PHYSICAL REVIEW B, VOLUME 65, 184503

Superconductivity and excitonic state in a two-band model
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We study the interplay between superconductivity and excitonic correlations in a two-band model, in the
presence of hybridization and local repulsion between electrons of different bands. The ground-state phase
diagram as a function of the hybridizatid®hand the interband Coulomb repulsi@nis constructed. There is a
critical value of hybridizatiorV. to destroy superconductivity, which decrease&as increased. For values
of G above a critical strengtls., superconductivity is suppressed even for zero hybridization. We have
obtained this result within a self-consistent mean-field treatment and using the Hubbard-I approximation. The
valence transition in a mixed valence superconducting compound is considered.
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. INTRODUCTION wheref! (f;,) andd! (d;,) create(annihilaté electrons on

(o8 lo
site i in the narrow and wide bands, respectively,,
: - , e d . S .
IITheor(te)ucalddescnpt|obns gf sugelrcc;nduct:ng phases usu={! ¢, and nia-_di(_rdirr’ U is an attractive interaction be-
ally are based on two-band models for a large variety Okyeenf electrons)V is the hybridizationG is the Coulomb

systems, such SéThhanﬁlfermidTﬁaﬂSitLO% n:j_etalg,or CU-  repulsion betweehandd electronsN is the total number of
prate compounds.The influence of the hybridization on su- electrons, angl is the chemical potential. The Hamiltonian

perc_ondléctlwty in the tyvo-band model has recently b.eertl)' is equivalent to the spinless fermion version of the
studied® However, the influence of the Coulomb repulsion Falicov-Kimball model wherlJ=0. which has been exten-

between electrons of different bands was not considered 'inely used to study valence transitiohfsL°With the use of
these earlier studies. This interaction can be described by the |\~ +.cc_Fock factorization in Edd) énd performing a

I i '7 I - . . . -
sp-clalled g?"cotv'g'mb?" te”ﬁ’dWh'ihl has bete?texte_rt]_ Fourier transformation, we obtain Green’s functions for the
sively used to study valence and metal-nonmetal transitiong,o .trons of the two bands:

in mixed valent compounds and heavy fermions systems. In

these works, the importance of the inclusion of excitonic 1

correlations in the descriptiérof the referred systems has ((fT_k_U;f;EU))w=2—A(w2—g{f)P(w)‘l, 2
been shown. Excitonic correlations were also used to explain ™

lattice deformation in Kondo insulatdr&ind more recently 1

were taken into account to study superconducuvny in a ((dk(,;fll,»w:—V[(ereﬁ)(w+§,§)—V2]P(w)*l,
mixed-valent syster’ Due to the fact that the importance of 2w

excitons is well established by these findings, it is desirable (©)]
to study the competition between excitons and superconduct- L

ing pairs for all values of the hybridization and interband + _ , , N o 1
repulsion. Let us point out that a mechanism of supercon-«fk"fk"»“’_ﬂ(w_gk)[(w+6k)(w+§")_v 1P(w)
ducting pairing for high-temperature superconductors cu- 4
prates(HTSCO) based on excitons was proposed by Varma .
et al!! However, in the present study we assume a phenom\’-\”th
enological potential pairing without any reference to a par- , ,
ticular pairing mechanism. We will contrast our results with Plo)=[(0= e (o=
those obtained in thexcitonic pairingmechanism model. —Az(wz—g’,iz),

)= V2[(w+ ) (w+ &) — V2]

IIl. THE MODEL HAMILTONIAN whereA andA are the superconducting and excitonic order

In this work we study the interplay between exciton cor-Parameters, defined as
relation and superconductivity in a two-band model, which

/st £t
considers on-site hybridization and local Coulomb repulsion A=U(fiof Lo
between electrons of different bands. The model Hamiltonian :

is given by A=(fiody,)-

We also introducedV=V+AG, e,=e—(n )U+(n)G
—w, and )= ¢, +(n"YG— u, wheree, ¢, are the energies
for the electrons in thé andd band, respectively. The roots
+V§ (fT d|a+diTafio)+Gz nf pd “Ng, (1) of the polynomialP(w) determine the excitation energies of

H=<2 t{jfiT(,fJ-(,Jrg thdl,dj,—U> nfnf,
ij)o ijyo i

ioHi ioc'lio

o the system,
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Ei2k=%(A2+ 2V2+ 2+ ¢1?) 2v/D
A > Ag
1 _ N A=o0
i—\/(Az"F6{<2—§{<2)2+4V2[A2+(6{<+ §|’<)2] \\\\ non metal
A>0 \\\ I
We note that the excitations present a gap at the Ferm A<y N
level in the following two circumstance&) whenA >0, for 2 metal " N
which case there is the usual superconducting gap,(land \\\
whenV is sufficiently strong, for which case a hybridization A> 0 S
gap opens. "I aso N
In the following, we assume that the bands are homotetic, . \\\
i.e., = al+ €9, WandD are the bandwidths of thetand =0 NN
f bands, respectively, wheig2= aoW. The quantitya is then o '/2 - - S - -

the ratio of effective masses,=m%m’,, of the quasiparti-
cles in the two bands. In the present study we restrict our-
selves to the half-filled casa{+n%=2). In the main part of FIG. 1. Ground-state phase diagram fd¢/D=0.25 anda

the work we will take the two renormalized banéls,{, to  =0.1. Below the thick line there is coexistence of superconductivity
be centered at the Fermi levéhe symmetric cageln our  and excitons. In the boundary of the coexistence region the normal
model, this corresponds to sej=U/2 andu=G/2. Within  state is metallic, and becomes nonmetallic for the region above the
these assumptions, the critical value to open the hybridizadashed lingin units of half bandwidth of the narrow band

tion gap isVy=W/a/2.12

2G/D

whenever the two phases coexist, it is the superconducting
state that has the lowest free energy. The pure excitonic so-
lution becomes a true minimum & only when the super-

) i conducting solution disappears.

From the propagator&2)—(4), we obtain the following Figure 1 shows the ground-state phase diagranuJft
self-consistency equations that determine the valued of _q o5 anda=0.1, where a square band model is used for
andA: thef andd bands. For small and intermediate value¥/@ind
G, the ground-state solution is the coexistent phase of super-
conductivity and excitongregion | of the phase diagram
For sufficiently large values of andG, the superconducting
order parameter vanishésegion 1l). For each value o6,

Ill. THE EFFECT OF HYBRIDIZATION AND INTERBAND
COULOMB REPULSION ON SUPERCONDUCTIVITY

1
A:N_E

uA [(Eik—zﬁ
s k (Eik_Egk)

2E, tanh BE ,/2)

(BS54 there is a critical value of the hybridizatio, at which
B 2E,, tanh(BExl2) |, (5) superconductivity is suppressed. For valuessdarger than
a critical valueG,; (G>G,), the critical valueV, is zero. On
1 Y, (E2+ /L —V?) the other hand, for any finite value ¥t A is nonzero. This
= NC > > 5E tanh( BE,/2) resu!t is e.xpected due to the fa_ct thak mdependent, Io_cal_
s k (Ef—E%) 1k hybridizationV acts as the conjugate field of the excitonic

order parametéf However, a$/ is reduced, the value of the
6) excitonic correlation parameter is reduced and vanishes as
V—0 within the coexistence regiofiegion ). This means
that there is no coexistence of excitons and superconductiv-
yity for zero hybridization. This is caused by the competition
between superconductivity and excitonic pairing, and it is in
contrast with what occurs in the nonsuperconducting exci-
tonic state solution(region Il), for which the value ofA
approaches a nonvanishing value\agoes to zero. A very
7 similar result was recently obtained by Czychbdih a study
of the competition between excitonic correlation and charge
It is easy to check that minimizing the free energy  ordering in the Falicov-Kimball model, which becomes exact
with respect ta\ andA we obtain again the self-consistency atV=0. o _
Eqg. (5) and (6). These equations admit two types of solu- For the Anderson model, i.e., in which the caseftband
tions. One of these is the superconducting state, for whicl§ localized € =0), we can get an analytical expression that
superconductivity and excitons may coexist0A>0).  determines the critical value of the effective hybridizafin
This solution is possible i¥ andG are less than some criti- at zero temperature. For this purpose, we 5et0 in Egs.
cal values. The other is a pure excitonic solutigkt0,A (5) and (6) and integrate the resulting expressions with a
=0), which exists for any value o¥ and G. However, square density of states model for théand. This gives the

_(Ejtead=V?)
2E,

tanh BE,/2)

whereNjg is the number of sites in the lattice. The free energ
is obtained from the trace formula

F=— ZTZk _22 In[2 costi BE;/2)]

+NgA%/U+2NGA%— uN.
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FIG. 2. The critical value of the hybridizatioxf; to suppress
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2V/D

A>Ag

4 A=

non metal

2G/D

FIG. 3. Phase diagram folJ/D=2.5 and a=0.1 (U/W

superconductivity for different values of the interband Coulomb=0.25). In the shaded area, there are two solutions that locally
repulsionG, for the case in which thé electrons are localized minimize the free energy and there is a first-order transition when

(Anderson model The curves correspond ®/W=0 (solid line)
andG/W=0.4 (dashed ling In the presence of thied repulsionG,
the critical valueV. is zero for values ob less than a valu¥l .y,
which increases a6 is increased.

following equations that determiné, andA. :

U w\® u W
1=— = — —sinh Y| —|, (8)
2V, 4V, W 4V,
A AV - W ©
= Sin — |
cw AVA

where A, denotes the critical value ok for the valueV,
[A.=A(V.,A=0)]. Using the definition of/ and Egs.(8)
and(9), we can obtain the value &f. for a givenG.

From Eq.(9) we also get the critical value of the Coulomb

interband repulsion to suppress superconductivity for zera 2
hybridization 2v/D As>a,
A=10
A>0
W 1 15 tal
GC:§ (10) \A\>Ag non metal

W i
sinh Y| —
4V,

where the value oY/, is determined by Eq(8). In Fig. 2 we
plot the results oV, given by Eqs(8) and(9) as a function
of U/W.

We have constructed the phase diagram for the genere

two-band model for different values &f and «. Figures 3
and 4 show the phase diagram 1dfD=2.5, with «=0.1
(U/W=0.25) anda=0.5(U/W=1.25), respectively.

In the shaded region there are three solutions for the self-
consistency Eqg5) and(6), but one of them is an unstable

the parameter¥ and G are varied.

=0). For sufficiently large values dg, the excitonic-state
solution minimizes the free energy and the ground state is
normal.

For values ofa other than those considered in Figs. 3
and 4, the phase diagram is very similar, with different criti-
cal values ofV and G. In both cases of Figs. 3 and 4, the

normal state is nonmetallic becau¥e>V, at the critical
line.

The shaded regiothysteresis regionis mostly reduced
for weakU (Fig. 1), but it is still present. This supports the
fact that the discontinuous transitions are not an artifact of
Hartree-Fock approximations since they exist for sntall
where this approximation is expected to be valid. However,
the results shown in Figs. 3—6 must be viewed as only quali-
tatively correct, because of the poor description given by the
Hartree-Fock decoupling for large values of the interaction.

N I

0.5

2G/D

FIG. 4. Ground-state phase diagram @D =2.5 anda=0.5

solution (Figs. 4 and % If V or G are increased in this re- (U/W=1.25). Comparison with the phase diagram of Fig. 1 shows
gion, there is a first-order transition from the coexistentthat the critical values 0¥/D andG/D increase for larger values of

phase A>0,A>0) to the normal excitonic phasé&0,A

1/a. Note that, in both cases, the normal state is nonmetallic.
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0.6
A w<<fl 0'; 2 t”«f] 0'; >
0.5 1
‘\ a G<<nl i— o" >> _A«fl—o'f >)w’
0.4 (13)
wherenf= ”m+ nIl We now calculate the equatlons of mo-

tion for the new generated Green’s functigief;,; f{ )y,
and{(nff{_,;f{,)),,

IIO”

03
0.2

0.1

1
b (w—G)«nidfig;frg»w:E(nde

% 0.5 1 15 2 +<nd>2 tIJ<<fJU'fI(r>)

2V/D

. . . . <nd>A<<fl a" |<r>>w' (14)
FIG. 5. Excitonic order parametéras a function of the hybrid-

ization for (a) G=1, (b) G=3. The dashed line denotes the un-
stable solution and the arrows denote the valued/ it which (0—G){(n T, i F1 )Y, ——<nd>2 t”(<fJ oM
superconductivity disappears. This occurs continuouslydpand

discontinuously for(b). In the last case, the arrow indicates the —<nd)A(<f f >>
point at which the excitonic state becomes energetically favorable. to

The dotted line denotes the solutioA> 0,A=0) for the region in
which it is unstable.

(15

Equation(14) was obtained using the approximation that
characterizes the Hubbard-I approach

We now consider another approach that is more appropri-
ate to deal with the case of strong correlations between elec- >t «rd; d;, dT dig 1 Fl))=~0.
trons. This is the so-called Hubbard-I methH8dyhich al- !
lows to study the effect os on superconductivity, for zero
hybridization, in the case of large values of this interaction.
The Hubbard-I approximation is expected to give reliable
results in the strong coupling case in the absence of magnetic «ndfm,f Ny~ <nd>(<flg,f Y
ordering’® For simplicity, we shall taker=1. We also as-
sume that the attractive interactiah can be treated at the and
mean-field level, as done previously. The Hamiltonian to be

A similar term was neglected to obtain E45). We have
‘also used the decouplings

det d
Considered now is <<nlf] 0'1 >) <n ><<fj a-! (r>>
Substituting the equalitie€l4) and (15) in Egs.(12) and
H= >, t”f,t,f],,+ E tidl,d;j,—U> nfinf| (13), and going to Fourier space, we get the following set of
(ie i equations for the regular and anomalous Green’s functions:
+G> n nd . (11) [(0—€)(0—=GC)—(ND)Ged((foiflo)e
ica’
1

Notice that the Hamiltonian above differs from Ed) not =E[w—(l—(nd>)G]
only for the fact that hybridization is absent, but also because
the interband repulsio® acts betweefiandd electrons with —Alo—(1—=nMGCKFT i fl M.,
the same and opposite spins. If a mean-field treatment is
applied to Eq.(11) and we neglect magnetic solutions, we [(w+e)(w+G) (nd)Gek]((fT o f 0))
obtain results similar to those obtained for Ky, with the §
difference that nowy = \2AG. =—Alo+ (1= G)(frrifie)e-

The frequency dependent Green'’s functions obeys the fol-

lowing equations of motion: Consistently with the previous calculations, we assume

half-filled bands, withn%y=1 and(n)=1. In the following
equations, the chemical potential is taken to be zero. This is

1 o .
o{(fig it ))0= 5”4-2 t”((fw,f Y because the Hubbard-I approximation gives two subbands
located at both sides of the zero energy level. Each band can
+G<<nidfi<r;f| e A«f. if >>w, accommodate one electron and, thus, the half-filled condition

is consistent with takinge=0. In this case, we find the
(120  following expression for the anomalous propagator

184503-4
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suggested that discontinuous valence transitions may occur
in a weak coupling superconductor described by an Ander-
son lattice model that includes the Falicov-Kimball tefn.
The question of whether the Falicov-Kimball model gives
discontinuous transitions in theslectron occupation number
has been largely discusséRlefs. 7,8 and references thenein

It has been shown by Led®rthat even in a Hartree-Fock
treatment the discontinuous transitions disappear when the
renormalization of the hybridization due #is taken into
account. Since in the superconducting state this renormaliza-
tion is reduced, we could expect that discontinuous transi-
tions could appear.

We have calculated the value of as a function of the
energy level of thé band, which is assumed to be localized
(ex=€p), going away from the symmetric case. From E4.
we obtain that

0.6 7

E
3

== NN
0.2 :\\\\ \
‘1 A‘

0
1 1 1, ,
FIG. 6. Contour plot of the free energy f&=3.8,V=0.2, « nf:N_S ; 1- (E2—E2,) E_lk[Elkéf_gk( €1lk
=0.5, andU/D =2.5. There are three stationary pointsrofone of 1k =2k
them being a saddle point and, thus, an unstable physical solution. _ 1 5
The other two are the excitonic and coexistent solutions. Depending —V?2)Jtanh BE1,/2) — E—[Ezksf— L€l
on the values ofV and G, one or the other is the solution with 2k
lowest free energy. —VZ)]tanl‘(,BEgk/Z], (19)
" " 1 A where €;=¢e;—U/2 and {, was defined previously. This
(<f—k—(rifk<r>>wzﬂ (0+ €+ G)(w—e—G)—AZ’ must be solved together with E¢$) and(6) and the condi-

(16)  tionn’+n9=2, which fixes the chemical potential. From the
) ) ) _ Green’s functions of théandd electrons we obtain that this
From which we get the BCS-like equation that determifies  condition may be written in the form

A== S Eanpng2 (7 _t |1
= — ——tan Nk , z = 2 IN__ A2 ’ !

N 2 [Exc(€rt+ &) — AL = (L + €r) (el

s k Tk " (Eik_ Egk) Elk
where 7,= /(e,+G)?+AZ?. Integration of Eq.(17) with a 1
constant density of states, yields the critical valag for —V?)Jtanh BE 1 /2) — =—[E3 (€5 + L) — AL
zero temperature Eax
1 W -1 _ 4 r_\/2 =
Gemw tank(U) 19 (it en)(eri—V2) tank BE,/2) | = 0. (20

. , . . ) Figure 8 shows the value of; as a function ofe; . We
This result agrees with that derived in the mean-field ap{ave not obtained discontinuous transitions for nonvanishing

proximation, in the sense that it confirms that the interban bridization. While the value o¥ is reduced b rcon
repulsionG may destroy superconductivity even in the ab- ybnidization. € he value oV IS reducead by supercon-
uctivity, this reduction is not sufficient to allow for discon-

sence of hybridization. In the intermediate regime, the result inuous changes in, . The figure corresponds to the values
. - . f .
for G, obtained from the two approximations agree veryU/W:0.01__),\//\/\/:0.025 for G/W=0.125 andG/W=0.2.

mi”.m\/gznrjﬁgﬁj C;;E#gﬁg ai?oenvfﬁf 16fcar[1f(rjoun;vl\5/q:.(()121)]olg_ For these values dfl andV, superconductivity is destroyed

taining the valueS, /W=, which practically coincides with 0 G/W=>Gc/W=0.179]as can be checked from Eq8)

the value obtained from the relati@h8) for the same values and (.1.0)]' It cannot be excluded that dlscontlngogs valence
transitions may occur for strong valueslofbut this is prob-

of the parametera, U. ably nonrealistic for mixed-valent compountds
Thus, the two used approximations provide complemen- y P ’

tary results for the weak and strong coupling cases with a
smooth interpolation between thefsee Fig. 7. V. THE EXCITONIC PAIRING MECHANISM

Up to now we have assumed that the pairing potetdial
is independent of the excitonic correlation. However, the re-
sults can be modified ifJ is an intrinsic function of the
We now consider the effect of the superconductivity onparameteiA. As mentioned previously, a pairing mechanism
the properties of a mixed valence phase. Recently, it wabased on excitons was proposed to explain superconductivity

IV. MIXED VALENCE SUPERCONDUCTORS

184503-5
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FIG. 7. The critical valu&s. /W as a function ofJ/W obtained
in the mean-fieldsolid curve and Hubbard-l(dashed curveap-
proximations, witha=1.

FIG. 8. Average number dfelectrona; as a function ok;, for
U=0.1,V=0.05, andG=0.25(solid line, superconducting state
G=0.4 (dashed line, normal state

in HTSC. Several works have suggested this as a plausible
source of electron pairintf~*°We now compare our results temperatureT. at which superconductivity disappears. If
with those found in these previous works. In the region intemperature is further increased, there is a metal-nonmetal
which we have obtained a coexistence between superconduitansition associated with the vanishing of the hybridization
tivity and excitonic correlation, a pairing mechanism basedgap. This transition will be studied elsewhere, where its pos-
on excitons is suitable. In fact as shown in Refs. 17-19sible relevance for higi-, superconductor cuprates will be
close to regions of charge-transfer instabilities as well asonsidered.
phase separation, superconductivity may appear by taking
advantage of collective charge-transfer excitations as a

source of pairing. Notice, however, that as we go away from

these regions of instability, as in the cage-0, such thatA In summary, we have constructed the ground-state phase
tends to zero, this mechanism cannot hold. Since a flnltg|agram for the modd]l)' Showing the regions of parameter
value ofVis required, and large values Wfact in detriment  space for the pure superconducting, coexistent, and normal
to superconductivity, there is a range of intermediate valuegtates. For each value &, there is a critical value of the
of V for which pairing is optimized andl. will have a maxi-  hybridization for destroying superconductivity, which de-
mum in this rangé’ creases ass increases. This critical value becomes zero
In Refs. 18,19 it was shown that a minimum value®is (v =0) if G is greater than a critical valu@,.
required to make negative the binding energy of electrons e have shown that the presence of hybridization is re-
pairs. Particularly, in Ref. 19 it was shown that the bindingquired in order to occur a coexistence between superconduc-
energy approaches a constant valugas <, which makes tjvity and excitonic correlation. For the particular case of
appropriate our approximation of constahtin this approxi-  vanishing hybridizationy/=0, these two correlations com-
mation, our results show th& acts in detriment to super- pete strongly and only one of the two remains finite.
conductivity, and, as a consequence, similarly to what occurs The fact that hybridization acts in detriment of supercon-
for V, there is an intermediate value & for which the  qyctivity is well known and is often used to explain the
pairing is optimized. This means that there are optimum valgpsence of superconductivity?? We have shown here the
ues ofV and G, for which superconductivity is mostly fa- importance of the interband repulsi@to enhance this ef-
vored. An experimental consequence of this is to give rise t@ect and even to suppress superconductivity solely by itself
negative or positive values afT./dP. When pressur® is  in systems in which hybridization is negligible. This result
applied, the hybridization and Coulomb repulsion will be was obtained within a self-consistent mean-field and
renormalized causing an increment or decrement of if  Hubbard-I approximations, which provide a good interpola-
the valuesV and G are approached or departed from thetion for all values ofG.
optimal values. This also shows that high valuesTgfre- For the particular case in which the mechanism for super-
quire fine tuningof these parameters. conductivity is the excitonic pairing, we have shown that the
We now consider briefly the effect of finite temperature inmodel gives rise to negative or positive valuesddt, /dP.
the different regions of the phase diagram. In the superconfhijs is because there are optimum values of the hybridiza-
ducting region(excluding the shaded aneasT is increased, tion and the repulsive interaction that maximizes the critical
A diminishes and becomes zero continuously. In the regiofiemperatureT,. Pressure application can then approximate
whereA>AgE(\~/g—V)/G (which means thaf/>vg), the or depart the values o¥ or G of the system from these
system goes to a nonmetallic state wHeneaches the critical optimal values.

VI. CONCLUSIONS

184503-6
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The effect of superconductivity on valence transitions insuperconductivity and excitonic correlation can be relevant
weak coupling mixed valence superconductors was consicand must be included in an adequate description of supercon-
ered. We did not find discontinuous valence transitions in theluctivity in a two-band system for any kind of pairing
superconducting state. Although the renormalization of thenechanism.
hybridization is smaller in the superconducting state, the in-
fluence of this reduction on the shape of the occupation num-
ber curven;, as a function of;, is very small.

We note that the results for the mean-field and Hubbard-l We would like to thank Conselho Nacional de Desen-
approximations are in agreement in the intermediate couvolvimento  Cientico e  Tecnolgico-CNPg-Brasil
pling case because the excitonic correlation was taken inttPRONEX98/MCT-CNPg-0364.00/00 Fundaca de Am-
account. If this were not the case, the results from the twgaro a Pesquisa do Estado do Rio de Janeiro-FAPERJ, Cen-
decoupling schemes would be very different, as occurs itro Latinoamericano de Bica-CLAF, and Facultad de
valence transition& We conclude that the interplay between Ciencias-Uruguay for partial financial support.
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