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Scaling and exact solutions for the flux creep problem in a slab superconductor
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The flux creep problem for a superconductor slab placed in a constant or time-dependent magnetic field is
considered. Logarithmic dependence of the activation energy on the current density is assumed,U
5U0ln(J/Jc), with a field dependentJc . The densityB of the magnetic flux penetrating into the superconductor
is shown to obey a scaling law, i.e., the profilesB(x) at different timest can be scaled to a function of a single
variablex/tb. We found exact solution for the scaling function in some specific cases, and an approximate
solution for a general case. The scaling also holds for a slab carrying transport currentI resulting in a voltage
V}I p, wherep;1. When the flux fronts moving from two sides of the slab collapse at the center, the scaling
is broken andV(I ) crosses over toV}I U0 /kT.
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I. INTRODUCTION

Thermally activated hopping of flux lines between pi
ning sites, or flux creep, controls both the magnetic a
transport properties of superconductors under various ex
nal conditions. In particular, it is responsible for the fr
quently observed fast magnetic relaxation and the hig
nonlinear local voltage-current curves. Flux creep is spec
cally pronounced in high-temperature superconductors
cause there the pinning energies are small, while the op
tion temperatures are high.1,2

In the majority of theoretical and experimental studies
flux creep2–5 a superconductor is first placed in an increas
or decreasing field, thus acquiring a nonzero magnetizat
M. The field is then kept constant and the relaxation ofM
with time is examined. In the present work we addres
different problem—flux penetration into a nonmagnetiz
superconductor,M (t50)50. After turning on a constant o
time-dependent magnetic field, a flux front propagates fr
the surface with some time-dependent velocity. In the cas
a long slab in parallel field two planar flux fronts propaga
from each side. Absence of a characteristic spatial scale
gests a possibility for scaling solutions, i.e., the flux dens
profile B(x) at different timest is a function of a single
variable x/tb, whereb is a constant. Indeed, such scalin
was demonstrated in Ref. 6 for an instantaneous turn-on
constant applied field, and assuming a superconductor c
acterized by a logarithmic dependence of the pinning ene
on the current density.

In this work we have sought for the whole class of fl
creep problems having solutions with a single-parame
scaling. This class turned out to be a lot broader than c
sidered in Ref. 6, insofar as it extends to situations w
time-dependent applied fields,Ba(t)}ta, and a general field-
dependent critical current densityJc(B). We also report scal-
ing solutions for the flux creep in a superconductor carry
a transport current. There the flux creep manifests itself
number of experimental observations like a relaxation in
resistance, and that the voltage across the sample depen
the current sweep rate, etc.7–11

The paper is organized as follows. In Sec. II the ba
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equations are formulated. Section III brings out the scal
properties of their solution. In Sec. IV two cases allowing
exact analytical solution are considered. The subsequent
tions report the implications of our results for measura
quantities:B, J, andE distributions, magnetization, and vol
age. Finally, the main conclusions are summarized.

II. FORMULATION OF THE PROBLEM

Consider a semi-infinite superconductor~filling the half-
spacex.0) placed in an external magnetic fieldBa(t) di-
rected along thez axis ~see Fig. 1!. The position- and time-
dependent flux density~or magnetic induction! and shielding
current in the sample are denoted asB(x,t) andJ(x,t), re-
spectively. BothJ and the electric fieldE are directed along
the y axis.

From the Ampere and Faraday laws one then has

m0J52]B/]x, ~1!

]B/]t52]E/]x. ~2!

To describe the superconductor we assume thatE5vB,
wherev5v0exp(2U/kT) is the velocity of the thermally ac
tivated vortex motion over the barrierU. With a logarithmic
dependenceU(J)5U0ln(Jc /J) it follows that

E~J,B!5v0uBu uJ/JcunsgnJ, ~3!

FIG. 1. Superconductor slab in an applied magnetic field.
©2002 The American Physical Society12-1
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where the exponentn5U0 /kBT depends on the temperatu
T. The critical current densityJc usually depends onuBu, and
in the bulk part of the paper it will be assumed that this
described by12

Jc~B!5Jc0uB0 /Bug. ~4!

To avoid parameters with inconvenient dimensions we in
duced here two constants,Jc0 andB0, a characteristic curren
density and induction, in addition to the exponentg.13 With
g50 one has a constantJc ~the Bean model!, while for g
521/n one has anE2J relation,

E5v0B0uJ/Jc0unsgnJ, ~5!

which is B-independent. Such anE(J) has been used b
many authors since it allows a significant simplification
the analysis. It is justified when the magnetic field inside
superconductor is essentially uniform, in particular, whe
small perturbationdB(x,t) is added to a superconducto
cooled in a large dc field.

The electrodynamic problem defined by Eqs.~1!–~4! can
be reformulated as a nonlinear diffusion equation for the fl
density,

]B

]t
5

v0

~m0Jc0B0
g!n

]

]x S uBu11gnU]B

]xU
n21 ]B

]x D . ~6!

Similar equations can be written also forJ andE.
We will first consider a totally flux free superconduct

which at t>0 experiences an increasing applied magne
field given by

Ba~ t !5B0~ t/t!a, a.0, ~7!

where t is another constant. Fora50 and a51 this de-
scribes an instant field step and a linear ramping up, res
tively. By introducing the dimensionless variables

b5
B

B0
, x̃5x

m0Jc0

B0
, t̃ 5

t

t
, j 5

J

Jc0
, e5

E

v0B0
, ~8!

and removing the redundant parameter definition by cho
ing

B05m0Jc0v0t, ~9!

the Eq.~6! acquires the form14

]b

] t̃
5

]

] x̃
S ubu11gnU]b

] x̃
Un21

]b

] x̃
D . ~10!

The boundary condition becomes

b~0,t̃ !5 t̃ a, ~11!

at the superconductor surface.

III. SCALING

The flux creep problem Eqs.~10! and ~11! is solved by
writing the flux density in the scaling form
18451
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b~ x̃, t̃ !5 t̃ a f ~j!, j5 x̃ t̃2b, ~12!

with

b5
11an~11g!

11n
. ~13!

By substitution one finds that the scaling functionf (j) sat-
isfies the differential equation

2a f 1bj f 85~ f 11gnu f 8un!8, ~14!

where it was used thatf >0, andf 8<0, i.e., the flux density
decreases monotonously as one moves away from the
face. The boundary conditions become

f ~0!51, f ~j0!50, ~15!

where the last one arises from the physical requirement
the scaling function vanishes at the flux front, which is l
cated atj5j0. From Eq.~12! it follows immediately that the
flux front advances with time according to

x̃0~ t̃ !5j0 t̃ b. ~16!

For the casea50 ~constant applied field! one hasb51/(n
11), while a largera increases the exponentb.

Using Eqs.~1! and ~3! one finds that also the curren
density and electric field have scaling properties, namely

j ~ x̃, t̃ !5 t̃ a2bu f 8~j!u,
~17!

e~ x̃, t̃ !5 t̃ a1b21f e~j!, f e[u f 8unf 11gn.

The scaling behavior of the ac losses is found from a sim
analysis of the productj ( x̃, t̃ )e( x̃, t̃ ).

When the magnetic field is instantly turned on and th
kept constant (a50), exact scaling relations are obtaine
even when the power-law Eq.~4! is relaxed and replaced b
any Jc(B). Considering here

Jc~B!5
Jc0

s~B/B0!
, ~18!

where s is a general function, a diffusion equation for th
flux density similar to Eq.~10! can be derived, giving

]b

] t̃
5

]

] x̃
F ubusn~b!U]b

] x̃
Un21

]b

] x̃
G , ~19!

where the same dimensionless variables Eqs.~8! and~9! are
used. The scaling form of the flux density@Eq. ~12!# is still
applicable where nowb( x̃, t̃ )5 f ( x̃ t̃21/(n11)). The equation
for the scaling functionf (j) is changed to

j f 8/~n11!5@ f sn~ f !u f 8un#8 ~20!

while the boundary conditions~15! are the same. The flux
front, current density, and electric field are now given by
2-2
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SCALING AND EXACT SOLUTIONS FOR THE FLUX . . . PHYSICAL REVIEW B65 184512
x̃05j0 t̃ 1/(n11),

j ~ x̃, t̃ !5 t̃ 21/(n11)u f 8~j!u,

e~ x̃, t̃ !5 t̃ 2n/(n11)f e~j!, f e[u f 8unf sn~ f !, ~21!

and hence, they also possess scaling properties in this c
As we have formulated the flux creep problem, the w

variety of possible situations is represented by the se
three independent parameters,n, g, anda. For a given pa-
rameter set the scaling functionf (j) can be obtained by
solving the Eqs.~14! and~20! numerically. Interestingly, one
may in two special cases find exact analytical solutions
shown in the next section. Shown in Fig. 2 is a summary
our findings regarding scaling solutions for the flux cre
problem in various situations. From thisJc(B)-Ba(t) dia-
gram it is seen that scaling holds for a majority of conce
able conditions. Note that even if the scaling function itsel
unknown one may test predicted scaling behaviors exp
mentally, e.g., by analyzing flux density profilesB(x,t) mea-
sured at different times. PlottingB(x,t)/Ba(t) versusx/x0(t)
is expected to result in a collapse into a scaling funct
f (j). Other practical consequences of the scaling concern
the magnetization and voltage behavior are discussed be

IV. EXACT SOLUTION FOR PARTICULAR CASES

A. Constant field, B-independentE„J…

The solution for this case will be worked out in conside
able detail in order to illustrate some basic features of
scaling properties of the physical quantities. Suppose tha
t50 a constant applied magnetic field,B0, is turned on, i.e.,
one hasa50. Furthermore, letg521/n, which leads to the
commonly assumed current-voltage law, Eq.~5!. From Eqs.
~12! and ~13! the scaling law has then the form

b~ x̃, t̃ !5 f ~j!, j5x t̃21/(n11), ~22!

and Eq.~14! for the scaling function reduces to

@j2n~n11!u f 8un22f 9# f 850. ~23!

This equation has two real solutions forf 8 consistent with
]B/]x<0, namely,

FIG. 2. Summary of our results. The diagram illustrates wh
the flux creep problem has scaling solutions. A full analytical so
tion is found for two particular cases.
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2 f 85H F n21

2n~n11!
~j0

22j2!G1/(n21)

, j<j0 ,

0, j>j0 .

~24!

The parameterj0 is an integration constant that is dete
mined from the following interpretation of Eq.~24!. Noting
that since2 f 8(j) directly represents the spatial profile of th
current J(x,t), the solution withf 850 is identified as the
one valid for the Meissner-state region where alsob50. The
point j5j0, then defining the flux penetration front, is d
termined byf (j0)50 using the solution valid for the pen
etrated~mixed-state! region. We find

j05F2n
n11

n21
F~1!12nG1/(n11)

, ~25!

where the functionF is defined as

F~z!5E
0

z

~12y2!1/(n21)dy. ~26!

The valueF(1) can be expressed throughG functions as

F~1!5
Ap

2
GS n

n21D Y GS 3

2
1

1

n21D . ~27!

The result for the flux density profile becomes

b~ x̃, t̃ !512
F„x̃/ x̃0~ t̃ !…

F~1!
, 0< x̃< x̃0 , ~28!

where the position of the flux front,x̃0, is moving with time
according to

x̃0~ t̃ !5j0 t̃ 1/(n11). ~29!

It then also follows that the normalized current densityj

52]b/] x̃, and electric field in the flux penetrated regio
0< x̃< x̃0, are given by

j ~ x̃, t̃ !5
1

F~1!

1

x̃0~ t̃ !
F12S x̃

x̃0~ t̃ !
D 2G 1/(n21)

,

e~ x̃, t̃ !5 j ~ x̃, t̃ !n. ~30!

The differential resistivity]E/]J} j n21 therefore varies in
space as a parabola having a maximum value at the edg

Figure 3 shows the distribution of the magnetic inductio
current density, and electric field forn53 and 11. As the
time increases, the flux penetrates deeper into the sam
accompanied by a smaller slope of the flux density profi
i.e., a decay of current density. The electric field profile f
lows the behavior ofJ(x), although decreasing much mor
rapidly due to the strongly nonlinearE(J) law. As the power
n increases the field and current distributions are seen
become more linear. In the limitn5` one hasF(z)5z and
j051, and hencex̃0( t̃ )51. The temporal dependences th
vanish, and the behavior reduces tob512x/d, j 51, and
e50 for 0<x<d, where d5B0 /m0Jc0. Thus, the well-
known results of the Bean model are reproduced.

e
-
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FIG. 3. Distributions of the normalized flux density, current density, and electric field after a sudden turn-on of a constant
magnetic field. AB-independentE(J), i.e., g521/n, is assumed, and the plots are made forn53 and 11. The arrows indicate tim

direction, and the curves correspond tot̃ 50.05, 0.2, 1, and 3.
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B. Linearly increasing field, constantJc

For the linear sweep case,Ba(t)5Ḃat (Ḃa5const), and a
constantJc , i.e.,a51 andg50, the flux creep problem ha
a surprisingly simple solution. It follows from Eq.~6! that

B~x,t !5Ḃat@12x/x0~ t !#, x<x0 , ~31!

and the regionx.x0 is flux free. The flux front propagate
linearly in time,

x0~ t !5
Ḃa

m0Jc
S m0Jcv0

Ḃa
D 1/(n11)

t. ~32!

Remarkably, this solution coincides with the Bean model
havior where in the penetrated region the flux profile is
straight line, and the current density is uniform,

J~x!5Jc~Ḃa /m0Jcv0!1/(n11)5const. ~33!

The electric fieldE(x) becomes proportional toB(x),

E~x,t !5v0~Ḃa /m0Jcv0!n/(n11)B~x,t !, ~34!

and hence, this quantity also is linear in bothx and t. All
these profiles are presented in Fig. 4~b!. For larger field
sweep rates,Ḃa , the current density and electric field a
higher, while the penetration depth at a givenBa is smaller.
18451
-
a

The results of this subsection, unlike the results of the r
of the paper, can be used also to describe the flux distribu
at large enough fields when the flux penetrates the wh
slab. The current then flows in the opposite direction in
left and right halves of the slab, but with the same density
defined by Eq.~33!. The magnetic field in the left half is
given by a linear profile defined by Eq.~31!, wherex0 is still
given by Eq.~32!, though it does not have the meaning of t
flux front position anymore. In the right halfB(x) is a mirror
image of that in the left half.

V. SUMMARY OF B, J, AND E

The evolution of the flux density, current density, a
electric field distributions found numerically is presented
several graphs. Figure 4 shows results for the applied fi
linearly increasing in time, while Fig. 5, as well as Fig. 3, f
an instant turn-on of a constant field. From these graphs
following conclusions can be drawn.

~i! The flux density profile is found convex forg>0, i.e.,
for constantJc or Jc monotonically decreasing withB. It also
means thatdJ/dx.0, i.e., the current density increases asx
approaches the flux front. ForB-independentE(J) the pic-
ture is the opposite;uJu is maximum at the edge, and th
B(x) profile is concave; see Figs. 3 and 4~a!. This behavior is
expected for a field-cooled superconductor when a small
2-4



SCALING AND EXACT SOLUTIONS FOR THE FLUX . . . PHYSICAL REVIEW B65 184512
FIG. 4. Distributions of the normalized flux density, current density, and electric field at equidistant times,t̃ 50.5, 1, 1.5, and 2. The
applied field islinearly increasing, and n53. ~a!–~d! differ in Jc(B) dependence:~a! B-independentE( j ), Eq. ~5!; ~b! constantJc (Jc

52Ḃa /m0v0), a case solved exactly in Sec. IV B;~c! and ~d! Jc decreases with increase ofuBu. The arrows indicate the time direction.
184512-5
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FIG. 5. Distributions of the normalized flux density, current density, and electric field at different times,t̃ 50.05, 0.2, 1, and 3. The

applied field is turned on att̃ 50 and keptconstant, andn53. ~a!–~d! differ in Jc(B) dependence:~a! constantJc ; ~b! Jc5Jc0 /b; ~c,d! the
Kim model,Jc5Jc0 /(11b) andJc5Jc0 /(11b/3), respectively. The arrows indicate the time direction.
184512-6
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TABLE I. The shape of the current density profiles and the parameterj0 characterizing the flux front dynamics, Eq.~16!, in different
regimes. The parametera describes the approximate solution Eq.~44! for the scaling functionf.
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ditional field is applied. When comparing these results
experimental data one should keep in mind that the shap
the observedB(x) profile can easily be affected by dema
netization effects. However, the sign ofdJ/dx for the current
density profile seems to be robust, which is confirmed by
flux creep simulations for a thin film geometry.15–18 Sche-
maticJ(x) profiles for the most important cases are shown
Table I.

~ii ! Even whenBa increases linearly with time, the flu
penetration can proceed with acceleration or deceleration
pending on theJc(B) dependence. This is illustrated in Fi
4 where the panels~a!–~d! are ordered according to th
Jc(B) behavior, and the time intervals between the cur
are equal. Only in~b! is the flux front moving with a constan
velocity. In ~a! the speed is slowing down, while in~c! and
~d! it is increasing. In the latter case, ramping of the appl
field leads to an effective reduction ofJc , and hence to
larger electric fields and faster penetration.~a!, ~b!, and~c,d!
correspond tob,1, b51, andb.1, respectively, where the
exponentb given by Eq.~13! controls the growth of the flux
penetrated region, Eq.~16!.

~iii ! The electric field has always a maximum at the ed
and decreases monotonically withx, which follows from
18451
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]E/]x52Ḃ<0. Physically, this occurs simply because
the vortices enter the slab through the edge region where
flux motion is thus most intense. The second space deriva
of E is proportional to]J/]t, and one can find differen
curvatures of theE-field profile for different cases.

VI. MAGNETIZATION

Since the nonlinear flux diffusion has a sharp front loca
a finite distance from the surface, the solution applies als
the case of a slab offinite width 2w providedw is larger than
the penetration depth,x0. The flux then penetrates the sla
from both sides with nonoverlapping profiles.

The time-dependent magnetization of the slab is given

2m0M5Ba2
1

wE0

w

B~x!dx, ~35!

whereB is nonzero only in the region, 0,x,x0(t). Substi-
tuting here the scaling law, Eq.~12!, one obtains

2m0M ~ t !5Ba~ t !F12A
x0~ t !

w G , 0<x0<w, ~36!
2-7
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whereA is a number equal to the average value of the sca
function in the penetrated region:

A5
1

j0
E

0

j0
f ~j!dj. ~37!

For the exact solution considered in Sec. IV A one findsA
5(n21)/@2nF(1)#,1/2. For the exact case in Sec. IV
where theB profile is linear, one hasA51/2. For flux density
profiles with a convex shape, which are found whenJc de-
creases withB, one hasA.1/2.

Expressing the time dependence explicitly, the magnet
tion can be written as

2m0M ~ t̃ !5Ba~ t̃ !@12A~ t̃ / t̃ * !b#, 0< t̃< t̃ * , ~38!

where t̃ * is the time it takes for the flux to completely pe
etrate the slab, i.e.,t̃ * 5(w̃/j0)b. For the fully penetrated
state,t̃ . t̃ * , the time dependence ofM is essentially differ-
ent, and one expects a kink in the magnetization relaxa
rate, as first predicted in Ref. 6

VII. TRANSPORT CURRENT AND NONSTATIONARY V„I …

Most results found in the paper are also relevant to
superconductor carrying a transport current. The flux p
etration into a slab biased with transport current is gover
by the same equations as those for a slab placed in an ap
magnetic field. The difference is that for the transport curr
case the current flows in the same direction on both edge
the slab. However, this is not important as long as the
penetrating flux fronts do not meet in the slab center. T
boundary conditionB(x50)5Ba for the applied field case
should be replaced now byB(x50)5m0I /2, whereI is the
transport current per unit height of the slab.

It is interesting to analyze the voltageV measured on the
superconductor carrying a transport currentI. It is obvious
thatV is not a unique function ofI but also strongly depend
on how I changes with time. In a conventional experimen
setup the voltage contacts are attached to the supercond
surface; thus the measured voltage is determined by the
tric field in the surface layer only,V(t)5E(x50,t)L, where
L is the distance alongy between the contacts.

The electric field at the edge has a power dependenc
time given by Eq.~17!, since f e(0) is just a number. Thus
from Eq. ~13! one obtains the following power-law voltage
current relation,

V}I p, p511
n

n11 S 12
1

a
1g D . ~39!

Note that the exponentp of the integralV(I ) can be much
different from the exponentn characterizing the localE( j ).
Actually, p is only weakly sensitive ton, especially for large
n. Moreover,increasein n can sometimes lead to adecrease
in p.

For large transport currents when the flux penetrates
whole sample the present analysis is not valid. Then the
rent density will be distributed over the slab more or le
uniformly, and one can expect that the integral voltag
18451
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current curve will reflect the local one, i.e.,V}Jn11. The
crossover between low-current and high-current parts
V(I ) has been reproduced by numerical simulations in R
8. This crossover should be accessible experimentally s
the exponentp for an incomplete flux penetration is of th
order of unity, while the exponentn for the full penetration is
temperature dependent and can be very large.

The exponenta in Eq. ~39! defines the time dependenc
of the transport current,I (t)}ta. For largera V(I ) becomes
steeper until the exponentp saturates. Fora50, i.e., when
the current is turned on and kept constant, the voltage de
with time. This voltage relaxation has been earlier obser
experimentally9–11 and reproduced by numerica
simulations.9,11 It is accompanied by relaxation of curren
distribution, as illustrated by Fig. 5. According to Eq.~17!,
the voltage decay is described byV}t2n/(n11), in particular
V}1/t at low temperatures whenn is large.

Remarkably, for small enougha the voltage willdecrease
with increasingcurrent. For example, fora51/3 andg50,
one obtains

V}I 2(n21)/(n11), ~40!

in particular,V}1/I at low temperatures. Physically, a d
crease of voltage is related to the same relaxation pro
which takes place for any external conditions. IncreaseI
with time supplies more current to the superconductor a
tends to increase the voltage. IfI increases slow enough, the
the first process is dominant, and the measuredV(I ) curve
should give voltage decreasing as the current increases.
evolution of flux, current, and electric field distributions fo
this interesting case is shown in Fig. 6.

For the experimentally most relevant case of a linea
increasing current,I 5 İ t ~i.e., a51), one obtains from Eqs
~17! and ~8!

V5
m0v0Lu f 8~0!un

2 S m0
g İ

211gv0Jc0B0
gD n/(n11)

I 11gn/(n11).

~41!

For a constantJc , or g50, we come to the exactly solvabl
case considered in Sec. IV B, and the expression further s
plifies to

V5
m0v0L

2
S İ

2Jcv0
D n/(n11)

I . ~42!

In this case the superconductor behaves like anOhmiccon-
ductor. Deviations from the Ohmic behavior can be cau
by a B dependence ofJc . In particular, ifJc decreases with
B, the exponent of theV(I ) curve becomes larger than unit
@see Eq.~41!#. Meanwhile, at smallI the superconductor al
ways behaves Ohmically since the self-field is small and
Jc(B) dependence can be ignored. These results are in ag
ment with numerical simulations reported in Ref. 7.19

We also note that when the transport current is ram
faster, the voltage at a given current is larger,V} İ n/(n11).
This observation is in agreement with results of numeri
simulations and experiment on Bi-based tapes.9
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VIII. APPROXIMATE SOLUTION

In a general case Eqs.~14! and ~20! with boundary con-
ditions ~15! cannot be solved analytically. Near the flux fro
f→0, and Eq. ~14! reduces to (const1bj0)1/n5 f gu f 8u.
Therefore, the behavior of the scaling functionf is deter-
mined only by theJc(B) law at smallB, and

f ~j!}~j02j!1/(11g), j→j0 . ~43!

This result holds true for anyJc(B) which has asymptotic
behaviorJc}B2g at B→0, e.g.,g50 for the Kim model.

Surprisingly, a very good approximate solution forf in the
whole region 0<j<j0 is given by the expression

f ~j!5~12j/j0!1/(11g)~11aj!. ~44!

Values ofj0 anda for several common dependencesJc(B),
including the Kim model, and values ofn have been found
numerically and listed in Table I. Expressions forj0 anda in
a general case can be found by substitutingf from Eq. ~44!
into Eq. ~14! and analyzing expansion in powers of (j0
2j). Then, one obtains

1

a
5

2n~11p!~p1an!

p2~p2a!
21, p51/~11g!, ~45!

FIG. 6. Distributions of the normalized flux density, current de

sity, and electric field at different times,t̃ 50.5, 1, 2, and 4. The
transport current increases with time asI}t1/3, while Jc5const and
n53. The voltage, which is proportional toe(x50), decreases
with time, as shown by the arrows indicating the time direction
18451
j0
n115

n11

11an~11g!

~11a!n(11g)

~11g!n
. ~46!

Since the scaling functionf (j) usually has a very simple
shape, we find that the approximate expressions fit the e
solutions with a good accuracy, e.g., the deviation is less t
1% for all cases shown in Figs. 4 and 5.

IX. CONCLUSIONS

The propagation of magnetic flux into a slab superco
ductor has been considered using the flux creep appro
with a logarithmic current dependence of the activation
ergy. The dynamic behavior was found to possess scaling
a generalJc(B) when a constant magnetic field is sudden
applied to the superconductor, and for a power-lawJc(B) in
case of an applied field ramped up with a general pow
dependence on time. For two particular cases of the cr
problem an exact analytical solution could be found.

The main results obtained in this work are as follows:
~1! The flux density profiles at different times follow th

scaling law,B(x,t)5Ba(t) f (xt2b). Similar scaling applies
to the current density and electric field profiles.

~2! The flux density profile is convex for penetration in
a zero-field-cooled slab, and concave for a slab cooled
large field.

~3! At constantJc and linearly increasingBa theB(x) and
J(x) profiles at any time coincide with the Bean-model pr
files.

~4! The flux front position is a power function of tim
given by Eqs.~16! and ~13!. The front moves through the
slab with an increasing or decreasing velocity depending
the material’sJc(B).

~5! The explicit time dependence of the magnetization
found.

~6! For a partially penetrated slab carrying a transp
current I, the voltageV is a power ofI, with an exponent
different from that of the localE(J) relation. A pronounced
crossover in theV(I ) curve at the point of full penetration i
predicted.

~7! For a small transport current increasing linearly w
time, the Ohmic behaviorV}I , is found.

~8! For a stationary transport current the voltage decay
V;1/t.

~9! An increase of transport current can be accompan
by a decrease of voltage, in particular,V;1/I when I}t1/3.

All the conclusions can be tested experimentally:~1!–~4!
by spatially resolved techniques, and~5!–~9! by integral
measurements. Our results presented by Eqs.~38! and ~39!
allow us to infer the material properties such as localE(J) or
Jc(B) characteristics from integral measurements of mag
tization and voltage.
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