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Why holes are not like electrons: A microscopic analysis of the differences
between holes and electrons in condensed matter
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We give a detailed microscopic analysis of why holes are different from electrons in condensed matter.
Starting from a single atom with zero, one, and two electrons, we show that the spectral functions for electrons
and for holes are qualitatively different because of electron-electron interactions. The quantitative importance
of this difference increases as the charge of the nucleus decreases. Extrapolating our atomic analysis to the
solid, we discuss the expected differences in the single-particle spectral function and in frequency-dependent
transport properties for solids with nearly empty and nearly full electronic energy bands. We discuss the
expected dependence of these quantities on doping, and the physics of superconductivity that results. We also
discuss how these features of the atomic physics can be modeled by a variety of Hamiltonians.
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I. INTRODUCTION

The understanding of electronic correlation in solids a
its consequences for charge transport and for collective p
nomena are fundamental problems in condensed m
physics. At the simplest level, electronic correlation ma
fests itself in the two-electron atom.1 In this paper we return
to the old problem of the two-electron atom2 and show that a
fundamental physical principle emerges from it,electron-
hole asymmetry. We then show that the understanding
electron-hole asymmetry at the atomic level provides insi
that implies that this asymmetry has fundamental con
quences for the physics of charge transport and collec
phenomena of the solid state.

Remarkably, none of the many-body Hamiltonians th
are most widely used to study the effect of electronic cor
lation in solids3,4 such as the Hubbard model, extended Hu
bard model, degenerate Hubbard model, the Anderson im
rity and lattice models, the Kondo model, Falicov-Kimba
model, Holstein model, Su-Schrieffer-Heeger model, andt-J
model, contain this very basic and fundamental aspec
electronic correlation that follows from the atomic analys
Hence we argue that these models are fundamentally flaw
We propose a variety of other model Hamiltonians that c
tain this physics, which may be generically called ‘‘dynam
Hubbard models.’’5–8 These models lead to a new unde
standing of the physics of charge transport in solids, and
universal mechanism of superconductivity.9–11

The observation that electrons and holes in atomic sh
are in some sense equivalent was first made by Heisenbe12

It is easy to see that in the absence of electron-electron
teractions, an atom withi electrons in an outer partially filled
shell defined by quantum numbersn, l, has the same multip
let structure as an atom withp-i electrons in this shell, with
p54l 12 the total number of electrons that can fill this she
In particular, this is trivially true for ans shell (l 50), where
the state with one electron in thens0 shell is identical to the
state with one hole in thens2 shell. Furthermore, all the
matrix elements of the Coulomb interaction operator, b
diagonal and off-diagonal, between these noninterac
0163-1829/2002/65~18!/184502~20!/$20.00 65 1845
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electron atomic states, are the same for a shell withi elec-
trons and one withi holes ~i.e., p-i electrons!.13 This of
course extends also to cases where more than one sh
incomplete. As a consequence, the atomic multiplet struc
of a shell withi electrons is identical to the one withi holes
within first-order perturbation theory in the Coulomb inte
action between electrons. Thus, to the extent that first-o
perturbation theory holds for atoms, electron-hole symme
exists for the atomic states, and similar arguments can
used to argue for electron-hole symmetry in energy band
the solid state.14 This implies that the states of atomic she
that are almost full, and of electronic energy bands that
almost full, can be described in terms of the states of f
positively charged holes, instead of the states of many ne
tively charged electrons. The physical reality of the hole co
cept for transport in solids was first demonstrated by Ha
measurement15 and Peierls’ explanation16 of positive Hall co-
efficient in solids with nearly filled electronic energy band

However, in this paper we show that electron-hole sy
metry in fact does not exist in atoms, and consequentl
will not exist in electronic energy bands in solids. Instea
we argue that electrons and holes arefundamentally different
objects. In some sense, in the light of the above discussi
this can be understood as a failure of first-order perturba
theory. It is of course not surprising that perturbation theo
in the electron-electron Coulomb interaction should fail. T
electronic stucture of noninteracting electrons in atoms
determined by the Coulomb interaction between electr
and ions, which of course has the same coupling constan
the electron-electron Coulomb interaction. Thus, it isnever
true that the spacing between noninteracting electron ato
energy levels is larger than matrix elements of the electr
electron Coulomb interaction, the regime where perturbat
theory may be expected to be valid. Despite this, it is for
nate that the qualitative structure of atomic multiplets a
their quantum numbers are the same for electrons
holes.12

The physics of electron-hole asymmetry that results fr
electron-electron interactions occurs even fors shells, and
even for the atomic 1s shell that is most isolated in energ
This is the case we will analyze in this paper. It is natural
©2002 The American Physical Society02-1



v
r

ev

ol
si
o
lid
th
el

co
v

w

-
io

n
fu
th
ns
In
r
ic
or
th
p
de
m
III
th
ys
u

en
re

gy

fo
o

nt
th

al

tial
on.
or-
is
le

tom
-

al

-
m

xi-
and
The

on
ave

n-
as’

J. E. HIRSCH PHYSICAL REVIEW B 65 184502
expect that the physics that we find here should have an e
larger effect for atomic states with higher quantum numbe
where shell occupation becomes larger and energy l
separation becomes smaller.

Since for ans shell the one-electron state and the one-h
state are the very same state, one may ask how it is pos
to understand electron-hole asymmetry based on it. The p
is, in considering the process of transport of charge in so
with electrons or holes, we need to consider not only
atom in a given charge state, but also processes where
trons and holes arecreatedanddestroyedas conduction oc-
curs. It is these creation and destruction processes that
tain the physics of electron-hole asymmetry even at the le
of a single atom and even fors shells.

This paper is organized as follows. In the next section
discuss the electronic state of two electrons in the 1s shell of
ions of nuclear chargeZ. We show that the state of the two
electron atom is strongly influenced by electronic correlat
effects, the more so the smallerZ is. In Sec. III we discuss
the calculation of the atomic spectral function for electro
and holes, and the qualitative reasons for why they are
damentally different. Section IV discusses results for
atomic spectral function within the various approximatio
for the state of the two-electron atom reviewed in Sec. II.
Sec. V we discuss the consequences of these results fo
properties of electrons and holes in the solid state, in part
lar for the single-electron spectral function and f
frequency-dependent transport. In Sec. VI we discuss
consequences of this physics for the understanding of su
conductivity in solids. Sec. VII discusses several mo
Hamiltonians that contain the physics of electron-hole asy
metry found at the atomic level. We conclude in Sec. V
with a summary and discussion of our results, a review of
empirical and experimental evidence in support of this ph
ics as the underlying universal mechanism of supercond
tivity in solids, and a survey of some of the many op
questions and opportunities for further research in this a

II. THE TWO-ELECTRON ATOM

The wave function for an electron in the lowest-ener
state (1s) of a hydrogenlike ion of nuclear chargeZ is

wZ~r !5S Z3

p D 1/2

e2Zr ~1!

with r measured in units of the Bohr radiusa0. The ground-
state wave function of the two-electron ion isnot, of course,

C~r 1 ,r 2!5wZ~r 1!wZ~r 2! ~2!

because of electron-electron interactions. Consider the
lowing approximations to the ground state of the tw
electron ion.

A. The Hartree wave function

The simplest approximate wave function that takes i
account the effect of electron-electron interaction, is of
Hartree form
18450
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CH~r 1 ,r 2!5w Z̄~r 1!w Z̄~r 2!, ~3a!

where

Z̄5Z2
5

16
~3b!

results from minimization of the total energy for a variation
wave function of the form Eq.~3a!. Equation~3! describes
an expanded orbital for each electron, due to the par
shielding of the positive nuclear charge by the other electr
In Eq. ~3!, both electrons reside in the same expanded
bital. A slightly better approximation of the Hartree form
obtained by allowing for the most general single-partic
wave function rather than the exponential form Eq.~1!. For
example, the error in the ground-state energy of the He a
is 1.95% with Eq.~3! and 1.45% with the optimal single
particle wave function in the Hartree wave function.1

B. The Eckart wave function

A better approximation is obtained by allowing for radi
correlations, through the wave function17

CE~r 1 ,r 2!5
wZ1

~r 1!wZ2
~r 2!1wZ2

~r 1!wZ1
~r 2!

2~11S12
2 !1/2

, ~4a!

S125~wZ1
,wZ2

!, ~4b!

where the exponentsZ1 andZ2 are again obtained by mini
mization of the total energy, for a wave function of the for
Eq. ~4!. The numerical results forZ1 and Z2 obey the ap-
proximate relations

Z151.14Z20.105, ~5a!

Z250.905Z20.622. ~5b!

Hence, one of the electrons resides in an orbit of appro
mately the same radius as that of the single-electron ion,
the second one resides in a substantially enlarged orbit.
minimization procedure resulting in the values ofZ1 andZ2
becomes unstable forZ<0.93. For He, the error in the
ground-state energy is now reduced to 0.98%.

C. The Hylleraas wave function

Much more accurate wave functions for the two-electr
system are obtained by introducing dependence of the w
function on r 125urW12rW2u in addition to r 1 and r 2, which
allows for angular in addition to radial correlations. We co
sider here the simplest wave function of this form, Hyllera
‘‘dritte Naherung’’ ~third approximation!:2

CHy~rW1 ,rW2!5Nw~2Zks,2Zkt,2Zku!, ~6a!

w~s,t,u!5e2s/2@11c1u1c2t2#, ~6b!

s5r 11r 2 , ~6c!

t5r 22r 1 , ~6d!
2-2
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TABLE I. Orbital exponents and energy~in Ry! of two-electron atom forZ51 (H1) andZ52 ~He! for

the Hartree wave function Eq.~3! (Z̄, EH), the Eckart wave function Eq.~4! (Z1 , Z2 , EE) and the Hylleraas
wave function Eq.~6! (Zk, EHy). The experimental value of the energy (Eexpt) is also given.

Z Z̄ EH Z1 Z2 EE Zk EHy Eexpt

1 0.6875 -0.9453 1.0392 0.2832 -1.0266 0.769 -1.051 -1.055
2 1.6875 -5.6953 2.1832 1.1885 -5.7513 1.816 -5.805 -5.80
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The parametersc1 , c2, andk are determined by minimiza
tion of the energy, as described in the Appendix A, andN is
a normalization constant. Both this as well as the previ
wave functions yield upper bounds to the ground-state
ergy. c1 andc2 are found to be positive, indicating that fo
given s5r 11r 2 the wave function is larger for large ang
betweenrW1 and rW2 ~angular correlations! and for largeur 1
2r 2u ~radial correlations!. The error in the He energy with
the wave function, Eq.~6!, is reduced to 0.05%. Table
summarizes the values of the energy and orbital expon
for the three wave functions discussed for the He (Z52) and
the H2 (Z51) ions compared to the experimental values

Figure 1 shows the orbital exponents versus ionic cha
in the different approximations. The Hylleraas wave functi
has an orbital exponent similar to the Hartree wave functi
while the exponents of the Eckart wave functions are v
different. This suggests that even though the Eckart w
function gives better results than the Hartree one for the
ergy, the Hartree method may give a better representatio
the wave function itself. Figure 2 shows the parametersc1
andc2 of the Hylleraas wave function, which describe ang
lar and radial correlations, respectively, versus ionic cha
Note that both parameters increase rapidly as the io
charge decreases, and that angular correlations are m
more important than radial correlations for largeZ.

The different wave functions discussed above describe
tempts of the electronic wave function to reduce the C
lomb repulsion between electrons, without paying unduly
electron-ion energy. The effective Coulomb repulsion b
tween electrons is

FIG. 1. Orbital exponents for the two-electron atom vs ion
chargeZ for the Hartree~full line!, Eckart ~dot-dashed lines!, and
Hylleraas~dashed line! wave functions. The dotted line shows th
orbital exponent for the one-electron atom (5Z).
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Ue f f~Z!5E~2!1E~0!22E~1! ~7!

with E(n) the ground-state energy for the ion withn elec-
trons @E(0)50, E(1)52Z2, with E in Ry513.6 eV]. For
the wave function Eq.~2! with the electrons occupying th
same orbitals as in the singly occupied atom

Ue f f~Z![U5
5

4
Z, ~8a!

U5E d3rd3r 8uwZ~r !u2
e2

ur 2r 8u
uwZ~r 8!u2 ~8b!

and for the Hartree wave function Eq.~3!

Ue f f
H 5

5

4
Z2

25

128
, ~9!

smaller than Eq.~8a! because the wave functions are mo
expanded~note, however, that this is different from the a
tual Coulomb integral Eq.~8b! computed with the Hartree
wave functions, due to the cost in electron-ion energy p
by the expanded wave functions!. For the Eckart and Hyller-
aas wave functions the effectiveU becomes progressivel
smaller, corresponding to the decrease of the two-elec
energyE(2) with increasingly better wave functions. Figu
3 showsUe f f versus ionic charge in the different approxim
tions.

Figure 4 depicts qualitatively the electrons in the atom
the different approximations. We emphasize that the tw
electron wave function in any of the approximations d
cussed is very different from the one corresponding to n

FIG. 2. Parameters in the Hylleraas wave function Eq.~6! de-
scribing angular correlations (c1, full line! and radial correlations
(c2, dashed line! vs ionic charge.
2-3
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J. E. HIRSCH PHYSICAL REVIEW B 65 184502
interacting electrons, Eq.~2!. For the purposes of this pape
any of these wave functions, including the simple Hart
one, describes ‘‘electronic correlation,’’ in the sense that
two-electron wave function is different from the one given
Eq. ~2!, and is appropriate to illustrate the physics
electron-hole asymmetry. Note also that the difference
tween these wave functions and the uncorrelated wave f
tion, Eq. ~2!, increases as the ionic chargeZ decreases and
the relative importance of electron-electron versus electr
ion interaction strength increases.

It is also worth pointing out that the electron-electron
pulsionUe f f decreases as the ionic chargeZ decreases for al
these wave functions, including the uncorrelated one. He
everything else being equal, pairing of electrons~or holes!

FIG. 3. EffectiveU @Eq. ~7!# vs ionic chargeZ for the Hartree
~full line!, Eckart ~dot-dashed line!, and Hylleraas~dashed line!
wave functions. The dotted line gives the bareU @Eq. ~8!# for the
two electrons in the single-particle orbital.

FIG. 4. Qualitative depiction of the two-electron state: in t
Hartree wave function, both electrons occupy the same expan
orbital; in the Eckart wave function, the electrons occupy differ
orbitals; in the Hylleraas wave function, the amplitude of the wa
function depends on the relative angular and radial coordina
When removing an electron from any of these two-electron w
functions, the state of the remaining electron has to change to
come the eigenstate of the single-electron atom.
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should be favored when the effective ionic charge is sm
i.e., with negatively charged ions. This simple fact, whi
provides some rationale for high-temperature supercond
tivity being favored in systems with negative ions (O22 in
cuprates, B2 in MgB2) has surprisingly not been pointed o
before to our knowledge.

III. ATOMIC SPECTRAL FUNCTIONS

Properties of many-electron systems can be studied
consideration of spectral functions. The zero-temperat
one-electron spectral function for a many-body system
conventionally defined as

A~v!5 (
n51

`

@ u^nucas
† u1&u2d„v2~En

N112E1
N111mN!…

1u^nucasu1&u2d„v1~En
N212E1

N212mN21!…#,

~10a!

whereu1& is the ground state of theN-electron system,E1
N its

ground-state energy, andmN5E1
N112E1

N , mN215E1
N

2E1
N21. For a metal,mN5mN215m, and one can redefine

the frequencyv→v1m so that Eq.~10a! becomes

A~v!5 (
n51

`

@ u^nucas
† u1&u2d„v2~En

N112E1
N11!…

1u^nucasu1&u2d„v1~En
N212E1

N21!…# ~10b!

and the zeros of thed-function arguments occur at the exc
tation energies of the system. To have a smooth transi
between the metal and atomic spectral functions we will h
define the atomic spectral functions as Eq.~10b! rather than
Eq. ~10a!. The first term describes the response of the sys
when an electron of spins is created in the single-particl
statea, into the ground state withN electrons.En

N11 is the
nth excited-state energy of the many-electron system w
N11 electrons. Similarly, the second term describes the
sponse of the system when an electron of spins at the
single-particle statea is destroyed from the ground state
the N-electron system, andEn

N21 are the excited state ene
gies of the resulting (N21)-electron system. Generically, i
many-body systems the one-electron spectral function is
the form18

A~v!5zd~v2~e2m!!1Ainc~v!, ~11!

where the first term describes the quasiparticle, with qu
particle weightz, 0<z<1, and the second term describes
continuum of incoherent excitations at higher energies. Fo
small system such as an atom, however, the spectral func
will consist of only discreted functions. Nevertheless, w
can identify the lowest-energyd function as corresponding
to the quasiparticle, and its coefficient as the quasipart
weight.

The fundamental asymmetry between electrons and h
follows immediately from consideration of these spect

ed
t
e
s.
e
e-
2-4
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WHY HOLES ARE NOT LIKE ELECTRONS: A . . . PHYSICAL REVIEW B65 184502
functions. Consider the spectral function for creating an e
tron in the empty atom,N50. From Eq.~10b!, it is simply

Ael~v!5d~v! ~12!

so that it is totally coherent, with quasiparticle weightz51.
Consider next the spectral function for creating a hole

the full 1s shell

Ah~v!5(
n

u^nuca,↑u1&u2d~v1En
12E1

1!. ~13a!

The excitation energies in Eq.~13a! are the ones of the singl
occupied atom,

En
152

Z2

n2
~13b!

and the matrix elements are

^nuca,↑u1&[Sn5E d3r 1d3r 2C~rW1 ,rW2!wa~r 1!wn~r 2!

~13c!

with C the two-electron ground-state wave function,wn the
wave function for thenth excited state of the singly occupie
atom, andwa the single-particle wave function of statea.
The important qualitative point is, becauseC is not given by
the product form of single-electron wave functions Eq.~2!,
the spectral function Eq.~13a! necessarilyconsists of asum
of d functions rather than a single one as Eq.~12!:

Ah~v!5zd~v!1 (
nÞ1

Sn
2d~v1En

12E1
1!, ~14a!

z5S1
2 . ~14b!

Hence, the spectral function for hole creation Eq.~14a! is
qualitatively differentfrom the one for electron creation Eq
~12!.

The foregoing remarks are true forany single-particle
wave functionwa . Which is the appropriatewa to use to
define the hole spectral function? We argue that it is reas
able to use the single particle wave function that maximi
the quasiparticle weight of the hole spectral function,S1

2

~such a hole wave function will have minimal kinetic ener
in the solid!. For the Hartree wave function, Eq.~3a!, it is
simply given by

wa~r !5w Z̄~r ! ~15a!

and

S15E d3rw1~r !w Z̄~r !5
~ZZ̄!3/2

S Z1Z̄

2
D 3 ~15b!

with Z̄5Z25/16. For the Eckart and Hylleraas wave fun
tions, we use a single-particle wave function of the form E
~15a!, with Z̄ determined by maximization of the function
18450
c-

n

n-
s

.

S1~ Z̄!5E d3r 1d3r 2C~rW1 ,rW2!w Z̄~r 1!w1~r 2! . ~16!

Note that the hole spectral function as defined by Eq.~13!
satisfies

E
0

`

dvAh~v!5(
n

Sn
25E d3r 1F E d3r 2C~r 1 ,r 2!wa~r 2!G2

.

~17!

In the Hartree approximation

E
0

`

dvAh~v!51, ~18!

while with the more accurate wave functions, the frequen
integral of the hole spectral function is less than unity. This
because there is also a nonzero probability of creating
electron in the single-particle statewa into the two-electron
atom. However, that probability is found to be small.

Finally, the atomic spectral function for the singly occ
pied atom is of interest. We consider separately the posi
and negative frequency parts. The spectral function for
struction of an electron in the singly occupied atom is

Ael8 ~v!5(
n

u^nuca↑u1&u2d~v1En
02E1

0!, ~19!

which is of course also given by

Ael8 ~v!5d~v! ~20!

and the spectral function for destruction of a hole in t
singly occupied atom, or equivalently creation of an electr
in the singly occupied atom, is

Ah8~v!5(
n

~Sn8!2d„v2~En
22E1

2!…, ~21!

whereEn
2 are the excitation energies of the doubly occup

atom, and

Sn85E d3r 1d3r 2wa~r 1!wZ~r 2!Cn~r 1 ,r 2! ~22!

with Cn the wave functions for the excited states of t
two-electron atom. Once again, the spectral functionAh8 is
qualitatively different fromAel8 , as it contains an incoheren
part. The spectral function for the singly occupied atom
defined by Eq.~10b! will be either Eq. ~20! or Eq. ~21!
depending on the value ofs in Eq. ~10b! and of the spin of
the electron in the singly occupied atom.

To estimateSn8 we need the excited-state wave functio
for the doubly occupied ion. The excited states are appro
mately described by one electron in the ground state and
other electron in an excited state of the ion with orbital e
ponentZ̃, wnZ̃ , with Z̃ given by Slater’s rules:1

Z̃5Z20.85, n52, ~23a!

Z̃5Z21, n53,4, . . . . ~23b!
2-5
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J. E. HIRSCH PHYSICAL REVIEW B 65 184502
The matrix elements are then given by~for n.1)

Sn85E d3rwa~r !wnZ̃~r ! ~24!

and the excitation energies by

En
252Z22

Z̃2

n2
. ~25!

IV. RESULTS FOR THE ATOMIC SPECTRAL FUNCTIONS

As discussed in the previous section, we calculate the h
spectral function for that single-particle wave functionwa
that maximizes the quasiparticle weight, which we will c
the ‘‘hole wave function.’’ Figure 5 shows the orbital exp
nent of that state,a, versusZ. For the Hartree approximatio
a5Z̄, for the Eckart and Hylleraas approximationsa is
somewhat smaller, i.e., the hole wave function is somew
more extended. In all approximations the hole wave funct
becomes more diffuse as the ionic chargeZ decreases, a
expected. Figure 6 shows the quasiparticle weight for
hole, from Eqs.~14b! and ~16!. The Hartree wave function
somewhat overestimates and the Eckart wave function so
what underestimates the quasiparticle weight given by
Hylleraas wave function, which presumably is the most
curate one. As the ionic charge decreases the quasipa
weight for the hole decreases in all the approximations.

To obtain the full spectral function for hole creation w
compute the matrix elementsSn , Eq. ~13c!. Becausewa is
spherically symmetric, only the excited atomics states give
nonzero results for the integral. They are given by

wn~r !5S ~Z/n!3

p D 1/2

(
l 50

n21

~21! lal S Zr

n D l

e2Zr/n, ~26a!

al5
~n21!!2 l

~n2 l 21!! ~ l 11!! l !
. ~26b!

FIG. 5. Orbital exponent of the ‘‘hole wave function’’wa , de-
fined as the single-particle wave function that yields maximal q
siparticle weight for the hole spectral function, Eq.~14!, for the
various approximations to the two-electron wave function. The
bital exponent of the single-electron wave function is also sho
~dotted line!.
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The integrals for all the approximate wave functions cons
ered can be done analytically, as described in Appendix

Figure 7 shows the spectral function for hole creation
the full 1s shell, Eq.~13a!, for various values ofZ. We show
results for both the Hartree and Hylleraas wave functio
the results for the Eckart wave function are similar. ForZ
52, Ah(v) is close to ad function atv50, of weight unity;
the incoherent part occurs at very high energies and has
small weight. AsZ decreases, the weight of thev50 peak
~quasiparticle! gradually decreases, and the weight of t
higher-energy peaks~incoherent part! gradually increases; in
addition, the incoherent peaks shift to lower frequency.
Fig. 8 we show results with the Hartree wave function for
even smallerZ, Z50.4 ~the procedure to obtain the Hylleraa
wave function does not converge for such a smallZ), show-
ing that here the incoherent contribution is bigger than
quasiparticle part.

Similarly, we can calculate the spectral function for ho
destruction~electron creation! in the ion with one hole~i.e.,
with one electron!, from Eqs.~23!–~25!. The excited states
wave functions are given by Eq.~26! with Z replaced byZ̃
given in Eq.~23!. The matrix elements turn out to be simila
to the case of hole creation, but the excitation energies h
are much lower. Hence the incoherent part of the spec
function is shifted to much lower energies for these p
cesses. Figure 9 shows the calculated spectral function
hole destruction forZ52 andZ51.

Note that it is meaningless to calculate the spectral fu
tion for hole destruction for the isolated atom forZ,1. In
that case, all the excited states of the two-electron ion
unbound. However, the situation is different in the so
state. There, the negative ion~e.g., O22 or B2) will be sur-
rounded by positive cations, and excited states can be for
where the excited electron is still confined in the neighb
hood of the anion and the surrounding cations.

V. CONSEQUENCES FOR THE SOLID STATE

We have seen in the last section that the spectral funct
for electrons and holes in the atom will be either singled

-

r-
n

FIG. 6. Quasiparticle weight for the hole,z, vs ionic chargeZ,
for the various approximate two-electron wave functions. The d
ference between these curves and 1, the quasiparticle weight fo
electron, measures the importance of electron-hole asymmetry
given ionic charge.
2-6
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functions or sums ofd functions depending on the charg
state of the atom. In this section we discuss the fundame
consequences of this for the solid state.

When we bring together the atoms to form a solid, orb
als overlap and bands are formed. Consider for simplicity
lowest band, formed by overlapping 1s orbitals, well sepa-
rated from other bands if the interatomic distance is lar
The kinetic energy operator for an electron in such a band
second quantized formalism, is

FIG. 7. Spectral function for hole creation for various values
the ionic chargeZ. The full lines indicate the magnitude of th
coefficients of thed functions within the Hylleraas wave function
the dotted lines and symbols give the results for the Hartree w
function. The ‘‘width’’ of the d functions is arbitrary. As the ionic
charge decreases the quasiparticle peak (d function atv50) de-
creases and the ‘‘incoherent parts’’ (d functions at negative frequen
cies! increase. At the same time the energy of the incoherent e
tations decreases in absolute value.
18450
tal

-
e

.
in

H52(
i , j

t i j cis
† cj s , ~27a!

wheret i j is the Fourier transform of the Bloch band energ

t i j 5
1

N (
i , j

eik(Rj 2Ri )ek ~27b!

f

ve

i-

FIG. 8. Spectral function for hole creation within the Hartr
approximation for ionic chargeZ50.4. Here the quasiparticle ha
smaller weight than the incoherent excitations.

FIG. 9. Spectral function for hole destruction~electron creation!
in the singly occupied atom within the Hylleraas approximatio
Note that the energies where the incoherent contributions appea
much lower for hole destruction than for hole creation for the sa
Z. The quasiparticle peak has the same height for hole destruc
and hole creation.
2-7
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and cis
† creates an electron in Wannier orbitali, a linear

combination of nearby atomic orbitals with largest amplitu
at sitei. In the simplest tight-binding approximation the ho
ping matrix element for a single electron can be obtain
from

t i j 5
2~w i ,hw j !1Si j ~w,hw i !

12Si j
2

, ~28a!

Si j 5~w i ,w j ! ~28b!

with

h52¹22
2Z

ur 2Ri u
2

2Z

ur 2Rj u
~29!

the single electron Hamiltonian~in atomic units!. Equation
~28! reproduces quite accurately the spacing between bo
ing and antibonding states of the single-electron diato
molecular ion in a wide range of interatomic distances a
ionic charges.19 However, we emphasize that Eq.~27! is gen-
erally valid for any Bloch band: away from the tight-bindin
limit the hoppingt i j will involve many neighboring atoms
and differ from Eq.~28!, and the Wannier orbital will be a
linear combination of many atomic orbitals. We will focus o
the tight-binding limit here for simplicity, but expect th
qualitative physics to survive beyond that limit.

A. Spectral function

1. General considerations

Consider the spectral function for electrons in this ba
A(k,v). For the empty band, we use Eq.~10! with cas re-
placed by

cks5
1

AN
(

i
eikRicis . ~30!

Whencks
† acts on the ground state~the empty band!, it yields

a single-electron Bloch function, an eigenstate of the Ham
tonian Eq.~27a!. Hence the spectral function is simply give
by

A~k,v!5d„v2~ek2m!…, ~31a!

ek5
1

N (
i , j

eik(Ri2Rj )t i j ~31b!

wherem is the chemical potential~equal to the bottom of the
band for the empty band!.

For the full band instead, the situation ismuch more
complicated. We wish to compute Eq.~10! with the operator

cks
a 5

1

AN
(

i
eikRicis

a , ~32!

where the atomic destruction operatorcis
a destroys an elec

tron in the single-electron atomic statea with wave function
wa as discussed in the preceding section. The ground s
u0& is given by
18450
d

d-
ic
d

,

l-

te

u0&5u↑↓&1u↑↓&2 . . . u↑↓& i . . . u↑↓&N , ~33!

whereu↑↓& i is the correlated two-electron ground state of t
i th atom, described, e.g., by the Hylleraas wave functi
Whencis

a operates on this state we obtain

ci↑
a u↑↓& i5S1u↓& i1 (

n.1
Snu↓n& i , ~34!

where the matrix elementsSn are given by Eqs.~13c! and
~B7!, and u↓n& i denotes thenth excited state of the single
electron ion with energy given by Eq.~13b!, andu↓&[u↓1&.
Hence,

ck↑
a u0&5

S1

AN
(

i
eikRiu↓& i1

1

AN
(

i
eikRi (

n.1
Snu↓n& i ,

~35!

which is, not surprisingly,not an eigenstate of the Hamil
tonian Eq.~27a!. @In Eq. ~35!, the state vectors for all site
j Þ i , u↑↓& j , are omitted for clarity.# Thus the spectral func
tion for a single hole in the full band isnot a singled func-
tion and hence is qualitatively different from the spect
function of a single electron in the empty band, similarly
the case for the single atom.

The first term in Eq.~35! denotes a Bloch wave for a
single hole in the full band. This is also not an exact eige
state of the Hamiltonian, Eq.~27a!, because every time th
hole hops to a neighboring site there is a finite probabi
amplitude that the final state has the atoms in excited sta
as discussed in the preceding section. Nevertheless, w
the approximation where those processes are excluded
energy of the itinerant hole will be given by

ek
h5S1

2ek5zek[ẽk . ~36!

Separating this contribution from the rest we have for
single-hole spectral function

Ah~k,v!5zd„v2~ ẽk2m!…1A8~k,v!, ~37!

where A8(k,v) contains all contributions to the spectr
function with atomic excited states resulting from the seco
term in Eq.~35!. Hence it will involve the high-energy par
of the atomic spectral function discussed in the previous s
tions. In a solid, we expect that this contribution will n
have a strongk dependence and that the atomicd functions
will broaden to give rise to the ‘‘incoherent’’ part of th
spectral function,A8(k,v).

The derivation of Eq.~37! is not rigorous, and hence th
expressions forz andẽk are not exact. Nevertheless, the ge
eral form, Eq.~37!, possibly with somek dependence to the
quasiparticle weightz, is expected to be correct for a man
body system.18 In fact, Sham has shown rigorously20 that the
spectral function for a single hole in a full band has
d-function quasiparticle contribution that is separated fro
the continuum of incoherent excitations. We believe that
k-independentz and the form ofẽk obtained are reasonabl
approximations at least in the tight-binding limit. In partic
2-8
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WHY HOLES ARE NOT LIKE ELECTRONS: A . . . PHYSICAL REVIEW B65 184502
lar, this implies that the quasiparticle weightz and the effec-
tive mass renormalization for a hole

m*

m
5

1

z
~38!

will have the qualitative dependence on the ionic chargZ
discussed in the previous section.

2. Quasiparticle operators

In the foregoing discussion we considered the spec
function for a single electron in the empty band and fo
single hole in the full band. To generalize this analysis
other band fillings we define quasiparticle operators. T
atomic electron operator can be written in terms of atom
states as

ci↑5u0&^↑u1S1u↓&^↑↓u1 (
(n,n8)Þ(0,0)

Snn8u↓n&^↑↓n8u,

~39!

where u↓n& and u↑↓n8& are excited states of the singly an
doubly occupied ion, respectively, and

Snn85E d3rd3r 8Cn8~r 1 ,r 2!wa~r 1!wn~r 2! ~40!

with Sn15Sn , S1n85Sn8
8 as discussed in the previous se

tion. We write Eq.~39! as

cis5@11~S121!ñi ,2s# c̃is1cis8 , ~41!

where the ‘‘quasiparticle operator’’c̃is acts as if electronic
correlations did not exist,

c̃is
† u0&5us& ~42a!

c̃is
† u2s&5u↑↓& ~42b!

and obeys usual anticommutation relations.ñis5 c̃is
† c̃is .

The operatorcis8 is the ‘‘incoherent part’’ of the bare fermion
operatorcis , given by the last term in Eq.~39!. From Eq.
~41!, we obtain that the quasiparticle weight for a band w
band filling of n electrons per atom is approximately give
by

z~n!5F11~S121!
n

2G2

~43!

decreasing monotonically from 1 toS1
2 asn increases from 0

to 2.

3. Quasiparticle Hamiltonian

The effective low-energy Hamiltonian for quasiparticl
~kinetic energy part only! is obtained by replacing the bar
fermion operators in Eq.~27a! in terms of their form Eq.~41!
and neglecting the ‘‘incoherent part’’ of the operators th
would leave the atoms in excited states. Hence, it descr
only ground state to ground-state transitions~diagonal tran-
sitions in the language of small polaron theory!
18450
al

o
e
c

t
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Hqp52(
i j

t i j
s c̃is

† c̃ j s , ~44a!

t i j
s 5t i j @12~12S1!~ ñi ,2s1ñ j ,2s!1~12S1!2ñi ,2sñ j ,2s#.

~44b!

In a mean-field approximation, the quasiparticle energy
simply given by taking the expectation value of Eq.~44b!,
yielding

ẽk5z~n!ek . ~45!

To simplify the notation, we omit to denote explicitely then

dependence ofẽk on the left side of Eq.~45!. Equation~45!
implies that the relation Eq.~38! between effective mass an
quasiparticle weight is valid for any band filling, and that t
quasiparticle mass increases and the effective bandwidth
creases with increasing band filling.

4. Phenomenological model for the spectral function

From the considerations in the previous sections we c
clude that a reasonable model for the spectral function in
solid that contains the physics discussed is of the form

A~k,v!5z~n!d„v2~ ẽk2m!…1A8~v!, ~46!

where A8(v) is the incoherent part describing the atom
excitations, and we have ignored itsk dependence. The qua
siparticle weightz(n) and energyẽk are given by Eqs.~43!
and ~45!, respectively. The atomic spectral functions d
cussed in Sec. III will be broadened in the solid state, and
assume the Gaussian forms

Ah~v!5
1

A2pG1

expS 2
~v1e1!2

2G1
2 D , ~47a!

Ah8~v!5
1

A2pG2

expS 2
~v2e2!2

2G2
2 D . ~47b!

corresponding to hole creation~negativev) and hole de-
struction~positivev), respectively.e1 ande2 are mean ex-
citation energies of the singly occupied ion and the dou
occupied ion, hencee1.e2, and we assume the broadenin
G i is proportional toe i . The relative weights ofAh andAh8 in
A8 will be determined by the probabilities of doubly an
singly ocuppied sites, respectively, in the solid for band fi
ing n. The probabilities for empty, singly occupied, and do
bly occupied sitespe , ps , pd can be written as

pe~n!5S 12
n

2D 2

2S n

2D 2

a, ~48a!

ps~n!5nS 12
n

2D12aS n

2D 2

, ~48b!

pd~n!5S n

2D 2

~12a! ~48c!

for n<1, and
2-9
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pe~n!5pd~22n!, ~49a!

ps~n!5ps~22n!, ~49b!

pd~n!5pe~22n! ~49c!

for n.1. Here,a is a parameter that describes the suppr
sion of double occupancy due to the onsite repulsionU,
which we assume to be approximatelyn independent and to
interpolate smoothly between the limitsa(U50)50 and
a(U5`)51. As discussed earlier, the magnitude ofU de-
pends on the ionic chargeZ. The relative probabilities of
singly and doubly occupied sites are then

Ps~n!5
ps~n!

ps~n!1pd~n!
, ~50a!

Pd~n!512Ps~n! ~50b!

and the incoherent part of the spectral function in Eq.~46! is
given by

A8~v!5@12z~n!#@Ps~n!Ah8~v!1Pd~n!Ah~v!#. ~51!

In Fig. 10 we show the qualitative behavior of the spect
function Eq.~46! versus band filling for one set of param
eters. As the band filling starts increasing from zero, the q
siparticle peak starts decreasing and a peak at positive
quencies forms, corresponding to the excited states of
doubly occupied ion upon creation of electrons in singly o
cupied ions. Only at higher fillings, and particularly beyo
half filling, where the number of doubly occupied atoms b
comes appreciable, does the peak at negative frequen
start to form, corresponding to the excited states of the sin
occupied ion resulting from destruction of an electron in
correlated ground state of the two-electron atom. The pea
positive energies decreases as the full band is approac
because we are not considering the possibility of creation
electrons in higher-energy states of the doubly occup
atom. The quasiparticle peak height decreases monotoni
as the band filling increases, approachingS1

2 as the band
becomes completely full. In the limita→1, corresponding
to very strong intra-atomic Coulomb repulsion~i.e., very
large ionic chargeZ) the peak at negative energies only sta
to form for n.1. Note also, as discussed in the previo
section, that the relative magnitude of the quasiparticle
the incoherent parts will depend on the ionic chargeZ, with
the incoherent contributions becoming more important
small Z. Furthermore, the energy scale of the incoherent
citations decreases with decreasingZ.

B. Frequency-dependent conductivity

On general grounds we expect that the frequen
dependent conductivity will be given by ad function at zero
frequency broadened to a Drude form by disorder a
electron-phonon interactions if the spectral function is of
d-function form, Eq.~31a!, i.e., for the case of electrons i
an almost empty band. On the other hand, as the band
comes full and the single-electron spectral function devel
incoherent contributions we expect the frequency-depen
18450
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conductivity to develop high-frequency contributions refle
ing incoherent absorption processes where the atomsi and/or
j end up in excited states when an electron absorbs a ph
and jumps from atomi to atomj. A convenient form for the
frequency-dependent conductivity that reflects this physic

FIG. 10. Dependence of the phenomenological one-elec

spectral function on band filling, forkW the Fermi wave vector. Pa
rameters used in Eqs.~43! and ~46!–~51! are: S150.5, e10.85,
G150.2, e250.5, G250.2, a50.5. The zero-frequencyd function
is drawn with widthDv50.1, so thatA(kF ,v50)510 eV21 is
the maximum height~for z51). As the band is filled with electrons
~increasingn), the quasiparticle weightz(n) decreases and incohe
ent contributions appear, first at positive energies~electron creation
in the singly occupied atom! and at highern at negative energies
~electron destruction in the doubly occupied atom!. Electron cre-
ation in the empty atom and electron destruction in the singly
cupied atom give no incoherent contributions.
2-10
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given by the form derived within dynamical mean fie
theory21

s1~v!5pe2E
2`

`

deE
2`

`

dv8r~e!A~e,v8!A~e,v1v8!

3
f ~v!2 f ~v1v8!

v
. ~52!

Here, f (v) is the Fermi function andA(ek ,v) is the single-
electron spectral function.r(e) is the electronic density o
states for the quasiparticle band. Equation~52! is exact in the
limit of infinite dimensions, and is believed to be a reaso
able approximation for finite dimensions.

We evaluate Eq.~52! for the phenomenological spectr
function given by Eqs.~46! and ~51!. For the quasiparticle
band density of states we choose for simplicity a triangu
form

r~e!5
2

D S 11
e

D/2D ; 2
D

2
,e,0

5
2

D S 12
e

D/2D ; 0,e,
D

2
~53!

with bandwidthD5z(n)D0, and D0 the ’bare’ bandwidth
for electrons in the almost empty band. The ‘‘effective ban
width’’ D becomes progressively smaller as the band fill
increases, corresponding to the progressive reduction in
quasiparticle hopping amplitude

t~n!5t0z~n! ~54!

with t0 the hopping for the almost empty band. The Fer
energy is related to the band occupation by

eF5
D

2
~211An!, n<1

5
D

2
~12A22n!, n.1 ~55!

in this model. The frequency-dependent conductivity h
three contributions

s1~v!5s1
1~v!1s1

2~v!1s1
3~v!. ~56!

At zero temperature, they are given by

s1
1~v!5pe2z2~n!r~eF!

1

p

G

v21G2
, ~57a!

s1
2~v!5

pe2z~n!

v E
2v

0

@A8~v1v8!r~eF1v8!

1A8~v8!r~eF1v1v8!#, ~57b!

s1
3~v!5

pe2

v E
2v

0

dv8A8~v8!A8~v1v8!. ~57c!

In Eq. ~57a!, we have replaced thev50 d function by a
Drude-like lorentzian with relaxation timet51/G as would
be expected in the presence of impurities or electron-pho
scattering.
18450
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The physical content of the different contributions
s1(v) is as follows.s1

1 describes the intraband optical a
sorption of the quasiparticles, where the atoms remain
their ground state when the electron hops, and in partic
gives the zero-frequency conductivity. Note that it is prop
tional toz(n)51/m* as expected in the Drude model~one of
the powers ofz(n) is canceled by the density of states fa
tor!. s1

2 has two contributions; the first term has a nonze
contribution from the incoherent part of the spectral functi
at positive frequencies: it corresponds to processes wher
electron hops to a singly occupied site, and the result
doubly occupied atom ends up in an excited state, while
atom where the electron hopped from~initially doubly or
singly occupied! remains in the ground state; similarly, th
second term ins1

2 has a nonzero contribution from the inco
herent part of the spectral function at negative frequenc
corresponding to processes where an electron hops fro
doubly occupied site and the resulting singly occupied at
ends up in an excited state, while the atom the electron h
to ~either singly or unoccupied initially! ends up in the
ground state. Finally,s1

3 describes processes where an el
tron hops from a doubly occupied site to a singly occup
site and the atoms at both sites end up in excited final sta

Figure 11 shows the obtained frequency-dependent c
ductivity for one set of parameters using the phenomenolo
cal spectral function discussed in the previous subsect
For low band filling, with the spectral function dominated b
the quasiparticle part, the optical conductivity is large
given by the intraband Drude part, and the zero-freque
conductivity is high. In other words, the system is a ‘‘goo
metal,’’ with small resistivity. As the band filling increase
the intraband conductivity first increases as the numbe
electrons increases, however, at the same time some o
increased absorption occurs at higher frequency due to
incoherent part of the spectral function. At even higher ba
filling where the intraband conductivity becomes holelik
the Drude part becomes much smaller as does the z
frequency conductivity; at the same time, a large incoher

FIG. 11. Frequency-dependent conductivitys1(v), Eq.~52!, for
the parameters of the single-electron spectral function used in
10. As the band fillingn increases, spectral weight shifts from th
low-frequency Drude part to the high-frequency incoherent p
The zero-frequency conductivity is high for electrons~smalln) and
low for holes~largen).
2-11



gh
o

te
-

ity

h
te
l
an

t
, t
tra
b

ro
lly
n
it

ed
e

nc
io
n
n
ol
a

he
t o

ri-
es
t
-
ke
s

w
ite
on
ra
n
ti

ita

ie
ha
in
on

ia-
is

ar,

le-
nto
t in
mal
rge

-
on.
mes

sed
ctron-
ple

nto
the
le
ate.
fer
cti-

ve

for
e

the
two
an

ses,
t is
in

a
s-

tors.
ou-

-
of
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contribution to the conductivity develops; the spectral wei
of the incoherent part arises from the reduced intraband c
tribution due to the reduced quasiparticle weight. The sys
is now a ‘‘bad metal,’’ with high resistivity and largely inco
herent optical absorption.

It should be pointed out that our calculated conductiv
certainly does not satisfy the ‘‘global’’ conductivity sum
rule18

E
0

`

dvs1~v!5
pe2n

2m
, ~58!

which states that the total conductivity spectral weig
should increase with the number of electrons in the sys
(m is the bare electron mass!. This is because our mode
does not take into account most interband transitions,
because it does not allow for absorption processes where
atomic final state contains three electrons. Nevertheless
model correctly describes the transfer of optical spec
weight from intraband to higher-frequency incoherent a
sorption as the bandfilling progressively increases.

C. dc conduction

As a consequence of this physics, it is clear that the p
cess of electrical conduction in a hole metal is intrinsica
more complicated than that in an electron metal. Whe
hole hops from a site to a neighboring site, there is a fin
probability amplitude for the atoms to end up in excit
states rather than the ground state. That is what gives ris
the reduced dc conductivity as expressed by the enha
effective mass in the Drude formula. Thus the conduct
cannot be described as an entirely coherent process, as i
case of electrons, where the phase of the wave functio
well defined over a mean free path. In the case of the h
only the part of the conduction associated with the quasip
ticle part of the spectral function can be described as co
ent. When the quasiparticle weight is small, the transpor
current is largely incoherent.

It is of course true that in a perfect translationally inva
ant crystal the many-body eigenstates are also eigenstat
the crystal momentum operator,20 and one might argue tha
such a state with finitekW could carry current without dissipa
tion. However, any imperfections in the crystal would ma
such arguments invalid, unless the system goes into the
perconducting state and acquires rigidity.

One may expect new physical phenomena associated
this incoherent transport. If an atom ends up in an exc
state after the hole hops, it amounts to creating an electr
excitation in the system, just as the electron-phonon inte
tion can give rise to creation of a phonon. In the electro
phonon case this phonon emission gives rise to Joule hea
that dissipates part of the energy supplied to the system
the external potential. Similarly, here the electronic exc
tion should decay throughphotonemission, with the photon
frequency determined by the electronic excitation energ
involved. Because of conservation of energy it is clear t
such photon emission cannot occur in every single hopp
process for the moderate voltages applied. However,
18450
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would expect emission of nonthermal high-frequency rad
tion at locations in the solid where translational symmetry
broken, i.e., impurities and boundaries. In particul
electroluminescence22 ~at visible and infrared frequencies!
would be expected to occur in this picture at the samp
positive electrode boundary, where holes are injected i
the hole-metal sample. The effect should be the stronges
samples where the holes are highly dressed in the nor
state, i.e., where the band is close to full and the ionic cha
Z is small. Such systems should also give rise to highTc
superconductivity, as discussed in the following secti
When the system goes superconducting transport beco
coherent and the photon emission should dissappear.

Furthermore, the physics of hole conduction discus
here suggests that the contact resistance between an ele
metal electrode and a highly dressed hole-metal sam
should be nonsymmetric. When an electron is injected i
the hole metal it needs to excite the other electron in
orbital, while when an electron is removed from the ho
metal the remaining electron relaxes to a lower energy st
Hence electron injection into the hole metal should of
more resistance than electron removal, giving rise to a re
fying contact where the resistivity is lower at the positi
electrode-hole metal contact.

VI. HOLE SUPERCONDUCTIVITY

The physics discussed earlier leads to a mechanism
superconductivity.9–11 Consider the low-energy effectiv
Hamiltonian for quasiparticles, Eq.~44!: the hopping ampli-
tude for a quasiparticle depends on the occupation of
sites involved in the hopping process. For zero, one, and
other electrons in these sites, the hopping amplitude for
electron is respectively

t i j
0 5t i j , ~59a!

t i j
1 5S1t i j , ~59b!

t i j
2 5S1

2t i j [ t̃ i j ~59c!

becoming progressively smaller as the occupation increa
due to the progressive reduction in quasiparticle weigth. I
convenient to rewrite the quasiparticle kinetic energy
terms of hole rather than electron operators through
particle-hole transformation~that does not change the phy
ics!. The quasihole Hamiltonian is then

Hqh52 (
i , j ,s

@ t̃ i j 1Dt i j ~ ñi ,2s1ñ j ,2s!# c̃is
† c̃ j s1(

i , j
Ui j ñi ñ j ,

~60a!

Dt i j 5t i j
1 2t i j

2 5S 1

S1
21D t̃ i j [Y t̃ i j . ~60b!

Here, the operators are hole rather than electron opera
We have also added a term describing density-density C
lomb repulsion between holesUi j , of which the largest will
be the onsite repulsionU[Uii . Furthermore, we have omit
ted the term describing hopping of a hole in the presence
2-12
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two other holes, which should be negligible for low ho
density due to Coulomb repulsion.

Superconductivity will occur for this model Hamiltonia
in the regime of low hole density~band almost full! for a
range of parameters, driven by lowering of kinetic ene
when hole carriers pair.9,10 For simplicity, we now restrict
ourselves to the case of nearest-neighbor hopping and i
actions only. The hole quasiparticle Hamiltonian is

H52 (
^ i j &,s

@ t1Dt~ni ,2s1nj ,2s!#~cis
† cj s1H.c.!

1U(
i

ni↑ni↓1V(̂
i j &

ninj . ~61!

We have omitted the ‘‘tilde’’ on the hole quasiparticle oper
tors. This ‘‘correlated hopping’’ Hamiltonian has been exte
sively studied in recent years by approximate and exact te
niques, and the reader is referred to the references
detailed information.9,23–32 The condition for superconduc
tivity in the limit of low hole concentration is32

K.A~11u!~11w!21, ~62!

whereK52zDt/D, u5U/D, w5zV/D, with z the number
of nearest neighbors to a site andD the ~renormalized! band-
width. Within BCS theory the same condition is found, wi
1/D replaced byg(eF), the density of states at the Ferm
energy, in the definition of the parameters in Eq.~62!.9 The
reader is referred to the literature for discussion of the p
ticular features of the superconducting state~e.g., energy-
dependent gap function! and for results for various observ
ables ~e.g., density and pressure dependence ofTc ,
thermodynamics, tunneling, nuclear magnetic resonance,
order effects, etc.! that can be understood from this low
energy effective Hamiltonian.9,10

Here we wish to focus the discussion on the fundame
aspect of the physics related to the high-energy degree
freedom that are not contained in the low-energy quasipa
cle Hamiltonian.33,11The key to superconductivity lies in th
relation between the relative weights of the coherent
incoherent parts of the spectral function discussed in Sec
and the site occupation, or the band filling. As we have se
as the electronic site occupation increases the spectral f
tion becomes more incoherent. Consider the Cooper
wave function for a hole pair in the full band,

C5
1

AN
(
i , j

f i j ci↑
† ci↓

† u0&, ~63!

whereu0& is the full band, andcis
† is a hole creation operato

In the limit where the size of the Cooper pair~i.e., the super-
conducting coherence length! goes to infinity the holes be
come uncorrelated andf i j ;1/AN (N denotes number o
sites in the system!. For short coherence length instead,f i j
;O(1) for u i 2 j u small. In particular, the amplitude for th
holes to be on the same site or on neighboring sites beco
of order unity rather than being negligible. Thus, the spec
function for a hole in such a state will have a larger coher
part and a smaller incoherent part than the spectral func
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of a hole that is not bound in a pair. In other words, ho
‘‘undress,’’ i.e., become more coherent, when they pair.11 Be-
cause electrons~quasiparticles when the band is almo
empty! are more coherent than holes~quasiparticles when the
band is almost full! we may also say that holes become mo
‘‘like electrons’’ when they bind in a Cooper pair. Naturall
if pairing and superconductivity are associated with su
quasiparticle ‘‘undressing,’’ it will occur when the quasipa
ticles in the normal state are holelike~band close to full! and
will not occur when they are electronlike~band close to
empty!.34

Intimately related to the increased coherence of the h
bound in a Cooper pair is the fact that the hole has an
creased hopping amplitude when it hops to or from a s
where there is another hole, due to its increased quasipar
weight. When a hole forms a Cooper pair the probability
another hole to be nearby increases, and the increased
ping amplitude that occurs on the average gives rise t
lowering of the hole kinetic energy upon pairing, which pr
vides the binding energy of the Cooper pair if it can ove
come the increased cost in ordinary Coulomb energy aris
from the decreased distance between like charges.35

Finally, consider the process of optical absorption wh
the band is almost full. An incident photon causes an elect
to hop from a site to a neighboring site. If the electron is p
of a hole Cooper pair, it is far more likely to hop to or from
a site that isnot occupiedby another electron, than if it is
uncorrelated. If the electron hops to or from an unoccup
site, it has a larger contribution from the coherent part of
spectral function and hence gives a larger contribution to
‘‘intraband’’ part of s1 rather than to the high-frequency in
coherent part. Hence, optical spectral weight will shift fro
the high-frequency incoherent part of the spectrum to
low-frequency Drude part when pairing occurs. Because
the superconducting state the lowest-frequency part of
Drude absorption~below twice the energy gapD) collapses
into the zero-frequencyd function that determines the pen
etration depth, thed function acquires an ‘‘anomalous’’ extr
contribution transferred from the high-energy incoherent
tical absorption spectrum rather than from the frequency
gion below 2D, and an ‘‘apparent violation’’ of the conduc
tivity sum rule results.35

In summary, the superconducting transition driven by
physics of electron-hole asymmetry discussed here has a
ciated with it these anomalous spectral weight transfers
one- and two-particle~optical conductivity! spectral func-
tions, caused by the dependence of the single-particle s
tral function on site occupation discussed in Sec. III,together
with the fact that the site occupation changes when pair
occurs. The spectral weight is transferred from an ener
range that is not related to the magnitude of the superc
ducting energy gapD, rather it is related to the much large
energy scale of intra-atomic electronic excitations. To stu
quantitatively these spectral weight transfer processes,
useful to consider model Hamiltonians as discussed in
following section.

VII. MODEL HAMILTONIANS

To go beyond the phenomenological model discussed
the previous section it is useful to construct model Hamil
2-13
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nians that contain the physics of interest, that are amen
to theoretical studies by various techniques. We cons
here three classes of model Hamiltonians.

A. Hamiltonians with auxiliary oscillator degrees of freedom

A variety of generalizations of the commonly used Ho
stein model describing coupling of a local boson~usually
phonon! degree of freedom to the local electronic char
density can be constructed to contain the essential phy
discussed here.7 As the simplest example, consider an ele
tronic model with a single orbital per site and a local bos
degree of freedom, with site Hamiltonian

Hi5
pi

2

2M
1

1

2
Kqi

21~U1aqi !ni↑ni↓ ~64!

describing the coupling of a local oscillatorqi of frequency
v05AK/M to the atomicdouble occupancy. Completing
the squares yields

Hi5
pi

2

2M
1

1

2
KS qi1

a

K
ni↑ni↓D 2

1Ue f fni↑ni↓ , ~65a!

Ue f f5U2
a2

2K
[U2v0g2 ~65b!

so the equilibrium position of the oscillator isq50 for the
empty and singly occupied site, andq52a/K for the dou-
bly occupied site. The reduction fromU to Ue f f due to the
change in the oscillator equilibrium position parallels the
duction from U to Ue f f in the atomic problem due to th
modification of the electronic wave function in the doub
occupied atom by correlations.

The states of the site can be written as direct produc
the electronic state in occupation number representation
the boson state. We denote byunl& the l th excited state of the
oscillator when there aren electrons at the site~n50, 1 or 2!,
and un0&[un& the ground state. The site ground states
then u0&u0&,u↑&u1&,u↓&u1&,u↑↓&u2&. Because the oscillator i
not affected by single occupancy,u0l&5u1l&. The matrix el-
ementsSl defined in Eq.~13c! and excitation energies Eq
~13b! are given by

Sl 115^1l u2&5
e2g2/2gl

~ l ! !1/2
, ~66a!

El
15v0l ~66b!

and the spectral function for hole creation in the doubly
cupied siteAh(v) has the form given by Eq.~14!, with qua-
siparticle weight

z5S1
25e2g2

. ~67!

The spectral functions for electron creation in the empty
and electron destruction in the singly occupied siteAel and
Ael8 are singled functions, as in the case of the atom, beca
the oscillator is not affected by single occupancy. Finally,
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spectral function for hole destruction~electron creation! in
the singly occupied siteAh8(v) is a sum ofd functions like
Eq. ~21!, with

Sl85~21! lSl , ~68a!

El
25El

1 . ~68b!

In an atom, the energy level spacing is proportional toZ2,
with Z the nuclear charge. If we assume similarly

v05cZ2, ~69a!

and we also assume

g25
c8

Z2
, ~69b!

(c, c8 constants! then the reduction fromU to Ue f f in Eq.
~65b! is independent ofZ, which is what is found in real
atoms.1 Furthermore, asZ decreasesg increases and the qua
siparticle weight Eq.~67! will decrease, similarly as found in
the atomic problem in Sec. III. For the solid we take then
model Hamiltonian

H52(
i j

t i j cis
† cj s1(

i
Hi ~70!

and argue that this model Hamiltonian describes the sa
physics as the real solid discussed earlier. In particular,
low-energy effective Hamiltonian is of the same form as E
~44!, and the same processes of spectral weight transfer
cussed earlier will occur here. Quasiparticle operators
easily defined using a generalized Lang-Firs
transformation.11,33

This Hamiltonian can be studied by standard theoret
techniques. Some initial studies have already be
performed.11,8 Further studies with nonperturbative tec
niques such as dynamical mean field theory21,36 and numeri-
cal methods such as density-matrix renormalization grou37

should be able to determine quantitatively the parameter
gime where superconductivity occurs in this model, as w
as provide substantial insights into the physics of electr
hole asymmetry and spectral weight transfer under disc
sion here.

It should be pointed out, however, that there is a diff
ence between this Hamiltonian and the atomic case pr
ously discussed. Namely, both the excitation spectrum
matrix elements here are the same for hole destruction in
doubly occupied site and electron creation in the singly
cupied site, unlike the case of the real atom. However, we
not believe that this difference will qualitatively change t
physics.

It is also possible to extend the Hamiltonian, Eq.~64!, so
that it will also describe dressing of electrons in singly o
cupied sites,7 by including coupling to the electronic charg
density as in the ordinary Holstein model. As long as t
coupling to double occupancy is nonzero, or through ot
terms that break electron-hole symmetry such
anharmonicity,7 the essential physics of interest here, that
the band filling increases the coupling strength and hence
2-14
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WHY HOLES ARE NOT LIKE ELECTRONS: A . . . PHYSICAL REVIEW B65 184502
dressing of the quasiparticle increases, will be containe
the Hamiltonian. Such a generalized Holstein model wo
be useful if one is interested in describing the smaller dre
ing effects of the first electron in a shell due to coupling
electrons in inner shells.

B. Electronic Hamiltonian

An electronic Hamiltonian without auxiliary degrees
freedom that contains the physics of electron-hole asym
try and undressing under consideration here needs to ha
least two orbitals per site. A simple such Hamiltonian for t
site is6

Hi5Uni↑ni↓1U8ni↑8 ni↓8 1Vnini81eni8

2t8(
s

~cis
† cis8 1H.c.!, ~71!

where the primed~unprimed! orbitals refer to electrons in th
upper ~lower! energy orbital, assumed orthogonal to ea
other. ~An alternative description would assumet850 and
nonorthogonal orbitals!. We assume all parameters in E
~71! positive, and the ordering

U812e,V1e,U ~72a!

U,U8,V@e@t8. ~72b!

These conditions ensure that a single electron resides pr
rily in the lower level and two electrons reside primarily
the upper level. Hence this Hamiltonian mimics the phys
of the Hartree-Fock solution of the atomic problem discus
previously. The effective onsite repulsion defined by Eq.~7!
is Ue f f5U812e to lowest order int8.

It is simple to diagonalize the site Hamiltonian exact
however, for illustration purposes we restrict ourselves h
to the lowest-order perturbation theory int8. The ground
states of the singly and doubly occupied sites,us@ and
u↑↓&& and their energies, are respectively

us&&5us&u0&1d1u0&us&, E50, ~73a!

u↑↓&&5u0&u↑↓&1d2

u↑&u↓&1u↓&u↑&

A2
, E5U812e,

~73b!

where the first ket refers to the lower and the second ke
the upper orbital, and

d15
t8

e
, ~74a!

d25
A2t8

V2U82e
. ~74b!

The excited state of the singly occupied atom is

us (2)&&5d1us&u0&2u0&us&, E5e ~75!

and the excited states of the doubly occupied atom are
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u↑↓ (2)&&5
u↑&u↓&1u↓&u↑&

A2
1d3u↑↓&u0&2d2u0&u↑↓&,

E5V1e, ~76a!

u↑↓ (3)&&5u↑&u↓&2u↓&u↑&A2, E5V1e, ~76b!

u↑↓ (4)&&5u↑↓&u0&2d3u↑&u↓&1u↓&u↑&A2, E5U,
~76c!

with d35A2t8/(U2V2e). The spectral functions to creat
an electron in the empty site and to destroy an electron in
singly occupied site are singled functions, as in the atomic
case. The ‘‘hole wave function’’wa that maximizes the hole
quasiparticle weight is given, to this order int8, simply by
the wave function of the upper state. The spectral funct
for hole creation in the doubly occupied atom is then of t
general form Eq.~14!

Ah~v!5zd~v!1S2
2d~v1e!, ~77a!

z5S1
25S d11

d2

A2
D 2

, ~77b!

S252S 12
d1d2

A2
D ~77c!

and the spectral function for destroying a hole in the sin
occupied atom, i.e., creating an electron, is

Ah8~v!5zd~v!1@~S28!21~S38!2#d„v2~V2U82e!…

1~S48!2d„v2~U2U822e!…, ~78a!

S285
1

A2
2d1d2 , ~78b!

S385
1

A2
, ~78c!

S4852
d3

A2
. ~78d!

Hence the site spectral functions are of the same form a
the atomic problem discussed previously. The ‘‘quasiparti
operators’’ are thencis or cis8 depending on whether the sit
is singly or doubly occupied. We may take as lattice Ham
tonian

H52(
i j

t i j @cis
† cj s1cis

† cj s8 1~cis8 !†cj s1~cis8 !†cj s8 #

1(
i

Hi , ~79!

where we have assumed for simplicity the same hopp
amplitude for the unprimed and primed orbitals. Projecti
of the Hamiltonian Eq.~79! to the lowest site energy state
yields a low-energy effective Hamiltonian of the form E
~44!, which will give rise to superconductivity in certain pa
2-15
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J. E. HIRSCH PHYSICAL REVIEW B 65 184502
rameter ranges. Furthermore, the spectral weight tran
processes discussed previously should occur for this Ha
tonian. Because it has a relatively small number of states
site this Hamiltonian should be amenable to study parti
larly by exact diagonalization methods. Parameters in
Hamiltonian can be related fairly directly to realistic para
eters obtained from quantum chemical calculations of r
atoms.

C. Hamiltonians with auxiliary spin degrees of freedom

The physics of interest here was first studied in the c
text of an electronic Hamiltonian with an auxiliary spin 1
degree of freedom5,38 to represent the other electron~s! in the
atom, with site Hamiltonian

Hi5@V~ni↑1ni↓!2v0#sz
i 1Dsx

i 1Uni↑ni↓ ~80!

with V.v0 andD!v0 ,V, and all parameters positive. Fo
such parameters, the auxiliary spin in the ground state
point predominantly up ifni↑5ni↓50 and down otherwise
That situation describes then ahole Hamiltonian, where the
first hole causes a large disruption in the ‘‘background’’ d
gree of freedom~the spin! and the second a small one. W
can, however, also use this Hamiltonian with the opera
representingelectrons if we choose the parameter rang
V,v0,2V instead, so that the first electron will not chan
the state of the spin and the second one will. The lat
Hamiltonian

H52(
i j

t i j cis
† cj s1(

i
Hi ~81!

also has as low-energy effective Hamiltonian the gene
form Eq. ~44! that gives rise to correlated hopping.39 Exact
diagonalization studies of this Hamiltonian on sm
clusters38 show that it gives rise to pairing in a wide range
parameters. Furthermore, the optical conductivity was ca
lated in a simple case33 and the results show the spectr
weight transfer process discussed earlier, as one w
expect.

The site spectral functions are also simple to calcula
There is a difference with the atomic case discussed pr
ously in that the single-electron spectral function for t
empty site is not a singled function here because som
modification of the background spin degree of freedom
curs even when the first electron is created at the site. N
ertheless, for the parameter range discussed the change
state of the background is much larger for the second e
tron, hence the quasiparticle weight is much smaller fo
hole than for an electron and the same qualitative physic
electron-hole asymmetry and undressing occurs. Here ag
this Hamiltonian should be amenable to detailed study
exact diagonalization.

Finally, a site Hamiltonian analogous to the oscillat
Hamiltonian, Eq.~64!, can also be constructed with auxiliar
spin degrees of freedom,

Hi5@Vni↑ni↓2v0#sz
i 1Dsx

i 1Uni↑ni↓ , ~82!
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which will contain the physics of interest here forV.v0.
This Hamiltonian does not ‘‘dress’’ the single electron as E
~80! does. A two-parameter version that resembles clos
the oscillator Hamiltonian would be

Hi5v0sz
i 1gv0@122ni↑ni↓#sx

i 1Uni↑ni↓ , ~83!

which is analogous to the oscillator Hamiltonian, Eq.~64!,
which in terms of boson creation and annihilation operat
reads

Hi5v0ai
†ai1@U1gv0~ai

†1ai !#ni↑ni↓ . ~84!

For largeg, the Hamiltonians, Eqs.~83! and~84!, give rise to
small quasiparticle weight for the hole.

In summary, a large variety of model Hamiltonians can
constructed that contain the essential physics of interest h
and we discussed some particular simple examples. Stud
these Hamiltonians should yield interesting insights a
clarify the physics further. However, this physics will on
exist for certain parameters in the models, and not for oth
In particular, the models need to break electron-hole sym
try. Instead, if one takes for example the spin Hamiltonia
Eq. ~80!, with V5v0, or the Holstein Hamiltonian with only
coupling to the local charge density, the physics of interes
lost because the models in those cases are electron-hole
metric.

VIII. DISCUSSION

In this paper we have addressed the microscopic rea
for why holes are not like electrons in condensed matter.
have shown that there are qualitative differences betw
electrons and holes in atoms that have fundamental co
quences for the physics of the solid state. We have propo
that the essential physical difference relates to the rela
between the coherent~quasiparticle part! and incoherent
parts of the one-electron spectral function, and the elec
versus hole character of the quasiparticle. Namely, we h
argued that, reflecting the physics at the atomic level, as
filling of a band increases the quasiparticle becomes prog
sively less coherent while at the same time the characte
the quasiparticle changes from electronlike to holelike. F
thermore, the effective mass of the quasiparticle is invers
proportional to the degree of coherence~quasiparticle
weight! and hence increases as the band filling increases

This physics naturally leads to a mechanism of superc
ductivity, since ~1! superconductivity involves pairing o
quasiparticles, and~2! when hole quasiparticles pair, th
local density o f electrons decreases. Hence, as holes
bind in a Cooper pair they become more coherent, and m
mobile, and more like electrons, and the superconduc
state is stabilized by the accompanying lowering of kine
energy. As a result the superconducting state is more co
ent than the normal state, and spectral weight at low ener
in one- and two-particle spectral functions increases wh
incoherent spectral weight at high energies decreases
other words, quasiparticles ‘‘undress’’ when they pair.11

The informed reader may wonder about the relation
tween the parameters in the low-energy effective Ham
2-16
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WHY HOLES ARE NOT LIKE ELECTRONS: A . . . PHYSICAL REVIEW B65 184502
tonian, Eq.~44!, and the ones calculated in our earlier wo
on hopping amplitudes in the diatomic molecule.19 For ex-
ample, Eq.~44! implies thatt2 /t15t1 /t0, with t i the hopping
amplitude for an electron when there arei other electrons a
the two sites involved in the hopping process. In fact,
results found in Ref. 19 do not generally obey this relati
The answer is, the calculation in Ref. 19 is certainly e
pected to be more accurate. However, the derivation h
reflects the essential physics in a clearer way and allows
to discuss the fundamental processes of spectral we
transfer. The two calculations are of course intimately
lated, in particular recall that in the calculations in Ref.
the difference in hopping amplitudes went to zero as
atomic charge became large or if one artificially constrain
the atomic orbitals to not change with occupation, in agr
ment with the physics discussed here.

One may argue that the difference between electrons
holes discussed here is strictly speaking only aqualitative
difference for the lowest 1s band. For higher bands, even
single electron in an empty band will be partially dress
from interactions with electrons in lower bands~not to men-
tion electron-phonon interactions!. While this is true, the
considerations in this paper certainly imply that within
given band

z~n!.z~22n! ~85!

for n<1, that is, the hole at band filling (22n) is always
more dressed than its counterpart electron at band fillinn.
Hence, the mechanism of superconductivity whereby ho
in a band pair to ‘‘undress’’ and become more like the el
trons in that band should still be operative.

There is in fact another qualitative difference betwe
electrons and holes in energy bands, i.e., between elec
at the bottom and electrons at the top of the band. Nam
the wave function for the quasiparticle at the bottom of
band has a large amplitude in the region between the ato
thus providing stability to the lattice~bonding state!. Instead,
the wave function for the quasiparticle at the top of the ba
has vanishing amplitude in the region between the atoms
it has highest energy and is orthogonal to all the band st
below it ~antibonding state!. Correspondingly, the amplitud
of the wave function at the atoms is larger for electrons at
top than for electrons at the bottom of the band, and a
consequence the dressing due to intraatomic Coulomb re
sion also from electrons in other atomic orbitals is larger
electrons at the top of the band.

The phase space of model Hamiltonians that can be w
ten down and studied as possible models for condensed
ter phenomena is infinite. What makes some models m
suitable to describe real materials than others? We prop
that a useful criterion to validate one Hamiltonian over a
other is whether it can be derived from a more fundame
Hamiltonian that describes physics on a larger energy sc
In particular, the low-energy Hamiltonian, Eq.~44! @or Eq.
~61!#, describes anincreasein low-energy spectral weigh
when carriers pair.35 By itself, it does not contain the high
energy degrees of freedom where that spectral weigh
coming from. However, it can be derived from a more fu
damental Hamiltonian~e.g., the models discussed in Se
18450
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VII ! that does contain the high-energy degrees of freed
where the spectral weight comes from. In contrast, the att
tive Hubbard model, for example, can also describe pair
of carriers, and it describes an associateddecreasein low-
energy spectral weight~because the effective mass increas
upon pairing!; however, it is not clear that it is possible t
derive an attractive Hubbard model from a more gene
Hamiltonian that would describe a correspondingincreasein
high-energy spectral weight.

As we have discussed, there are a variety of models
one can study that contain the physics of interest here. T
the issue is not the validity of a given model Hamiltonia
rather it is the validity of a very general paradigm. Name
that the conventional description of energy bands in so
needs to be augmented, beyond the knowledge of thee vs k
relation and the quasiparticle wave function, to the desc
tion of the behavior of the coherent and incoherent parts
the one-particle spectral function as function of band fillin
and that these quantities have the particular dependenc
band filling discussed here.

The concepts discussed here are clearly not restricte
one particular class of solids but rather are generally ap
cable to all solids, just as the concept of energy bands
Thus, it is unreasonable to expect that the mechanism
superconductivity that results from these concepts would
ply to only one material or any one class of materials,
even that it would apply to most but not all superconduct
materials. In a sense it is like superconductivity itself: t
collective state is robust because it forms a coherent wh
and cannot be destroyed by local impurities or imperfectio
in a given solid. Similarly, the theory discussed here is
seamless web, that cannot be destroyed by individual
amples that seemingly contradict it: it either applies to
superconductors or to none, and the apparent counte
amples~e.g., superconductors that seem to have onlyelec-
tron carriers in the normal state, or superconductors that
hibit seemingly incontrovertible evidence for an electro
phonon mechanism! will eventually be explainable within
the same framework, if the framework is valid. So what
the evidence in favor of this framework?

Most importantly, there is significant empirical eviden
that the presence of hole carriers favors superconductivi34

Moreover, the materials with highestTc ~high-Tc cuprates
and MgB2) have holes conducting through negative ion n
works (O22 and B2), i.e., small ionic chargeZ, which favors
superconductivity within this framework. Moreover, the hig
Tc cuprates show clear evidence for ‘‘undressing,’’ both
the normal state as holes are added and at fixed hole con
tration as the system becomes superconducting,40–45 as de-
scribed ~in fact predicted9,33! by the present framework
Moreover, the dependence ofTc on doping in transition
metal intermetallics46 follows the behavior predicted by thi
framework.47,48 Moreover, the general empirical relation ob
served between superconductivity and lattice instabilities
lows naturally from the fact thatantibondingstates need to
be occupied in order to have hole carriers. Other experim
tal evidence in support of hole superconductivity is discus
in the references.9,10,35,49
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There are many open questions within the framework d
cussed in this paper. A convenient starting point for the d
cussion are the model Hamiltonians discussed in Sec.
First, are there other, similar or otherwise, model Hamil
nians that should be studied, possibly more appropriate
those? Next one can move from there in two opposite dir
tions. In one direction, the study of the properties of the
Hamiltonians by various theoretical techniques. In particu
dynamical mean field theory36 is likely to be a very fruitful
approach. One should calculate the most basic physical p
erties such as phase diagram, quasiparticle weight, spe
functions, and various correlation functions. How do the
sic superconductivity parameters such as coherence len
superfluid weight, etc. depend on the Hamiltonian para
eters? How do the various spectral weight transfer proce
depend on the parameters? And in particular, which obs
able properties should be calculated that can differentiate
mechanism from others? In the opposite direction, one wo
like to connect the model Hamiltonians to real materia
What quantities should one evaluate in a first-principles c
culation of a given solid that would be relevant to fix th
parameters in the model Hamiltonians? Once that questio
clarified a vast area of study will open up where any giv
existing or proposed material could be tested to see wher
parameters lie, in particular concerning its superconduc
properties.
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APPENDIX A: HYLLERAAS DRITTE NAHERUNG

For the convenience of the reader we summarize here
equations that determine the parameters in the Hylle
wave function Eq.~5!2. The energy~in Ry! is given by E
5Z2l, with

l52
L2

4NM
, ~A1!

M58150c1196c21128c1
21584c1c211920c2

2 ,
~A2a!

N54135c1148c2196c1
21308c1c21576c2

2 , ~A2b!

L5162
5

Z
1S 1202

32

Z D c11S 1922
36

Z D c21S 2882
70

Z D c1
2

1S 11202
192

Z D c1c21S 23042
312

Z D c2
2 . ~A2c!

Minimization of l yields the coefficientsc1 and c2 in the
wave function, and the orbital exponentk is given by

k5
L

2M
. ~A3!
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APPENDIX B: CALCULATION OF MATRIX ELEMENTS
SN IN THE VARIOUS APPROXIMATIONS

For the Hartree wave function we have for the overla
Eq. ~13c!

Sn
H5E d3rw Z̄wn~r !5~w Z̄ ,wn![Sn~Z,Z̄!. ~B1!

These integrals are simply evaluated for the wave functi
Eq. ~26! and yield

Sn
H5

4S Z

n
Z̄D 3/2

S Z̄1
Z

nD 3 (
l 50

n21

~21! l~ l 12!!al

S Z

nD l

S Z̄1
Z

nD l ~B2!

with al given by Eq.~26b!.
For the Eckart wave function Eq.~4! we have simply

Sn
E5

S1~Z1 ,Z̄!Sn~Z2 ,Z!1S1~Z2 ,Z̄!Sn~Z1 ,Z!

@2~11S1~Z1 ,Z2!2!#1/2
. ~B3!

For the Hylleraas wave function, Eq.~6!, we use the relation

E d3r 1d3r 2F52p2E
0

`

dsE
0

s

duE
0

u

dtu~s22t2!F

~B4!

valid for any symmetric functionF(rW1 ,rW2), with s, t, u given
by Eq. ~6!. The integrals needed are of the form

I ~p,q,r ,a,b!5E
0

`

dsE
0

s

duE
0

u

dtu~s22t2!e2ase2btsptqur

~B5!

and yield

I ~p,q,r ,a,b!

5
1

bp1q1r 13 H (
j 50

q
q!

~q2 j !!

3F (
i 51

q1r 112 j
1

S a

b
11D p1 i

~p1 i 21!! ~q1r 112 j !!

~ i 21!!

2
p!

S a

b
11D p11 ~q1r 2 j !! G1

q! ~p1r 11!!

~r 11!S a

bD p1r 12J
~B6!
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and the overlaps are given by

Sn5
p

~2Zk!6

S Z̄3S Z

nD 3D 1/2

b6 (
l 50

n21

~21! l
al

bl

1

~4kn! l (
i 50

l
l !

i ! ~ l 2 i !! S @ I ~21 l 2 i ,i ,1,a,b!2I ~ l 2 i ,21 i ,1,a,b,!

1~21! i 1 l$I ~21 l 2 i ,i ,1,a,2b!2I ~ l 2 i ,21 i ,1,a,2b!%#1
c1

b
l @ I ~21 l 2 i ,i ,2,a,b!2I ~ l 2 i ,21 i ,2,a,b,!

2~21! i 1 l$I ~21 l 2 i ,i ,2,a,2b!2I ~ l 2 i ,21 i ,2,a,2b!%#1
c2

b2
l @ I ~21 l 2 i ,21 i ,1,a,b!2I ~ l 2 i ,41 i ,1,a,b,!

1~21! i 1 l$I ~21 l 2 i ,21 i ,1,a,2b!2I ~ l 2 i ,41 i ,1,a,2b!%# D ~B7!
with

a5
11l11l2

2
, ~B8a!

b5
l22l1

2
, ~B8b!
m

ips

To

s

18450
l15
Z̄

2Zk
, ~B8c!

l25
1

2kn
. ~B8d!
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