.12,13

Confining ourselves toT50, we find, as summarized in
phase diagram~see Fig. 1!, that the stable lattice at low field
is triangular. At about 5 T~for the parameters chosen! the
orientation of the smallestG vector changes from bein
along one of the axes to being along the order param
node direction, because the system is most susceptib
excitations with the wave vector along the node. We ha
analyzed the driving force for this transition, both analy
cally and numerically, and find that it arises from a sub
balance between the term linear inuGu and the quadratic
term, which are slightly different for the two orientation

FIG. 1. Phase diagram for the structure of the vortex lattice. T
position of the vortices are denoted by solid circles.B1 andB2 are
the fields at which the structural transitions take place as descr
in the text. The structures are shown diagrammatically.
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The field scale for the transition is approximately given
the condition (taG/D0);1 which is natural on dimensiona
grounds. The Fermi velocity ista and the energy scale ass
ciated with the superflow (“u) with Fourier componentG is
thereforetaG. The polarizability or susceptibility has an en
ergy scale (1/D0) whereD0 is the gap magnitude which se
the scale for quasiparticle excitation energies. Thus the
mensionless susceptibility of interest is (taG/D0). For real-
istic parameterst,a, and D0 this translates@(taGc /D0)
.0.37# to a field scale of 5.2 T.

We find that the node-oriented triangular lattice is sta
until about 28 T, whereupon a discontinuous transition t
centered square lattice takes place. This structure, whic
orientationally commensurate with the symmetry of the q
siparticle dispersion, is probably the most stableT50 phase
when electronic commensurate effects dominate. Howe
the calculated field scale is large enough that the Lon
approximation used, valid forH!Hc2

, is not reliable, be-
cause vortex core effects cannot be neglected at these
fields.

In the next section~Sec. II!, we describe the model an
the theoretical approach used. The tight-binding quasipart
Hamiltonian is decomposed into an unperturbed partH0 and
a termHI due to the quasiparticle vortex interaction. The fr
energy or the ground-state energy can be obtained as a p
series inHI or equivalently the density of vortices. For low
vortex densities (H!Hc2

) the leading ornv
2 term is sufficient

and describes quasiparticle-hole-mediated vortex inte
tions, in addition to the bare superfluid kinetic energy. W
discuss the former carefully in terms of the nonlocal, ani
tropic current susceptibilityxab

p (q) since the energy can b
expressed as a reciprocal lattice vector sum overxab

p (G). We
obtainxab

p (q) semianalytically for smallq at T50, as well
as numerically~Sec. III!.

The calculations for different two-dimensional structur
are discussed in Sec. III. For a given magnetic fieldB the
most general centered rectangular lattice@a1 ,a2# can be de-
scribed in terms of an angleu related to the aspect rati
(a1 /a2) as tanu5a1 /a2 and an orientationf with respect
to crystal axes~Fig. 2!. We compute the ground-state ener

e

ed FIG. 2. A typical centered rectangular vortex lattice. So
circles represent the position of the vortices in the lattice. The
pect ratio of the lattice is given bya1 /a25tanu. The anglef
represents the inclination of the lattice with respect to the cry
axis which is parallel to thex andy directions.
3-2
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GROUND-STATE VORTEX LATTICE STRUCTURES IN . . . PHYSICAL REVIEW B65 184513
as a function of these two variables for different magne
fields. The basic vortex-related electronic energy parame
are the following. The vortex has three energy sca
namely, the diamagnetic single-vortex energy, of order 3
K per vortex; the vortex interaction energy, the diamagne
part of which has a value;1440 K ~for nearest-neighbo
vortices!; and the paramagnetic interaction term which
about 350 K at 5 T field. The last and the smallest term
structure sensitive and is of interest here. The ground sta
analyzed as a function ofu, f for several field values in Sec
III. It turns out that the structure-sensitive part of the la
~paramagnetic vortex interaction! term is extremely small, of
order a few degrees per vortex. This has obvious impli
tions for the observability of the transition, because the str
tural changes predicted and the clean limit anisotropies
tained can be easily overwhelmed by effects of disorder, e
vortex pinning and the muting of the paramagnetic susce
bility anisotropy, and nonanalyticity by disorder. Howeve
the size of the structure sensitive terms is larger, the gre
the (vF /vD) ratio or anisotropy. One can thus imagine sit
ations where this effect is quite large.

In the concluding section~Sec. IV! we briefly discuss
thermal effects, the consequences of the predicted trans
and their observability, the reason for which our result diffe
from earlier results, and the experimentally observed str
tural transitions.

II. THEORY

A. Model

We consider a two-dimensional lattice model wi
nearest-neighbor and next-nearest-neighbor hopping fo
CuO2 plane of high-Tc superconductors. The~mean-field!
Hamiltonian in this model is given by

H052t (
^ i j &s

~cis
† cj s1H.c.!1t8 (

^^ i j &&s
~cis

† cj s1H.c.!

1(̂
i j &

~D i j ci↑
† cj↓

† 1H.c.!2m(
i

cis
† cis , ~1!

where t and t8 are nearest-neighbor and next-neare
neighbor hopping integrals, respectively. This correspo
for appropriate choices oft and t8 to an open Fermi surfac
which is observed in angle-resolved photoemission exp
ments. The pair amplitudeD i j is considered to be
dx22y2-wave like, i.e.,D i ,i 6ax̂52D i ,i 6aŷ , where a is the
lattice constant in a square lattice andm is the chemical
potential.

When we apply a magnetic field beyond the lower critic
field Hc1

in high-Tc superconductors, the magnetic field go
into the system in the form of vortices. The magnetic indu
tion is screened over a lengthl, the penetration depth. Th
pair amplitude acquires a phaseD i j →D i j exp@2iuij#, where
u i j is the sum of polar angles of all the vortices measu
with respect to a particular axis, for the center of mass of
pair i j . We write u i j as (u i1u j )/2 ~as an average of th
angles of individual coordinates of the Cooper pairs!, which
is consistent up toO(1/kFj)2, wherekF is the Fermi momen-
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tum andj is the superconductive coherence length. The p
amplitude~order parameter magnitude! vanishes at the cente
of the core of a vortex, and over a distancej it acquires its
uniform value. For a collection of vortices withH!Hc2

, i.e.,

with intervortex spacing@j or the London limit, we assume
the order parameter magnitude to be uniform throughout
superconductor~there ared function sources of phase rota
tion at the locations of vortices!. There is a vector potentialA
such that“3A(r )5B(r ) whereB(r ) is the local magnetic
induction, along thec axis. Its effect in this model is to
change the hopping integrals to

~ t,t8!→~ t,t8!expF i ~e/\c!E
r i

r j
A•dlG ~2!

for hopping from sitej to site i. We then make a gaug
transformationcis→cise2 iu i /2. We thus obtain the Hamil-
tonian as

H52t (
^ i j &s

H cis
† cj sexpF i ~u i2u j !/21 i ~e/\c!E

r i

r j
A•dlG

1H.c.J 1 (
^ i j &s

~D i j ci↑
† cj↓

† 1H.c.!

1t8 (
^^ i j &&

H cis
† cj sexpF i ~u i2u j !/21 i ~e/\c!E

r i

r j
A•dlG

1H.c.J 2m(
i

cis
† cis . ~3!

The phase difference between two nearest- or next-nea
neighbor sites can be expressed as

1

2
~u i2u j !1~e/\c!E

r i

r j
A•dl.~r i2r j !•S 1

2
“ iu2~e/\c!A i D

[~m/\!~r i2r j !•vs~r i !. ~4!

Here the superfluid velocity

vs~r !5
1

m F\2 ¹u2
e

c
A~r !G ~5!

for a single vortex and for a collection of vortices,vs(r )
5( lvs(r2Rl) ~where the vortices are located atRl . We
then assume that the phase difference between two neigh
ing lattice sites is very small~which is certainly true in the
London limit! so that we expand exponentials in Eq.~3! up
to quadratic terms.

Using Eqs.~5! and~4! in Eq. ~3! for H and expanding up
to quadratic order in the small quantityvs(r ) we have

H5H01HI1HII , ~6!

where the free Hamiltonian

H05(
k,s

jkcks
† cks1(

k
@Dkck↑

† c2k↓
† 1H.c.#, ~7!
3-3
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with jk522t@cos(kxa)1cos(kya)#14t8cos(kxa)cos(kya)2m
andDk5(D0/2)@cos(kxa)2cos(kya)#, D0 being the maximum
quasiparticle excitation gap. Herek lies in the first atomic
Briliouin zone, ~BZ! i.e., 2p/a<(kx ,ky)<p/a. A typical
structure of the Fermi surface is shown in Fig. 3. Gapl
quasiparticle excitations exist alongkx56ky directions as
noted in the figure. The interaction term~first order invs)
can now be expressed as

HI52~at/\!(
k

(
G.0

@cks
† ck1Gs2ck1Gs

† cks#

3@mvs
x~G!sin~kxa!1mvs

y~G!sin~kya!#

24~at8/\!(
k

(
G.0

@cks
† ck1Gs2ck1Gs

† cks#

3@mvs
x~G!sin~kxa!cos~kya!1mvs

y~G!sin~kya!

3cos~kxa!#[(
ks

(
G.0

Vk,G@cks
† ck1Gs2ck1Gs

† cks#.

~8!

HereVk,G is purely imaginary. The termHII is quadratic in
vs and contributes to the free energy as a diamagnetic te
It is given by

HII 52Ns
0~ t2t8!~a2/\2!(

G
mvs

a~G!mvs
a~2G!, ~9!

with Ns
0 being the number of superfluid carriers, anda refers

to Cartesian variablesx andy. Paramekantiet al.23 have re-
cently shown that the quantum phase fluctuation of the o
parameter reduces the superfluid density considerably.
thus reexpress the termHII phenomenologically in terms o
the measuredl as

FIG. 3. A typical open Fermi surface for high-Tc compounds
which can be parametrized by at-t8 model. The shaded regio
denotes the occupied states with concentration 12x, wherex is the
doping concentration. The superconducting state is gapless a
the diagonals of the Brillioun zone
18451
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dA

2l2 S c2

4pe2D(G mvs
a~G!mvs

a~2G!, ~10!

whered is the mean interlayer separation of weakly coup
superconducting layers andA is the area of the system.

B. Free energy

We now calculate the free energy as a power series
vs(r ) or equivalently the vortex density. The diamagnetic
Ginzburg-Landau term, of first order inHII , is the largest,
and the structure sensitive part of it is known to be mi
mized for a triangular lattice~1!. The energy does not depen
on its orientation with respect to the crystal lattice. We a
interested here additionally in the paramagnetic term, of s
ond order inHI . Including this and the magnetic field energ
contribution, the free energy to second order in vortex d
sity is given~per unit length along thec axis! by

DV5
1

2Ad\2 (
G

mvs
a~G!@xddab2xab

p ~G!#mvs
b~2G!

1
1

8pA (
G

BGB2G , ~11!

whereG is the reciprocal vector of the vortex lattice. Th
individual vortex energy is not included here, as it is n
relevant for the question of vortex lattice structure.xd

5(c2\2d/4pe2l2) is the diamagnetic term arising from th
term HII @Eq. ~10!# to first order, andxab

p (G) is the para-
magnetic current susceptibility due to the second-order c
tribution from HI . Higher-order contributions are neglecte
since the expansion parameter is (nv /n) where nv is the
vortex density andn is the electron density. This ratio i
obviously much smaller than 1.

The paramagnetic susceptibilityxab
p (q) is expressed as

xab
p ~q!5

1

~2p!2E2p/a

p/a

dkxE
2p/a

p/a

dkygab~k!P~k,q!.

~12!

The current-operator-dependent termsgab(k) are explicitly
given as

gxx~k!5$2a sin~kxa!@ t22t8cos~kya!#%2, ~13a!

gyy~k!5$2a sin~kya!@ t22t8cos~kxa!#%2,
~13b!

gxy~k!5$2a sin~kxa!@ t22t8cos~kya!#%

3$2a sin~kya!@ t22t8cos~kxa!#% ~13c!

5gyx~k!. ~13d!

ng
3-4
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The zero-frequency susceptibility of wave vectorq for qua-
siparticle quasihole of momentumk is P(k,q) and has the
form

P~k,q!5
1

Ek1Ek1q
F12

jkjk1q1DkDk1q

EkEk1q
G , ~14!

with the quasiparticle energyEk5Ajk
21Dk

2.
It is expected that the above susceptibilities are an

tropic due to the nonlocal nature ofD i j , reflected in thek
dependence ofDk . Though anisotropic, they possess cert
symmetries: xaa

p (qx ,2qy)5xaa
p (qx ,qy)5xaa

p (2qx ,qy),
xxy

p (qx ,2qy)52xxy
p (qx ,qy)5xxy

p (2qx ,qy), and
xxx

p (qx ,qy)5xyy
p (qy ,qx). These symmetries suggest that t

susceptibilities are functions ofuqxu, uqyu, and sgn(qxqy)
only. A naive perturbative expansion ofxab

p (q) in powers of
q fails since the coefficient of the quadratic term inq is
divergent, due to the vanishing ofDk on the Fermi surface a
kx56ky points. We however proceed to evaluate these a
lytically as follows.

We write

xab
p ~qx ,qy!5(

j 51

4

xab
p,j ~qx ,qy!, ~15!

wherexab
p,j is the contribution of thej th quadrant (j 51 –4)

of k space. For instance,

xab
p,1~qx ,qy!5

1

~2p!2E0

p/a

dkxE
0

p/a

dkygab~k!P~k,q!

~16!

is the contribution due to the first quadrant. We present
calculation ofxab

p,1(qx ,qy) below in detail.
In terms of an alternative coordinate system (k1 ,k2)

whose origin is at the nodal point on the Fermi surface
shown in Fig. 4, the old coordinates in the first quadrant
expressed askx5(1/A2)(k01k12k2) and ky5(1/A2)(k0

1k11k2), where k0 is defined asm524t cos(k0a/A2)

FIG. 4. New coordinate system (k1 ,k2) in the first quadrant of
the atomic BZ is shown. Its origin is at the ‘‘nodal’’ point at whic
the superconducting gap vanishes on the Fermi surface. The le
of the nodal vector isk0.
18451
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14t8cos2(k0a/A2). We usejk'\vFk1 and Dk'\vDk2 in
linear form, where the Fermi velocityvF5(4a/\A2)@ t
22t8cos(k0a/A2)#sin(k0a/A2) and vD

5(a/\A2)D0sin(k0a/A2) is the velocity of quasiparticles
along thek2 direction. Since ind-wave superconductorsvF
@vD , the phase space ofk2 effectively is much larger than
that of k1 for a given value of quasiparticle energy. We o
serve that this is the cause of strong anisotropy in the d
onal susceptibilities as we see below. Iff is the angle of ak
vector with thek1 axis in this new coordinate system,jk
.Ekcosf and Dk.Eksinf. By Taylor expansion inq we
find jkjk¿q1DkDk¿q.Ek(Ek1aq) and EkEk¿q.uEk

2

1Ekaq1bq
2u, whereaq5\(q1vFcosf1q2vDsinf) and bq

2

5(\2/2)(q1vFsinf2q2vDcosf)2 with q1,25(qy6qx)/A2,
respectively. Sinceaq is negative for some region off, the
quantity (Ek

21Ekaq1bq
2) may be negative as well as pos

tive which we refer below as regions I and II, respective
It is negative in the regimeE1

0,Ek,E2
0, where E1

0

'(2bq
2/aq) and E2

0'(2aq1bq
2/aq). Expandinggab(k)

up to linear order inEk , we perform the integrals overEk in
for both regions I and II separately to obtain

xxx
p,1~qx ,qy!

'
a2

p2\2vFvD
F E

I
dfHR1@2aq12~bq

2/aq!lnuaq /D0u#

1
2

3
~D f

1R21D f
2R3!~aq

223bq
223bq

2lnuaq /D0u!J
1E

II
df$2 ln~2!~bq

2/aq!R122bq
2~D f

1R2

1D f
2R3!ln~aq /D0!%G , ~17a!

xyy
p,1~qx ,qy!

'
a2

p2\2vFvD
F E

I
dfHR1@2aq12~bq

2/aq!lnuaq /D0u#

1
2

3
~D f

1R31D f
2R2!~aq

223bq
223bq

2lnuaq /D0u!J
1E

II
df$2 ln~2!~bq

2/aq!R122bq
2~D f

1R3

1D f
2R2!ln~aq /D0!%G , ~17b!

xxy
p,1~qx ,qy!

'
a2

p2\2vFvD
F E

I
dfHR1@2aq12~bq

2/aq!lnuaq /D0u#

1
2

3
~R21R3!cosf ~aq

223bq
223bq

2lnuaq /D0u!J

gth
3-5
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1E
II

df$2 ln~2!~bq
2/aq!R122bq

2~R21R3!

3cosf ln~aq /D0!%G , ~17c!

whereD f
65cosf6(vF /vD)sinf,

R15~ t21mt8!sin2~k0a/A2!, ~18a!

R252A2S a

\vF
D t8@ t22t8cos~k0a/A2!#sin3~k0a/A2!,

~18b!

R35A2S a

\vF
D ~ t21mt8!sin~k0a/A2!cos~k0a/A2!, ~18c!

and * I and * II represent the integrals overf (0<f<2p)
for the regime off in which aq,0 and.0, respectively.
We, similarly, calculatexab

p,j for three other quadrants. W
observe thatxxx

p,1 andxyy
p,1 differ substantially through the las

terms within both the integrals* I and* II in their expressions
~17a! and ~17b! sincevF@vD . These lead to an anisotrop
diagonal susceptibility. We note that these terms—also
terms involving* II —arise due to keeping the linear depe
dences ofk1 andk2 in gab(k). However, for an approxima
tion kx5ky5k0 /A2 in gab(k), xxx

p 5xyy
p as obtained by

Franzet al.12

Since the angular integrals in the expressions forxab
p can-

not be performed analytically, we numerically integrate the
to obtain xab

p in the next section. We shall then compa
these semianalytically obtainedxab

p with those completely
numerically obtained through Eqs.~12!–~14!.

We now turn to obtain the equation for the vector pote
tial in the gaugeG•AG50 @from Eq. ~11!#. By minimizing
the energy with respect to asAG , we have

~AG!a5
4pe

\cG2d
@xddab2xab

p ~G!#F1

2
~¹u!2G2

e

\c
A2GG

b

.

~19!

We thus obtain

F\2 ~¹u!2GG
a

5@G2Qba
211dba#S e

c
A2GD

b

, ~20!

where

Qab~q!5
1

l2
dab2S 4pe2

c2\2d
D xab

p ~q!. ~21!

Using Eq.~20! in Eq. ~11!, we get

DV5
1

8pA (
G

BGF11
GaQabGb

DetQ GB2G . ~22!

We now expressBG in terms ofNv ,F0 ,Qab , andG. For
a vortex lattice,
18451
e

e

-

~“u!G52ipNv

G3êz

G2
, ~23!

where Nv is the total number of vortices. We then obta
from Eqs.~19! and ~20!

BG5NvF0FDetQ1QabeagebdGgGd

G41G2Qabdab1DetQ
G , ~24!

FIG. 5. Dimensionless susceptibilities~a! xxx
p , ~b! xyy

p , and~c!
xxy

p ~in units ofxd) plotted against small positiveqxa. The numbers
associated with each curve are the corresponding values ofqya. The
susceptibilities for negative values ofqx and qy are related to the
same for positive values ofqx andqy by the symmetries discusse
in the text.
3-6
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with e125152e21, e11505e22, and F05hc/2e is the
quantum of flux. Therefore, the free energy for a vortex l
tice per unit volume becomes

F5
1

8p
~F0nv!2(

G
FDetQ1QabeagebdGgGd

G41G2Qabdab1DetQ
G 2

3F11
GaQabGb

DetQ G . ~25!

This has an approximate but much simpler form as

F.
1

8p
~F0nv!2(

G

Gx
2Qyy1Gy

2Qxx2GxGy~Qxy1Qyx!

G4
,

~26!

which is essentially important for determining the groun
state structure of the vortex lattice. This form is exact wh
u(\/2)(¹u)Gu@ueAGu/c which is true. The componentG
50 will give free energyF̄ for average magnetic inductio
B. For determination of the vortex lattice structure, o
should in principle minimize the Gibbs free energyG5F
2BH/4p. HereH is the applied magnetic field. BeyondHc1

,
the magnetic field penetrates the superconductor almost f
ThusB.H, especially so in high-Tc superconductors, sinc
Hc1

!Hc2
. Here B does not vary much for different vorte

lattice structures for a givenH as we see in our numerica
study that the ratio (H2B)/B;1027. We therefore mini-
mize DF5F2F̄, i.e., that part of the free energy whic
a
x

n

m

n

18451
-
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depends onG, in Eq. ~26!, for different choices of nonzero
G’s corresponding to different structures and with a cut
G<p/j.

III. NUMERICAL STUDY

The values of the phenomenological parameters that
have used for the numerical computation ofQab(qx ,qy) and
later for the free energy are taken from angle-resolved p
toemission experiments,16,18 penetration depth
measurement,24 and band structure calculations25 for high-Tc
compounds. These are as follows:t51150 K, t850.48t,
D05400 K, a53.8 Å, d510 Å, j520 Å, l51600 Å,
and m521.33t which corresponds to doping concentratio
x.0.19.

Using standard Gaussian quadrature, we integrate ovekx

andky in Eq. ~12! to obtainxab
p (q). In Fig. 5 we show the

dependence of paramagnetic susceptibilities~a! xxx
p , ~b! xyy

p ,
and~c! xxy

p in units ofxd for positiveqx at different positive
values ofqy . Susceptibilities for negative values ofqx and
qy can be obtained by using the symmetries discussed in
previous section. We see thatxxx

p (qx ,qy)Þxyy
p (qx ,qy) in

general. This strong anisotropy in the diagonal susceptib
ties is due to the strongk dependence of the nature ofDk and
the k-dependentgab(k), Eqs. ~13a!–~13d!. The diagonal
susceptibilities are large compared to the off-diagonal on

We numerically fit, guided by the semianalytical form
Eqs.~17a!–~17c!, to obtain the approximate functional form
of xab

p (qx ,qy) for qxa,qya<0.3 as
xxx
p (qx,qy)55

g @0.31(duqxua)10.14(dqxa)220.35(dqxa)2lnudqxau] if uqxu>uqyu,

g F 0.35(duqyua)20.14(dqya)210.10(dqya)2lnudqyau

1S 0.101
0.21

duqyua
D (dqxa)21S 20.161

0.07

duqyua
D (dqxa)2lnudqxauG if uqxu<uqyu,

~27a!

xyy
p ~qx ,qy!5xxx

p ~qy ,qx!, ~27b!

xxy
p ~qx ,qy!5g F S 0.111

0.02

q.
Dq,1S 0.152

0.18

q.
Dq,

2 1S 0.072
0.12

q.
Dq,

2 ln q,Gsgn~qxqy!, ~27c!
ibu-

f

n-

s.
e

with q.,,5max, min(uqxu,uqyu)da, g5(l2/d)
3(4pe2/c2\2)t whose numerical value is 1.18, and the p
rameterd5t/D0. These phenomenological forms can be e
plained from the semianalytical expressions~17a!–~17c! as
follows. ~i! First, why do xxx

p (qx ,qy) and xyy
p (qx ,qy) not

depend on the signs ofqx and qy , and xxy
p (qx ,qy) does

depend on sgn(qxqy)? This is due to the symmetry reaso
discussed following Eq.~14!. ~ii ! Why does xxx

p (qx ,qy)
mainly depend on whetheruqxu>uqyu or not? This can be
understood by the following exercise. We find a term fro
Eq. ~17a! as uqy1qxu assumingqx ,qy>0. The correspond-
ing term will beuqy2qxu when we consider the contributio
-
-

from the second quadrant. When we add these two contr
tions, we see that the sum depends on the greater ofqx and
qy . ~iii ! Following the argument above in~ii !, the difference
between the two terms is the smaller ofqx and qy . This is
the reason whyxxy

p (qx ,qy) depends mainly on the smaller o
uqxu and uqyu. ~iv! Since xxx

p,1(qx ,qy)Þxyy
p,1(qx ,qy) and

xxx
p (qx ,qy)5xyy

p (qy ,qx) for symmetry reasons, the depe
dence ofxxx

p (qx ,qy) on qx and qy is asymmetric.~v! The
linear, quadratic, and the logarithmic dependences onq fol-
low from in the expressions~17a!–~17c!.

We next numerically perform angular integrals in Eq
~17a!–~18c! along with the contributions from other thre
3-7
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quadrants to obtain semianalytical susceptibilities and t
compare with the fully numerically obtained susceptibilitie
In Fig. 6 we showxxx

p (qx,0) andxyy
p (qx,0) evaluated in the

two ways. The linear approximation of energies in the a
lytical expressions is a good approximation for determin
linear dependence onqx as we see in Fig. 6 that they agre
for very low qx . They however differ for higherqx since our
analytical expressions are not consistent in determining q
dratic dependences onq as we have neglected higher-ordek
dependences to the quasiparticle energy. It is, however, c
that xxx

p Þxyy
p which is our main result.

We consider a face-centered rectangular vortex lattice~as
shown in Fig. 2! with area of the unit cell,Ã52F0 /B, in
general. The angleu determines the sides of the rectang
with a fixed area. The sides of the rectangle area1

5@Ã tanu#1/2 and a25@Ã/tanu#1/2. We then readily obtain
reciprocal lattice vectors for a vortex lattice, in general, to

Gmn~B,u!5~n1m!
2p

a1
êx1~n2m!

2p

a2
êy , ~28!

wheren andm are integers~both positive and negative! in-
cluding zero. If the vortex lattice makes an anglef with the
underlying atomic lattice, we find

Gmn~B,u,f!5êxF ~n1m!
2p

a1
cosf2~n2m!

2p

a2
sinfG

1êyF ~n1m!
2p

a1
sinf1~n2m!

2p

a2
cosfG .

~29!

The lattice is a centered square foru545° and triangular
whenu560°. There is symmetry of rotation aboutf545°,
since the lattice is considered as centered rectangular.
therefore need to determine free energy for 45°<u,90° and
0<f<45°.

We then numerically compute the free energy per vor
~without the single-vortex energy which does not depend
structure!, DF5dDF/nv , using Eqs.~26! and ~29! as func-

FIG. 6. Numerically~dashed and dotted lines! and semianalyti-
cally ~solid and dot-dashed lines! obtainedxxx

p (qx,0) andxyy
p (qx,0)

~in units of xd), respectively.
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tions of the parametersu, f, and B. The reciprocal lattice
vectorG changes with the change of any one or more of
parameters. ThusDF differs for different combination of
these parameters (f,u,H). In Fig. 7 we show the depen
dence ofDF at a low fieldB52 T as a function off for the
anglesu560° and two neighboring anglesu558° and 62°
~on either side ofu560°). It is clear thatDF is a minimum
for the triangular lattice. We notice also thatDF is a mini-
mum for the triangular lattice whenf50° and 30°, which in
fact correspond to the same lattice configuration. We li
wise find that in the whole of the low-field regime, th
ground-state configuration of the vortex lattice is triangu
with one of its arms parallel to one of the crystal axes.

Interestingly, the orientation of the lattice changes disc
tinuously as we increase the magnetic field though the st
ture continues to be triangular. In Fig. 8 we show the dep
dence ofDF on f for the triangular lattice configuration a
three chosen fields 2, 5, and 8 T. At nearly about 5 T fie
DF is minimum for all 0°, 30°, 15°, and 45° orientation
the latter two angles correspond to the same lattice confi
ration, like the former two angles. On the other hand, at
field of 8 T, DF is minimum forf515° and 45° only. The
triangular vortex lattice changes its orientation discontin
ously at about 5 T field. While the triangular lattice has o
of its arms parallel to one of the crystal axes at lower field
aligns to one of the crystal axes by 45° at higher field. W
understand this discontinuous transition by comparing
energies contributed toDF by the G vectors of the lowest
magnitude~since they contribute most to the free energy! for
these two preferred orientations. Considering the symmet
of the susceptibilities, it is sufficient that we consider on
thoseG vectors which have positiveGx . We thus consider
threeG vectors for each of these two orientations. These
~a! (1/2,6A3/2)G and (1,0)G for f50° and ~b! (1/2A2)
3(A321,A311)G, (1/2A2)(A311,A321)G, and
(1/A2,1/A2)G for f545°, where the length of the smalle
G vectorG52p(2/A3)1/2(B/F0)1/2. In Fig. 9, we show the
energyE contributed by these individualG vectors toDF for
2, 5, and 8 T fields. We find the total energy contributed
the above threeG vectors forf50° and 45° orientations a
~a! 296.05 K and 296.51 K forB52 T, ~b! 282.96 K and

FIG. 7. Free energy per vortex as a function off for u558°,
60°, and 62° at 2 T field.
3-8
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283.11 K forB55 T, and~c! 274.15 K and 273.60 K for
B58 T, respectively. Clearly, the triangular lattice makes
orientational transition at about the 5 T field.

To understand the field scale 5 T for the above orien
tional transition, we compare the energy contributed by
above threeG vectors for each of the preferred orientation
The ratio of these energies can be expressed as a functi
a5tGa/D0 using Eqs.~26!–~29!. This is given by

FIG. 8. Free energy per vortex for triangular lattice structu
(u560°) as a function of its orientation anglesf for ~a! B52 T,
~b! B55 T, and~c! B58 T fields.
18451
n
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e
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of

E1

E2
5

32 f 1~a!

32 f 2~a!
, ~30!

whereE1 (E2) is the energy contributed by the above co
responding threeG vectors of triangular lattice with
0° (45°) orientation. In Fig. 10, we show the rat
f 1(a)/ f 2(a) as a function ofa. The orientational transition
takes place when the ratio is unity. This corresponds toac
5tGca/D0.0.37. Therefore the critical field at which th
transition takes place,B1.(0.37/2A2p)2A3(D0 /at)2F0
.5.2 T.

The structure of the vortex lattice remains triangular w
45° orientation to the crystal lattice as shownDF in Fig. 11
for a field as high as 25 T. However, it makes yet anot
discontinuous structural transition to a centered square la
with its axes parallel to the crystal axes at yet another crit
field B2 whose value is about 28 T. Figure 12 shows thatDF
is minimum foru545° andf50° atB528 T. The overall

FIG. 9. The contributions to the energy per vortex by the th
lowestG vectors of equal length for positiveGx at three different
fields for two different commensurate orientations of the triangu
lattice. The open~solid! symbols represent 0° (45°) orientation o
the vortex lattice with respect to crystalline lattice. The open sy
bols with a dot in their centers correspond to the energy for t
different G vectors with sameGx . The circles, squares, and dia
monds correspond to 2, 5, and 8 T fields, respectively.

FIG. 10. The dashed line represents the ratiof 1(a)/ f 2(a) as a
function of a. The solid line is a guide to the eyes for the value
the ratio 1.0.
3-9
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phase diagram for the ground state of the vortex lattice st
ture atT50 is shown in Fig. 1.

IV. CONCLUDING REMARKS

We conclude by briefly discussing a number of questio
such as the nature of the approximations used, the effec
nonzero temperature, consequences of the transitions,
observability, the reason why our conclusions differ fro
those found earlier, and the structural transitions experim
tally observed.

We have calculated the ground-state energy assuming
fectively that the interaction between two vortices is un
fected by the presence of other vortices. This is obvious
low-vortex-density approximation which seems quite reas
able since the dimensionless ratio (nv /n) is about 1/2500 for
a field of 1 T. However, we have not calculated the high
order corrections which while nominally of higher order
(nv /n) might have large or even divergent coefficien
Since the vortex interaction depends on the quasiparti
quasihole susceptibility, a change in their spectrum due to
supercurrent~the Volovik effect26! could have serious conse

FIG. 11. Free energy per vortex as a function off for u560°
and 45° at a high fieldB525 T.

FIG. 12. Free energy per vortex as a function off for u
545°, 50°, 55°, and 60° atB528 T field. ClearlyDF is mini-
mum for the structure corresponding tou545° andf50°.
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quences. Here, we would like to make two points. First
calculation by Amin, Affleck, and Franz,13 using a semiclas-
sical approximation to include the nonlinear effect of t
magnetic field in the manner of Volovik, finds that this h
little effect on the structural transformations calculated
them. Second,all the recent fully quantum mechanica
calculations27,28of the density of Dirac quasiparticle states
a vortex lattice in the London limit find that for Bravai
lattices the density of states vanishes linearly with energy
in the absence of a magnetic field; only the slope change
general argument for this has been presented
Vishwanath.29 For these two reasons, we believe that o
low-density approximation is reliable.

In the London approximation, the vortex cores are trea
asd functions. In reality, they have a width of the order
the coherence length. We believe that the consequence
this approximation, at least for the low-field structural tra
sition, are small. The reason is that the structure-sens
part of the energy arises from the difference in the contri
tion of the smallest reciprocal lattice vectors~Sec. III!. For
these,Gj;(1/10) at typical magnetic fields, so that the ph
nomenological assumption of a Gaussian vortex core w
width ;j will make a negligible difference to the structure
sensitive part.

We have calculated only the ground-state energy of
vortex lattice in this paper. At any nonzero temperature, th
are obviously entropic contributions which could change
magnetic field at which the structural transition occurs, a
function of temperature. Here, we note that since both
structures~below and above 5 T! are identical~triangular!
and the structure difference sensitive part of the energy
tiny fraction @,(1/1000)2# of the vortex interaction energy
the elastic fluctuations in both structures are expected to
identical to order (1/1000)2 so that the transition field shoul
not be affected by temperature, as long as the input par
eters~e.g.,jk ,Dk ,l) do not change withT. The same canno
be said of the high-field (;28 T) triangular to centered
square lattice transition, because one has a tight-pac
structure and the other not. The expectation is that the for
has fewer elastic fluctuations than the latter, so that the t
sition field boundary should shift to lower values with in
creasing temperature. However, this conclusion is tempe
by the fact that the London approximation is unreliable
these high fields when vortex cores get close to each othe
that our basic result may not be that reliable.

One interesting consequence of the orientational transi
at 5 T, which might be measurable, is the change in the v
low energy density of quasiparticle states. At least for
square lattice, Vishwanath29 has shown that there are quas
particle states with linear dispersion and that there is a v
small gap arising from higher-order terms in the quasipart
velocity. If this kind of result carries through for a triangula
lattice, then it might be an experimental way of observing
transition.

We have calculated here the actual energy of
structure-sensitive term~Sec. III! and have found it to be
small, of the order of a few degrees per vortex. Because
this reason, the transition might be difficult to observe, sin
pinning energies of larger size are generally present,30 unless
3-10
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the system is extremely perfect.
We have discussed in detail~Sec. II and III! the reason

why our results differ from those obtained earlier. Basical
it has to do with the anisotropy of the nonlocal current su
ceptibility, i.e., the fact thatxxx

p (G)Þxyy
p (G). The reason for

this essentially is that we have an anisotropic superc
ductor. Thexxx

p andxyy
p functions are plotted in Fig. 5.

The question of a nontriangular structure of the vort
lattice in cuprates has attracted considerable experime
attention,6–8 especially since it has become established t
they aredx22y2 superconductors. Earlier small-angle neutr
scattering measurements7 were on highly twinned 123 crys-
tals, so that the observation of fourfold diffraction symmet
does not imply a rectanglar or square lattice. Moreover,
positional order is very poor. A more recent experiment8 on
untwinned 123 single crystals shows much better trans
tional order~higher G peaks are resolved! and a triangular
lattice with axes oriented alonga, distorted because ofa-b
asymmetry. The authors find no structural transitions up t
t

o

.
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e
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d

v

,
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T with field along thec axis. They however find a transition
from a triangular lattice oriented alonga to one oriented
along theb axis at a field of about 3.8 T, oriented at 33°
thec axis. This is certainly quite different from the transitio
to a triangular lattice at 45° to thea axis at 5 T predicted by
us. As Johnsonet al. point out8 the observed transition could
be due to the presence of chains in 123 and the novelab-c
anisotropy caused by it~which may have a strong effect o
many physical properties!. In order to seriously explore ou
conclusions, one needs to do experiments on cuprates w
out chains and ideally with tetragonal symmetry, as ag
mentioned by Johnsonet al.8
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