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Mode locking in driven vortex lattices with transverse ac drive and random pinning
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We find mode-locking steps in simulated current-voltage characteristics of driven vortex latticemnvith
dompinning when an applied ac currentgsrpendicularto the dc current. For low frequencies there is mode
locking only above a nonzero threshold ac force amplitude, while for large frequencies there is mode locking
for any small ac force. This is consistent with the naturérafisverseemporal order in the different regimes
in the absence of an applied ac drive. For large frequencies the magnitude of the fundamental mode-locked step
depends linearly on the ac force amplitude.
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Nonlinear dynamics of vortices driven by a current in will investigate the possibility ofransverse mode locking
random media leads to several interesting nonequilibriundriven vortices with random pinning.
phases, such as plastic flow, and moving smectic and moving The dynamics of a vortex in position is given by
Bragg glasse$:’ These dynamical phases can be character-
ized by their temporal ordéf’~® and mode-locking dr,
response&’~3When a vortex array with average intervortex Ui 2 ViU, (rij) =2 ViUy(rip) +F(1), (D)
spacinga is moving at a high enough velocity, it is pos- 7 P
sible to have temporal order at the washboard frequenc
wo=2mv/a, which results in a peak ab, in the voltage
power spectrurfi® This has been observed in numerical
simulationé*® and also recently in experimerit When the
system is driven by a de- ac force with frequency, in-
terference phenomena lead to mode-locking steps for vort
velocities such thab= (p/q)Q.2°~13This interesting effect
has been observed experimentally by Fiérgnd by Harris and A=2)\?/d is the effective penetration depth of a thin

et al!! Recently, we have numerically studied how the exis-: . 513 . ; .
tence of mode locking in driven vortex lattices depends or}cIIm of thicknessd.”"=The vortices interact with a random

the presence of temporal order in each dynamical redime. dlstr|but|on/ 20f attractlve pinning - centers W'tmp(_r)
Mode-locking phenomena has been extensively studied it —Ape™ """, € being the coherence length. Length is nor-
other systems in the past, e.g., Josephson junc(®hapiro  malized by&, energy byA,, and time byr=7¢%/A, . We
Step$.14 Josephson junction arra%superconductors with ConSIdeI‘NU vortices and\lp plnl’llng centersin a I’eCtangu|ar
periodic  pinning®*® and  charge-density  waves box of sizeL,XL,, and the normalized vortex density is
(CDW’s).2%2° Driven vortex lattices with random pinning Ny =N,&°/LL,=B&*/®,. Moving vortices induce a total
have two important features that distinguish them from thesélectric fieldE=(B/c)vXz, with v=1/N,Z;v;.
systems(i) There is no inherent periodicity, as for example We study the response of the vortex lattice to a dc force
in Josephson-junction arrays and superconductors with perRlus atransverseac force, F=Fycy+F,.cos(2t)x solving
odic pinning. Temporal order and periodicity are induced dy-Eg. (1) for different values ofF,. and Q2. The simulations
namically due to the vortex-vortex interaction, which tendsare atT=0 for a vortex densityn,=0.04 in a box with
to favor a structure close to a triangular vortex lattice at largd- /Ly = J3/2, and N,=64,100,144,196,256,324, and 400
velocities? (i) The vortex displacements are two- (we show results foN,=256), and we consider weak pin-
dimensional vectors. This is an important difference with re-ning strength ofA,/A,=0.05 with a density of pinning cen-
spect to CDW systems where the displacement field is &rs beingn,=0.08. We impose periodic boundary condi-
scalar’® In particular, the behavior of the displacements intions and the long-range interaction is determined by Ref. 22.
the direction perpendicular to the driving force shows phe-The time integration step iAt=0.001r and averages are
nomena such as a transverse critical cufréfiand a trans-  evaluated during 131 072 steps after 3000 steps for equilibra-
verse freezing transitidn at high velocities. It can therefore tion.
be interesting to study the possibility of mode locking when In a previous work® we studied the case of a longitudinal
an ac force is applied in the directigrerpendicularto the  ac force, relating the mode-locking response with the pres-
direction of the dc driving force. Recently, it has been foundence of temporal order for the longitudinal component of the
in rectangular periodic pinning arrdysand in Josephson- velocity. Here we analyze th&ansverse temporal order
junction array$' that a transverse ac force leads to a type offrom the transverse power voltage spectarresponding to
“transverse” phase locking in these cases. In this paper we¢he transverse velocitywhich are shown in the insets of Fig.

%hererij =|ri—r;| is the distance between vortices; ri,
=|ri—rp| is the distance between the vorteand a pinning
site atr,, n=®yH,d/c?p, is the Bardeen-Stephen friction;
and F(t)=d®dy/c[ Iyt Jaccost) Xz is the driving force
due to an alternating curredt.cos()t) superimposed to a
Constant currenly.. The vortex-vortex interaction is consid-
ered logarithmic:U,(r)=—A,In(r/A), with AU=<D§/87TA,
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) o FIG. 2. (a) Velocity-force curve around the main interference
_ _FIG. 1. Velocity-force curve arou_nd the maln_lnterference CON-gtep for 0=0.08 andF,.=0.3. (b)—(d) Typical time-averaged
dition V={Qao/2m for three typical drive frequencie8. Each case  rse-grained densities of vortices for a mode-unlocked state be-
shows results for two values of amplitude,; (the curves are |4 the step, a mode-locked state in the step, and a mode-unlocked
shifted inF 4 for clarity). Insets show cor_respondlng vo_Itagg POWET gtate above the step, respectivelg)—(g) Typical voltage power
spectrum forF,.=0 and V~V,. Vertical dashed line in the  gpoctrym for the three ac-driven regimes mentioned above.
spectral density indicates the expected washboard frequendp)
gggéoﬁéfgai:: O;Oolége(fgéh;acg)ogi g'iqgt)l': (tz Oﬂozszé' Eac AF 40/F ¢=0.01, which is small enough to obtain a behavior
:O.23(righ”[) act = ' T A ' ac independent of rate of ramping qf the dc driving fo_rce in all
' ' the IV curves. For low(}, for which we have plastic flow
whenF,.— 0, we find that there are no interference steps in
1. They are calculated &(w)=|1/TfdtV,(t)exp(wt)?at  a wide range of,. [shown in Fig. 1a) for Fac/Vstep<l
the different dynamical regimes fér,.=0.° The first regime  (left curve) and Fac/Vsiep>1 (right curve]. For intermedi-
above the critical depinning forde, is the plastic flow re- ate ), for which we have smectic flow whel,.—0, we
gime (F.<Fq.<F,, Fc=0.01, F,~0.03). In this case we find that there are no steps for small amplitudeg,/Vs:ep
find a broad band spectrum without temporal orideset of <1, while there are steps f67,./Vsiep>1, as shown in Fig.
Fig. 1(@)]. Similar behavior is found in the “smectic flow” 1(b) in the left and right curves, respectively. For high
regime F,<Fq.<F, F;=0.06), shown in the inset of Fig. corresponding to a transverse solid regime whgp—0, we
1(b). This is reasonable, since we know that the transverséind that there are steps both for smél}./Vs;<1 and
motion is diffusive in both regimesOnly for F4.>F,, in large F,c/Vsiep>1 values of the ac amplitude, as we can
the “transverse solid” regime, do we find clear evidence ofobserve in Fig. (c). We therefore find a behavior similar to
temporal order in the transverse velocity. This is seen in theéhe case of longitudinal ac forcé$In the present case, when
inset of Fig. 1c) where well-developed peaks appear at thethe dynamical regime has transverse temporal order, any
washboard frequencyy,, and its harmonics. We are now small amount ofF,. will induce transverse mode locking,
ready to study the response to a superimposed transverse while for the dynamical regimes that do not have transverse
force F,.cos(t), for varying values of,.. For a givern(),  temporal order, a nonzefthreshold value ofF .. is needed
we expect the main interference step=q=1) to occur to induce transverse mode locking.
whenV=Vg.,=Qal2m (i.e., )= wy) if there is mode lock- In Fig. 2@ we show in detail a typicaV-F4. curve
ing. We therefore choose the values(@fsuch that the ex- around the transverse mode-locking step. To visualize the
pected stepV .= (2a/27, would correspond to velocitieé  spatial structure of trajectories in the transition we define a
belonging to a given dynamical regime of the lirfif.=0.  coarse-grained vortex density,(r,t). We take a coarse-
Each simulation is started & ,)~0.979)a/27 with an or-  graining scaleAr <a,. In Figs. 2b)-2(d) we show the tem-
dered triangular lattice up to values such théaiy) poral averagép,(r,t)) of the density for three typical values
~1.029)a/27 by slowly increasing the dc forcEy, with  of Fy., corresponding to voltage¢<\Vge, [Fig. 2b)], V
AF4.=0.00005-0.000 25. We have choseXF 4. such that =V, [Fig. 2c)], andV>V,[Fig. 2d)]. We observe in
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FIG. 4. Dependence of step widtF 4. with number of vortices

0.1515 0.1520 0.1525 0.1530 0.1535 N, , for F,.=0.2 andQ=0.19.

ch
respond to the transverse solid in thg.=0 limit. We can
collapse(approximately both curves into a single curve if

e plot ARy Vs Fac/Vsiep. Our results follow closely a
dependence of the formch~A|J1(FaC/V5tep\/§)| with A
[:)eing a constant. In the inset of Figbh we can see that
there is a linear dependence of the mode locking intensity
with F,.. This is very different from transverse mode-
Fig. 2(b) that within the mode-locked state vortices follow Iockinga(i:n periodic pinzing system&2! in which the step
one-dimensional trajectories. The wavy nature of the trajecy iy follows AF . (F ,0)2. The rather surprising result that

tories is, of course, due to the transverse ac force. Figures yhe random pinning case the transverse mode-locking in-
2(e)—2(g) show typical transverse voltage spectral dens't'estensity has a lineaF,, dependence, can be explained as a

Sx(w) for the three cases mentioned above. We see that thee)\sequence of the existence of transverse temporal order in
is a significant reduction in the width of the washboard peak, . = _ ¢ |imit. We can show this with a very simple ef-
ac .

vv_|th|n the step, a typical signature of mode |ocl_<r"r?§: I fective model. The moving lattice can be described approxi-
Fig. 3(@ we show the low-frequency voltage noise in both mately by an equation of motion for the velocityof its
directions, perpendicula?,, and longitudinalP, to the dc center of mass

force, defined a®, y=Ilim, .S, ,(w). We see that also the

FIG. 3. (@) Low-frequency voltage noise in the transverse and
longitudinal directions around the main interference step. Th
dashed lines indicate the mode-locking transitidhg Phase of the
washboard frequency component of the longitudinal voltage Fourie
transform around the step.

low-frequency noise is greatly reduced within the step. 0.004 ' o0t
(There is a noise peak inside the step which corresponds to (a) 0.0015
transition between different mode-locked structyrés.Fig. 0.003F = 0.0010 -
3(b) we show the phase(w) of the washboard frequency 0.0005
component of the longitudinal voltage Fourier transform g 0.002 O T s
V(w,), defined asV(wg)=Sy(wo)exdid(wp)]. Here we < FY,
see explicitly that within the “phase-locked” state there is a |
well-defined “phase” which varies within the range<Qp 0.001 1
<. We have checked for finite-size effects by calculating T
the phase-locking rangestep width AF . for a number of 0.004 L ————t ;
vortices in the rangd,=64—400. In Fig. 4 we show the % 0.0020
size dependence of the step widkff . for the step corre- 6.003 o
sponding toF,.=0.2 andQ)=0.19, where the error bars are ' 0005
due to the observed dependence of the width in three differ- ¥ ! i
ent realizations of disorder. We observe that fgr> 256, e 0.002
AF 4. tends to a size-independent value. <
In Fig. 5@ and 3b) we show the rangéwidth) AF 4. for 0.001 }
the case$ ,<Fy.<F; andF;<Fq, respectively. The error
bars and the mean values were estimated by repeating th N

simulation for three different disorder realizations. In Fig.
5(a) we showAF 4. for 1 =0.04 vsF ., which corresponds F /v

to the smectic flow regime foF ,.— 0. We see that there is e

mode locking only above a nonzero threshold value FIG. 5. Step widthAFy. vs Fo2m/Qag=Fac/Viep. (@ Q
Fac/Vsiep=1 [see inset of Fig. B)]. In Fig. 5b) we show  =0.04.(b) Q=0.13 (A) points and2=0.19 [( ) points. Solid
AF g4, for two frequencies)=0.13,0.19 vsF,¢, which cor-  line shows a fit toA|J;(Fae/Vgep/3)|.
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With this approach we obtain from Eg5) the phase-

V= Fgct+ Facog Q) - % GUgsin(G-r). (2 locking range for the first interference st&p=wy,
TheUg are the components of an effective periodic force, AF _8a|Uf| . [g-Fac)| 87Ul Fac
due to the interaction of the nearly periodic moving lattice de™ J1 Q /| a J1 Veen |
(10)

(with reciprocal vector$s) with disorder. For weak disorder
(smallUg) a first-order correction can be obtained assuming

that in zero order, Even when it was derived for smdfl,. and small disor-

der, Eqg. (10) corresponds to the relationAF 4
r=ro+(V)t+F,sin(Qt)/Q. (3) %|J1(Fac/Vstep| found numerically in our previous work in
Ref. 13. From Eqs(9) and(10) we see that, for smaf .,
This gives for the instantaneous velocityand average temporal order in théongitudinaldirection is directly related
velocity (v) the following expressions at first order Fy.:  throughU, with the linear dependence dfF g, on Fyc. If
we apply now the model to the transverse phase-locking case
discussed in this paper, with,.=F,.X, we obtain for the

V= ch—%: GUgsIN G- (ro*+ (V)] transverse velocity in the limi,.=0

x| 3 G'Fa°)+2J (G'F“) 'n(m)} (4) 278 i 2 (1o (03) (11)
Si , Uy=— sin — (ro+{v
0 QO 1 QO X ao\/§ aO 0
G Fa and for the phase-locking range for the first interference step
(V) =Foe— 2, Guesime-m{ao( 0 )5<G'<v>> Q=0
4'77'|AUI| (gl'Fac) 4'77'|AUI| Fac
G-F AF 4= J = J :
—231( Q""° 5(G~<v)—Q)]. (5) de™ g, 10 ag " Veen3
(12

We consider now an anisotropic triangular lattice with one
of its principal axes parallel tB4.=yF 4., and for simplicity
we keep only the shortest reciprocal vectors,

We see that Eq(12) is also the approximate relation
found in the simulation, shown in Fig(®. Comparing Egs.
(10) and (12) we see there is a difference by a fact@® in

{G}={0:,9,0 -9, (6)  the argument of the Bessel functidn in the transverse case
with respect to the longitudinal case. Note that this predicted

where difference is also found numerically, since we obtaiR 4.

or 2 oc|J1(FaC/V5tep\/§)| in the transverse case shown in Fig.
ge=xr = 5(b), andAFdCoc|J_1(Fa_C/V5teF)| in Ref. 13. From Eqs(11)
ao 3 and (12) we see in this case, that, for smé&l}., temporal

7) order in thetransversedirection is directly related through
27 1 20 AU, with the linear dependence affF 4. on F,.. It is inter-
9= a—o ﬁ +ya—0- esting to note that in the perfectly periodic caAdél,=0 and

U,#0, there is “longitudinal temporal order” but no “trans-
verse temporal order.” Thus the mode-locked step widths
would be linear inF,. when F,JF,. and quadratic irF ..
Ug=U=Ug ¢ +AU,, whe_n Facl Fac. This is_becau_se in_ the perfectly periodic case
vortices would move in straight lines without any transverse
® com i i
ponent of the velocity, and transverse mode locking
would arise as a second-order effect. In conclusion, a small
Here AU, represents a small deformation of the perfectamount of lattice distortion is gnough to ingiuce transverse
triangular lattice such thatU,/U,<1. U andU, could be te.mporal order, and, thus, a linear step width dependence
related, respectively, to the smectic and longitudinal structuréith Fac.
factor peaks of the moving vortex system. Let us first apply e acknowledge discussions with V. I. Marconi and C.
this simple model to the longitudinal cagd|Fuc. Writing  Reichhardt. This work has been supported by CONICET,
Fac=Facy e obtain, from Eq(4), the longitudinal velocity cNEA, and ANPCYT PICT99-03-0634@\rgentind and by
in the limit F,.=0, the Director, Office of Advanced Scientific Computing Re-
47U search, Division of Mathematical, Information, and Compu-
! ) 9) tational Sciences of the U.S. Department of Endfggntract
ao No. DE-AC03-76SF00098

Then, we consider

Ug=Us.

Vy=—

|27
Si a—o(r0+<u>t)
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