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Scaling and exact solutions for the flux creep problem in a slab superconductor
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The flux creep problem for a superconductor slab placed in a constant or time-dependent magnetic field is
considered. Logarithmic dependence of the activation energy on the current density is asklmed,
=U,In(J/J,), with a field dependent, . The densityB of the magnetic flux penetrating into the superconductor
is shown to obey a scaling law, i.e., the profigx) at different timeg can be scaled to a function of a single
variable x/t?. We found exact solution for the scaling function in some specific cases, and an approximate
solution for a general case. The scaling also holds for a slab carrying transport ¢ugsulting in a voltage
Vx| P wherep~1. When the flux fronts moving from two sides of the slab collapse at the center, the scaling
is broken andv(l) crosses over t&/o|Yo/kT,

DOI: 10.1103/PhysRevB.65.184512 PACS nunider74.60.Ge, 74.25.Ha

I. INTRODUCTION equations are formulated. Section Il brings out the scaling
properties of their solution. In Sec. IV two cases allowing an
Thermally activated hopping of flux lines between pin- exact analytical solution are considered. The subsequent sec-
ning sites, or flux creep, controls both the magnetic andions report the implications of our results for measurable
transport properties of superconductors under various exteguantitiesB, J, andE distributions, magnetization, and volt-
nal conditions. In particular, it is responsible for the fre-age. Finally, the main conclusions are summarized.
guently observed fast magnetic relaxation and the highly
nonlinear local voltage-current curves. Flux creep is specifi- [l. FORMULATION OF THE PROBLEM
e iing e e o g ConSder @ semiinfte superconductig e al
tion temperatures are high. Spacex>0) placed in an external magnetic fieB}(t) di-

o . . . rected along the axis (see Fig. 1L The position- and time-
In the majority of theoretical and experimental studies of ) s . o
5 . . ; .~ dependent flux densitior magnetic inductionand shielding
flux cree—° a superconductor is first placed in an increasing .
Lo = ... “current in the sample are denotedB&(x,t) and J(x,t), re-
or decreasing field, thus acquiring a nonzero magnetization

M. The field is then kept constant and the relaxatiorivof fﬁ;;tg/xt?lsy. Bothy and the electric field are directed along

with time is examined. In the present work we address a
: L . From the Ampere and Faraday laws one then has
different problem—flux penetration into a nonmagnetized

superconductoiM (t=0)=0. After turning on a constant or wod=— Bl x, (1)
time-dependent magnetic field, a flux front propagates from
the surface with some time-dependent velocity. In the case of Bl dt=— JE/ix. 2

a long slab in parallel field two planar flux fronts propagate.l_0 describe the superconductor we assume @atB,

from each side. Absence of a characteristic spatial scale sug- _ . . : )
gests a possibility for scaling solutions, i.e., the flux density%'herev_voe)(p( U/KT) is the velocity of the thermally ac

. ) X . X . tivated vortex motion over the barriér. With a logarithmic
profile B(x) at different timest is a function of a single dependence) (J) = U,In(J, 1J) it follows that
variable x/t?, where 8 is a constant. Indeed, such scaling P 0 ve
was demonstrated in Ref. 6 for an instantaneous turn-on of a E(J,B)=uv,|B| ]/ |"sgnJ, 3
constant applied field, and assuming a superconductor char-
acterized by a logarithmic dependence of the pinning energy

on the current density. ‘Tz
In this work we have sought for the whole class of flux J
b

creep problems having solutions with a single-parameter
scaling. This class turned out to be a lot broader than con-

sidered in Ref. 6, insofar as it extends to situations with B V
time-dependent applied fieldB,(t)«t%, and a general field- B
dependent critical current densily(B). We also report scal- a

Xo

ing solutions for the flux creep in a superconductor carrying 0

a transport current. There the flux creep manifests itself in a

number of experimental observations like a relaxation in the Superconductor
resistance, and that the voltage across the sample depends on (halfspace)

the current sweep rate, efc-!
The paper is organized as follows. In Sec. Il the basic  FIG. 1. Superconductor slab in an applied magnetic field.
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where the exponemt=U,/kgT depends on the temperature
T. The critical current density,, usually depends ofB|, and

PHYSICAL REVIEW B5 184512

in the bulk part of the paper it will be assumed that this iswith

described bi?

Jo(B)=Jco|Bo/BJ”. (4)

To avoid parameters with inconvenient dimensions we intro
duced here two constantky, andB,, a characteristic current
density and induction, in addition to the exponent® With
vy=0 one has a constadt (the Bean modeg] while for y

= —1/n one has arkE—J relation,

E:l)oBo|J/Jco|nSgnJ, (5)

which is B-independent. Such aB(J) has been used by
many authors since it allows a significant simplification of

the analysis. It is justified when the magnetic field inside the
a

superconductor is essentially uniform, in particular, when
small perturbationsB(x,t) is added to a superconductor
cooled in a large dc field.

The electrodynamic problem defined by E¢B—~(4) can

be reformulated as a nonlinear diffusion equation for the flux

density,

n—1 aB)
) (6)

Similar equations can be written also fdandE.
We will first consider a totally flux free superconductor

B

X

0B Uo J

S S |B|1+yn
Jt (ﬂoJcoBg)n 2

which att=0 experiences an increasing applied magnetic

field given by

B,(1)=Bo(t/7)% a>0,

(@)

where 7 is another constant. Fak=0 and a=1 this de-

b(x,1)=t*f(&), &=xt 7, (12
1+an(1+y)
B a3

By substitution one finds that the scaling functit() sat-
isfies the differential equation

—af+ et =(f1mf, (14)
where it was used thdt=0, andf’' <0, i.e., the flux density

decreases monotonously as one moves away from the sur-
face. The boundary conditions become

f(£0)=0,

where the last one arises from the physical requirement that
the scaling function vanishes at the flux front, which is lo-
cated att= &;. From Eq.(12) it follows immediately that the
flux front advances with time according to

f(0)=1, (15)

A)Zo(Af): foAf’B-

For the casex=0 (constant applied fie)done hasg=1/(n
+1), while a largera increases the exponegt

Using Egs.(1) and (3) one finds that also the current
density and electric field have scaling properties, namely

(16)

jxD=1"P|t' (&),
(17)

eX, D)=t (&), f=|f"|"etTm,

The scaling behavior of the ac losses is found from a similar

scribes an instant field step and a linear ramping up, respegmalysis of the produgt(x,t) e(x,t).

tively. By introducing the dimensionless variables

When the magnetic field is instantly turned on and then
kept constant §=0), exact scaling relations are obtained

b= B 5 Mol TZE j= J €= E even when the power-law E) is relaxed and replaced by
Bo’ Bo T Jeo voBo’ any J(B). Considering here
and removing the redundant parameter definition by choos- 3
ing _ c0
Bo= uodeoU o7, 9
_ 0™ #oreoto ® wheres is a general function, a diffusion equation for the
the Eq.(6) acquires the forif flux density similar to Eq(10) can be derived, giving
b 3 ab|" b 1o
—~=—~(|b|”y"—~ —~)- (10 —=—||b|s"(b)|=| —= (19
at o ax| X Fri~ ox ’
The boundary condition becomes where the same dimensionless variables Egjsand(9) are
b(0T)=T* (11) used. The scaling form of the flux dens[tigq. (12)] is still

at the superconductor surface.

Ill. SCALING

The flux creep problem Eq$10) and (11) is solved by
writing the flux density in the scaling form

applicable where now(x,t)=f(xt Y1) The equation
for the scaling functiorf(¢) is changed to
' 1(n+1)=[fs"(H]f"|"]’ (20)

while the boundary conditionél5) are the same. The flux
front, current density, and electric field are now given by
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J,<BUn J =const  J o< BY General J,B) (B} n—1 L(n-1)

2_ g2 =&,
e el e oy
B.=const|| gotution 0 £=¢,
B oot Exact ' ' . . '
¢ Solution The parameteg, is an integration constant that is deter-
mined from the following interpretation of E¢24). Noting
By oo that since—f’ (&) directly represents the spatial profile of the
currentJ(x,t), the solution withf’=0 is identified as the
one valid for the Meissner-state region where ddso0. The
B®| point £é= &, then defining the flux penetration front, is de-

termined byf(£&,)=0 using the solution valid for the pen-
FIG. 2. Summary of our results. The diagram illustrates wheregtrated(mixed-state region. We find
the flux creep problem has scaling solutions. A full analytical solu-

tion is found for two particular cases. n+1 1 U(n+1)
§o=|2n—7F(1) " , (29
Ro= £qT M+ D) o _
0750 ' where the functiorF is defined as
i(XD)=T- Yo+ (5)|. z
oot "l F= [ a-yyue-vay (26
0

Y FT)\—=F-n/(n+1) —|f’|Nf <N
e =t flo), f=[PEs'(h, @D The valueF (1) can be expressed throudjhfunctions as

and hence, they also possess scaling properties in this case.

As we have formulated the flux creep problem, the wide F(1)= EF(L) / F(§+ L) 27
variety of possible situations is represented by the set of 2 n—1 2 n-1)°
three independent parametens,y, and a. For a given pa-
rameter set the scaling functioi{¢) can be obtained by
solving the Eqs(14) and(20) numerically. Interestingly, one
may in two special cases find exact analytical solutions, as b(x,t)=1— ,
shown in the next section. Shown in Fig. 2 is a summary of F(1)
our findings regarding scaling solutions for the flux creep, - - : T
problem in various situations. From thik(B)-B,(t) dia- \;vgceorred;[rr:ge tr())osnlon of the flux fronk,, is moving with time
gram it is seen that scaling holds for a majority of conceiv-
able conditions. Note that even if the scaling function itself is So(T) = &gtV (29)
unknown one may test predicted scaling behaviors experi- 0 0 ’
mentally, e.g., by analyzing flux density profilB¢x,t) mea- It then also follows that the normalized current dengity
sured at different times. Plottir(x,t)/B,(t) versusx/xy(t) =—9bldx, and electric field in the flux penetrated region,
is expected to result in a collapse into a scaling functioy<X <% are given by
f(&). Other practical consequences of the scaling concerning

( % )2}1/@1—1)
1-|=——= ,
Xo(t)
A. Constant field, B-independentE (J) e(';(,T) =j(';(,T)“. (30

The result for the flux density profile becomes

Fod%(1)) 0<X<X (28)
PO h<i<%,

the magnetization and voltage behavior are discussed below. . 1 1
JOXG )= ===
(1) %o(1)

IV. EXACT SOLUTION FOR PARTICULAR CASES

The solution for this case will be worked out in consider-The differential resistivitygE/9Jocj"~* therefore varies in
able detail in order to illustrate some basic features of thgpace as a parabola having a maximum value at the edge.
scaling properties of the physical quantities. Suppose that at Figure 3 shows the distribution of the magnetic induction,
t=0 a constant applied magnetic fieBy, is turned on, i.e., current density, and electric field for=3 and 11. As the
one hasy=0. Furthermore, leyy=—1/n, which leads to the  time increases, the flux penetrates deeper into the sample
commonly assumed current-voltage law, E5). From Egs.  accompanied by a smaller slope of the flux density profile,

(12) and(13) the scaling law has then the form i.e., a decay of current density. The electric field profile fol-
s _ lows the behavior ofi(x), although decreasing much more
b(x,t)=f(&), &=xt YO, (220 rapidly due to the strongly nonline&(J) law. As the power

n increases the field and current distributions are seen to
become more linear. In the limit=«~ one had-(z)=z and
[£—n(n+1)[f'["2£"]F =0, 23 &=1,and hence(t)=1. The temporal dependences then
vanish, and the behavior reducesbe1—x/68, j=1, and
This equation has two real solutions fof consistent with  e=0 for 0sx<4, where 6=Bg/ugly. Thus, the well-
dB/9x=<0, namely, known results of the Bean model are reproduced.

and Eq.(14) for the scaling function reduces to
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FIG. 3. Distributions of the normalized flux density, current density, and electric field after a sudden turn-on of a constant applied
magnetic field. AB-independent(J), i.e., y=—1/n, is assumed, and the plots are made rier3 and 11. The arrows indicate time

direction, and the curves correspondtte0.05, 0.2, 1, and 3.

B. Linearly increasing field, constantJ, The results of this subsection, unlike the results of the rest
of the paper, can be used also to describe the flux distribution
at large enough fields when the flux penetrates the whole
slab. The current then flows in the opposite direction in the
left and right halves of the slab, but with the same density as
e defined by Eq.(33). The magnetic field in the left half is

BOGD=Bal[1=X/Xo()],  X<Xo, 3D given by a linear profile defined by E(B1), wherex, is still

and the regionx>Xx, is flux free. The flux front propagates given by Eq.(32), though it does not have the meaning of the
linearly in time, flux front position anymore. In the right haf(x) is a mirror

image of that in the left half.

For the linear sweep casB,(t)=B,t (B,=const), and a
constantl., i.e.,a=1 andy=0, the flux creep problem has
a surprisingly simple solution. It follows from E@6) that

Hodcvo

Ba

Ba

#ode

t. (32

U(n+1)
Xo(t)= )

V. SUMMARY OF B, J, AND E
Remarkably, this solution coincides with the Bean model be- 110 avolution of the flux density, current density, and
havior where in the penetrated region the flux profile is agjecyric field distributions found numerically is presented in

straight line, and the current density is uniform, several graphs. Figure 4 shows results for the applied field
linearly increasing in time, while Fig. 5, as well as Fig. 3, for

— - 1U(n+1) _
J(x)=Je(Bal odcvo) " = const. (33 an instant turn-on of a constant field. From these graphs the
The electric fieldE(x) becomes proportional tB(x), following conclusions can be drawn. _
(i) The flux density profile is found convex for=0, i.e.,
E(X,t)=vo(Balpodev o) UB(x,1), (34) for constant). or J. monotonically decreasing witB. It also

means thatdJ/dx>0, i.e., the current density increasesxas
and hence, this quantity also is linear in botlandt. All approaches the flux front. F@-independen€(J) the pic-
these profiles are presented in Figh} For larger field ture is the opposite}J| is maximum at the edge, and the
sweep ratesB,, the current density and electric field are B(x) profile is concave; see Figs. 3 an@¥ This behavior is
higher, while the penetration depth at a givigpis smaller.  expected for a field-cooled superconductor when a small ad-
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J = const

FIG. 4. Distributions of the normalized flux density, current density, and electric field at equidistant tim@s, 1, 1.5, and 2. The
applied field islinearly increasing andn=3. (a)—(d) differ in J.(B) dependence(a) B-independent&(j), Eq. (5); (b) constantd. (J
:2Ba/M0uo), a case solved exactly in Sec. IV B and(d) J. decreases with increase |&|. The arrows indicate the time direction.
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FIG. 5. Distributions of the normalized flux density, current density, and electric field at different fim@s05, 0.2, 1, and 3. The
applied field is turned on at=0 and keptonstant andn= 3. (a)—(d) differ in J.(B) dependence@) constant). ; (b) J.=J.o/b; (c,d) the
Kim model,J.=J.0/(1+b) andJ.=J.o/(1+b/3), respectively. The arrows indicate the time direction.
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TABLE I. The shape of the current density profiles and the paranggteharacterizing the flux front dynamics, Ed.6), in different
regimes. The parametardescribes the approximate solution Ed4) for the scaling functiorf.

n B-independent E(j) Jje = const je(B) x 1/B The Kim model
(y=-1/n) (y=0) (v=1) Jo = Jeo(1 + B/kBo)™*
Constant field, B, = Bo®(t) (a=0)
J J J J
X X X X
see Fig. 3 see Fig. 5(a) " see Fig. 5(b) ‘ see Fig. 5(c,d)
3 & = 1.521, a = 0.105 £o = 0.881, a = 0.032
7 exact solution, &o = 1.346, a = 0.045 o =0.724,a = 0.014 £o = 2.044, a = 0.42 for k=1, n=3
15 Eq. (28) &o = 1.212, a = 0.021 &o = 0.628,a = 0.007 &0 = 1.702, a = 0.25 for k=3, n=3
33 o = 1.119, a = 0.010 &o = 0.568,a = 0.004
Linear increase, B, = Bq t (a=1)
J J J 1
X X X
NO
see Fig. 4(a) see Fig. 4(b) see Fig. 5(d) SCALING
3 £o = 1.468, a = 0.016 o = 0.514, a = —0.004
7 €p=1.164,a=0 exact solution, &o = 0.503,a = —0.002
15 £0=1.071,a=0 Egs. (31-32) £ = 0.501, a = 0.000
33 € =1.031,a=0 &0 = 0.499,a = 0.001

ditional field is applied. When comparing these results toyg/g9x=—B<0. Physically, this occurs simply because all
experimental data one should keep in mind that the shape gfie vortices enter the slab through the edge region where the
the observed(x) profile can easily be affected by demag- flux motion is thus most intense. The second space derivative
netization effects. However, the signad/dx for the current  of E is proportional to4J/dt, and one can find different
density profile seems to be robust, which is confirmed by theurvatures of thé-field profile for different cases.

flux creep simulations for a thin film geomet’7!® Sche-
maticJ(x) profiles for the most important cases are shown in
Table 1.

(i) Even whenB, increases linearly with time, the flux Since the nonlinear flux diffusion has a sharp front located
penetration can proceed with acceleration or deceleration dex finite distance from the surface, the solution applies also to
pending on thel.(B) dependence. This is illustrated in Fig. the case of a slab dinite width 2w providedw is larger than
4 where the panel$a)—(d) are ordered according to the the penetration depthxy. The flux then penetrates the slab
J:(B) behavior, and the time intervals between the curvegrom both sides with nonoverlapping profiles.
are equal. Only irtb) is the flux front moving with a constant The time-dependent magnetization of the slab is given by
velocity. In (a) the speed is slowing down, while i) and
(d) it is increasing. In the latter case, ramping of the applied
field leads to an effective reduction df, and hence to
larger electric fields and faster penetratitm, (b), and(c,d)
correspond tg8<1, =1, andB>1, respectively, where the WhereB is nonzero only in the region,Ox<xo(t). Substi-
exponents given by Eq.(13) controls the growth of the flux tuting here the scaling law, E¢12), one obtains
penetrated region, Eq16).

(iii) The electric field has always a maximum at the edge
and decreases monotonically wity which follows from

VI. MAGNETIZATION

1 (w
—uoM=B,— Wfo B(x)dx, (35

Xo(t)
—/.LoM(t):Ba(t) 1_AT , O$XO$W, (36)
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whereA is a number equal to the average value of the scalingurrent curve will reflect the local one, i.e/x<J""1. The

function in the penetrated region: crossover between low-current and high-current parts in
V(l) has been reproduced by numerical simulations in Ref.
A= ifgof(g)dg 37) 8. This crossover should be accessible experimentally since

&lJo ' the exponenp for an incomplete flux penetration is of the

order of unity, while the exponemtfor the full penetration is
temperature dependent and can be very large.

The exponentr in Eq. (39) defines the time dependence
of the transport current(t)t“. For largera V(1) becomes
steeper until the exponeptsaturates. For=0, i.e., when
_ the current is turned on and kept constant, the voltage decays
the magnetizait, time. This voltage relaxation has been earlier observed
experimentally™'* and reproduced by numerical
simulations! It is accompanied by relaxation of current
distribution, as illustrated by Fig. 5. According to Ed.7),
wheret* is the time it takes for the flux to completely pen- th€ voltage decay is described Wyt~ """, in particular
etrate the slab, i.e1* =(w/&y)?. For the fully penetrated Ve Lt at low temperatures whemis large.

o 0/ - yp Remarkably, for small enough the voltage willdecrease

state,{>1*, the time dependence M is essentially differ- with increasingcurrent. For example, fox=1/3 andy=0,
ent, and one expects a kink in the magnetization relaxatiogne obtains

rate, as first predicted in Ref. 6

For the exact solution considered in Sec. IV A one fidds
=(n—1)/[2nF(1)]<1/2. For the exact case in Sec. IV B
where theB profile is linear, one ha&d=1/2. For flux density
profiles with a convex shape, which are found whkrde-
creases wittB, one hasA>1/2.

Expressing the time dependence explicitly,
tion can be written as

— oM (1) =B,(D[1-A(t/t*)?], o0o<t<t*, (39

Voclf(nfl)/(nJrl), (40)

VIl. TRANSPORT CURRENT AND NONSTATIONARY V() . . .
in particular,Voc1/l at low temperatures. Physically, a de-

Most results found in the paper are also relevant to &rease of voltage is related to the same relaxation process
superconductor carrying a transport current. The flux penwhich takes place for any external conditions. Increase of
etration into a slab biased with transport current is governegvith time supplies more current to the superconductor and
by the same equations as those for a slab placed in an appligghds to increase the voltage! ihcreases slow enough, then
magnetic field. The difference is that for the transport currenthe first process is dominant, and the meas\wéd curve
case the current flows in the same direction on both edges &hould give voltage decreasing as the current increases. The
the slab. However, this is not important as long as the twaevolution of flux, current, and electric field distributions for
penetrating flux fronts do not meet in the slab center. Thehis interesting case is shown in Fig. 6.
boundary conditiorB(x=0)=B, for the applied field case For the experimentally most relevant case of a linearly

should be replaced now By(x=0)=ul/2, wherel is the jncreasing current,=i t (i.e., a=1), one obtains from Egs.

transport current per unit height of the slab. (17) and (8)
It is interesting to analyze the voltagemeasured on the
superconductor carrying a transport curréntt is obvious voL|f/(0)|" wli n/(n+1)
thatV is not a unique function df but also strongly depends  v= Hobo 0 ) | 1+n/(n+1)
on howl changes with time. In a conventional experimental 2 21" 79J¢0Bg

setup the voltage contacts are attached to the superconductor (41)
surface; thus the measured voltage is determined by the eleg—

P or a constand
tric field in the surface layer only/(t)=E(x=0,)L, where
L is the distance along between the contacts.

The electric field at the edge has a power dependence
time given by Eq.(17), sincef(0) is just a number. Thus, Loy L( i )n/(n+l)
_ MoUo

¢, or y=0, we come to the exactly solvable
case considered in Sec. IV B, and the expression further sim-
d;:r)1lifies to

from Eq. (13) one obtains the following power-law voltage- \Vi
current relation, 2

23we l. (42

In this case the superconductor behaves lik&Damic con-

V[P, p=1+—+ ) (39)  ductor. Deviations from the Ohmic behavior can be caused
n+1 by aB dependence ai;. In particular, ifJ;. decreases with

Note that the exponent of the integralV(l) can be much B, the exponent of th&(1) curve becomes larger than unity
different from the exponem characterizing the loca(j).  [see Eq(41)]. Meanwhile, at small the superconductor al-
Actually, p is only weakly sensitive to, especially for large  Ways behaves Ohmically since the self-field is small and the
n. Moreover,increasein n can sometimes lead todecrease  Jc(B) dependence can be ignored. These results are in agree-
in p. ment with numerical simulations reported in Ref:%7.

For large transport currents when the flux penetrates the We also note that when the transport current is ramped
whole sample the present analysis is not valid. Then the cufaster, the voltage at a given current is largés1 ("1,
rent density will be distributed over the slab more or lessThis observation is in agreement with results of numerical
uniformly, and one can expect that the integral voltage-simulations and experiment on Bi-based tapes.

n

.
-—+
PR
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1+
o1 N+l (1+a)"d*?)
0 1+an(l+vy) (1+y)"

(46)

. Since the scaling functioi(£) usually has a very simple

T~ shape, we find that the approximate expressions fit the exact
™~ solutions with a good accuracy, e.g., the deviation is less than
~ 1% for all cases shown in Figs. 4 and 5.

IX. CONCLUSIONS

The propagation of magnetic flux into a slab supercon-
ductor has been considered using the flux creep approach
with a logarithmic current dependence of the activation en-
ergy. The dynamic behavior was found to possess scaling for

S~ a generall(B) when a constant magnetic field is suddenly
e~ applied to the superconductor, and for a power-lr(B) in
L case of an applied field ramped up with a general power
dependence on time. For two particular cases of the creep
problem an exact analytical solution could be found.
The main results obtained in this work are as follows:
(1) The flux density profiles at different times follow the
scaling law,B(x,t) =B,(t)f(xt#). Similar scaling applies

e to the current density and electric field profiles.
SN TN (2) The flux density profile is convex for penetration into
0.0 T . - — T - T —=— a zero-field-cooled slab, and concave for a slab cooled in a
% (3) At constant], and linearly increasing, the B(x) and

J(x) profiles at any time coincide with the Bean-model pro-
FIG. 6. Distributions of the normalized flux density, current den- fjles.
sity, and electric field at different time$=0.5, 1, 2, and 4. The (4) The flux front position is a power function of time
transport current increases with timelagt'®, while J.= const and given by Egs.(16) and (13). The front moves through the
n=3. The voltage, which is proportional te(x=0), decreases slab with an increasing or decreasing velocity depending on
with time, as shown by the arrows indicating the time direction.  the material’sl;(B).

(5) The explicit time dependence of the magnetization is
VIII. APPROXIMATE SOLUTION

found.

In a general case Eqé&l4) and (20) with boundary con- (6) For a partially penetrated slab carrying a transport
ditions (15) cannot be solved analytically. Near the flux front currentl, the voltageV is a power ofl, with an exponent
f—0, and Eq.(14) reduces to (constBéo)* =f7|f'|. different from that of the locaE(J) relation. A pronounced
Therefore, the behavior of the scaling functibris deter- ~ Crossover in thé/(l) curve at the point of full penetration is
mined only by thel (B) law at smallB, and predicted. _ o .

(7) For a small transport current increasing linearly with
f(&)x(&o— Y, =&, (43 time, the Ohmic behaviovl, is found.
This result holds true for ang,(B) which has asymptotic (8) For a stationary transport current the voltage decays as
V~1A.

behaviorJ.«B~ " atB—0, e.g.,y=0 for the Kim model.
Surprisingly, a very good approximate solution fan the
wholeregion 0s < ¢, is given by the expression

(9) An increase of transport current can be accompanied
by a decrease of voltage, in particuls- 1/ when|oct’?,
All the conclusions can be tested experimentally—(4)
f(&)=(1—& &)V N (1+ag). (44) by spatially resolved techniques, anf)—(9) by integral
measurements. Our results presented by E2f. and (39)
Values of&, anda for several common dependenck¢B),  allow us to infer the material properties such as Id&@l) or

including the Kim model, and values ofhave been found j (B) characteristics from integral measurements of magne-
numerically and listed in Table I. Expressions fgrandain  tjzation and voltage.

a general case can be found by substitufifigpm Eq. (44)

into Eqg. (14) and analyzing expansion in powers ofq(
—¢). Then, one obtains ACKNOWLEDGMENTS
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