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Distribution of spectral weight in a system with disordered stripes

M. Granath, V. Oganesyan, D. Orgad, and S. A. Kivelson
Department of Physics, UCLA, Los Angeles, California 90095

~Received 14 September 2001; published 10 April 2002!

The ‘‘band structure’’ of a disordered stripe array is computed and compared, at a qualitative level, to
angle-resolved photoemission experiments on cuprate high-temperature superconductors. The low-energy
states are found to be strongly localized transverse to the stripe direction, so the electron dynamics is strictly
one dimensional~along the stripe!. Despite this, aspects of the two dimensional band-structure Fermi surface
are still vividly apparent.
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I. INTRODUCTION

There is strong evidence, in part based on careful anal
of single-particle spectral functions deduced from angle
solved photoemission~ARPES!, that the normal state o
high-temperature superconductors is not a conventio
Fermi liquid. At the same time, there is clear evidence tha
some, and possibly in all of these materials, there are lo
self-organized quasi-one-dimensional structures, ‘‘stripe
which substantially affect the electron dynamics. Many str
ing features of the ARPES spectrum have a natural inter
tation in terms of an electronic structure dominated
stripes.1–6

One such feature, which is reproduced in Fig. 1, is that
low-energy spectral weight lies predominantly in regions
the Brillouin zone~BZ! in the vicinity of the ~6p,0! and
~0,6p! points.~These are often referred to as the ‘‘antinod
regions,’’ as this is where the maximum in thed-wave super-
conducting gap occurs.! These regions have very straig
boundaries which run parallel to the momentum axes,
are displaced by approximately6p/4 from them. This spec-
tral weight has been interpreted in terms of quarter fil
stripes ~so kF5p/4) along thea and b directions of the
lattice.1,4,7

However, a number of features of the ARPES data
inconsistent with the most naive picture of an array
strictly one-dimensional quarter-filled stripes. Of these,
most obvious is the occurrence of features, especially
the ‘‘nodal regions’’ of the BZ@around~6p/2,6p/2!#, which
are reminiscent of the underlying, two-dimensional ba
structure. An example is the appearance of low-energy s
tral weight along segments parallel to the lines connec
the antinodal points in La22xSrxCuO4 ~LSCO! and
La1.62xNd0.4SrxCuO4 ~LNSCO!. A similar signature also ap
pears in Pb-doped Bi2Sr2CaCu2O81d ~BSCCO!, as shown in
Fig. 1.

It is the principal purpose of this paper to elucidate h
this apparently two-dimensional structure arises natur
from a slightly more sophisticated analysis of the ban
structure of a stripy system. In doing so we extend the ini
work of Ref. 1, and complement a recent study of the effe
of realistic band parameters on the spectrum by Fleck,
varini, and Andersen.8 We show that a system can exhib
what seems to be a Fermi surface of a two-dimensional m
despite the fact that thedynamicsof its low-energy electrons
0163-1829/2002/65~18!/184501~10!/$20.00 65 1845
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is entirely one dimensional. This conclusion holds even
the presence of interactions that preclude any quasipart
like description of the system. Under such conditions
though the low-energy features in momentum space
sharp, the spectral function, considered as function of ene
for fixed momentum, can be broad.6,9

Our results are easily summarized. We have computed
band-structure of electrons in the potential generated b
typical configuration of the ‘‘slow’’ collective fields that de
fine the stripe order.~The explicit Hamiltonian is presente
in Sec. II.! Figures 2 and 3 depict thekW -space distribution of
low-energy spectral intensity in the first BZ for disorder
and ordered arrays of parallel stripes, respectively. In b
cases most of the low-energy spectral weight is concentr
in the antinodal regions. However, while the ordered str
array exhibits a spectral gap in the nodal region, the dis
dered array has low-energy weight there, much like that s
in experiment.

We picture the disordered array as being a ‘‘snapshot’
a ‘‘fluctuating stripe array,’’ although it could also reflect th
effect of quenched disorder. The low-energy electronic sta
that are responsible for its spectral map, shown in Fig. 2,
within the Mott gap. They are bound states that decay ex
nentially in the direction perpendicular to the stripes. Ho
ever, they are extended along the stripes, so the low en
electron dynamics is strictly one-dimensional. The result
band structure, which is shown in Fig. 5, is, to a good a
proximation, a superposition of the band structures of sin
isolated stripes and of small clusters~typically pairs! of
proximate stripes.

The band structure and spectral distribution of a sin
stripe are shown in Figs. 6 and 7. Here the fact that
electron wavefunctions in the gap have a non-negligible
tent transverse to the stripe can be seen to produce an im
of the full two-dimensional band structure. However, as
apparent from the spectrum, unless an isolated stripe
nearly half-filled ~which is physically implausible!, it will
not have any low-energy spectral weight near~p/2,p/2!.
This is the reason for the absence of spectral weight in
nodal region of the ordered array since its wave functions
Bloch states constructed from single stripe bound states

In the disordered array of stripes, the spectral weight
the nodal regions originates primarily from anomalous
close pairs of stripes. This is demonstrated in Figs. 9 and
which show that for an isolated bistripe, there is low-ene
©2002 The American Physical Society01-1
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FIG. 1. ~Color! Distribution of low-energy spectral weight in the first Brillouin zone as measured by ARPES for various cuprate
spectral weight was integrated over an energy window of 30 meV below the Fermi energy. Results are shown for~a! La1.62xNd0.4SrxCuO4

(x50.15) measured at 15 K~from Ref. 7!, ~b! La22xSrxCuO4 (x50.15) measured at 15 K~from Ref. 7!, and ~c! overdoped Pb-doped
Bi2Sr2CaCu2O81d (Tc570 K) measured at 20 K~from Ref.11!.
sit
rip

n
ll

ee
a-

ssed

ripe
rise

ct-
e-
the
the
spectral weight in the vicinity of (p/2,p/2), even when the
stripes are roughly quarter filled. The idea that the inten
of the nodal spectral weight is related to the degree of st
disorder7 conforms with the experimental finding~see Fig. 1!
of more pronounced Fermi segments in the nodal directio
optimally doped LSCO, where the stripes do not statica
order, than in LNSCO, where long-range stripe order is s
in neutron diffraction.10 Several other experimental observ
18450
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tions can be understood in terms of our results, as discu
in Sec. VI.

When residual interactions between electrons on a st
are considered, each noninteracting localized band gives
to a one-dimensional Luttinger liquid. As in the nonintera
ing case the two-dimensionalkW space structure, and esp
cially the Fermi surface, remain prominent features of
low-energy spectral response. However, along a cut in
1-2
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DISTRIBUTION OF SPECTRAL WEIGHT IN A SYSTEM . . . PHYSICAL REVIEW B65 184501
FIG. 2. ~Color! ~a! The low-energy spectra
weight in the first quadrant of the Brillouin zon
integrated over an energy intervalDv50.2 below
m for a disordered stripe array with mean spa
ings l 54 andm51 atd51/8 doping. The system
size is 3203320 and the amplitude color is code
from blue through green to red, as in Fig. 1.~b!
Typical electron density profile of the array as
function of x ~perpendicular to the stripe axis!.
While some of the dips correspond to stripe p
sitions, others, such as the one atx'53, corre-
spond to bistripes. Thus, in comparison to Fig.
below, the density of dips is smaller although th
density of stripes is the same.
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BZ perpendicular to the Fermi surface, the spectral funct
mimics Luttinger-liquid behavior.~See, e.g., the behavio
along the nodal direction in Fig. 11.! This justifies the appli-
cation of one-dimensional physics along directions that
not necessarily aligned with the stripes, as recently don
Ref. 6.

It is important to stress that we view the present results
reliable for exploring the qualitative effects of stripes
electronic structure, but not as a realistic study of the cup
superconductors. The parameters in our model have not
carefully adjusted to optimize any sort of fit to the data. W
have certainly not included any ‘‘realistic’’ band-structure e
fects, such as second neighbor hopping,t8, nor, except in
Sec. V, considered any strong correlation effects, other t
the stripes themselves. Phonons, dynamical stripe fluc
tions, effects of transverse deformations of the stripe po
tial, dynamical magnetic fluctuations, and all other forms
static or dynamical disorder are neglected in our calculatio
They will all certainly have important consequences for
details of the measured electronic structures. Howeve
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should also be stressed that, throughout this paper, we wi
concerned with intermediate energies and length sca
Thus, for our purposes, the distinction between long-ra
and mesoscale stripe order, and between static and fluc
ing stripes isunimportant, although of course these distinc
tions are essential at low energies and long wave-length

II. MODEL

Since high-temperature superconductors are doped
ferromagnets, it is reasonable to expect slow fluctuations
collective field representing the local staggered magnet
tion. One can think of this field as resulting from a Hubbar
Stratonovich transformation of the interacting many-bo
problem. However, we do not solve a Hartree-Fock the
for this field, i.e., we do not find the configuration that min
mizes the Hartree-Fock energy. Instead we take as a min
model a set of non-interacting electrons on a square lat
interacting with a static, staggered field which represent
characteristic ‘‘snapshot’’ of the field configuration,
1-3
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FIG. 3. ~Color! Same as in Fig. 2, but for an
ordered stripe array withl 54, d51/8, andDv
50.2.
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H52 (
x,y,s

~cx,y,s
† cx11,y,s1cx,y,s

† cx,y11,s1H.c.!

1 (
x,y,s

s~21!x1ym~x,y!cx,y,s
† cx,y,s , ~1!

wherecx,y,s is the electron destruction operator at site (x,y)
and spins56, and we have chosen units such that t
hopping matrix element and the lattice constant equal 1. S
cifically, we consider the simplest possible ansatz to rep
sent stripe configurations in which

m~x,y!5m)
xs

Q~x2xs!, ~2!

wherem is a constant,$xs% are a given set of positions o
antiphase domain walls, and whereQ is the antisymmetric
step-function:Q(x)52Q(2x)51 for x.0 andQ(0)50.
This corresponds to an array of perfectly straight, s
centered stripes of width 1 oriented in they direction. De-
18450
e
e-
e-
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pending on the choice of the set$xs% the potential can eithe
be regular or disordered in the transverse~x! direction.

Some features of the solution below do depend on det
of this choice, such as whether the stripes are site or b
centered, whether they are of width 1 or wider, whether
include an additional collective field that couples to t
charge density,1 etc.; effects that we have explored to som
extent. However, the important qualitative physics is app
ent in this simplest of models, so we only report results
this model. Two more serious omissions, which are beyo
the scope of the present paper, are the neglect of effec
the dynamical character of the collective fields, and the
glect of any shape deformations of the stripe order. The la
approximation implies that the electronic states are Blo
waves in they direction, with a wave vectorky , which is
conserved modp ~due to the presence of the staggered fiel!.

Without the domain walls the system has an energy ga
magnitude 2m, and two bands with energiesE
56Am21e2, with e522@cos(kx)1cos(ky)#. An isolated
domain wall generates midgap states which are localize
1-4
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DISTRIBUTION OF SPECTRAL WEIGHT IN A SYSTEM . . . PHYSICAL REVIEW B65 184501
the direction orthogonal to the wall, as shown analytica
below.

For an array of domain walls, it would be exceeding
difficult to find analytical solutions for the midgap state
Instead we diagonalize such systems numerically for a gi
realization of the model. In each case, we takem51 which
corresponds to an ‘‘intermediate coupling’’ value of the ra
of the energy gap to the bandwidth of 2/851/4. We study
systems with finite widthLx in the x direction, where typi-
cally Lx5320; according to all tests we have applied, this
large enough to eliminate most finite size effects. Sinceky is
a good quantum number, the only place the finite size in
y direction enters our calculations is when we perform su
over ky ; here, it is easy to show that the system sizes
have considered,Ly5320, are more than adequate to elim
nate finite-size effects.

III. BAND STRUCTURE OF A STRIPE ARRAY

In this section, we consider the spectral weight distrib
tion and band structure of a stripe array. If one ignores det
concerning the matrix elements describing the photoexc
tion process one can infer directly the single-particle spec
function, A(kW ,v), from ARPES. For noninteracting elec
trons,A(kW ,v) can be expressed in terms of the exact sing
particle energy eigenstatesCa(rW) and energiesEa :

A~kW ,v!5~LxLy!21(
rW,rW8

eikW•(rW2rW8)Ã~rW,rW8,v!,

Ã~rW,rW8,v!5(
a

Ca~rW !Ca~rW8!d~v2Ea!. ~3!

In order to characterize the momentum distribution of
low-energy spectral weight and reveal features such as
Fermi surface, it is appropriate to integrate the spectral fu
tion over a narrow energy window below the chemical p
tential m:

I ~kW !5E
m2Dv

m

A~kW ,v!dv. ~4!

The experimental data in Fig. 1, and the theoretical result
later figures are expressed in this way.

In Fig. 3 we report results for an ordered array with
spacing between stripes ofl 54. In Fig. 2, we do the same
for an array with a distribution of stripe spacings chos
randomly between 1 and 7, i.e., a flat distribution with me
l 54. In both cases, we have fixedm such that the averag
electron density per site is 12d whered51/2l . (d is known
as the density of ‘‘doped holes.’’! This correspondson the
averageto quarter-filled stripes, such that forl 54 we obtain
d51/8. In these figures, we have chosenDv50.2, but the
qualitative character of the distribution is not highly sensit
to this choice. The data for the disordered array is for a gi
realization of the stripe distribution, but the system is la
enough that the results are self averaging in the sense tha
corresponding figures look similar to the eye for differe
realizations.
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Clearly, a number of salient features of the low-ener
spectral weight of these various stripe arrays are reminis
of those measured in ARPES. In particular the disorde
array ~Fig. 2! looks strikingly like the corresponding spec
trum in LSCO. In both cases, most of the spectral weigh
in a broad, flat region close to the (p,0) point with a fainter
image near (0,p). For the ordered array this exhausts t
low-energy spectral weight, but for the disordered array, a
the experiments, a small amount of spectral weight lies al
what would have been the band-structure Fermi surface
the nodal region.~Of course, in order to compare the resu
more closely with the ARPES measurements we should s
metrize these results aroundky5kx to allow for stripes run-
ning in both directions in different domains.!

These results demonstrate that two-dimensional st
tures, including an apparent Fermi surface, can appear in
ARPES data of a system which is dynamically on
dimensional. It is also noteworthy thaty-directed stripes not
only lead to substantial low-energy spectral weight in t
antinodal region near (0,p), as naively expected, but also i
the reciprocal region, near (p,0), as well.~This observation
is important in systems with macroscopic stripe orientatio
order, including, potentially, YBa2Cu3O72d .12 We also note
that for the ordered array, there are oscillations in the spec
weight as a function ofkx . It is apparent from Fig. 3 tha
these oscillations reflect the periodicity of the array (2p/4
5p/2 in this case. We have checked13 that for longer period
arrays, for example withl 56, the period of these oscillation
shifts accordingly.! That such oscillations have been o
served in LNSCO4 further corroborates the stripe interpret
tion of the results.

We have also calculated the electronic density distri
tions of the disordered and ordered arrays and they
shown next to the spectral maps in Figs. 2 and 3. We see
in the ordered case, the density modulations have the s
periodicity as the stripe potential, but in the disordered arr
the mean spacing between troughs~or peaks! of the density
is larger than the mean spacing between stripes. This refl
the fact that only a single density depression occurs wh
two stripes are close together. To demonstrate this fact,
to make a connection with neutron-diffraction experimen
we have computed structure factors from the Fourier tra
forms of the densities of electronic charge (r) and z-spin
component of the spin (Sz). For the ordered array of period
the charge signal is strongly peaked atkx50 with a small
satellite at kx5p/2 and the spin signal is peaked atkx
53p/4 andkx55p/4. For the disordered array the charg
and spin peaks are shifted towardkx50 andkx5p respec-
tively. In Fig. 4 we show the Fourier transform of the aut
correlation function of the random fieldm. ~We show the
results form rather than forSz , because it can be compute
for very large arrays, where the result is self-averagi
However, we have verified that the two quantities give sim
lar results.13! The fact that for the disordered array, the sp
peaks are not only broadened, but are shifted toward
(p,p) point seems to be generic behavior for disorde
arrays.

Sinceky is still a good quantum number, we can still ta
about a~one-dimensional! band structure of the disordere
1-5
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array, as shown in Fig. 5. However, as there are preci
2Lx bands, this figure becomes rather dense for a large n
ber of stripes, so we have purposely reduced the system
to Lx580 and the energy window touEu,2 for graphical
clarity. We devote Sec. IV to a closer examination of th
band-structure.

Because for each value ofky , the effective Hamiltonian is
that of a one-dimensional disordered system in thex direc-
tion, we knowa priori that all the states are exponential
localized transverse to the stripes. However, for the st
that lie within the Mott gap,uEu,m51, one might expect
the states to be highly localized in the neighborhood of o
or two stripes, while foruEu.m51, the states are mor
likely extended scattering states, that are only weakly loc
ized. That this expectation is realized can be seen in at l
three ways. It is clear from Fig. 5 that there is a dense se
states atE.m51, whereas forE,m51 there is a spider
web of identifiable one-dimensional bands; the discreten
of these bands is a reflection of their large degree of lo
ization in the transverse direction. By plotting the states

FIG. 4. The squared magnitude of the Fourier transform of
field m(x,y) for a disordered array of sizeLx5100,000. This quan-
tity is proportional to the spin-spin correlation function measu
by neutron scattering.

FIG. 5. Band structure of a disordered array with mean str
spacingl 54 and m51. m is the T50 chemical potential for a
density of doped holesd51/8. The system size is 803320.
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real space alongx, we have confirmed that all the states
the gap decay exponentially in a few lattice constan
whereas the scattering states are essentially delocalized
nally, we have computed the participation ratioPa

[( rWuCa(rW)u4'(2j)21, wherej is the localization length.
For a system of size 3203320, we findP’s for the states
with uEu.m of order P;1/100 ~which might become even
smaller for larger system sizes!, while for uEu,m, typically
P'0.1–0.25. For moderate dopingd the Fermi energy al-
ways lies inside the set of highly localized bands.~See, for
example, Fig. 5, where the value of the Fermi energy co
sponding tod51/8 is indicated.! It is clear that all of the
spectral weight shown in Fig. 2 comes from these localiz
and hence dynamically entirely one-dimensional states.

IV. ISOLATED STRIPES AND BISTRIPES

In order to obtain a better understanding of the nature
the localized states and how they give rise to the very ch
acteristic two-dimensional distribution of spectral weight, w
look at some simpler problems consisting of a single o
pair of proximate domain walls. Consider the situation
which the defects, i.e., one or more stripes, are confined
region aboutx50. It is straightforward to explicitly write the
wave functions for fixedky in the asymptotic regions to th
left and right of the defect; the eigenvalue problem is th
solved by matching these solutions across the defect reg
For uEu,m, the asymptotic states are exponentially fallin
functions ofx. For instance, to the right of the defect, Ham
tonian ~1! is diagonalized by

fky
~x,y!5e2kxei (qx1kyy)@11eiaeip(x1y)#, ~5!

where the quantitiesk, q, anda are the implicit functions of
ky and the energyE which ~for s51) satisfy

05cos~q!cosh~k!1cos~ky!, ~6!

E25m224 sinh2~k!sin2~q!, ~7!

eia5@E12i sinh~k!sin~q!#/m. ~8!

It follows from Eqs.~6!–~8! that if Eq. ~5! is a solution then
so is Eq.~5! with q→2q,a→2a, and the same energy
Thus the total wave functionFky

(x,y) is a linear superposi-
tion of the two. To the left of the defect the same equatio
hold after substitutingk→2k and, in the case of an an
tiphase defect,m→2m. A fourth equation, which depend
on the nature of the defect, is obtained by integrating
Schrödinger equation across the defect region, and defi
the eigenvalue problemE5E(ky). ~If the defect region is
sufficiently broad, there may be multiple solutions to t
eigenvalue equation, corresponding to multiple midg
bands.!

Much of the interesting physics is already implicit
these relations. The distribution of spectral weight in t
two-dimensional BZ associated with a state of given crys
momentumky is given byuCky

(kx)u2, whereC is the Fou-

rier transform ofF. Clearly, this weight is peaked nearkx
5q(ky) in a region of widthDkx'k(ky). For smallk, Eq.

e

d

e
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DISTRIBUTION OF SPECTRAL WEIGHT IN A SYSTEM . . . PHYSICAL REVIEW B65 184501
~6! implies thatq(ky) simply traces out the underlying ‘‘dia
mond’’ Fermi surface given by the unperturbed ban
structure.

To be explicit, let us consider the case of a single s
centered antiphase domain wall,~↓↑↓↑•↓↑↓↑! of the type
which appears in Eq.~2!. In this case, the eigenvalue equ
tion is readily derived:

E~ky!562 tanh2~k!cos~ky!. ~9!

The resulting band-structure and spectral weight distribu
in the BZ is shown in Figs. 6 and 7. Note that the midg
band has energy zero precisely whereky5p/2, so that, for a
hole-doped stripe, for which the Fermi energy will certain
lie at negative energies, there will never be low-energy sp
tral weight at the nodal point. A generic feature of the sp
tral weight distribution that is apparent in the figure is t
fact that the negative-energy states have more weight in
lower half of the first quadrant of the BZ than in the upp
half. This feature is seen very clearly also in the disorde
array problem~Fig. 2!.

It is particularly illuminating to examine this result in th
small-m limit. The four implicit equations can be solved t
leading order inm to obtain~for 0,ky,p)

q~ky!5p2ky , ~10!

k~ky!5
m

2 sin~ky!
, ~11!

E~ky!562k2~ky!cos~ky!. ~12!

FIG. 6. DispersionE(ky) of the bound states of a single an
tiphase domain wall withm51.

FIG. 7. Integrated spectral weight over all negative-~a! and
positive-~b! energy bound states of a single antiphase domain w
with m51. The apparent discontinuity acrossky5p/2 is due to the
band crossing.
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As advertised,q(ky) precisely traces out the diamond Ferm
surface.k21(ky);vF(ky)/m is the extent of the wave func
tion in real space, implying thatuCky

(kx)u2 is quite sharply
peaked nearkx5q(ky) in the nodal regions, where the Ferm
velocity vF is large, and is much more diffused in the an
nodal regions, wherevF→0. ~WherevF50, the expression
for k breaks down and we findk;Am.! These features are
to a large extent, independent of the nature of the defect
long asm is not too large. It is also worth noting that th
energy width of the midgap band is of orderm2, although the
gap itself is 2m, and hence much larger.

The single antiphase domain-wall solution captures m
of the general features of the array of domain walls: T
spectral weight is concentrated about the diamond Fermi
face, it is largest in a broad antinodal region, and is large
the lower half than in the upper half of the BZ quadra
Indeed, the low-energy spectral distribution of the orde
stripe arrays is, to a first approximation, simply the sum
contributions of isolated stripes, even when the stripe sp
ing is only four lattice constants.

However, the disordered stripe array is not simply a
perposition of single-wall states, especially in the nodal
gion. In fact, while it is clear from the band structure of th
disordered array shown in Fig. 5, that a large fraction of
midgap bands are very similar to the mid-gap band o
single isolated stripe~Fig. 6!, there are other bands, esp
cially those that dominate the spectrum atky5p/2 and E
nearm, that look very different.

Guided by the observation that the nodal weight is mi
ing for an ordered array, it is reasonable to assume that
feature is related to local configurations with two or mo
domain walls in close proximity. Consider, therefore, t
problem of two anti-phase domain walls in close proximi
Clearly, the statement of proximity is related to the dec
lengthj51/k of the single-domain-wall problem. If the dis
tance between the walls is greater thanj, the walls can be
considered independent, while for smaller distances they
terfere. Form51 we find 1/k'2 and only weakly depen
dent onky , implying that domain walls separated by mo
than two sites are roughly independent. Figure 8 shows
energy spectrum for the bound states of two antiphase
main walls separated by one site. The spectrum is gap
and it is clear that doping such a system can give rise
low-energy spectral weight aroundky5p/2. In Fig. 9 we
repeat the same calculation for two proximate stripes.

Particularly interesting is the distribution of spectr
weight in momentum space for this system, as shown in F
10. As with the single-wall problem, the weight hove
around the band-structure Fermi surface, but with the dist
feature that the weight of the negative-energy states is sh
toward the zone center, whereas the positive-energy st
are shifted toward the (p,p) point. We find that the magni-
tude of this shift increases withm. Intuitively it is of course
not surprising that the negative-energy states are shifted
wards the zone center where the tight-binding energies
lower, and conversely for the positive energy states.

V. INCLUDING INTERACTIONS

So far we have been concerned with the distribution
spectral weight in the noninteracting model defined in E

ll
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~1!, when holes are introduced into its single-particle leve
Including the effects of interactions between electrons i
doped stripe is a natural extension of this model. In the
lowing we consider this issue for the case of the disorde
stripe array.

To the extent that the localized bands shown in Fig. 5
be considered as independent we may calculate the
energy and long-wavelength spectral response of the sy
as a sum over interacting Luttinger-liquid contributio
A1d(k,v):

A~kW ,v!5(
kF

uCkF
~kx!u2A1d@ky2kF ,v;g~kF!#. ~13!

Here the sum runs over the localized bands that cross
Fermi energy. Every crossing point is a Fermi pointkF

[kWF• ŷ for the one-dimensional channel defined by the ba
Each channel is also characterized by thekx profile of its
wave functionCkF

(kx) and its Luttinger parametersKc,s and

velocities vc,s which are collectively denoted asg(kF) in
~13!.

The evaluation of spectral function~13! simplifies in the
small-m limit where the spectral weight is concentrat
~within a width of orderm) along the diagonal connectin
the antinodal points and is roughly constant. The total sp
tral function is then proportional toA1d(kx1ky2p,v;g),
where we have assumed thatg is the same for all bands. A

FIG. 8. SpectrumE(ky) of the bound states of an effective in
phase domain wall consisting of two one-site wide antiphase
main walls one site apart~↑↓↑↓•↑•↓↑↑↓!, with m51.

FIG. 9. SpectrumE(ky) of the bound states of a two-site wid
in-phase domain wall (↑↓↑↓••↑↓↑↓) with m51.
18450
.
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we see, in this case, the spectral function exhibits o
dimensional behavior over the entire BZ. This description
valid as long as the stripe array is sufficiently dilute such t
the overlaps between different localized bands are small

For intermediate values ofm performing the convolution
in Eq. ~13! is difficult, owing to the complicated distribution
of the low-energy spectral weight in momentum space. Ho
ever, the spectral function continues to mimic on
dimensional behavior along directions that are not neces
ily aligned with the stripes. To demonstrate this point, w
consider the spectral function along a cut in the BZ that ru
in the nodal direction@from (0,0) to (p,p)#. Since the zero-
temperature A1d(k2kF ,v;g) vanishes unless uvu
.min(vc ,vs)uk2kFu,6 it is clear that the important contribu
tion to A(kW ,v) along this cut, and at low energies, com
from bands that cross the Fermi energy nearky5p/2. More-
over, we have shown that these bands produce a spe
weight that is concentrated along a line parallel to the ant
agonal@(p,0) to (0,p)#. Therefore, for our purpose, we ma
approximate the spectral distribution by a Lorentzian dis
bution centered on this line with a half-width at hal
maximum ofk. In Fig. 11 we present the spectral functio
which results from Eq.~13! under the assumption of such
weight distribution.

The spectral function in Fig. 11 shows a close rese
blance to one-dimensional spectral functions~compare, for
example, with Ref. 6!. In particular it exhibits a striking di-
chotomy between sharp momentum distribution curv
@~MDC’s!, cuts at constantv# and broad energy distribution
curves@~EDC’s!, cuts at constantk#, which we believe is a
telltale of electron fractionalization.6 It is interesting to note,
however, thatA(kW ,v) in Fig. 11 is smoother than the corre
sponding zero-temperature one-dimensional spectral fu
tion, and does not diverge atv5vk for k,0 like the latter.
This divergency is smeared by the convolution in Eq.~13!,
and the result is a spectral function that resemblesA1d(k,v)
but at a finite temperature.

The present analysis is the first which combines the
markable non-Fermi-liquid features of the one-dimensio
electron gas with the two-dimensional structure of a Fe
surface. At a qualitative level, it justifies the analysis p
sented in Ref. 6, in which the measured spectral function
the high-temperature superconductors was analyzed in te
of the corresponding expressions for a one-dimensional L
tinger liquid. In particular, here we have presented a mic
scopic rationale, which was missing at the time of that ear

o-

FIG. 10. Integrated spectral weight over all negative-~a! and
positive-~b! energy states of an in-phase domain wall consisting
two one-site antiphase domain walls one site apart withm51.
1-8
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FIG. 11. ~Color! ~a! The zero-temperature
spectral functionA(k,v) calculated from Eq.
~13! assuming a Lorentzian distribution of spe
tral weight centered on a line parallel to the a
tidiagonal. Here vc5vs51, Ks51, gc5(Kc

1Kc
2122)/850.3, andk50.5 ~which is what

we find for a single stripe withm51). k is mea-
sured along the BZ diagonal and relative to t
Fermi point near (p/2,p/2), v is measured rela-
tive to the chemical potentialm. ~b! MDC at v
50, ~c! EDC atk50.
dy
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work, for the existence of approximate one-dimensional
namics in the nodal region of the Fermi surface.

VI. FURTHER CONSEQUENCES

In addition to the gross similarities between the expe
mentally observed spectral functions in LSCO, LNSCO, a
BSCCO and those obtained from simple stripe models, th
are a number of other aspects of the present results tha
potentially relevant to the interpretation of experiment.

A phenomenon that is fairly generally observed in ARP
measurements on high-temperature superconductors is t
sharp quasi-particle-like peak appears in the spectrum in
antinodal regions as the temperature is reduced belowTc .
Recent experiments on untwinned YBa2Cu3O72d ~YBCO!
crystals have found that the spectral-weight of this sharp
ture exhibits strong anisotropy between the different a
nodal regions of the BZ.12 There are good empirical14,15 and
theoretical16 reasons to believe that the stripes in this ma
rial are partially oriented by the chain potential on the Cu
planes. Thus a large anisotropy in plane-related features
be expected. Moreover, we have previously shown5 that the
emergence of such a peak is naturally explained as a dim
sional crossover in a quasi-one-dimensional supercondu
However, the presence of low-energy spectral weight in
anti-nodal region transverse to the stripes seems surprisin
18450
-
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are
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to
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or.
e
at

first. Nevertheless, as noted above, stripes induce low en
spectral weight in both antinodal regions, although with d
ferent spectral weights—this is a consequence of strong m
ing between states separated by the antiferromagnetic w
vector (p,p). The observed anisotropy is reproduced na
rally by the present model—see Fig. 2.

One would generally expect electrons diffracting off
ordered stripe array to exhibit intensity modulations with t
corresponding period, as indeed is apparent in the periodp/2
structure seen in Fig. 3. We believe, in agreement with
interpretation proposed by Zhouet al.,4 that this effect has
already been seen in ARPES spectra of LNSCO.4 Since all
previous observations of charge-density wave ordering
indirect ~e.g., they detect the accompanying lattice distort
density wave!, this observation is potentially of more fa
reaching importance as a method for detecting charge or

Experiments on both electron and hole-doped cuprates
dicate that the chemical potential remains within the M
gap, and is a remarkably slowly varying function of dopa
concentration; instead, new dopant-induced states appe
the gap.17–19 Of course, this behavior is characteristic of th
sort of stripe models envisaged here, in which the density
stripes increases with dopant concentration so as to acc
modate the added charges in midgap states. This is a for
‘‘topological doping’’20 analogous to soliton doping o
1-9
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polyacetylene.21 As is the case in polyacetylene, we expec
variety of additional aspects of topological doping to
manifest in experiments on the cuprates, including dopa
induced midgap optical absorption,1,3 dopant-induced
infrared-active phonon modes,22 etc.

Finally, the observation that the structure factor of a d
ordered stripe array exhibits incommensurate peaks tha
not only broadened by disorder, but also shifted to sma
incommensurability~Fig. 4! may have other interesting im
plications. Inelastic neutron-scattering experiments
LNSCO,10 LSCO,23 and YBCO ~Ref. 24! revealed incom-
mensurate magnetic peaks displaced from the antiferrom
netic wave vector, (p,p), by an amount which first grows
roughly linearly with doping, but then tends to saturate~typi-
cally beyondd51/8). This is generally taken as eviden
that the concentration stripes, likewise, first increases
ev
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ys
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.
S

ev
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18450
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early and then saturates. Our present results suggest th
least in part, the saturation of the incommensurability m
reflect increasingly strong stripe fluctuations, rather tha
sudden saturation of the stripe concentration.
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