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Why holes are not like electrons: A microscopic analysis of the differences
between holes and electrons in condensed matter
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We give a detailed microscopic analysis of why holes are different from electrons in condensed matter.
Starting from a single atom with zero, one, and two electrons, we show that the spectral functions for electrons
and for holes are qualitatively different because of electron-electron interactions. The quantitative importance
of this difference increases as the charge of the nucleus decreases. Extrapolating our atomic analysis to the
solid, we discuss the expected differences in the single-particle spectral function and in frequency-dependent
transport properties for solids with nearly empty and nearly full electronic energy bands. We discuss the
expected dependence of these quantities on doping, and the physics of superconductivity that results. We also
discuss how these features of the atomic physics can be modeled by a variety of Hamiltonians.
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[. INTRODUCTION electron atomic states, are the same for a shell witec-
trons and one withi holes (i.e., p-i electron$.®® This of
The understanding of electronic correlation in solids andcourse extends also to cases where more than one shell is
its consequences for charge transport and for collective phéacomplete. As a consequence, the atomic multiplet structure
nomena are fundamental problems in condensed matt&f a shell withi electrons is identical to the one wittholes
physics. At the simplest level, electronic correlation mani-Within first-order perturbation theory in the Coulomb inter-
to the old problem of the two-electron atdand show that a pe_rturbatlon theory _holds for atoms,. ellectron—hole symmetry
fundamental physical principle emerges from éfgctron- exists for the atomic states, and similar arguments can be
hole asymmetryWe then show that the understanding of used to argue for electron-hole symmetry in energy bands in

electron-hole asymmetry at the atomic level provides insighﬁletsm'd sltaté.t1]:h|||s, |mglle];s tlhattthe_ states of Storgmtih?lls
that implies that this asymmetry has fundamental conse- at are aimost ull, and of electronic energy bands that are
. . “almost full, can be described in terms of the states of few
guences for the physics of charge transport and collective . .
henomena of the solid state positively charged holes, instead of the states of many nega-
P ) tively charged electrons. The physical reality of the hole con-

Remarkably, none of the many-body Hamiltonians thateg ¢ for transport in solids was first demonstrated by Hall's

are most WidelX used to study the effect of electronic correy, o5 remefitand Peierls’ explanatidfof positive Hall co-
lation in solid$** such as the Hubbard model, extended Hub-gfficient in solids with nearly filled electronic energy bands.
bard model, degenerate Hubbard model, the Anderson impu- However, in this paper we show that electron-hole sym-
rity and lattice models, the Kondo model, Falicov-Kimball metry in fact does not exist in atoms, and consequently it
model, Holstein model, Su-Schrieffer-Heeger model, &dd  will not exist in electronic energy bands in solids. Instead,
model, contain this very basic and fundamental aspect ofve argue that electrons and holes firedamentally different
electronic correlation that follows from the atomic analysis.objects In some sense, in the light of the above discussion,
Hence we argue that these models are fundamentally flawethis can be understood as a failure of first-order perturbation
We propose a variety of other model Hamiltonians that contheory. It is of course not surprising that perturbation theory
tain this physics, which may be generically called “dynamicin the electron-electron Coulomb interaction should fail. The
Hubbard models®>® These models lead to a new under- electronic stucture of noninteracting electrons in atoms is
standing of the physics of charge transport in solids, and to determined by the Coulomb interaction between electrons
universal mechanism of superconductivity* and ions, which of course has the same coupling constant as
The observation that electrons and holes in atomic shellthe electron-electron Coulomb interaction. Thus, ihever
are in some sense equivalent was first made by Heisenbergtrue that the spacing between noninteracting electron atomic
It is easy to see that in the absence of electron-electron irenergy levels is larger than matrix elements of the electron-
teractions, an atom withelectrons in an outer partially filled electron Coulomb interaction, the regime where perturbation
shell defined by quantum numbetsl, has the same multip- theory may be expected to be valid. Despite this, it is fortu-
let structure as an atom wiihri electrons in this shell, with nate that the qualitative structure of atomic multiplets and
p=4l+ 2 the total number of electrons that can fill this shell. their quantum numbers are the same for electrons and
In particular, this is trivially true for as shell (=0), where  holes!?
the state with one electron in tms’ shell isidentical to the The physics of electron-hole asymmetry that results from
state with one hole in th@s® shell. Furthermore, all the electron-electron interactions occurs even $oshells, and
matrix elements of the Coulomb interaction operator, botheven for the atomic 4 shell that is most isolated in energy.
diagonal and off-diagonal, between these noninteractindhis is the case we will analyze in this paper. It is natural to
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expect that the phyS|9s that we flnd here should have an even WL(ry,rp)=o@7(r1) e7(r,), (33
larger effect for atomic states with higher quantum numbers,
where shell occupation becomes larger and energy levéhere
separation becomes smaller. 5

Since for ars shell the one-electron state and the one-hole 7=7— — (3b)
state are the very same state, one may ask how it is possible 16

to understand electron-hole asymmetry based on it. The poiRgsy|ts from minimization of the total energy for a variational
is., in considering the process of transport qf charge in solid$yayve function of the form Eq(3a). Equation(3) describes
with electrons or holes, we need to consider not only theyn expanded orbital for each electron, due to the partial
atom in a given charge state, but also processes where eleghie|ding of the positive nuclear charge by the other electron.
trons and holes arereatedand destroyedas conduction oc- |, Eq. (3), both electrons reside in the same expanded or-
curs. It is these creation and destruction processes that Copjtg]. A slightly better approximation of the Hartree form is
tain the physics of electron-hole asymmetry even at the levedptained by allowing for the most general single-particle
of a single atom and even farshells. wave function rather than the exponential form EL. For

_ This paper is organized as follows. In the next section Wesxample, the error in the ground-state energy of the He atom
discuss the electronic state of two electrons in theHtell of s 1.9506 with Eq.(3) and 1.45% with the optimal single-

ions of nuclear chargg. We show that the state of the two- particle wave function in the Hartree wave function.
electron atom is strongly influenced by electronic correlation
effects, the more so the smallgris. In Sec. Ill we discuss
the calculation of the atomic spectral function for electrons o ) ) )
and holes, and the qualitative reasons for why they are fun- A better approximation is obtained by allowing for radial
damentally different. Section IV discusses results for thecorrelations, through the wave functfdn

atomic spectral function within the various approximations

for the state of the two-electron atom reviewed in Sec. I1. In ©z7,(r)ez,(r2) +¢z,(r)ez,(r2)

B. The Eckart wave function

Sec. V we discuss the consequences of these results for the We(ry,ro)= 2(1+S2,)12 '
properties of electrons and holes in the solid state, in particu- 12

lar for the single-electron spectral function and for S=( ) (4b)
frequency-dependent transport. In Sec. VI we discuss the 1271 $2,, €2,

consequences of this physics for the understanding of sup&fhere the exponent, andZ, are again obtained by mini-
conductivity in solids. Sec. VII discusses several modelnization of the total energy, for a wave function of the form

Hamiltonians that contain the physics of electron-hole asymeq. (4). The numerical results foz, and Z, obey the ap-
metry found at the atomic level. We conclude in Sec. VIl proximate relations

with a summary and discussion of our results, a review of the

empirical and experimental evidence in support of this phys- Z,=1.14-0.105, (53
ics as the underlying universal mechanism of superconduc-
tivity in solids, and a survey of some of the many open Z,=0.90%2—-0.622. (5b)

guestions and opportunities for further research in this are%enCe one of the electrons resides in an orbit of approxi-

mately the same radius as that of the single-electron ion, and
Il. THE TWO-ELECTRON ATOM the second one resides in a substantially enlarged orbit. The

The wave function for an electron in the Iowest-energyminimization procedure resulting in the valuesZfandZ,

state (k) of a hydrogenlike ion of nuclear chargeis becomes unstable f92$0.93. For He, the error in the
ground-state energy is now reduced to 0.98%.

3,172
ez(r)= 7) e ?f 1) C. The Hylleraas wave function

. . ) ) Much more accurate wave functions for the two-electron
with r measured in units of the Bohr radiag. The ground-  system are obtained by introducing dependence of the wave
state wave function of the two-electron ionnist, of course, ¢ o on f1,=|F1—T,| in addition tor, andr,, which
V(110 = 0p(F1) 0n(Fs) 2 allows for angular in addition to radial correlations. We con-

Li2) = ezt ezitz sider here the simplest wave function of this form, Hylleraas’
. . . g H ” H . . 2
because of electron-electron interactions. Consider the fol-dritte Naherung” (third approximatioix
lowing approximations to the ground state of the two-

electron ion. W1y(r1.72) = Ne(2Zks 2Zkt,2Zku), (6a)

s,t,u)=e ¥ 1+c u+c,t?], 6b

A. The Hartree wave function o ) [ 1 2t’] (6b)

The simplest approximate wave function that takes into S=rq+ry, (60
account the effect of electron-electron interaction, is of the

Hartree form t=ro—rq, (6d)
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TABLE I. Orbital exponents and enerdin Ry) of two-electron atom foZ=1 (H") andZ=2 (He) for

the Hartree wave function E) (Z, E,), the Eckart wave function E¢4) (Z;, Z,, Eg) and the Hylleraas
wave function Eq(6) (Zk, Eyy). The experimental value of the enerdy.() is also given.

z Z EH Z1 ZZ EE Zk EHy Eexpt
1 0.6875 -0.9453 1.0392 0.2832 -1.0266 0.769 -1.051 -1.0554
2 1.6875 -5.6953 2.1832 1.1885 -5.7513 1.816 -5.805 -5.808
U=rio. (68 Uer(Z2)=E(2)+E(0)—2E(1) @)

The parameters,, c,, andk are determined by minimiza- with E(n) the ground-state energy for the ion withelec-
tion of the energy, as described in the Appendix A, & trons[E(0)=0, E(1)=—2Z2, with E in Ry=13.6 eV]. For
a normalization constant. Both this as well as the previoushe wave function Eq(2) with the electrons occupying the
wave functions yield upper bounds to the ground-state ensame orbitals as in the singly occupied atom

ergy.c,; andc, are found to be positive, indicating that for
givens=r,+r, the wave function is larger for large angle

betweenr,; andr, (angular correlationsand for large|r,
—r,| (radial correlations The error in the He energy with
the wave function, Eq(6), is reduced to 0.05%. Table | 3 i3, 5
summarizes the values of the energy and orbital exponents U=f d>rd>r’|@z(r)|
for the three wave functions discussed for the Be-@) and
the H (Z=1) ions compared to the experimental values. and for the Hartree wave function E()

Figure 1 shows the orbital exponents versus ionic charge
in the different approximations. The Hylleraas wave function UH —EZ— E ©)
has an orbital exponent similar to the Hartree wave function, eff™

4 128’
while the exponents of the Eckart wave functions are very

different. This suggests that even though the Eckart wavémaller than Eq(8a) because the wave functions are more
function gives better results than the Hartree one for the er@XPandednote, however, that this is different from the ac-
ergy, the Hartree method may give a better representation &¢al Coulomb integral Eq8b) computed with the Hartree
the wave function itself. Figure 2 shows the parametgrs Wave functions, due to the _cost in electron-ion energy paid
andc, of the Hylleraas wave function, which describe angu-P2Y the expanded wave functiongor the Eckart and Hyller-
lar and radial correlations, respectively, versus ionic charge?@S Wave functions the effectivé becomes progressively
Note that both parameters increase rapidly as the ionisMaller, corresponding to the decrease of the two-electron
charge decreases, and that angular correlations are muEREr9YE(2) with increasingly better wave functions. Figure
more important than radial correlations for large 3 showsU ¢ versus ionic charge in the different approxima-
The different wave functions discussed above describe aflons- _ o _ _
tempts of the electronic wave function to reduce the Cou- Figure 4 depicts qualitatively the electrons in the atom in
lomb repulsion between electrons, without paying unduly inth€ different approximations. We emphasize that the two-
electron-ion energy. The effective Coulomb repulsion pe-£lectron wave function in any of the approximations dis-

5
Uer(2)=U=7Z, (8a)

e2

—le(r)2 (8D)
Ir=r’|

tween electrons is cussed is very different from the one corresponding to non-
20— 7T 0.6
[ 0.5 |-
5 15 |- -
c [ E
2 0.4 —
o [ -
>Cg_ + L
o Lo 0.3 F
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FIG. 1. Orbital exponents for the two-electron atom vs ionic
chargeZ for the Hartree(full line), Eckart(dot-dashed lings and FIG. 2. Parameters in the Hylleraas wave function &.de-
Hylleraas(dashed lingwave functions. The dotted line shows the scribing angular correlationsc{, full line) and radial correlations
orbital exponent for the one-electron atomZ). (c,, dashed lingvs ionic charge.
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I e I e should be favored when the effective ionic charge is small,
i g i.e., with negatively charged ions. This simple fact, which
2.0 F provides some rationale for high-temperature superconduc-
C tivity being favored in systems with negative ions (Qin
> 15k single porticle—s A7 cuprates, B in MgB,) has surprisingly not been pointed out
. [ orbitals A before to our knowledge.
> 1.0 - ” Hylleraas -
IIl. ATOMIC SPECTRAL FUNCTIONS
0-5 i ] Properties of many-electron systems can be studied by
0.0 L ] consideration of spectral functions. The zero-temperature
o 0.5 1 1.5 2 one-electron spectral function for a many-body system is
F4 conventionally defined as

FIG. 3. EffectiveU [Eq. (7)] vs ionic chargeZ for the Hartree
(full line), Eckart (dot-dashed ling and Hylleraas(dashed ling
wave functions. The dotted line gives the batdEq. (8)] for the
two electrons in the single-particle orbital.

A()= 3 [[(n[c],|1)]78(w— (BN —EY "+ uy)

+l(nleagl DI? oo+ (EN T —EY = un-1)],
interacting electrons, E@2). For the purposes of this paper, (103
any of these wave functions, including the simple Hartree

one, describes “electronic correlation,” in the sense that thQ/vhere|1> is the ground state of thé-electron systenE’I' its
two-electron wave function is different from the one given inyround-state energy, anduy=EN*"1-EY, un_=EY

Eq. (2), and is appropriate to illustrate the physics of —EN"L. For a metaluy=py_ 1=, and one can redefine
electron-hole asymmetry. Note also that the difference beg, %‘re. PN PN
; guencyw— w+ u So that Eq.(108 becomes
tween these wave functions and the uncorrelated wave func-
tion, Eqg.(2), increases as the ionic chargedecreases and o
the relative importance of electron-electron versus electron- Alw)= 2 [|<n|cT |1>|25(w_(EN+1_ EN*1))
ion interaction strength increases. n=1 a7 " !
It is also worth pointing out that the electron-electron re- ) Nel —N-1
pulsionU¢; decreases as the ionic chaifydecreases for all +(n[Cqe| I* 0w+ (Ex""—E1~7)] (10D

these wave functions, including the uncorrelated one. Hence, dth f the-functi N t th :
everything else being equal, pairing of electrdos holes and the zeros o -function arguments occur at the exci-
tation energies of the system. To have a smooth transition

between the metal and atomic spectral functions we will here

A QUH] define the atomic spectral functions as ELpb) rather than
Eqg. (10a. The first term describes the response of the system
when an electron of spimr is created in the single-particle
statea, into the ground state withl electronsE} " is the
nth excited-state energy of the many-electron system with

Hartree Hylleraas N+1 electrons. Similarly, the second term describes the re-
Eckart sponse of the system when an electron of spirat the
single-particle stater is destroyed from the ground state of
the N-electron system, anB) ! are the excited state ener-

Remove an|electron gies of the resultingNl — 1)-electron system. Generically, in
many-body systems the one-electron spectral function is of
the formt®

‘@ A(0)=28(w— (€= 1))+ Ainc(w), (1)
single electron where the first term describes the quasiparticle, with quasi-
state particle weightz, 0<z=<1, and the second term describes a

FIG. 4. Qualitative depiction of the two-electron state: in the continuum of incoherent excitations at higher energies. For a

Hartree wave function, both electrons occupy the same expandednall system such as an atom, however, the spectral function
orbital; in the Eckart wave function, the electrons occupy differentWill consist of only discretes functions. Nevertheless, we
orbitals; in the Hylleraas wave function, the amplitude of the wavecan identify the lowest-energy function as corresponding
function depends on the relative angular and radial coordinated0 the quasiparticle, and its coefficient as the quasiparticle
When removing an electron from any of these two-electron waveveight.

functions, the state of the remaining electron has to change to be- The fundamental asymmetry between electrons and holes

come the eigenstate of the single-electron atom. follows immediately from consideration of these spectral
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functions. Consider the spectral function for creating an elec- _ s 3 ..
tron in the empty atomiN=0. From Eq.(10b), it is simply Su( )=J d7rd°rW(ry,ro)ez(r) ea(ra) . (16)
Ag(w)=8(w) (12 Note that the hole spectral function as defined by B8)
L . N . satisfies
so that it is totally coherent, with quasiparticle weight 1.
Consider next the spectral function for creating a hole in (= 5 . 5 2
the full 1s shell fo dWAh(w):; Sﬁf d¥ry [ AW (re,ra)ea(ra)| .
2 1 1 (17)
Ah(“’):; [(nlca | DI*(0+Er—ED). (138 | the Hartree approximation
The excitation energies in E¢L33 are the ones of the singly * _
occupied atom, 0 doAn(w)=1, (18)
. 72 while with the more accurate wave functions, the frequency
En=——> (13D integral of the hole spectral function is less than unity. This is
n because there is also a nonzero probability of creating an
and the matrix elements are electronin the single-particle state,, into the two-electron

atom. However, that probability is found to be small.
B 3 3 . - Finally, the atomic spectral function for the singly occu-
<n|ca,T|1)=Sn=f A d¥r oW (ry,ro) @alrs) en(ra) pied atom is of interest. We consider separately the positive
(130 and negative frequency parts. The spectral function for de-

, i struction of an electron in the singly occupied atom is
with ¥ the two-electron ground-state wave functign, the

wave function for thenth excited state of the singly occupied , 5 o —o

atom, ande,, the single-particle wave function of state Au(@)=2 [(n|cy|1)?8(w+Ef—ED), (19
The important qualitative point is, becau$eis not given by ¥

the product form of single-electron wave functions E2),  which is of course also given by

the spectral function Eqd133 necessarilyconsists of asum

of & functions rather than a single one as Ftp): A(w)=d(w) (20)
and the spectral function for destruction of a hole in the
An(w)=28(w)+ 2 Sﬁ&(m— Eﬁ— Ei), (149 singly occupied atom, or equivalently creation of an electron
n#1l

in the singly occupied atom, is

=52, 14b ) ,

1 (4n M0)=3 ()25 (E2-ED), @D
Hence, the spectral function for hole creation Etda is "
qualitatively differentfrom the one for electron creation Eq. WhereEﬁ are the excitation energies of the doub|y Occupied

(12). atom, and

The foregoing remarks are true famy single-particle
wave functione,. Which is the appropriate, to use to , 3 3
define the hole spectral function? We argue that it is reason- Sn:f d°r 10729, (r1) @z(ro) Wi(ry,ra) (22)
able to use the single particle wave function that maximizes ) _
the quasiparticle weight of the hole spectral functi&, with ¥, the wave functions for the excited states o_f the
(such a hole wave function will have minimal kinetic energy tWo-electron atom. Once again, the spectral funcignis

!

in the solid. For the Hartree wave function, E¢Ba), it is  qualitatively different fromA;,, as it contains an incoherent

simply given by part. The spectral function for the singly occupied atom as
defined by Eq.(10b) will be either Eq.(20) or Eq. (21)
@ (r)=gz(r) (158  depending on the value @f in Eq. (10b) and of the spin of
the electron in the singly occupied atom.
and To estimateS;, we need the excited-state wave functions
(22)%2 for the doubly occupied ion. The excited states are approxi-
_ 3 _ mately described by one electron in the ground state and the
Sl_J drea(r)ez(n) = Z+Z 3 (15h) otherizlectron in arz/ excited state of the?on with orbital ex-
o ponentZ, ¢,3, with Z given by Slater’s rules:
with Z=Z—-5/16. For the Eckart and Hylleraas wave func- 7Z=7-0.85 n=2, (239
tions, we use a single-particle wave function of the form Eq.
(159, with Z determined by maximization of the function 7Z=7Z-1, n=34,.... (23b

184502-5



J. E. HIRSCH

PHYSICAL REVIEW B 65 184502

2.0 [ 5 1.0
_ f 0.8 -
1.5 |- 7] i
single particle—=- 77 [
g o 0.6
z H
5 1.0 - 7 — N L
s 0.4 |
r s~—Hylleras r
0.5 -_Har‘tr‘ee—.>‘_,' /‘//I;:ckar‘t E [
T ' . 0.2
rd F
e // F

0.0 bt L S 0.0 Lot
0 0.5 1 1.5 2 0

FIG. 5. Orbital exponent of the “hole wave functiod,,, de- FIG. 6. Quasiparticle weight for the hole, vs ionic chargez,
fined as the single-particle wave function that yields maximal quafor the various approximate two-electron wave functions. The dif-
siparticle weight for the hole spectral function, E44), for the  ference between these curves and 1, the quasiparticle weight for the
various approximations to the two-electron wave function. The or-electron, measures the importance of electron-hole asymmetry for
bital exponent of the single-electron wave function is also showrgiven ionic charge.
(dotted ling.
The integrals for all the approximate wave functions consid-
ered can be done analytically, as described in Appendix B.
Figure 7 shows the spectral function for hole creation in
the full 1s shell, Eq.(133), for various values of. We show
results for both the Hartree and Hylleraas wave functions;
the results for the Eckart wave function are similar. Eor
=2, Ap(w) is close to & function atw=0, of weight unity;
the incoherent part occurs at very high energies and has very
_ (25) small weight. AsZ decreases, the weight of the=0 peak
n? (quasiparticle gradually decreases, and the weight of the
higher-energy peak@ncoherent pajtgradually increases; in
addition, the incoherent peaks shift to lower frequency. In
Fig. 8 we show results with the Hartree wave function for an
As discussed in the previous section, we calculate the holeven smalleZ, Z=0.4 (the procedure to obtain the Hylleraas
spectral function for that single-particle wave functigny =~ wave function does not converge for such a srd|lshow-
that maximizes the quasiparticle weight, which we will call ing that here the incoherent contribution is bigger than the
the “hole wave function.” Figure 5 shows the orbital expo- quasiparticle part.
nent of that stateg, versusZ. For the Hartree approximation Similarly, we can calculate the spectral function for hole
a=2Z, for the Eckart and Hylleraas approximations is d(_estruction(electron creationin the ion with one_hole{i.e.,
somewhat smaller, i.e., the hole wave function is somewhaf/ith one electrop from Egs.(23—(25). The excited states
more extended. In all approximations the hole wave functiorwave functions are given by E¢R6) with Z replaced byZ
becomes more diffuse as the ionic chaifyalecreases, as given in Eq.(23). The matrix elements turn out to be similar
expected. Figure 6 shows the quasiparticle weight for théo the case of hole creation, but the excitation energies here
hole, from Egs.(14b) and (16). The Hartree wave function are much lower. Hence the incoherent part of the spectral
somewhat overestimates and the Eckart wave function somédnction is shifted to much lower energies for these pro-
what underestimates the quasiparticle weight given by theesses. Figure 9 shows the calculated spectral function for
Hylleraas wave function, which presumably is the most achole destruction foz=2 andZ=1.
curate one. As the ionic charge decreases the quasiparticle Note that it is meaningless to calculate the spectral func-
weight for the hole decreases in all the approximations.  tion for hole destruction for the isolated atom 1. In
To obtain the full spectral function for hole creation we that case, all the excited states of the two-electron ion are
compute the matrix elemens,, Eq. (130. Becausep, is  unbound. However, the situation is different in the solid
spherically symmetric, only the excited atonsistates give state. There, the negative i¢e.g., O 2 or B~) will be sur-
nonzero results for the integral. They are given by rounded by positive cations, and excited states can be formed
where the excited electron is still confined in the neighbor-

The matrix elements are then given dgr n>1)

S [ @reunensn 24
and the excitation energies by

2
g2 _z2_ %

n

IV. RESULTS FOR THE ATOMIC SPECTRAL FUNCTIONS

1/2 n—1

(ZIn)® Al : , hood of the anion and the surrounding cations.
en(r)= 2 (~D'a e ™, (268
V. CONSEQUENCES FOR THE SOLID STATE
[
a = (n—1)!2 (26b) We have seen in the last section that the spectral functions
T in—1-Dr+) for electrons and holes in the atom will be either single
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Lo T FIG. 8. Spectral function for hole creation within the Hartree
ro ] approximation for ionic chargg=0.4. Here the quasiparticle has
0.8 =11 (b) Z-1 ] smaller weight than the incoherent excitations.
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€ - _ T
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0.2 E B wheret;; is the Fourier transform of the Bloch band energy
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FIG. 7. Spectral function for hole creation for various values of L S I
the ionic chargeZ. The full lines indicate the magnitude of the ]
coefficients of thes functions within the Hylleraas wave function, 0.8 b) 71 —
the dotted lines and symbols give the results for the Hartree wave N B ]
function. The “width” of the § functions is arbitrary. As the ionic 0.6 - ]
charge decreases the quasiparticle pealufiction atw=0) de- €
creases and the “incoherent parts functions at negative frequen- = 0.4 b E
cieg increase. At the same time the energy of the incoherent exci- Tt ]
tations decreases in absolute value. 0.2 L ]
functions or sums of functions depending on the charge 0.0 | I S I R B
state of the atom. In this section we discuss the fundamental 0 02 04 086 0.8 1
consequences of this for the solid state. @ (eV)

When we bring together the atoms to form a solid, orbit- i 9. Spectral function for hole destructiéelectron creation
als overlap and bands are formed. Consider for simplicity they the singly occupied atom within the Hylleraas approximation.
lowest band, formed by overlapping Dbrbitals, well sepa-  Note that the energies where the incoherent contributions appear are
rated from other bands if the interatomic distance is largemuch lower for hole destruction than for hole creation for the same

The kinetic energy operator for an electron in such a band, iZ. The quasiparticle peak has the same height for hole destruction
second quantized formalism, is and hole creation.
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and ¢/, creates an electron in Wannier orbitala linear [0)=]Tal T2 1T - 1T DN (33
combination of nearby atomic orbitals with largest amplitude ]

at sitei. In the simplest tight-binding approximation the hop- Where|T 1), is the correlated two-electron ground state of the
ping matrix element for a single electron can be obtainedth atom, described, e.g., by the Hylleraas wave function.

from Whenc;® operates on this state we obtain
— (@i, he)+S (@,ho; «
= enne)*Silene). (289 T I=Si i+ 2 Sl 34
1_8” n>1
—(01.0) (28b where the matrix elementS, are given by Eqs(13¢) and
Si= (i@ (B7), and||"); denotes thenth excited state of the single-
with electron ion with energy given by E@¢L3b), and||)=||1).
Hence,
R 27 27 29
" [r=R[ =Ry S, . 1 _
Ca 0)= — eIkRi I eIkRi S n 0
the single electron Hamiltoniatin atomic unit3. Equation 110 JN Z D JN Z nZ’l nl L)
(28) reproduces quite accurately the spacing between bond- (35

ing and antibonding states of the single-electron diatomic hich i N sinalviot . tate of the Hamil
molecular ion in a wide range of interatomic distances andV/NIcN 1S, not surprisinglynot an eigenstate ot the Hamil-

ionic charges?® However, we emphasize that H§7) is gen- tonian Eq.(279. [In Eq. (35), the state vectors for all sites
erally valid for any Bloch band: away from the tight-binding } 7 [11);, are omitted for clarity. Thus the spectral func-
limit the hoppingt;; will involve many neighboring atoms tion for a single hole n Fhe_full bapd Isot a singled func-
and differ from Eq.(28), and the Wannier orbital will be a tion gnd henqe IS qualltatlvgly different from th? spectral
linear combination of many atomic orbitals. We will focus on function of a smgl_e electron in the empty band, similarly to
the tight-binding limit here for simplicity, but expect the the case for the s!ngle atom.
qualitative physics to survive beyond that limit. . The flrst.term in Eq.(39) de_no_tes a Bloch wave fo.r a
single hole in the full band. This is also not an exact eigen-
state of the Hamiltonian, Eq273, because every time the
hole hops to a neighboring site there is a finite probability
1. General considerations amplitude that the final state has the atoms in excited states,
as discussed in the preceding section. Nevertheless, within
the approximation where those processes are excluded, the
energy of the itinerant hole will be given by

A. Spectral function

Consider the spectral function for electrons in this band
A(k,w). For the empty band, we use Ed.0) with c,,, re-
placed by

1 GE:S%EKZZEKEEK. (36)

=— 2, e*fi;,,. 30
Cke \/NEI € Cigy ( )

Separating this contribution from the rest we have for the

L single-hole spectral function
Whenclg acts on the ground statthe empty bany it yields g P

a single-electron Bloch function, an eigenstate of the Hamil-
tonian Eq.(278. Hence the spectral function is simply given

by where A’ (k,w) contains all contributions to the spectral
_ o function with atomic excited states resulting from the second
Alk,w)= (o= (e p)), (313 term in Eq.(35). Hence it will involve the high-energy part
1 of the atomic spectral function discussed in the previous sec-
€§=— E eik(Ri_Rj)tij (31b tions. In a solid, we expect that this contribution will not
i have a strong dependence and that the atondi¢unctions

whereu is the chemical potentigbqual to the bottom of the Will broaden to give rise to the “incoherent” part of the
band for the empty band spectral functionA’(k,w). _
For the full band instead, the situation msuch more The derivation of Eq(37) is not rigorous, and hence the
complicated. We wish to compute E@.0) with the operator ~expressions foz ande, are not exact. Nevertheless, the gen-
eral form, Eq.(37), possibly with somék dependence to the
. 1 KR o quasiparticle weight, is expected to be correct for a many-
Cka:\/_ﬁ 2| e"Ci, (32)  body systent® In fact, Sham has shown rigorou&iyhat the
spectral function for a single hole in a full band has a
where the atomic destruction operatf, destroys an elec- o-function quasiparticle contribution that is separated from
tron in the single-electron atomic statewith wave function ~ the continuum of incoherent excitations. We believe that the
¢, as discussed in the preceding section. The ground stateindependent and the form ofe, obtained are reasonable
|0) is given by approximations at least in the tight-binding limit. In particu-

Ah(klw):Z5(w_(‘Ek—M))_FA,(k!w)! (37)
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lar, this implies that the quasiparticle weighand the effec- ot
tive mass renormalization for a hole Hop= —iEj tiCisCios (449

m* 1 - - ~

™oz (38) tﬁ:tij[l_(l_sl)(ni,—(r_"nj,—(r)+(1_Sl)zﬁi,—(rnj,—rr]-
(44b

In a mean-field approximation, the quasiparticle energy is

simply given by taking the expectation value of Eg4b),
yielding

will have the qualitative dependence on the ionic chatge
discussed in the previous section.

2. Quasiparticle operators

In the foregoing discussion we considered the spectral ‘e=2(N)ey. (45)
function for a single electron in the empty band and for L . : .
single hole in the full band. To generalize this analysis to taLr0 simplify the notation, we omit to denote explicitely the
other band fillings we define quasiparticle operators. Thélependence o on the left side of Eq(45). Equation(45)

atomic electron operator can be written in terms of atomidmplies that the relation Eq38) between effective mass and
states as quasiparticle weight is valid for any band filling, and that the

quasiparticle mass increases and the effective bandwidth de-
creases with increasing band filling.

C=[00(T|+Su T+ X SanlI™TL™],

(n.n")#(0,0) (39) 4. Phenomenological model for the spectral function

From the considerations in the previous sections we con-
clude that a reasonable model for the spectral function in the
solid that contains the physics discussed is of the form

where||") and|1|") are excited states of the singly and
doubly occupied ion, respectively, and

s,m/zf d3rd3r W (ro,r)ea(r)en(ra)  (40) Ak, 0)=2(Nn) 8(w— (e m) +A (), (46)

where A’ (w) is the incoherent part describing the atomic
with $,;=S,, Sy =S;, as discussed in the previous sec-excitations, and we have ignored kslependence. The qua-
tion. We write Eq.(39) as siparticle weightz(n) and energye, are given by Eqs(43)
and (45), respectively. The atomic spectral functions dis-
cussed in Sec. Il will be broadened in the solid state, and we
assume the Gaussian forms

ClU:[1+(Sl 1)nl —(T]C|0'+C (41)

lo?

where the “quasiparticle operatol€,,, acts as if electronic

correlations did not exist, 1 42
A (w)z—exp(—M (473
c/,l0)=|0) (423 " V2w, 212
~t IRV
¢l |—o)y= (42b) (0—€)
1 | > |Tl> _ o (w)_ r eX;{ _ 2F2 . (47b)
and obeys usual anticommutation relatiomsc,:ciﬁ,cia. Vel 2

The operatoc;, is the “incoherent part” of the bare fermion corresponding to hole creatiomegative w) and hole de-
operatorc;,, given by the last term in Eq39). From Eq.  struction(positive w), respectively.e; and e, are mean ex-
(41), we obtain that the quasiparticle weight for a band withcitation energies of the singly occupied ion and the doubly
band filling of n electrons per atom is approximately given occupied ion, hence;>e,, and we assume the broadening
by T'; is proportional toe; . The relative weights of,, andAy, in

A’ will be determined by the probabilities of doubly and

n singly ocuppied sites, respectively, in the solid for band fill-
— + — — ) )
2m=|1+(5-1) 2 “3 ing n. The probabilities for empty, singly occupied, and dou-
decreasing monotonically from 1 8{ asn increases from 0 bly occupied sitepe, ps, pq can be written as
to 2. n\2 (n\2
pe(n>—(1—§ —(5) a, (483

3. Quasiparticle Hamiltonian

The effective low-energy Hamiltonian for quasiparticles n
(kinetic energy part onlyis obtained by replacing the bare ps(”):”( 1- 2 t2a
fermion operators in Eq273 in terms of their form Eq(41)
and neglecting the “incoherent part” of the operators that n\2
would leave the atoms in excited states. Hence, it describes Pd(n)=(§) (1-a) (480
only ground state to ground-state transitiqgdgagonal tran-
sitions in the language of small polaron theory for n<1, and

n 2
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Pe(n)=py(2—n), (493 R A A E
ps()=py(2-n), (49b) 8 @n-0.25 ]
Pa(n)=pe(2—n) (490) 6— .

for n>1. Here,a is a parameter that describes the suppres-
sion of double occupancy due to the onsite repuldign
which we assume to be approximatelyndependent and to

Alkg,@) (eV!)
o~
T
]

interpolate smoothly between the limits(U=0)=0 and 21 7]
a(U=wx)=1. As discussed earlier, the magnitudelbide- [ ]
pends on the ionic chargé. The relative probabilities of ) PRI N B ——— L]
singly and doubly occupied sites are then e 'O-i o) 6 05 1
- Ps(n) ST T T T T
P = B+ pa(m (50 : ;
4 (b) n-1.25 ]
Pa(n)=1-Py(n) (50b) ~ T ]
and the incoherent part of the spectral function in &) is > 3 -]
given by %
i 2r ]
A'(0)=[1=2(n)][P{(MAj(w)+Pg(n)An(w)]. (51) <
In Fig. 10 we show the qualitative behavior of the spectral e 7]
function Eq.(46) versus band filling for one set of param- T~
eters. As the band filling starts increasing from zero, the qua- O : L

-1.5 -1 -0.5 0 0.5 1

siparticle peak starts decreasing and a peak at positive fre- % (o)

guencies forms, corresponding to the excited states of the
doubly occupied ion upon creation of electrons in singly oc- T T T
cupied ions. Only at higher fillings, and particularly beyond 3 quasiparticle —
half filling, where the number of doubly occupied atoms be- I () n=1.75 ]
comes appreciable, does the peak at negative frequencies
start to form, corresponding to the excited states of the singly
occupied ion resulting from destruction of an electron in the
correlated ground state of the two-electron atom. The peak at
positive energies decreases as the full band is approached,
because we are not considering the possibility of creation of
electrons in higher-energy states of the doubly occupied ereation
atom. The quasiparticle peak height decreases monotonically F S N LTI
as the band filling increases, approachi#gas the band _?_5 1 0.5 0 0.5 1
becomes completely full. In the limi&— 1, corresponding o (eV)

to very strong intra-atomic Coulomb repulsidhe., very ,
large ionic charg) the peak at negative energies only starts FIG. 10. pependence ,O,f the Phenomenglogucal one-electron
to form for n>1. Note also, as discussed in the preViousspectral functloq on band filling, fdt the Fermi wave vector. Pa-
section, that the relative magnitude of the quasiparticle anfeMeters used in Eq#43) and (46)-(51) are: 5, =0.5, €,0.8=,

the incoherent parts will depend on the ionic chaZgevith 11~ 0-2 €2=0.5,1',=0.2, «=0.5. The zero-frequency f“”¢§"?”

the incoherent contributions becoming more important forS drawn with widthAw=0.1, so thai(k,»=0)=10 eV~ is

small Z. Furthermore, the energy scale of the incoherent exEhe maximum heightfor z=1). As the band is filled with electrons

L . (increasingn), the quasiparticle weigtt(n) decreases and incoher-
citations decreases with decreasinig ent contributions appear, first at positive energedsctron creation

o in the singly occupied atojmand at highem at negative energies
B. Frequency-dependent conductivity (electron destruction in the doubly occupied aotlectron cre-

On general grounds we expect that the frequencyf"tio_n in the empty att_)m and electron_ destruction in the singly oc-
dependent conductivity will be given byfunction at zero  cuPied atom give no incoherent contributions.
frequency broadened to a Drude form by disorder and
electron-phonon interactions if the spectral function is of theconductivity to develop high-frequency contributions reflect-
S-function form, Eq.(3139, i.e., for the case of electrons in ing incoherent absorption processes where the at@nd/or
an almost empty band. On the other hand, as the band bgend up in excited states when an electron absorbs a photon
comes full and the single-electron spectral function developand jumps from atoni to atomj. A convenient form for the
incoherent contributions we expect the frequency-dependeffitequency-dependent conductivity that reflects this physics is

] [ hole creation ]

electron

Alkg,®) (eV™)
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given by the form derived within dynamical mean field
theonf!

Ul(w)zwezfjo deJ’jo do'p(e)A(e,0')A(€,0+ ")

flw)—f(o+w')
D E—

w

(52

Here,f(w) is the Fermi function and\(ey,) is the single-
electron spectral functiom(e) is the electronic density of
states for the quasiparticle band. Equat{b®) is exact in the
limit of infinite dimensions, and is believed to be a reason-
able approximation for finite dimensions.

We evaluate Eq(52) for the phenomenological spectral
function given by Eqs(46) and (51). For the quasiparticle FIG. 11. Frequency-dependent conductivity w), Eq.(52), for
band density of states we choose for simplicity a triangulaghe parameters of the single-electron spectral function used in Fig.

form 10. As the band fillingn increases, spectral weight shifts from the
> D low-frequency Drude part to the high-frequency incoherent part.
_“ I The zero-frequency conductivity is high for electrasmalln) and
p(e) 1+ : <e<O0
D D/2 2 low for holes(largen).
:E(l_i ; 0<6<E (53) The physical content of the different contributions to
D D/2 2 oq(w) is as foIIows.o} describes the intraband optical ab-

with bandwidthD=z(n)D,, and D, the 'bare’ bandwidth ~sorption of the quasiparticles, where the atoms remain in
for electrons in the almost empty band. The “effective band-their ground state when the electron hops, and in particular
width” D becomes progressively smaller as the band fillinggives the zero-frequency conductivity. Note that it is propor-
increases, corresponding to the progressive reduction in tHéonal toz(n) =1/m* as expected in the Drude modehe of
quasiparticle hopping amplitude the powers ofz(n) is canceled by the density of states fac-
tor). o2 has two contributions; the first term has a nonzero
t(n)=tez(n) (54) contribution from the incoherent part of the spectral function
with t, the hopping for the almost empty band. The Fermiat positive frequencies: it corresponds to processes where an
energy is related to the band occupation by electron hops to a singly occupied site, and the resulting
doubly occupied atom ends up in an excited state, while the
atom where the electron hopped frofimitially doubly or
singly occupiedl remains in the ground state; similarly, the
second term inr? has a nonzero contribution from the inco-
= 9(1— 2=n), n>1 (55  herent part of the spectral function at negative frequencies,
2 corresponding to processes where an electron hops from a

in this model. The frequency-dependent conductivity hagloubly occupied site and the resulting singly occupied atom

D
= (—1+ Jn), n=s1

three contributions ends up in an excited state, while the atom the electron hops
L ) . to (either singly or unoccupied initiallyends up in the
o1(w)=o01(0) +oi(w)+oi(o). (56)  ground state. Finallyy describes processes where an elec-
At zero temperature, they are given by tron hops from a doubly occupied site to a singly occupied

site and the atoms at both sites end up in excited final states.
Figure 11 shows the obtained frequency-dependent con-
(573 ductivity for one set of parameters using the phenomenologi-
cal spectral function discussed in the previous subsection.
, we?z(n) [0 For low b_and filling, with the spe_ctral function_ d_om_inated by
o'l(w)z—f [A(wt o )pleet o) the quasiparticle part, the optical conductivity is largely
@ - given by the intraband Drude part, and the zero-frequency
(57b conductivity is high. In other words, the system is a “good
metal,” with small resistivity. As the band filling increases,

1 2.2 1
o1(w)=mez (n)P(fF);TFZ,
®

+A (0 )plert o+ )],

7e2 (o the intraband conductivity first increases as the number of
o3 (w)= —f do'A’(0")A'(w+w'). (570 electrons increases, however, at the same time some of the
@ o increased absorption occurs at higher frequency due to the
In Eq. (579, we have replaced the=0 § function by a  incoherent part of the spectral function. At even higher band
Drude-like lorentzian with relaxation time=1/1" as would filling where the intraband conductivity becomes holelike,
be expected in the presence of impurities or electron-phonothe Drude part becomes much smaller as does the zero-
scattering. frequency conductivity; at the same time, a large incoherent
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contribution to the conductivity develops; the spectral weightwould expect emission of nonthermal high-frequency radia-
of the incoherent part arises from the reduced intraband cortion at locations in the solid where translational symmetry is
tribution due to the reduced quasiparticle weight. The systerbroken, i.e., impurities and boundaries. In particular,
is now a “bad metal,” with high resistivity and largely inco- electroluminescené® (at visible and infrared frequencies
herent optical absorption. would be expected to occur in this picture at the sample-
It should be pointed out that our calculated conductivitypositive electrode boundary, where holes are injected into
certainly does not satisfy the “global” conductivity sum the hole-metal sample. The effect should be the strongest in

rule'® samples where the holes are highly dressed in the normal
state, i.e., where the band is close to full and the ionic charge

o me’n Z is small. Such systems should also give rise to High-
J; dowo(w)= om (58) superconductivity, as discussed in the following section.

When the system goes superconducting transport becomes

which states that the total conductivity spectral weightcoherentand the photon emission should dissappear.

should increase with the number of electrons in the system Furthermore, the physics of hole conduction discussed
(m is the bare electron massThis is because our model here suggests that the con_tact resistance between an electron-
does not take into account most interband transitions, anfet@l electrode and a highly dressed hole-metal sample
because it does not allow for absorption processes where tf&ould be nonsymmetric. When an electron is injected into
atomic final state contains three electrons. Nevertheless, t{B€ hole metal it needs to excite the other electron in the
model correctly describes the transfer of optical spectraPrPital, while when an electron is removed from the hole

weight from intraband to higher-frequency incoherent ap-metal the remain_ing eI_ectrpn relaxes to a lower energy state.
sorption as the bandfilling progressively increases. Hence electron injection into the hole metal should offer

more resistance than electron removal, giving rise to a recti-
fying contact where the resistivity is lower at the positive
electrode-hole metal contact.

As a consequence of this physics, it is clear that the pro-
cess of electrical conduction in a hole metal is intrinsically VI. HOLE SUPERCONDUCTIVITY

more complicated than that in an electron metal. When a , . , .
hole hops from a site to a neighboring site, there is a finite 1 he Physics discussed earlier leads to a mechanism for

probability amplitude for the atoms to end up in excited Superconductivity** Consider the low-energy effective
states rather than the ground state. That is what gives rise fg@miltonian for quasiparticles, E¢44): the hopping ampli-
the reduced dc conductivity as expressed by the enhancddde for @ quasiparticle depends on the occupation of the
effective mass in the Drude formula. Thus the conductiors!t€S involved in the hopping process. For zero, one, and two
cannot be described as an entirely coherent process, as in tREET lectrons in these sites, the hopping amplitude for an

case of electrons, where the phase of the wave function {g/€Ctron is respectively

C. dc conduction

well defined over a mean free path. In the case of the hole, {0—t. (599
only the part of the conduction associated with the quasipar- e
ticle part of the spectral function can be described as coher-

ent. When the quasiparticle weight is small, the transport of
current is largely incoherent. ~
_ ' i . . t2 =% =T7.. (590
It is of course true that in a perfect translationally invari- ij — =21t = b

ant crystal the many-body eigenstates are also eigenstates|gfoming progressively smaller as the occupation increases,
the crystal momentum operafSrand one might argue that e (o the progressive reduction in quasiparticle weigth. It is
such a state with finit& could carry current without dissipa- convenient to rewrite the quasiparticle kinetic energy in
tion. However, any imperfections in the crystal would maketerms of hole rather than electron operators through a
such arguments invalid, unless the system goes into the sgarticle-hole transformatiofthat does not change the phys-
perconducting state and acquires rigidity. ics). The quasihole Hamiltonian is then

One may expect new physical phenomena associated with
this incoherent transport. If an atom ends up in an excitqu‘ B ~ ~ ~ ~1 o~ ~ o~
state after the hole hops, it amounts to creating an electronic'ah ™ _%‘f(r Lt +Atij(ni,_(,+n,-,_(,)]cit,cj(ﬁizj Uijnin; .,
excitation in the system, just as the electron-phonon interac- (609
tion can give rise to creation of a phonon. In the electron-
phonon case this phonon emission gives rise to Joule heating 1 - ~
that dissipates part of the energy supplied to the system by Aty =t —t] Z(S——l) tii =Yt . (60b)
the external potential. Similarly, here the electronic excita- !
tion should decay throughhotonemission, with the photon Here, the operators are hole rather than electron operators.
frequency determined by the electronic excitation energie§Ve have also added a term describing density-density Cou-
involved. Because of conservation of energy it is clear thatomb repulsion between holés;; , of which the largest will
such photon emission cannot occur in every single hoppingpe the onsite repulsiod=U;; . Furthermore, we have omit-
process for the moderate voltages applied. However, onted the term describing hopping of a hole in the presence of
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two other holes, which should be negligible for low hole of a hole that is not bound in a pair. In other words, holes
density due to Coulomb repulsion. “undress,” i.e., become more coherent, when they pae-
Superconductivity will occur for this model Hamiltonian cause electrongquasiparticles when the band is almost
in the regime of low hole densitgband almost full for a  empty are more coherent than hol@giasiparticles when the
range of parameters, driven by lowering of kinetic energyPand is almost fullwe may also say that holes become more
when hole carriers pafri® For simplicity, we now restrict like electrons” when they bind in a Cooper pair. Naturally,
ourselves to the case of nearest-neighbor hopping and intéf- Pairing and superconductivity are associated with such

actions only. The hole quasiparticle Hamiltonian is quasiparticle “undressing,” it will occur when the quasipar-
ticles in the normal state are holelikeand close to fujland

will not occur when they are electronlikéband close to
H=— > [t+At(n; —,+n; - ,)](cl,cjptH.c) empty. >
(i) Intimately related to the increased coherence of the hole
bound in a Cooper pair is the fact that the hole has an in-
+UZ niTni1+VZ nin;. (61)  creased hopping amplitude when it hops to or from a site
! {1 where there is another hole, due to its increased quasiparticle
We have omitted the “tilde” on the hole quasiparticle opera-Weight. When a hole forms a Cooper pair the probability for
tors. This “correlated hopping” Hamiltonian has been exten-another hole to be nearby increases, and the increased hop-
sively studied in recent years by approximate and exact tecfiNd @mplitude that occurs on the average gives rise to a
nigues, and the reader is referred to the references f pwering of the hole kinetic energy upon pairing, which pro-

detailed information?:>>=32The condition for superconduc- vides the binding energy of the Cooper palr If It can over-
tivity in the limit of Iéw hole concentration 2 come the increased cost in ordinary Coulomb energy arising

from the decreased distance between like chatyes.
YT IR Finally, consider the process of optical absorption when
K>V(1+u)(d+w) -1, (62 the bandyis almost full. Ag incident phgton causespan electron
whereK =2zAt/D, u=U/D, w=zV/D, with zthe number to hop from a site to a neighboring site. If the electron is part
of nearest neighbors to a site abdhe (renormalizegiband- ~ of @ hole Cooper pair, it is far more likely to hop to or from
width. Within BCS theory the same condition is found, with @ Site that isnot occupiedby another electron, than if it is
1/D replaced byg(eg), the density of states at the Fermi u_ncorrelated. If the elecyron_ hops to or from an unoccupied
energy, in the definition of the parameters in E8Q).° The  Site, it has a Igrger COI’]tI’IbUtIO!’] from the coherept part of the
reader is referred to the literature for discussion of the parsPectral function and hence gives a larger contribution to the
ticular features of the superconducting stéteg., energy- intraband” part of o, rather than to the high-frequency in-
dependent gap functiorand for results for various observ- coherent part. Hence, optical spectral weight will shift from
ables (e.g., density and pressure dependence Tof the high-frequency incoherent part Qf the spectrum to the
thermodynamics, tunneling, nuclear magnetic resonance, di@W-frequency Drude part when pairing occurs. Because in
order effects, etg.that can be understood from this low- the superconducting state the lowest-frequency part of the
energy effective Hamiltoniah® Drude absorptioribelow twice the energy gaft) collapses
Here we wish to focus the discussion on the fundamentdhto the zero-frequency function that determines the pen-
aspect of the physics related to the high-energy degrees 6fration depth, thé function acquires an “anomalous” extra
freedom that are not contained in the low-energy quasiparticontribution transferred from the high-energy incoherent op-
cle Hamiltoniar®®* The key to superconductivity lies in the tical absorption spectrum rather than from the frequency re-
relation between the relative weights of the coherent an@ion below 2\, and an “apparent violation” of the conduc-
incoherent parts of the spectral function discussed in Sec. Ifivity sum rule resuits?
and the site occupation, or the band filling. As we have seen, In summary, the superconducting transition driven by the
as the electronic site occupation increases the spectral funghysics of electron-hole asymmetry discussed here has asso-
tion becomes more incoherent. Consider the Cooper paRiated with it these anomalous spectral weight transfers in

wave function for a hole pair in the full band, one- and two-particlgoptical conductivity spectral func-
tions, caused by the dependence of the single-particle spec-

1 tral function on site occupation discussed in Sectdgether
v=—=2 fyclicl|0), (63)  with the fact that the site occupation changes when pairing
N occurs The spectral weight is transferred from an energy
where|0) is the full band, and] is a hole creation operator. range that is not related to the magnitude of the supercon-
In the limit where the size of the Cooper péiie., the super- ducting energy gap, rather it is related to the much larger
conducting coherence lengtigoes to infinity the holes be- €nergy s_cale of intra-atomic ele<_:tron|c excitations. To stu_dy
come uncorrelated antﬂij~1/\/ﬁ (N denotes number of quantitatively t_hese spectral W_elgh'F transfer processes, it is
sites in the system For short coherence length instedg, usefull to con_S|der model Hamiltonians as discussed in the
~0(1) for |i = | small. In particular, the amplitude for the following section.
holes to be on the same site or on neighboring sites becomes
of order unity rather than being negligible. Thus, the spectral
function for a hole in such a state will have a larger coherent To go beyond the phenomenological model discussed in
part and a smaller incoherent part than the spectral functiothe previous section it is useful to construct model Hamilto-

VII. MODEL HAMILTONIANS
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nians that contain the physics of interest, that are amenabkpectral function for hole destructidelectron creationin
to theoretical studies by various techniques. We considethe singly occupied sité(w) is a sum ofs functions like

here three classes of model Hamiltonians.

A. Hamiltonians with auxiliary oscillator degrees of freedom

A variety of generalizations of the commonly used Hol-

stein model describing coupling of a local bosarsually

Eq. (21), with
(683

(68b)

S=(-1's,

E2=E}.

phonon degree of freedom to the local electronic chargeln an atom, the energy level spacing is proportionaZfo
density can be constructed to contain the essential physid¥ith Z the nuclear charge. If we assume similarly

discussed hereAs the simplest example, consider an elec-
tronic model with a single orbital per site and a local boson

degree of freedom, with site Hamiltonian

p?

1
— 2
=om T KA+ (Utag)ni;n,

H; (64)

describing the coupling of a local oscillatgr of frequency
wo=VK/M to the atomicdouble occupancyCompleting
the squares yields

p? 2

1 [e%
Hi=oy T 2K it cninip | +Uermigni;, (653
C!z 2
Uerr=U— =U—-wqQ (65b)

2K

so the equilibrium position of the oscillator gs=0 for the
empty and singly occupied site, agé= — a/K for the dou-
bly occupied site. The reduction frotd to U.¢; due to the

change in the oscillator equilibrium position parallels the re-
duction fromU to Ugys in the atomic problem due to the
modification of the electronic wave function in the doubly

occupied atom by correlations.

The states of the site can be written as direct product o{
the electronic state in occupation humber representation a
the boson state. We denote o) thelth excited state of the

oscillator when there aneelectrons at the siten=0, 1 or 2,

and [n®)=|n) the ground state. The site ground states ar
then|0)|0),|1)|1),]1)|1),]T1)|2). Because the oscillator is

not affected by single occupand@')=|1"). The matrix el-

ementsS, defined in Eq.(13¢ and excitation energies Eq.

(13b) are given by

2
—g424l
97y

S|+1:<1'|2>=W, (663

Ei'=w,l (66b)

nFgchnlques.

wo=CZ?, (693
and we also assume
2 ¢’
g :?! (69b)

(¢, ¢’ constantsthen the reduction frond to Uy in Eq.
(65b) is independent o, which is what is found in real
atoms! Furthermore, ag decreaseg increases and the qua-
siparticle weight Eq(67) will decrease, similarly as found in
the atomic problem in Sec. Ill. For the solid we take then as
model Hamiltonian

H=-2> tijCiTaCja'l'z H;
i i

and argue that this model Hamiltonian describes the same
physics as the real solid discussed earlier. In particular, the
low-energy effective Hamiltonian is of the same form as Eq.
(44), and the same processes of spectral weight transfer dis-
cussed earlier will occur here. Quasiparticle operators are
easily defined wusing a generalized Lang-Firsov
transformatiort3
This Hamiltonian can be studied by standard theoretical
Some initial studies have already been
erformedt® Further studies with nonperturbative tech-
niques such as dynamical mean field thébfand numeri-
cal methods such as density-matrix renormalization gfoup

(70

%hould be able to determine guantitatively the parameter re-

gime where superconductivity occurs in this model, as well
as provide substantial insights into the physics of electron-
hole asymmetry and spectral weight transfer under discus-
sion here.

It should be pointed out, however, that there is a differ-
ence between this Hamiltonian and the atomic case previ-
ously discussed. Namely, both the excitation spectrum and
matrix elements here are the same for hole destruction in the
doubly occupied site and electron creation in the singly oc-
cupied site, unlike the case of the real atom. However, we do

and the spectral function for hole creation in the doubly ocnot believe that this difference will qualitatively change the

cupied siteA,(w) has the form given by Eq14), with qua-
siparticle weight

_2_¢°
z=§5j=e 7.

(67)

physics.

It is also possible to extend the Hamiltonian, E84), so
that it will also describe dressing of electrons in singly oc-
cupied sites, by including coupling to the electronic charge
density as in the ordinary Holstein model. As long as the

The spectral functions for electron creation in the empty sitesoupling to double occupancy is nonzero, or through other
and electron destruction in the singly occupied #itg and  terms that break electron-hole symmetry such as
A/, are singles functions, as in the case of the atom, becausenharmonicity, the essential physics of interest here, that as
the oscillator is not affected by single occupancy. Finally, thethe band filling increases the coupling strength and hence the

184502-14
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dressing of the quasiparticle increases, will be contained in
the Hamiltonian. Such a generalized Holstein model would

PHYSICAL REVIEW B35 184502

IDIDHDIT

[T1®))= +83[11)10) = 8,|0)[1 1),

be useful if one is interested in describing the smaller dress- V2
ing effects of the first electron in a shell due to coupling to E=V+e (763
electrons in inner shells. '
o ITLON=IDIL-IDINV2, E=V+e, (76D
B. Electronic Hamiltonian
4 _ _
An electronic Hamiltonian without auxiliary degrees of 1711 )>>—|Tl>|0>—53|T>|l>+|l>|T>\/§, E_U'(760)

freedom that contains the physics of electron-hole asymme-
try and undressing under consideration here needs to havewith 5;=/2t'/(U—V—¢). The spectral functions to create
least two orbitals per site. A simple such Hamiltonian for thean electron in the empty site and to destroy an electron in the
site i€ singly occupied site are single functions, as in the atomic
case. The “hole wave function®,, that maximizes the hole
quasiparticle weight is given, to this order th, simply by

the wave function of the upper state. The spectral function
for hole creation in the doubly occupied atom is then of the
general form Eq(14)

Hi=Unj;n; +U'n/;n{ | +Vnin/ +en/

—t'>, (¢l ¢/ +H.c), (71)

where the primedunprimed orbitals refer to electrons in the A = 28(w) + 28w+ 77
upper (lower) energy orbital, assumed orthogonal to each (@) (@)+ S50t e), (773
other. (An alternative description would assunhie=0 and 5.\ 2
nonorthogonal orbita)s We assume all parameters in Eq. Z:gf: 51+_2 , (77b)
(71) positive, and the ordering \/5
U +2e<V+e<U (72a 5165
S;=—|1- 2 (779
U,U" Vs est, (72b) 2

and the spectral function for destroying a hole in the singly
Gbcupied atom, i.e., creating an electron, is

Al(0)=28(w)+[(S5)?+(S5)?]8(w—(V—U"—¢€))

These conditions ensure that a single electron resides prim
rily in the lower level and two electrons reside primarily in
the upper level. Hence this Hamiltonian mimics the physics
of the Hartree-Fock solution of the atomic problem discussed

previously. The effective onsite repulsion defined by &t. +(S))?8(w—(U—U"~2e)), (783
is Ugss=U’ +2€ to lowest order irt’.
It is simple to diagonalize the site Hamiltonian exactly; , 1
however, for illustration purposes we restrict ourselves here SZ:E_ 6102, (780
to the lowest-order perturbation theory ih. The ground
states of the singly and doubly occupied siths> and 1
[71)) and their energies, are respectively Sé:E' (780
|o))=|0}|0)+ 6:|0)|o), E=0, (73a 5
Sp=——. (780)
1 ip=loyt -+ e, D ey a 2
2 V2 ’ ’ Hence the site spectral functions are of the same form as in
(73 the atomic problem discussed previously. The “quasiparticle

operators” are ther;,, or ¢, depending on whether the site
% singly or doubly occupied. We may take as lattice Hamil-
tonian

where the first ket refers to the lower and the second ket t
the upper orbital, and

51::’ (743 H= _%‘4 tij[CiTerj0'+CiT(er,Lr_'—(Ci,o-)TCju-—’_(Ci,o)TCj’o-]
52:&_ (74b) +E H;, (79
V-U'—¢€ :
The excited state of the singly occupied atom is Wher_e we have assumed for simplicity the_ same h_opping
amplitude for the unprimed and primed orbitals. Projection
|0(2)>>: 81|)|0)—|0)|o), E=e (75) of the Hamiltonian Eq(79) to the lowest site energy states

yields a low-energy effective Hamiltonian of the form Eq.

and the excited states of the doubly occupied atom are  (44), which will give rise to superconductivity in certain pa-
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rameter ranges. Furthermore, the spectral weight transfavhich will contain the physics of interest here for> wg.
processes discussed previously should occur for this HamilFhis Hamiltonian does not “dress” the single electron as Eq.
tonian. Because it has a relatively small number of states pgB0) does. A two-parameter version that resembles closely
site this Hamiltonian should be amenable to study particuthe oscillator Hamiltonian would be

larly by exact diagonalization methods. Parameters in this . A

Hamiltonian can be related fairly directly to realistic param- Hi=wqo,+ gwo[l—ZniTnu]a'xﬂL Unin;, (83

eters obtained from quantum chemical calculations of real = ) o
atoms. which is analogous to the oscillator Hamiltonian, E64),

which in terms of boson creation and annihilation operators
reads
C. Hamiltonians with auxiliary spin degrees of freedom
The physics of interest here was first studied in the con- Hi=woaa;+[U+gwo(al +a)nin, . (84)
text of an electronic Hamiltonian with an auxiliary spin 1/2

degree of freedofi?®to represent the other electfgnin the ~ FOr largeg, the Hamiltonians, Eq$83) and(84), give rise to
atom. with site Hamiltonian small quasiparticle weight for the hole.

In summary, a large variety of model Hamiltonians can be
(80) constructed that contain the essential physics of interest here,
and we discussed some particular simple examples. Study of

with V> w, and A<wy,V, and all parameters positive. For these Hamiltonians should yield interesting insights and
such parameters, the auxiliary spin in the ground state wilflarify the physics further. However, this physics will only
point predominantly up if,;=n; ;=0 and down otherwise. exist for certain parameters in the models, and not for others.
That situation describes therhale Hamiltonian, where the ' particular, the models need to break electron-hole symme-
first hole causes a large disruption in the “background” de-ly- Instead, if one takes for example the spin Hamiltonian,
gree of freedonithe spin and the second a small one. We Ed- (80), with V=, or the Holstein Hamiltonian with only -
can, however, also use this Hamiltonian with the operator§0UPling to the local charge density, the physics of interest is
representingelectronsif we choose the parameter range lost because the models in those cases are electron-hole sym-
V<w,<2V instead, so that the first electron will not change Metrc-

the state of the spin and the second one will. The lattice

Hamiltonian VIIl. DISCUSSION

Hi:[v(niT‘Fnil)_wo](Tiz‘l'AO'ix‘l‘ UniTnil

In this paper we have addressed the microscopic reasons

H= _Z tijCiTaCja+2 H, (81)  for why holes are not like electrons in condensed matter. We

i [ have shown that there are qualitative differences between

electrons and holes in atoms that have fundamental conse-

Quences for the physics of the solid state. We have proposed

that the essential physical difference relates to the relation
between the coherenfguasiparticle pajt and incoherent

also has as low-energy effective Hamiltonian the generi
form Eq. (44) that gives rise to correlated hoppifigExact
diagonalization studies of this Hamiltonian on small

8 . . . . . . .
clusters® show that it gives rise to pairing in a wide range of parts of the one-electron spectral function, and the electron

parameters. Furthermore, the optical conductivity was calcWe ;s hole character of the quasiparticle. Namely, we have
lated in a simple caséand the results show the spectral rgued that, reflecting the physics at the atomic level, as the
weight transfer process discussed earlier, as one woulgying of 4 hand increases the quasiparticle becomes progres-
expect. ) ) ) sively less coherent while at the same time the character of
The site spectral functions are also simple to calculatee g asiparticle changes from electronlike to holelike. Fur-
There is a difference with the atomic case discussed prévipermare the effective mass of the quasiparticle is inversely
ously in that the single-electron spectral function for theproportional to the degree of coherendguasiparticle

empty site is not a singlé function here because some \yeighy and hence increases as the band filling increases.
modification of the background spin degree of freedom oc-  Thig physics naturally leads to a mechanism of supercon-
curs even when the first electron is created at the site. Ne\g‘u?

, ) ctivity, since (1) superconductivity involves pairing of
ertheless, for the parameter range discussed the change in asiparticles, and2) when hole quasiparticles pair, the
state of the background is much larger for the second ele

. ; . - Gocal density of electrons decreasdsence, as holes
tron, hence the quasiparticle weight is much smaller for ;14 in a Cooper pair they become more coherent, and more

hole than for an electron and the same qualitative physics %obile, and more like electrons, and the superconducting
electron-hole asymmetry and undressing occurs. Here agaiByye is stabilized by the accompanying lowering of kinetic
this Hamiltonian should be amenable to detailed study bynergy As a result the superconducting state is more coher-
exact diagonalization. , ent than the normal state, and spectral weight at low energies
F'Ua”y: a site Hamiltonian analogous to the osc!I!atorin one- and two-particle spectral functions increases while
Hamiltonian, Eq(64), can also be constructed with auxiliary jnconerent spectral weight at high energies decreases. In
spin degrees of freedom, other words, quasiparticles “undress” when they pair.

i i The informed reader may wonder about the relation be-

Hi=[Vnini|—wolo,+ Ao+ Unin; 82 tween the parameters in the low-energy effective Hamil-
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tonian, Eq.(44), and the ones calculated in our earlier work VII) that does contain the high-energy degrees of freedom
on hopping amplitudes in the diatomic molectiieFor ex-  where the spectral weight comes from. In contrast, the attrac-
ample, Eq(44) implies thatt,/t;=t, /ty, with t; the hopping  tive Hubbard model, for example, can also describe pairing
amplitude for an electron when there arether electrons at of carriers, and it describes an associadedreasen low-

the two sites involved in the hopping process. In fact, theenergy spectral weigttbecause the effective mass increases
results found in Ref. 19 do not generally obey this relation.ypon pairing; however, it is not clear that it is possible to
The answer is, the calculation in Ref. 19 is certainly ex-derive an attractive Hubbard model from a more general

pected to be more accurate. However, the derivation hergamiltonian that would describe a correspondingreasein
reflects the essential physics in a clearer way and allows ONGgh-energy spectral weight.

to discuss the fundamen_tal processes of spe_ctral weight“A¢ \ve have discussed, there are a variety of models that
transfer. The two calculations are of course intimately re-

lated. | ficul Il that in th lculati in Ref 19one can study that contain the physics of interest here. Thus,
ated, In particuiar recafl that in the caiculations In Rel. 13,0 jsqe is not the validity of a given model Hamiltonian,

the difference in hopping amplitudes went to zero as the o L .
. . gy . _tather it is the validity of a very general paradigm. Namely,
atomic charge became large or if one artificially constraine . L . ;
that the conventional description of energy bands in solids

the atomic orbitals to not change with tion, i ee
mgnatl \c,)vrirtlr:ctﬁ(ra L)ﬁyssic(:)sndisc(::u:snegd r:l:re oceupation, In agr needs to be augmented, beyond the knowledge o€ thek

One may argue that the difference between electrons arr&lation and the quasiparticle wave functi_on, to the descrip-
holes discussed here is strictly speaking onlgualitative tion of the behavior of the coherent and incoherent parts of

difference for the lowest 4 band. For higher bands, even a the one-particle spectral function as function of band filling,
single electron in an empty band will be partially dressed@nd that these quantities have the particular dependence on
from interactions with electrons in lower ban@®t to men-  band filling discussed here.

tion electron-phonon interactionsWhile this is true, the The concepts discussed here are clearly not restricted to
considerations in this paper certainly imply that within aone particular class of solids but rather are generally appli-
given band cable to all solids, just as the concept of energy bands is.
Thus, it is unreasonable to expect that the mechanism of

z(n)>2z(2-n) (85 superconductivity that results from these concepts would ap-

for n<1, that is, the hole at band filling (2n) is always Ply to only one material or any one class of materials, or
more dressed than its counterpart electron at band fiing €ven that it would apply to most but not all superconducting
Hence, the mechanism of superconductivity whereby holegnaterials. In a sense it is like superconductivity itself: the
in a band pair to “undress” and become more like the elec-collective state is robust because it forms a coherent whole,
trons in that band should still be operative. and cannot be destroyed by local impurities or imperfections
There is in fact another qualitative difference betweenin a given solid. Similarly, the theory discussed here is a
electrons and holes in energy bands, i.e., between electrossamless web, that cannot be destroyed by individual ex-
at the bottom and electrons at the top of the band. Namelygmples that seemingly contradict it: it either applies to all
the wave function for the quasiparticle at the bottom of thesuperconductors or to none, and the apparent counterex-
band has a large amplitude in the region between the atomamples(e.g., superconductors that seem to have @hbec-
thus providing stability to the latticbonding state Instead, tron carriers in the normal state, or superconductors that ex-
the wave function for the quasiparticle at the top of the bandibit seemingly incontrovertible evidence for an electron-
has vanishing amplitude in the region between the atoms, gghonon mechanisimwill eventually be explainable within
it has highest energy and is orthogonal to all the band statedbe same framework, if the framework is valid. So what is
below it (antibonding state Correspondingly, the amplitude the evidence in favor of this framework?
of the wave function at the atoms is larger for electrons at the Most importantly, there is significant empirical evidence
top than for electrons at the bottom of the band, and as that the presence of hole carriers favors superconductitity.
consequence the dressing due to intraatomic Coulomb repuldoreover, the materials with highe3t, (high-T. cuprates
sion also from electrons in other atomic orbitals is larger forand MgB,) have holes conducting through negative ion net-
electrons at the top of the band. works (O 2 and B"), i.e., small ionic charg&, which favors
The phase space of model Hamiltonians that can be writsuperconductivity within this framework. Moreover, the high
ten down and studied as possible models for condensed mak; cuprates show clear evidence for “undressing,” both in
ter phenomena is infinite. What makes some models morthe normal state as holes are added and at fixed hole concen-
suitable to describe real materials than others? We proposgation as the system becomes superconduéfirty,as de-
that a useful criterion to validate one Hamiltonian over an-scribed (in fact predicted>3 by the present framework.
other is whether it can be derived from a more fundamentaMoreover, the dependence @i, on doping in transition
Hamiltonian that describes physics on a larger energy scalenetal intermetallic® follows the behavior predicted by this
In particular, the low-energy Hamiltonian, E(#4) [or Eq.  framework®”*8 Moreover, the general empirical relation ob-
(61)], describes arnncreasein low-energy spectral weight served between superconductivity and lattice instabilities fol-
when carriers pait® By itself, it does not contain the high- lows naturally from the fact thantibondingstates need to
energy degrees of freedom where that spectral weight ibe occupied in order to have hole carriers. Other experimen-
coming from. However, it can be derived from a more fun-tal evidence in support of hole superconductivity is discussed
damental Hamiltonian(e.g., the models discussed in Sec.in the reference$1%:354°
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There are many open questions within the framework dis- APPENDIX B: CALCULATION OF MATRIX ELEMENTS
cussed in this paper. A convenient starting point for the dis- Sy IN THE VARIOUS APPROXIMATIONS
cussion are the model Hamiltonians discussed in Sec. VII. For the Hartree wave function we have for the overlans
First, are there other, similar or otherwise, model Hamilto-E (139 P
nians that should be studied, possibly more appropriate thana"
those? Next one can move from there in two opposite direc-
tions. In one direction, the study of the properties of these
Hamiltonians by various theoretical techniques. In particular,
dynamical mean field theoi¥is likely to be a very fruitful
approach. One should calculate the most basic physical proffhese integrals are simply evaluated for the wave functions
erties such as phase diagram, quasiparticle weight, spectral. (26) and yield
functions, and various correlation functions. How do the ba-

Si= [ @rezedn=(ez.00=5,22.  ®Y)

sic superconductivity parameters such as coherence length, 7 \32 Z\!
superfluid weight, etc. depend on the Hamiltonian param- 4<_z) no1 (_)
eters? How do the various spectral weight transfer processes p_ N D (1 +2)01

X . . =3 - la B2
depend on the parameters? And in particular, which observ- no_z\3 Z‘ (=X )ta — Z (B2)
able properties should be calculated that can differentiate this Z+ n Z+ n

mechanism from others? In the opposite direction, one would

like to connect the model Ham|lton|§ms to rea! materlals.with a, given by Eq.(26b).
What quantities should one evaluate in a first-principles cal-
culation of a given solid that would be relevant to fix the
parameters in the model Hamiltonians? Once that question is

For the Eckart wave function E¢4) we have simply

clarified a vast area of study will open up where any given E_31(21,Z)Sn(ZQ,Z)JrSl(Zz,Z)Sn(Zl,Z)
existing or proposed material could be tested to see where its n— [2(1+5,(2Z,Z,))]Y? (B3)
parameters lie, in particular concerning its superconducting v
properties. For the Hylleraas wave function, E¢6), we use the relation
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APPENDIX A: HYLLERAAS DRITTE NAHERUNG valid for any symmetric functioﬁ(r},r}), with s, t, u given

For the convenience of the reader we summarize here thtt)ey Eq. (6). The integrals needed are of the form

equations that determine the parameters in the Hylleraas

. 2 . . . 0 s u
wave function Eq(5)>. The energy(in Ry) is given byE I(p,q,r,a,b)=f dsf duf dtu(S— 12)e- 25 PlsPtay”
=Z°\, with 0 0 0
2 (BS)
STNIVE (Al and yield

_ 2 2
M =8+ 50c; + 96¢,+ 128c3+584c,C, + 192 now 1(BATD)

_ 2 2 _ 1 SO
N=4+35¢c, +48c,+ 96c]+ 308 ,c,+576c5, (A2b) = ppraries ;O(q_j)!
L=16- = +| 120~ 2 +(192 %) oo+ 288 70) 7
=16—5 = |Cy — —|Cy — —|c .
z z z z)™ TS 1 (pri- D@1
x| 2 = ;
192 312 , = a P (i—1)!
+(1120- ——|c4Cot| 2304 ——| 5. (A2c) —+1
z z b
Minimization of A yields the coefficient; and c, in the p! _ ql(p+r+1)!
wave function, and the orbital expondnts given by — T prn(@tr=pt+ prriz
a—i—l +1 2
. b (rDip
K=om (A3) (B6)
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and the overlaps are given by

GEIRS

[
T |1
= [(2+1—i,i,1a,b)—I(1—=i,2+i,1a,b,)
S (2Zk)® b® E = b' (4kn) 2 (= ([
) Cc
(1) @+ =i 2, —b) 1 (1= 2+i 12, ~b)H+ 11 (2+1-i,i 2a,6)=1(1-i,2+i 2a,b,)
) Cc
— (=124 ,28,—b)— I (1—i,2+i,2a,—b)} ]+ b—§|[|(2+| —i2+i1a,b)—1(1—i,4+i,1ab,)
+(=D"HI2+1 —i,2+i,1,a,—b)—|(|—i,4+i,1,a,—b)}]) (B7)
|
with \ 2 88
= c
1+X;+A, 17 2zk
a=——;—, (B8a)
2
No— Ny 1
b= 5 (B8b) )\2_2kn' (B8d)
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