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Mode locking in driven vortex lattices with transverse ac drive and random pinning
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We find mode-locking steps in simulated current-voltage characteristics of driven vortex lattices withran-
dompinning when an applied ac current isperpendicularto the dc current. For low frequencies there is mode
locking only above a nonzero threshold ac force amplitude, while for large frequencies there is mode locking
for any small ac force. This is consistent with the nature oftransversetemporal order in the different regimes
in the absence of an applied ac drive. For large frequencies the magnitude of the fundamental mode-locked step
depends linearly on the ac force amplitude.
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Nonlinear dynamics of vortices driven by a current
random media leads to several interesting nonequilibr
phases, such as plastic flow, and moving smectic and mo
Bragg glasses.1–7 These dynamical phases can be charac
ized by their temporal order2,4,7–9 and mode-locking
responses.10–13When a vortex array with average intervorte
spacinga is moving at a high enough velocityv, it is pos-
sible to have temporal order at the washboard freque
v052pv/a, which results in a peak atv0 in the voltage
power spectrum.8,9 This has been observed in numeric
simulations4,13 and also recently in experiments.8,9 When the
system is driven by a dc1 ac force with frequencyV, in-
terference phenomena lead to mode-locking steps for vo
velocities such thatv05(p/q)V.10–13This interesting effect
has been observed experimentally by Fiory10 and by Harris
et al.11 Recently, we have numerically studied how the ex
tence of mode locking in driven vortex lattices depends
the presence of temporal order in each dynamical regim13

Mode-locking phenomena has been extensively studie
other systems in the past, e.g., Josephson junctions~Shapiro
steps!,14 Josephson junction arrays,15 superconductors with
periodic pinning,16–18 and charge-density wave
~CDW’s!.19,20 Driven vortex lattices with random pinnin
have two important features that distinguish them from th
systems.~i! There is no inherent periodicity, as for examp
in Josephson-junction arrays and superconductors with p
odic pinning. Temporal order and periodicity are induced d
namically due to the vortex-vortex interaction, which ten
to favor a structure close to a triangular vortex lattice at la
velocities.2 ~ii ! The vortex displacements are two
dimensional vectors. This is an important difference with
spect to CDW systems where the displacement field i
scalar.20 In particular, the behavior of the displacements
the direction perpendicular to the driving force shows p
nomena such as a transverse critical current2,4,6 and a trans-
verse freezing transition2,5 at high velocities. It can therefor
be interesting to study the possibility of mode locking wh
an ac force is applied in the directionperpendicularto the
direction of the dc driving force. Recently, it has been fou
in rectangular periodic pinning arrays18 and in Josephson
junction arrays21 that a transverse ac force leads to a type
‘‘transverse’’ phase locking in these cases. In this paper
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will investigate the possibility oftransverse mode lockingin
driven vortices with random pinning.

The dynamics of a vortex in positionr i is given by4,5

h
dr i

dt
52(

j Þ i
“ iUv~r i j !2(

p
“ iUp~r ip!1F~ t !, ~1!

wherer i j 5ur i2r j u is the distance between vorticesi , j ; r ip
5ur i2r pu is the distance between the vortexi and a pinning
site atr p , h5F0Hc2d/c2rn is the Bardeen-Stephen friction
and F(t)5dF0 /c@Jdc1Jaccos(Vt)#3z is the driving force
due to an alternating currentJaccos(Vt) superimposed to a
constant currentJdc . The vortex-vortex interaction is consid
ered logarithmic:Uv(r )52Avln(r/L), with Av5F0

2/8pL,
and L52l2/d is the effective penetration depth of a th
film of thicknessd.5,13 The vortices interact with a random
distribution of attractive pinning centers withUp(r )
52Ape2(r /j)2

, j being the coherence length. Length is no
malized byj, energy byAv , and time byt5hj2/Av . We
considerNv vortices andNp pinning centers in a rectangula
box of sizeLx3Ly , and the normalized vortex density
nv5Nvj2/LxLy5Bj2/F0. Moving vortices induce a tota
electric fieldE5(B/c)v3z, with v51/Nv( ivi .

We study the response of the vortex lattice to a dc fo
plus a transverseac force,F5Fdcy1Faccos(Vt)x solving
Eq. ~1! for different values ofFac and V. The simulations
are at T50 for a vortex densitynv50.04 in a box with
Lx /Ly5A3/2, and Nv564,100,144,196,256,324, and 40
~we show results forNv5256), and we consider weak pin
ning strength ofAp /Av50.05 with a density of pinning cen
ters beingnp50.08. We impose periodic boundary cond
tions and the long-range interaction is determined by Ref.
The time integration step isDt50.001t and averages are
evaluated during 131 072 steps after 3000 steps for equili
tion.

In a previous work13 we studied the case of a longitudin
ac force, relating the mode-locking response with the pr
ence of temporal order for the longitudinal component of
velocity. Here we analyze thetransverse temporal orde
from the transverse power voltage spectra~corresponding to
the transverse velocity!, which are shown in the insets of Fig
©2002 The American Physical Society08-1
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1. They are calculated asSx(v)5u1/T*0
TdtVx(t)exp(ivt)u2 at

the different dynamical regimes forFac50.5 The first regime
above the critical depinning forceFc is the plastic flow re-
gime (Fc,Fdc,Fp , Fc'0.01, Fp'0.03). In this case we
find a broad band spectrum without temporal order@inset of
Fig. 1~a!#. Similar behavior is found in the ‘‘smectic flow’
regime (Fp,Fdc,Ft , Ft'0.06), shown in the inset of Fig
1~b!. This is reasonable, since we know that the transve
motion is diffusive in both regimes.5 Only for Fdc.Ft , in
the ‘‘transverse solid’’ regime, do we find clear evidence
temporal order in the transverse velocity. This is seen in
inset of Fig. 1~c! where well-developed peaks appear at
washboard frequency,v0, and its harmonics. We are no
ready to study the response to a superimposed transver
forceFaccos(Vt), for varying values ofFac . For a givenV,
we expect the main interference step (p5q51) to occur
whenV5Vstep5Va/2p ~i.e.,V5v0) if there is mode lock-
ing. We therefore choose the values ofV such that the ex-
pected step,Vstep5Va/2p, would correspond to velocitiesV
belonging to a given dynamical regime of the limitFac50.
Each simulation is started at^vy&'0.975Va/2p with an or-
dered triangular lattice up to values such that^vy&
'1.025Va/2p by slowly increasing the dc forceFdc with
DFdc50.000 0520.000 25. We have chosenDFdc such that

FIG. 1. Velocity-force curve around the main interference co
dition V5Va0/2p for three typical drive frequenciesV. Each case
shows results for two values of amplitudeFac ~the curves are
shifted inFdc for clarity!. Insets show corresponding voltage pow
spectrum forFac50 and V'Vstep. Vertical dashed line in the
spectral density indicates the expected washboard frequencyv0. ~a!
V50.02, Fac50.01 ~left!, Fac50.03 ~right!. ~b! V50.04, Fac

50.02 ~left!, Fac50.08 ~right!. ~c! V50.19, Fac50.09 ~left!, Fac

50.23 ~right!.
18450
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DFdc /Fc&0.01, which is small enough to obtain a behav
independent of rate of ramping of the dc driving force in
the IV curves. For lowV, for which we have plastic flow
whenFac→0, we find that there are no interference steps
a wide range ofFac @shown in Fig. 1~a! for Fac /Vstep,1
~left curve! andFac /Vstep.1 ~right curve!#. For intermedi-
ate V, for which we have smectic flow whenFac→0, we
find that there are no steps for small amplitudes,Fac /Vstep
,1, while there are steps forFac /Vstep.1, as shown in Fig.
1~b! in the left and right curves, respectively. For highV,
corresponding to a transverse solid regime whenFac→0, we
find that there are steps both for smallFac /Vstep,1 and
large Fac /Vstep.1 values of the ac amplitude, as we ca
observe in Fig. 1~c!. We therefore find a behavior similar t
the case of longitudinal ac forces.13 In the present case, whe
the dynamical regime has transverse temporal order,
small amount ofFac will induce transverse mode locking
while for the dynamical regimes that do not have transve
temporal order, a nonzero~threshold! value ofFac is needed
to induce transverse mode locking.

In Fig. 2~a! we show in detail a typicalV-Fdc curve
around the transverse mode-locking step. To visualize
spatial structure of trajectories in the transition we defin
coarse-grained vortex densityrv(r ,t). We take a coarse
graining scaleDr ,a0. In Figs. 2~b!–2~d! we show the tem-
poral averagêrv(r ,t)& of the density for three typical value
of Fdc , corresponding to voltagesV,Vstep @Fig. 2~b!#, V
5Vstep @Fig. 2~c!#, andV.Vstep @Fig. 2~d!#. We observe in

-
FIG. 2. ~a! Velocity-force curve around the main interferenc

step for V50.08 and Fac50.3. ~b!–~d! Typical time-averaged
coarse-grained densities of vortices for a mode-unlocked state
low the step, a mode-locked state in the step, and a mode-unlo
state above the step, respectively.~e!–~g! Typical voltage power
spectrum for the three ac-driven regimes mentioned above.
8-2
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Fig. 2~b! that within the mode-locked state vortices follo
one-dimensional trajectories. The wavy nature of the tra
tories is, of course, due to the transverse ac force. Fig
2~e!–2~g! show typical transverse voltage spectral densi
Sx(v) for the three cases mentioned above. We see that t
is a significant reduction in the width of the washboard pe
within the step, a typical signature of mode locking.19,20 In
Fig. 3~a! we show the low-frequency voltage noise in bo
directions, perpendicularPx , and longitudinalPy to the dc
force, defined asPx,y5 limv→0Sx,y(v). We see that also the
low-frequency noise is greatly reduced within the ste
~There is a noise peak inside the step which corresponds
transition between different mode-locked structures.! In Fig.
3~b! we show the phasef(v0) of the washboard frequenc
component of the longitudinal voltage Fourier transfo
Ṽ(v0), defined asṼ(v0)5ASy(v0)exp@if(v0)#. Here we
see explicitly that within the ‘‘phase-locked’’ state there is
well-defined ‘‘phase’’ which varies within the range 0<f
<p. We have checked for finite-size effects by calculati
the phase-locking range~step width! DFdc for a number of
vortices in the rangeNv5642400. In Fig. 4 we show the
size dependence of the step widthDFdc for the step corre-
sponding toFac50.2 andV50.19, where the error bars ar
due to the observed dependence of the width in three di
ent realizations of disorder. We observe that forNv.256,
DFdc tends to a size-independent value.

In Fig. 5~a! and 5~b! we show the range~width! DFdc for
the casesFp,Fdc,Ft andFt,Fdc , respectively. The erro
bars and the mean values were estimated by repeating
simulation for three different disorder realizations. In F
5~a! we showDFdc for V50.04 vsFac , which corresponds
to the smectic flow regime forFac→0. We see that there i
mode locking only above a nonzero threshold va
Fac /Vstep'1 @see inset of Fig. 1~a!#. In Fig. 5~b! we show
DFdc for two frequenciesV50.13,0.19 vsFac , which cor-

FIG. 3. ~a! Low-frequency voltage noise in the transverse a
longitudinal directions around the main interference step. T
dashed lines indicate the mode-locking transitions.~b! Phase of the
washboard frequency component of the longitudinal voltage Fou
transform around the step.
18450
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respond to the transverse solid in theFac50 limit. We can
collapse~approximately! both curves into a single curve i
we plot DFdc vs Fac /Vstep. Our results follow closely a
dependence of the formDFdc'AuJ1(Fac /VstepA3)u with A
being a constant. In the inset of Fig. 5~b! we can see tha
there is a linear dependence of the mode locking inten
with Fac . This is very different from transverse mode
locking in periodic pinning systems,18,21 in which the step
width follows DFdc}(Fac)

2. The rather surprising result tha
in the random pinning case the transverse mode-locking
tensity has a linearFac dependence, can be explained as
consequence of the existence of transverse temporal ord
the Fac50 limit. We can show this with a very simple ef
fective model. The moving lattice can be described appro
mately by an equation of motion for the velocityv of its
center of mass,

e

er

FIG. 4. Dependence of step widthDFdc with number of vortices
Nv , for Fac50.2 andV50.19.

FIG. 5. Step widthDFdc vs Fac2p/Va05Fac /Vstep. ~a! V
50.04.~b! V50.13 (n) points andV50.19 @(L) points#. Solid
line shows a fit toAuJ1(Fac /VstepA3)u.
8-3
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v5Fdc1Faccos~Vt !2(
G

GUGsin~G•r !. ~2!

TheUG are the components of an effective periodic forc
due to the interaction of the nearly periodic moving latti
~with reciprocal vectorsG) with disorder. For weak disorde
~smallUG) a first-order correction can be obtained assum
that in zero order,

r5r 01^v&t1Facsin~Vt !/V. ~3!

This gives for the instantaneous velocityv and average
velocity ^v& the following expressions at first order inFac :

v5Fdc2(
G

GUGsin@G•~r 01^v&t !#

3FJ0S G•Fac

V D12J1S G•Fac

V D sin~Vt !G , ~4!

^v&5Fdc2(
G

GUGsin~G•r0!H J0S G•Fac

V D d~G•^v&!

22J1S G•Fac

V D d~G•^v&2V!J . ~5!

We consider now an anisotropic triangular lattice with o
of its principal axes parallel toFdc5yFdc , and for simplicity
we keep only the shortest reciprocal vectors,

$G%5$gs,gl ,gl2gs%, ~6!

where

gs5x
2p

a0

2

A3
,

~7!

gl5x
2p

a0

1

A3
1y

2p

a0
.

Then, we consider

Ugl
5Ul5Ugl2gs

1DUl ,

~8!
Ugs

5Us .

Here DUl represents a small deformation of the perfe
triangular lattice such thatDUl /Ul!1. Us andUl could be
related, respectively, to the smectic and longitudinal struc
factor peaks of the moving vortex system. Let us first ap
this simple model to the longitudinal caseFaciFdc. Writing
Fac5Facy we obtain, from Eq.~4!, the longitudinal velocity
in the limit Fac50,

vy52
4pUl

a0
sinF2p

a0
~r 01^v&t !G . ~9!
18450
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With this approach we obtain from Eq.~5! the phase-
locking range for the first interference stepV5v0,

DFdc5
8puUl u

a0
UJ1S gl•Fac

V D U5 8puUl u
a0

UJ1S Fac

Vstep
D U.

~10!

Even when it was derived for smallFac and small disor-
der, Eq. ~10! corresponds to the relationDFdc
}uJ1(Fac /Vstep)u found numerically in our previous work in
Ref. 13. From Eqs.~9! and ~10! we see that, for smallFac ,
temporal order in thelongitudinaldirection is directly related
throughUl with the linear dependence ofDFdc on Fac . If
we apply now the model to the transverse phase-locking c
discussed in this paper, withFac5Facx, we obtain for the
transverse velocity in the limitFac50

vx52
2pDUl

a0A3
sinF2p

a0
~r 01^v&t !G ~11!

and for the phase-locking range for the first interference s
V5v0,

DFdc5
4puDUl u

a0
UJ1S gl•Fac

V D U5 4puDUl u
a0

UJ1S Fac

VstepA3
D U .
~12!

We see that Eq.~12! is also the approximate relatio
found in the simulation, shown in Fig. 5~b!. Comparing Eqs.
~10! and ~12! we see there is a difference by a factorA3 in
the argument of the Bessel functionJ1 in the transverse cas
with respect to the longitudinal case. Note that this predic
difference is also found numerically, since we obtainDFdc

}uJ1(Fac /VstepA3)u in the transverse case shown in Fi
5~b!, andDFdc}uJ1(Fac /Vstep)u in Ref. 13. From Eqs.~11!
and ~12! we see in this case, that, for smallFac , temporal
order in thetransversedirection is directly related through
DUl with the linear dependence ofDFdc on Fac . It is inter-
esting to note that in the perfectly periodic case,DUl50 and
UlÞ0, there is ‘‘longitudinal temporal order’’ but no ‘‘trans
verse temporal order.’’ Thus the mode-locked step wid
would be linear inFac when FaciFac and quadratic inFac
whenFac'Fac. This is because in the perfectly periodic ca
vortices would move in straight lines without any transve
component of the velocity, and transverse mode lock
would arise as a second-order effect. In conclusion, a sm
amount of lattice distortion is enough to induce transve
temporal order, and, thus, a linear step width depende
with Fac .
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Reichhardt. This work has been supported by CONICE
CNEA, and ANPCYT PICT99-03-06343~Argentina! and by
the Director, Office of Advanced Scientific Computing R
search, Division of Mathematical, Information, and Comp
tational Sciences of the U.S. Department of Energy~Contract
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