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Ground-state vortex lattice structures in d-wave superconductors
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We show in a realistid,._ > symmetry gap model for a cuprate superconductor that the clean vortex lattice
has discontinuous structural transitiof@a and neal =0), as a function of the magnetic fieBlalong thec
axis. The transitions arise from the singular nonlocal and anisotropic susceptibility dfthg supercon-
ductor to the perturbation caused by supercurrents associated with vortices. The susceptibility, due to virtual
Dirac quasiparticle-hole excitation, is calculated carefully and leads to a ground-state transition for the trian-
gular lattice from an orientation along one of the crystal axis to one at 45° to them, i.e., along the gap zero
direction. The field scale is seen to be 5-TA,/ta)?®,, whereA, is the gap maximumt is the nearest-
neighbor hoppinga is the lattice constant, anll is the flux quantum. At much higher fields-@8 T) there
is a discontinuous transition to a centered square structure. The source of the differences from existing calcu-
lations and experimental observability are discussed, the latter especially in view of the veryasiieail
degrees K per vortexdifferences in the ground-state energy.
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. INTRODUCTION tude with a (\¢/2)|coska—cosk,a dependence on the two-
dimensional wave vectdk across the Fermi surfa¢eand
An external magnetic field enters (&pe-Il) supercon- that transport lifetimes of quasiparticles are 1bhdor T
ductor as a collection of quantized magnetic flux tubes. The<T_. Thus one can assume well-defined low-energy, nodal
flux tubes with associated supercurrent vortices form a trianguasiparticles, with an experimentally determined one-
gular latticé as is seen in conventional superconducfors. gjectron dispersiom, (Ref. 18 and gap function, .26 The

Deviations from this structure are of considerable interest. 'rhuestion of interest is the effect of the zero-gap, anisotropic
conventional superconductors, the observed deviations hay, jike linear quasiparticle excitation spectrum on the in-
been attributed to the anisotropy of the underlying one elect-

i i n h fermi dh eraction between vortices and, thus, on vortex lattice struc-
ron energy spectrum. In heavy-fermion and highsuper- ture. There is considerable evidence, e.g., from magnetic-

conductors, an additional and potentially very Interesur‘gfield-dependent electronic specific héhglectronic thermal

reason is the existence of an unconventional superconductin nductivity?® and superfluid densiymeasurements that an
order parameter, with gaps which have nodes and changé ' P

sign. Indeed there is experimental evidence in the heav external magnetic field going in as vortices has a strong ef-

fermion systemé,in the exotic superconductor SrRu®and fect on electrpnlc states, changing their density a.nd lifetime.
in cuprate superconductérsthat the vortex lattice is not The relevant issue here is somewhat the reverse: namely, the

triangular (for some field and temperature regime®Re- effect of the quasiparticles on the interagtion beMeen vorti-
cently, measurements of small-angle neutron diffraction fronf€S. The order parameter phase associated with the vortex
untwinned YBaCusO;_ 4 single crystals shows a very well- and the relgted magnet}c vector potential together constitute
formed triangular lattice that undergoes an orientational tranthe superfluid velocity fields(r)[ ==vs(r—R)] where the
sition from along thea axis to along theb axis for a 3 T  Vortices are located at poink . The extra superfluid kinetic
magnetic field at 33° to the axis® The reasons for possible €nergy, being quadratic i, clearly has a part that depends
nontriangular structure as well as for the structural transitiorP" two vortex coordinates and is thus structure sensitive. In
are not fully established and are the subject of considerabl@ddition to this “diamagnetic” term, which is the additional
theoretical work~23 In high-T, superconductors, entropic Kinetic energy of the rigidly moving superfluid and which is
effects, abetted by a high transition temperature as well as ®inimized for a triangular Iattlcé,thgre is another “para-
weak interlayer coupling, play an important role, and themagnetic” term due to Fhe perturbation qf quaS|part|'cIes by
classical statistical mechanics of interacting, meandering fluf1e superfluid current via the terknvs. This causes virtual
lines, of the vortex fluid phase, and the solid fluid transitionParticle hole excitations; two vortices interact via the ex-
has developed into a major theoretical and experimenta‘fhange of quasiparticle-quasihole pairs. This polarization
subfield!4 term depends on the quasiparticle excitation spectrum. In a
In this paper, we focus on the nature of the flux lattice atCléans-wave superconductor, the process leads to an addi-
temperatures well below the superconducting transitiontional isotropic interaction between vortices of order
where vortex configurational entropy effects mentioned(H/Hc,) relative to the diamagnetic term. However, in a
above are negligible. The ground-state structures and strud-wave superconductor where the excitation gap vanishes
tural transition then directly reflect the electronic peculiari-along somgnoda) directions, one expects the nonlocal po-
ties of the superconductor and, thus, probe the latter. Fdarizability to be larger as well as anisotropic; this gives rise
cuprate superconductors, a number of measurements shdwan interaction between vortices which depends on the ori-
that the superconducting gap, has node$® has a magni- entation of the line joining them with the respect to crystal-
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FIG. 1. Phase diagram for the structure of the vortex lattice. The
position of the vortices are denoted by solid circlBs.andB, are
the fields at which the structural transitions take place as described FIG. 2. A typical centered rectangular vortex lattice. Solid
in the text. The structures are shown diagrammatically.

circles represent the position of the vortices in the lattice. The as-
ect ratio of the lattice is given bg,/a,=tan6é. The angle¢
epresents the inclination of the lattice with respect to the crystal
axis which is parallel to the& andy directions.

ine axes and consequently, can be the cause of novel lon
range positional order.

The ground-state energy arising from quasiparticle-hole
mediated interaction between vortices depends linearly on ) o ) )
the nonlocal current susceptibility? 5(q), for wave vectors ~ The field scale for the transition is approximately given by
q equal to the reciprocal lattice vecto®sof the vortex lat-  the condition {aG/Aq)~1 which is natural on dimensional
tice. Because the gap as well as the density of quasiparticrounds. The Fermi velocity i and the energy scale asso-
states vanishes linearly near the nogg,(q) is proportional ciated with the superflowX ¢) with Fourier componen is
to|q,| or |qy| for smallg. This nonanalytic behavior, noticed thereforetaG. The polarlqull|ty or suscepn_blhty hag an en-
first by Kosztin and Leggef? has also been discussed by €9y scale (o) whered, is the gap magnitude which sets
Franzet al’2 who were the first to analyze microscopically the S(_:ale for qua5|pa_1rt_|_cle excitation energies. Thus the di-
its effect, as well as of the anisotropy h’ﬁﬁ’ on vortex mensionless susceptibility of interest ia(G/A,). For real-

lattice structure af=0. These authors found a rich phase Et6c3parami§e{§,a, Iandf éoz ?'S translates] (taGc/Aq)
diagram in the field-temperature plane, with a centered rect- 7" 7 1o a field scale of 5.2 T. . L
We find that the node-oriented triangular lattice is stable

angular lattice al =0 whose inner angle varie®ntinuousl| . X ; o
g g y until about 28 T, whereupon a discontinuous transition to a

as a function of field, as well as a sudden orientational tran tered lattice tak | This struct hich i
sition at higher temperatures and a transition to a centereff'€read square fattice takes place. This structure, which 1S

square lattice for very high fields and loW In obtaining orientationally commensurate with the symmetry of the qua-

these results, Franzt al. made a “local” approximation for siparticle dispgrsion, is probably the most Staﬁ*’eo phase
the gap funct'ion i.e., assumag=A, . s, and more impor- when electronic commensurate effects dominate. However,
3 1Ty - +Go

tantly they assumed a momentum-independent quasiparticfge cal_cula;f[ed f'eldd sca:% 'fS Illagli en_oughttha}F tl?le Lbondon
current which leads to a response functigif(G) ~ apPProximation used, vaiid 1o cpr IS NOLTENADIE, DE-
= x2,(G). The anisotropy then enters only througf(G). cause vortex core effects cannot be neglected at these high

We carry out here a more detailed and realistic calculation Oﬁellds.h iorSec. | d ibe th del and
the nonlocal susceptibility, considering the strdnglepen- n the next sectior{Sec. 1), we escribe the model anc
dence of the gap function, and quasiparticle currerjt the theoretical approach used. The tight-binding quasiparticle

properly, and using a realistic one-electron dispersion. Thé"?m'ltan'gn 'St dtehcompos_,ed ;T"lo an ltan_ertturbet(_j ba,_rr?]ndf
diagonal termsy®, and ng are unequal and large, and this atermH, due o the quasiparticie vortex interaction. The free

anisotropy is seen to be the underlying cause of the transitiofi ' 27 O" the ground-state energy can be obtained as a power

discussed below. The contibution of the off-diagonal suscep§erle$ inH, or equivalently the density of vortices. For low

titiblity x%, is smaller than that of the diagonal susceptibili- vortex den§|t|es}(|<H'C2) the leading On'{ termis suff|C|.ent
ties. Our results for structural stabiliat T=0) are there- @nd describes quasiparticle-hole-mediated vortex interac-
fore quite different from those of Fraret al1%*3 tions, in addition to the bare superfluid kinetic energy. We
Confining ourselves td =0, we find, as summarized in a discuss the former carefully in terms of the nonlocal, aniso-
phase diagrartsee Fig. 1, that the stable lattice at low fields {ropic current susceptibility %, 5(q) since the energy can be
is triangular. At about 5 Tfor the parameters chosethe  expressed as a reciprocal lattice vector sum q¥g(G). We
orientation of the smallesG vector changes from being obtainxﬂﬁ(q) semianalytically for smalfj at T=0, as well
along one of the axes to being along the order parameteas numericallySec. IlI).
node direction, because the system is most susceptible to The calculations for different two-dimensional structures
excitations with the wave vector along the node. We havere discussed in Sec. Ill. For a given magnetic fiBlthe
analyzed the driving force for this transition, both analyti- most general centered rectangular latfieg,a,] can be de-
cally and numerically, and find that it arises from a subtlescribed in terms of an anglé related to the aspect ratio
balance between the term linear [iG| and the quadratic (a;/a,) as tand=a,;/a, and an orientatiorp with respect
term, which are slightly different for the two orientations. to crystal axegFig. 2). We compute the ground-state energy
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as a function of these two variables for different magneticcum and¢ is the superconductive coherence length. The pair
fields. The basic vortex-related electronic energy parametemmplitude(order parameter magnitudeanishes at the center
are the following. The vortex has three energy scalesof the core of a vortex, and over a distaneé acquires its
namely, the diamagnetic single-vortex energy, of order 345Qniform value. For a collection of vortices WiH“h<ch, ie.,

K per vortex; the vortex interaction energy, the diamagnetiGyiin intervortex spacing> £ or the London limit, we assume
part of which has a value-1440 K (for nearest-neighbor the order parameter magnitude to be uniform throughout the
vortices; and the paramagnetic interaction term which isgyperconductofthere aresd function sources of phase rota-
about 350 K at 5 T field. The last and the smallest term isjon at the locations of vorticgsThere is a vector potential
structure sensitive and is of interest here. The ground state i§,c, thatV x A(r)=B(r) whereB(r) is the local magnetic

analyzed as a function &, ¢ for several .fi.eld values in Sec. jnqyction, along thec axis. Its effect in this model is to
IIl. It turns out that the structure-sensitive part of the lastchange the hopping integrals to

(paramagnetic vortex interactipterm is extremely small, of

order a few degrees per vortex. This has obvious implica- f

tions for the observability of the transition, because the struc- (t,t’)e(t,t’)ex;{i(e/hc)f A- dl} (2)
tural changes predicted and the clean limit anisotropies ob- i

tained can be easily overwhelmed by effects of disorder, e.gq, hopping from sitej to sitei. We then make a gauge

vortex pinning and the muting of the paramagnetic susceptif,nsformatione:. . —c. e~ %2 We thus obtain the Hamil-
bility anisotropy, and nonanalyticity by disorder. However, gnian as e

the size of the structure sensitive terms is larger, the greater

the (g /v,) ratio or anisotropy. One can thus imagine situ- f

ations where this effect is quite large. H=—t 2 cfgcj,,exr{i(ai— ej)/2+i(e/hc)J A-dl}
In the concluding sectioriSec. IV) we briefly discuss (i i

thermal effects, the consequences of the predicted transition

and their observability, the reason for which our result differs +H.c.}p + Z (Aijcf}cfﬁ H.c)

from earlier results, and the experimentally observed struc- (Do

tural transitions. f
cf(,cj(,exp{i(ei—01)/2+i(e/hc)f A-dl}
Fi

Il. THEORY
A. Model +Hec.

—p 2 ¢lyCip (3)
We consider a two-dimensional lattice model with '
nearest-neighbor and next-nearest-neighbor hopping for fhe phase difference between two nearest- or next-nearest-

Hamiltonian in this model is given by

1 I 1
H0=—t<2 (cfgcjﬁH.c.)ﬂ’(%> (¢l cjo+H.C) E(ﬁi—9j)+(e/ﬁ0)friA-O””—‘(ri—rj)-(EViH—(e/ﬁC)Ai)
1])o 1]))o
=(M/A)(ri=r)-vg(rp). (4

t ot t
+<i21> (A”C”C”JFH'C')_’“Z CioCio @D Here the superfluid velocity

®)

where t and t’ are nearest-neighbor and next-nearest- 174 e

neighbor hopping integrals, respectively. This corresponds VS(r):E EV 60— EA(r)

for appropriate choices dfandt’ to an open Fermi surface

which is observed in angle-resolved photoemission experifor a single vortex and for a collection of vorticeg,(r)

ments. The pair amplitudeAij is considered to be =E|Vs(f—R|) (where the vortices are located BRi. We

dyz—y2-wave like, i.e.,Aj;+a5=—Aj+ay, Wherea is the  then assume that the phase difference between two neighbor-

lattice constant in a square lattice apdis the chemical ing lattice sites is very smalwhich is certainly true in the

potential. London limit) so that we expand exponentials in Eg) up
When we apply a magnetic field beyond the lower criticalto quadratic terms.

field HC1 in high-T. superconductors, the magnetic field goes Using Egs.(5) and(4) in Eq. (3) for H and expanding up

into the system in the form of vortices. The magnetic induc-to quadratic order in the small quantity(r) we have

tion is screened over a length the penetration depth. The

pair amplitude acquires a phade;— A;;exd —ié;], where H=Hy+H,+H,, (6)

6;; is the sum of polar angles of all the vortices measured o

with respect to a particular axis, for the center of mass of th&vhere the free Hamiltonian

pair ij. We write 6;; as (f;+ 6;)/2 (as an average of the

angles of individual coordinates of the Cooper paivghich _ t Tt

is consistent up t@(1/ke£)2, whereke is the Fermi momen- Ho kz(r gkck"ck"Jr; [ACigcog tHel (@)
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R ks dA C2

a2

HII

mz)% mu(G)mu(—G),  (10)

whered is the mean interlayer separation of weakly coupled
superconducting layers ardis the area of the system.

B. Free energy

We now calculate the free energy as a power series in
v¢(r) or equivalently the vortex density. The diamagnetic or
Ginzburg-Landau term, of first order id,, , is the largest,
and the structure sensitive part of it is known to be mini-
mized for a triangular lattic€l). The energy does not depend
on its orientation with respect to the crystal lattice. We are
= interested here additionally in the paramagnetic term, of sec-
a ond order inH, . Including this and the magnetic field energy
contribution, the free energy to second order in vortex den-
sity is given(per unit length along the axis) by

R ks
1

. 755 K,

FIG. 3. A typical open Fermi surface for high- compounds
which can be parametrized by tat’ model. The shaded region
denotes the occupied states with concentratienx,lwherex is the
doping concentration. The superconducting state is gapless along
the diagonals of the Brillioun zone

% Mo &(G) X485~ x24(G) Imuf(—G)

 2AdH2
with &= —2t[ cosk,a)+cosk,a)]|+4t' cosk.)cosk,a) — u 1
andA,= (Ao/2)[ cosk,@)—cosk,a)], Ag being the maximum sy EG: BsB_g., (11

guasiparticle excitation gap. Hekelies in the first atomic
Briliouin zone, (BZ) i.e., — m/a<(ky,k,)<m/a. A typical _ _ )
structure of the Fermi surface is shown in Fig. 3. GaplesgvhereG is the reciprocal vector of the vortex lattice. The
quasiparticle excitations exist alorg= =k, directions as individual vortex energy is not included here, as it is not

noted in the figure. The interaction terffirst order iny;) ~ relevant for the question of vortex lattice structung”
can now be expressed as =(c“hd/4me-\?) is the diamagnetic term arising from the

term H;, [Eq. (10)] to first order, and)(gﬁ(G) is the para-
magnetic current susceptibility due to the second-order con-

_ t +
H,—2(at/ﬁ); GZO [CkoCh+ 6o Ck+GoChol tribution from H, . Higher-order contributions are neglected
since the expansion parameter is,(n) wheren, is the
X[mug(G)sin(kea) + mu(G)sin(kya)] vortex density andh is the electron density. This ratio is
obviously much smaller than 1.
—4(at’/ﬁ); GZO [CEUCHGU— Cl-f—Ga-Cka] The paramagnetic suscept|blllg§[,(q) is expressed as
X[movX(G)sin(k.a)cog k,a) + mv¥(G)sin(k,a) mla mla
° " Y ° Y X @=——=|  dk|  dky(KII(k,q).
(277) —7la —mla
XCOi(kxa)]EkE GZO Vi 6l ChoCk+ Go— Ch+ GoCko - (12

(8)  The current-operator-dependent terms;(k) are explicitly

. . . . . given as
HereV, ¢ is purely imaginary. The terrdl,, is quadratic in

v and contributes to the free energy as a diamagnetic term.

It is given by (k) ={2a sin(kxa)[t—Zt’cos(kya)]}z, (139
Hy=2N(t—t")(a%4%) X mug(G)mug(~G), (9) yyy(k)={2asin(k,a)[t -2t cogk,a) ]}, (130
G
with N¢ being the number of superfluid carriers, andefers ] ,
to Cartesian variables andy. Paramekantét al?® have re- Yuy(K)={2asin(k.a)[t—2t"cogk,a)]}
cently shown that the quantum phase fluctuation of the order x{2asin(k,a)[t—2t'cogk,a)]} (139

parameter reduces the superfluid density considerably. We
thus reexpress the terhkh;, phenomenologically in terms of
the measured as =yyx(K). (13d)
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Rl +4t' cof(kea/\2). We use&~fivek; and Ag=7iv  ky in

linear form, where the Fermi velocity = (4a/#2)[t
—2t’ coskoa/\/2)]sin(kea/\/2) and va
=(alfi\2)A,sink,a/\2) is the velocity of quasiparticles
along thek, direction. Since ind-wave superconductoris:
>v,, the phase space &, effectively is much larger than
that of k; for a given value of quasiparticle energy. We ob-
serve that this is the cause of strong anisotropy in the diag-
onal susceptibilities as we see belowdlfis the angle of &
vector with thek; axis in this new coordinate syster§,
=E,cos¢ and A =E,sin¢. By Taylor expansion irg we
find &gt A irq=Ex(Extag) and EyEyiq=|Eg
+Eyagqt B2, where aq=1(0;v£C0Sh+0u,sin$) and 5
= (11%12) (9yvESin p—uaCOSH)* With a1 o= (d, = 0)/ V2,
FIG. 4. New coordinate systenk{,k,) in the first quadrant of respef:tlvelg. Sincerq ISZ negative for Some region af, the .
the atomic BZ is shown. Its origin is at the “nodal” point at which q,Ua“t'ty Ei+ Ekaq+'3q) may be negative as well as posi-

the superconducting gap vanishes on the Fermi surface. The lengtiY® Which we refer below as regioons ' ang I, respectiglely.
of the nodal vector ik,. It is negative in the regimeE;<E,<E,, where Ej

~(—Bilag) and E3~(—aq+ B3 ag). Expanding y,s(k)
The zero-frequency susceptibility of wave vectpfor qua-  up to linear order irE,, we perform the integrals ové, in
siparticle quasihole of momentuknis I1(k,q) and has the for both regions | and Il separately to obtain
form

x50, ay)

Q)= =5 3 §k§quJI;AkAk+q ) 2
kT Ek+q kEk+q ~ d(ﬁ[Rl[—aq-i-Z(,BZ/a YIn|ag/A|]
. . . ﬁZU v I q —q q
with the quasiparticle enerdy, = \/§2k+Ak2. ™ F¥A
It is expected that the above susceptibilities are aniso- )
tropic due to the nonlocal nature af;, reflected in thek + §(D$RZ+D;R3)(06§—3B§—3B§|n|aq/Ao|)

dependence ok . Though anisotropic, they possess certain
symmetries:  x5,(Gx, —dy) = X5a(0x Oy) = Xaa(—0x.0y),

X)Ey(qxa_qy):_X)F()y(qX!qy):X)F()y(_qXqu)i and +ﬁ|d¢{2 In(Z)('Bg/aq)Rl—Z'Bé(D;RZ
Xox(Ax,0y) = x}y(ay,ax) . These symmetries suggest that the
susceptibilities are functions dfy,|, [ay|, and sgng.ay)
only. A naive perturbative expansion Qﬂﬁ(q) in powers of

g fails since the coefficient of the quadratic term dnis
divergent, due to the vanishing Af, on the Fermi surface at YPAa,,ay)
ky= =k, points. We however proceed to evaluate these ana-"” Y

+D;R3)|n(aq/A0)}}, (179

lytically as follows. a2 )

We write ~ fdqb[Rl[—aq+2(,8q/aq)ln|aq/A0|]

wh UVEUVA |
4
P — pj 2 _
Xap(Gx-Qy) ;1 Xap(Ax-9y), (15 + §(D;R3+D¢R2)(a§—3B§—3B§In|aq/A0|)
Wherexﬂ'}; is the contribution of thgth quadrant (=1-4)
of k space. For instance, + f”dqﬁ{z In(2)(B% ag) R1—2B5(D jRs
b1 1 la la
Xap(0x,Ay) = WJO dkaO dkyyap(K)II(k,q) +D¢R2)In(aq/A0)}}, (17b
(16)

is the contribution due to the first quadrant. We present the(i”yl(qx ,dy)
calculation of)(ﬂ'é(qx ,dy) below in detail. 5
In terms of an alternative coordinate systeiky,k,) _ a
whose origin is at the nodal point on the Fermi surface as T h20 v,
shown in Fig. 4, the old coordinates in the first quadrant are
expressed ak, = (1/V2)(ko+k;—kz) and k,=(1/v2) (ko
+k;+ky), where ko is defined asu=—4t coskya/\2)

d¢{ Rl — g+ 2(BE ag)In|ag/Ao|]

|
2 2 ap2 a2
+ 3(R2+ R3)cose (ag—3B5—3BgIn|ag/Aq|)

184513-5
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+ J” dep{2In(2)(BY ag) R1—2B5(Ro+ Ry)

X COS¢h In(aq/Ao)}}, (170
whereD ; = cos¢+(vg/v,)sin ¢,
Ry=(t2+ ut’)sird(kea/ \2), (183
R2=2\/5(%)t’[t—2t’cos{k0a/\/§)]sin3(koa/\/§),
F
(18b)
Ra=12 % (t2+ ut')sin(koa/\2)cogkeal \2), (180
F

and [, and [, represent the integrals over (0<¢<2m)
for the regime of¢ in which @;<0 and>0, respectively.
We, similarly, calculatex®} for three other quadrants. We
observe thaj;" andx; differ substantially through the last
terms within both the integralf andf,, in their expressions
(179 and(17b) sincevg>v, . These lead to an anisotropic
diagonal susceptibility. We note that these terms—also the
terms involving [ ;,—arise due to keeping the linear depen-
dences ok; andk; in y,4(k). However, for an approxima-
tion kxzky=k0/\/§ in y.5(k), x&=xj, as obtained by
Franzet alX?

Since the angular integrals in the expressions(f;;; can-
not be performed analytically, we numerically integrate these
to obtain XZB in the next section. We shall then compare
these semianalytically obtain@pf;ﬁ with those completely
numerically obtained through Eq&l2)—(14).

We now turn to obtain the equation for the vector poten-
tial in the gaugeG- Ag=0 [from Eg. (11)]. By minimizing
the energy with respect to #;, we have

ALY = 4me dg P (G 1 v eA
( G)a—m[X ap~™ Xap(G)] 5 0)7(3_% 7(3!3
19
We thus obtain
fi o1 e
2(V0)-o| ~IC°Qutdul[gAc] . (20
where
B 1 47re? 0
Qaﬁ(Q)—F@w— 2n2g Xap(d)- (21)
Using EQq.(20) in Eq. (11), we get
1 G,Q.sGs
Aﬂ—ﬁé Bg 1+W B_g. (22)

BG:

0.4

03

Xy (9,0,)

01 ¢

0.0

0.0

0.08

0.06

Xxyp(qx7qy)

0.02

0.00

0.0

0.04 ¢
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DetQ+Q,z€"7e#°G,G;
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(23

where N, is the total number of vortices. We then obtain
from Egs.(19) and (20)

v

0 1
G*+G?Q,p8,5+ DetQ

(24)

(a)

0.1 0.2

0.3

0.1 0.2

q.a

0.3

0.1 0.2

q.a

0.3

FIG. 5. Dimensionless susceptibiliti€a) x%,, (b) x},, and(c)
XQy (in units of y4) plotted against small positivgga. The numbers
associated with each curve are the corresponding valugsofrhe

susceptibilities for negative values gf andq, are related to the

We now expres8 in terms ofN, ,®4,Q,z, andG. For
a vortex lattice,

184513-6

same for positive values af, andq, by the symmetries discussed
in the text.
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with e?=1=—¢€?!, €'=0=¢%2 and ®,=hc/2e is the depends orG, in Eq. (26), for different choices of nonzero
guantum of flux. Therefore, the free energy for a vortex lat-G’s corresponding to different structures and with a cutoff
tice per unit volume becomes G=mwl&.

5 2
DetQ+Q,z€*7€%°G, G, 1. NUMERICAL STUDY

1
— 2
F=g-(®on,)?>

4 2
© L G+ G Qupdapt DetQ The values of the phenomenological parameters that we
G,Q.5Gs have used for the numerical computation®f(dx,qy) and
X 1+W (29 later for the free energy are taken from angle-resolved pho-
toemission experiment§;'®  penetration depth
This has an approximate but much simpler form as measuremerft and band structure calculatiGigor high-T,
) ’ compounds. These are as followts= 1150 K, t'=0.48,
e (g )?S GiQyyt GyQux— GxGy(Quy+ Qyx) Ap=400 K, a=3.8 A, d=10 A, £&=20 A, \=1600 A,
8 OV & G* ' and u=—1.33 which corresponds to doping concentration
(26) x=0.19.

_ . . - Using standard Gaussian quadrature, we integratelqver
which is essentially important for determining the ground- ; o X

: i . andk, in Eq. (12) to obtainy® .(q). In Fig. 5 we show the
state structure of the vortex lattice. This form is exact whend yd ¢ t.aﬁ ibilitias . (b) P
|(12)(V 6)|>|eAq|/c which is true. The componer@ ~ dePendence of paramagnetic susceptibilit@sc. () xyy .

=0 will give free energyF for average magnetic induction and(c) xy in units °f)< -f.o_r positived, a}t different positive
- ; values ofq, . Susceptibilities for negative values qf and

B. For determination of the vortex lattice structure, one can be ébtained bv using the svmmetries discussed in the

should in principle minimize the Gibbs free energy F Ay y g y

j ; > .
—BH/47. HereH is the applied magnetic field. Beyomtl, previous section. We see thaf,(dx.dy) # x},(dx.dy) in

o eneral. This strong anisotropy in the diagonal susceptibili-
the magnetic field penetrates the superconductor almost full)?res is due to the stronig dependence of the nature & and

T1USE ", eshecaly o n Nt superconductors Snce he kdepondenty (). £05. (133139, The dagonal

¢y ey susceptibilities are large compared to the off-diagonal one.
lattice structures for a giveRl as we see in our numerical We numerically fit, guided by the semianalytical form in
study that the ratio f —B)/B~10"'. We therefore mini- Egs.(178—(170), to obtain the approximate functional form
mize AF=F-F, i.e., that part of the free energy which of xﬁﬁ(qx,qy) for g,a,q,a<0.3 as

v [0.31(5]a,]@) +0.14(50,@)>— 0.35(5q,a)*In| 6qal]  if [, =[ayl,

o y { 0.35(5]ayla) —0.14(5q,a)>+0.10(5q,a) *In| 5qy
Xxx(qwqy) =

(279
+lo.10r 22 (sga)2+ | —0.16v—2" | (sga)7n] 5 if
— <
: 5|qy|a (o0xa) : 5|qy|a (0axa) nl qxal I |qx| |qy|1
XYy(0x,Gly) = X3x( Gy ). (27
0.02 018 , 012 ,
Xxy(Ox.Gy) =y | | 0.11+ —|q-+| 0.15- —|q=+| 0.07- —|q<Inq|sgn(a,dy), (279
a- - -
|
with 0= <=max, min(a,,|q|) 5a, y=(\?/d)  from the second quadrant. When we add these two contribu-

X (4me?/c?h?)t whose numerical value is 1.18, and the pa-tions, we see that the sum depends on the greatgy ahd
rameteré=t/A,. These phenomenological forms can be ex-q, . (iii) Following the argument above fii), the difference
plained from the semianalytical expressidigg—(17c9 as  between the two terms is the smalleragf andq, . This is
follows. (i) First, why do ng(qx,qy) and X{;y(qx,qy) not the reason Why(,‘fy(qx,qy) depends mainly on the smaller of
depend on the signs af, and q,, and x}(ax.q,) does |q, and |qy|. (iv) Since Xﬁ;}(qx,qy);ﬁx)’jg}(qx,qy) and
depend on sgmy,q,)? This is due to the symmetry reason ng(qx,qy)zxgy(qy,qx) for symmetry reasons, the depen-
discussed following Eq(14). (i) Why does x},(ax,0dy) dence ofXQX(qX,qy) on g and g, is asymmetric.(v) The
mainly depend on whethdn,|=|q,| or not? This can be linear, quadratic, and the logarithmic dependences tui-
understood by the following exercise. We find a term fromlow from in the expression€l7a—(17¢).

Eqg. (179 aslqy+ 0yl assumingqy,q,=0. The correspond- We next numerically perform angular integrals in Egs.
ing term will be|q,—a,| when we consider the contribution (178—(18¢ along with the contributions from other three

184513-7
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FIG. 6. Numerically(dashed and dotted lineand semianalyti- FIG. 7. Free energy per vortex as a functiondofor 9=58°

cally (solid and dot-dashed linebtainedy},(qx.,0) andx},(ax.0)  go° and 62° at 2 T field.
(in units of x4), respectively.

] ) ) o tions of the parameter8, ¢, andB. The reciprocal lattice
quadrants to obtain semianalytical susceptibilities and the(jociorG changes with the change of any one or more of the
compare with the fully numerically obtained susceptibilities.parameters_ ThudE differs for different combination of
In Fig. 6 we showy},(d,0) andxy,(dy,0) evaluated in the  aqe parametersp(6,H). In Fig. 7 we show the depen-
two ways. The linear approximation of energies in the anayence ofAF at a low fieldB=2 T as a function ofb for the
lytical expressions is a good approximation for determ'”'”ganglese=60° and two neighboring angles=58° and 62°
linear dependence am, as we see in Fig. 6 that they agree (o gither side o= 60°). It is clear that\F is a minimum
for very lowq, . They however differ for higheq, since our  ¢o the triangular lattice. We notice also thAF is a mini-
analytical expressions are not consistent in determining quas,,m for the triangular lattice whesi=0° and 30°, which in
dratic dependences anas we have neglected higher-order ¢,ct correspond to the same lattice configuration. We like-
dependences to the quasiparticle energy. It is, however, cledfise find that in the whole of the low-field regime, the

that 3, # xyy which is our main result. . ground-state configuration of the vortex lattice is triangular
We consider a face-centered rectangular vortex latise  ith one of its arms parallel to one of the crystal axes.
shown in Fig. 2 with area of the unit cellA=2®d,/B, in Interestingly, the orientation of the lattice changes discon-

general. The angl@ determines the sides of the rectangletinuously as we increase the magnetic field though the struc-
with a fixed area. The sides of the rectangle ag ture continues to be triangular. In Fig. 8 we show the depen-
=[Atand]¥? and a,=[A/tand]¥2 We then readily obtain dence ofAF on ¢ for the triangular lattice configuration at

reciprocal lattice vectors for a vortex lattice, in general, to bethree chosen fields 2, 5, and 8 T. At nearly about 5 T field,
AF is minimum for all 0°, 30°, 15°, and 45° orientations;

2. 2. the latter two angles correspond to the same lattice configu-
Gmn(B,8)=(n+m) a—ex+(n—m) 28 (28)  ration, like the former two angles. On the other hand, at the
! 2 field of 8 T, AF is minimum for ¢=15° and 45° only. The
wheren andm are integergboth positive and negatiyen-  triangular vortex lattice changes its orientation discontinu-
cluding zero. If the vortex lattice makes an angflevith the  ously at about 5 T field. While the triangular lattice has one
underlying atomic lattice, we find of its arms parallel to one of the crystal axes at lower field; it
aligns to one of the crystal axes by 45° at higher field. We
understand this discontinuous transition by comparing the
energies contributed tAF by the G vectors of the lowest
magnitude(since they contribute most to the free engrigy
these two preferred orientations. Considering the symmetries
. of the susceptibilities, it is sufficient that we consider only
thoseG vectors which have positive, . We thus consider
(29 threeG vectors for each of these two orientations. These are

The lattice is a centered square f@r=45° and triangular (8 (1/2,3/2)G and (1,016 for $=0° and(b) (1/2,2)
when §=60°. There is symmetry of rotation abogt=45°, X(y3-13+1)G, (1/2y2)(3+1,3-1)G, and
since the lattice is considered as centered rectangular. WA/\2,14/2)G for ¢=45°, where the length of the smallest
therefore need to determine free energy for4%<90° and G vector G=2m(2/y/3)Y4B/®,)2 In Fig. 9, we show the
0= ¢p=45°. energyE contributed by these individu&@ vectors toAF for
We then numerically compute the free energy per vortexX, 5, and 8 T fields. We find the total energy contributed by

(without the single-vortex energy which does not depend orthe above thre& vectors for¢p=0° and 45° orientations as
structurg, AF=dAF/n,, using Eqs(26) and(29) as func- (&) 296.05 K and 296.51 K foB=2 T, (b) 282.96 K and

Gmn(Brav¢)=éx

2 27
(n+m)——cos¢—(n—m) —sin¢
a a

tey

27 2
(n+m)—sin¢$+(n—m) —Ccos¢
a a

184513-8
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FIG. 9. The contributions to the energy per vortex by the three
lowestG vectors of equal length for positive, at three different
fields for two different commensurate orientations of the triangular

1207 | lattice. The opergsolid) symbols represent 0° (45°) orientation of
the vortex lattice with respect to crystalline lattice. The open sym-
bols with a dot in their centers correspond to the energy for two

< different G vectors with samés, . The circles, squares, and dia-
I monds correspond to 2, 5, and 8 T fields, respectively.
< 206 | £ oag
F1_ 1(a) , (30
E2 3— fz(a)
whereE; (E,) is the energy contributed by the above cor-
1225 . . . responding threeG vectors of triangular lattice with
0 10 20 30 40 0° (45°) orientation. In Fig. 10, we show the ratio
¢ (degree) f1(a)/f,(a) as a function ofx. The orientational transition
takes place when the ratio is unity. This corresponds o

1086 =tG.al/Ay=0.37. Therefore the critical field at which the
transition takes placeB;=(0.37/2y27)?\3(Aq/at)’d,
=52 T.

1065 | The structure of the vortex lattice remains triangular with
45° orientation to the crystal lattice as showf in Fig. 11

< for a field as high as 25 T. However, it makes yet another
L discontinuous structural transition to a centered square lattice

1064 | v_wth its axes parallel to the crystal axes at yet another critical
field B, whose value is about 28 T. Figure 12 shows thEt
is minimum for #=45° and¢=0° atB=28 T. The overall

1.10
1063 : : : :
0 10 20 30 40 M-
¢ (degree) 1.06 | NG

FIG. 8. Free energy per vortex for triangular lattice structure \\\
(#=60°) as a function of its orientation anglésfor (a) B=2 T, 3 1.02 ¢ \\\
(b) B=5 T, and(c) B=8 T fields. =y .

< 098t

283.11 K forB=5 T, and(c) 274.15 K and 273.60 K for \\\
B=8 T, respectively. Clearly, the triangular lattice makes an 0.94 1 T
orientational transition at about the 5 T field. N

To understand the field scale 5 T for the above orienta- 0.90

020 024 028 032 036 040 044 048

tional transition, we compare the energy contributed by the o

above threes vectors for each of the preferred orientations. _ _
The ratio of these energies can be expressed as a function of FIG. 10. The dashed line represents the rétia)/f,(a) as a

a=tGalA, using Eqs(26)—(29). This is given by Iﬁncti(:.n olfg. The solid line is a guide to the eyes for the value of
e ratio 1.0.
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' quences. Here, we would like to make two points. First, a
720 | ST R -] calculation by Amin, Affleck, and Frarff’,using a semiclas-
e’ T gt sical approximation to include the nonlinear effect of the
S magnetic field in the manner of Volovik, finds that this has
o little effect on the structural transformations calculated by
] them. Second,all the recent fully quantum mechanical
calculationé”-?® of the density of Dirac quasiparticle states in
a vortex lattice in the London limit find that for Bravais
700 | 1 lattices the density of states vanishes linearly with energy as
in the absence of a magnetic field; only the slope changes. A
general argument for this has been presented by

< 710 7

AF (

5 :
690 . o . , Vishwanatt?® For these two reasons, we believe that our
0 10 20 30 40 low-density approximation is reliable.
o (degree) In the London approximation, the vortex cores are treated

as ¢ functions. In reality, they have a width of the order of
FIG. 11. Free energy per vortex as a functiondofor §=60°  the coherence length. We believe that the consequences of
and 45° at a high fiel®=25 T. this approximation, at least for the low-field structural tran-
sition, are small. The reason is that the structure-sensitive
phase diagram for the ground state of the vortex lattice strugart of the energy arises from the difference in the contribu-

ture atT=0 is shown in Fig. 1. tion of the smallest reciprocal lattice vectd@ec. Ill). For
these G£&~(1/10) at typical magnetic fields, so that the phe-
IV. CONCLUDING REMARKS nomenological assumption of a Gaussian vortex core with

) ) ) . width ~ £ will make a negligible difference to the structure-
We conclude by briefly discussing a number of questions;gnsitive part.

such as the nature of the approximations used, th_e effect of We have calculated only the ground-state energy of the
nonzero temperature, consequences of the transitions, th§jgex |attice in this paper. At any nonzero temperature, there
observability, the reason why our conclusions differ fromgre opviously entropic contributions which could change the
those found earlier, and the structural transitions experimenyagnetic field at which the structural transition occurs, as a
tally observed. _ function of temperature. Here, we note that since both the
We have calculated the ground-state energy assuming efyctures(below and above 5 JTare identical(triangula)

fectively that the interaction between two vortices is unaf-anq the structure difference sensitive part of the energy is a
fected by the presence of. othgr vortices. This is o_bV|oust finy fraction[ <(1/1000}] of the vortex interaction energy,
low-vortex-density approximation which seems quite reasongne ejastic fluctuations in both structures are expected to be
able since the dimensionless ratig, (n) is about 1/2500 for  jgentical to order (1/1008)so that the transition field should

a field of 1 T: Howev_er, We_have not calculated the hlgh_er-not be affected by temperature, as long as the input param-
order corrections which while nominally of higher order in eters(e.g., &, Ay ,\) do not change witf. The same cannot
(n,/n) might have large or even divergent coefficients.pq said of the high-field 28 T) triangular to centered
Since the vortex interaction depends on the quasiparticle,;quare lattice transition, because one has a tight-packed

quasihole susceptibility, a change in their spectrum due to thgycyre and the other not. The expectation is that the former
supercurrenithe Volovik effect®) could have serious conse- pas fewer elastic fluctuations than the latter, so that the tran-

sition field boundary should shift to lower values with in-

680 creasing temperature. However, this conclusion is tempered
B=28T 0=50° by the fact that the London approximation is unreliable at
660 | AT T T these high fields when vortex cores get close to each other so
T that our basic result may not be that reliable.
640 fo==== ] One interesting consequence of the orientational transition
3 at 5 T, which might be measurable, is the change in the very
w low energy density of quasiparticle states. At least for a
< 620 | T square lattice, Vishwanathhas shown that there are quasi-
QD particle states with linear dispersion and that there is a very
600 | T ] small gap arising from higher-order terms in the quasiparticle
——\/4/_/,/‘-—\ velocity. If this kind of result carries through for a triangular
””””””””” - 6-60 lattice, then it might be an experimental way of observing the
580 0 10 20 30 40 transition.
o (degree) We have calculated here the actual energy of the

structure-sensitive terniSec. Ill) and have found it to be
FIG. 12. Free energy per vortex as a function offor ¢  small, of the order of a few degrees per vortex. Because of
=45°, 50°, 55°, and 60° a@=28 T field. ClearlyAF is mini- this reason, the transition might be difficult to observe, since
mum for the structure corresponding e 45° and¢=0°. pinning energies of larger size are generally pre3tunnless

184513-10
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the system is extremely perfect. T with field along thec axis. They however find a transition
We have discussed in detdBec. Il and Il) the reason from a triangular lattice oriented along to one oriented
why our results differ from those obtained earlier. Basically,along theb axis at a field of about 3.8 T, oriented at 33° to
it has to do with the anisotropy of the nonlocal current susthec axis. This is certainly quite different from the transition
ceptibility, i.e., the fact thakk,(G) # x}(G). The reason for  to a triangular lattice at 45° to treeaxis at 5 T predicted by
this essentially is that we have an anisotropic supercongs, As Johnsoet al. point ouf the observed transition could
ductor. Thexk, and x§, functions are plotted in Fig. 5. be due to the presence of chains in 123 and the naket
The question of a nontriangular structure of the vortexanisotropy caused by iwvhich may have a strong effect on
lattice in cuprates has attracted considerable experimentghany physical propertigsin order to seriously explore our
attentionS® especially since it has become established thagonclusions, one needs to do experiments on cuprates with-

they ared,2_,2 superconductors. Earlier small-angle neutronoyt chains and ideally with tetragonal symmetry, as again
scattering measuremehtsere on highly twinned 123 crys- mentioned by Johnsoet al®

tals, so that the observation of fourfold diffraction symmetry
does not imply a rectanglar or square lattice. Moreover, the
positional order is very poor. A more recent experirfient
untwinned 123 single crystals shows much better transla-
tional order(higher G peaks are resolvédnd a triangular One of us(T.V.R.) acknowledges support from the JNC
lattice with axes oriented along distorted because &-b India and the U.S.-India ONR funded Project No. NO0014-
asymmetry. The authors find no structural transitions up to £7-0988.
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