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Distribution of spectral weight in a system with disordered stripes
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The “band structure” of a disordered stripe array is computed and compared, at a qualitative level, to
angle-resolved photoemission experiments on cuprate high-temperature superconductors. The low-energy
states are found to be strongly localized transverse to the stripe direction, so the electron dynamics is strictly
one dimensionafalong the stripg Despite this, aspects of the two dimensional band-structure Fermi surface
are still vividly apparent.
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[. INTRODUCTION is entirely one dimensional. This conclusion holds even in
the presence of interactions that preclude any quasiparticle-
There is strong evidence, in part based on careful analysike description of the system. Under such conditions al-
of single-particle spectral functions deduced from angle rethough the low-energy features in momentum space are
solved photoemissiofARPES, that the normal state of sharp, the spectral function, considered as function of energy
high-temperature superconductors is not a conventiondpr fixed momentum, can be brod.
Fermi liquid. At the same time, there is clear evidence that in Our results are easily summarized. We have computed the
some, and possibly in all of these materials, there are locaRand-structure of electrons in the potential generated by a
self-organized quasi-one-dimensional structures, “stripes,typical configuration of the “slow” collective fields that de-
which substantially affect the electron dynamics. Many strik-fine the stripe orderThe explicit Hamiltonian is presented
ing features of the ARPES spectrum have a natural interpren Sec. Il) Figures 2 and 3 depict tHespace distribution of
tation in terms of an electronic structure dominated bylow-energy spectral intensity in the first BZ for disordered
stripest—® and ordered arrays of parallel stripes, respectively. In both
One such feature, which is reproduced in Fig. 1, is that theases most of the low-energy spectral weight is concentrated
low-energy spectral weight lies predominantly in regions ofin the antinodal regions. However, while the ordered stripe
the Brillouin zone(BZ) in the vicinity of the (=7,0) and  array exhibits a spectral gap in the nodal region, the disor-
(0,=m) points.(These are often referred to as the “antinodaldered array has low-energy weight there, much like that seen
regions,” as this is where the maximum in ttlevave super- in experiment.
conducting gap occupsThese regions have very straight  We picture the disordered array as being a “snapshot” of
boundaries which run parallel to the momentum axes, and “fluctuating stripe array,” although it could also reflect the
are displaced by approximatety=/4 from them. This spec- effect of quenched disorder. The low-energy electronic states
tral weight has been interpreted in terms of quarter filledthat are responsible for its spectral map, shown in Fig. 2, lie
stripes (so kg=/4) along thea and b directions of the within the Mott gap. They are bound states that decay expo-
lattice 147 nentially in the direction perpendicular to the stripes. How-
However, a number of features of the ARPES data arever, they are extended along the stripes, so the low energy
inconsistent with the most naive picture of an array ofelectron dynamics is strictly one-dimensional. The resulting
strictly one-dimensional quarter-filled stripes. Of these, theband structure, which is shown in Fig. 5, is, to a good ap-
most obvious is the occurrence of features, especially iproximation, a superposition of the band structures of single
the “nodal regions” of the BZaround(+n/2,=/2)], which  isolated stripes and of small cluste(sypically pairg of
are reminiscent of the underlying, two-dimensional bandproximate stripes.
structure. An example is the appearance of low-energy spec- The band structure and spectral distribution of a single
tral weight along segments parallel to the lines connectingtripe are shown in Figs. 6 and 7. Here the fact that the
the antinodal points in La,SrCuQ, (LSCO and electron wavefunctions in the gap have a non-negligible ex-
La; g-xNdg 4Sr,CuO, (LNSCO). A similar signature also ap- tent transverse to the stripe can be seen to produce an image
pears in Pb-doped Bsr,CaCyOg, 5 (BSCCO, as shown in  of the full two-dimensional band structure. However, as is
Fig. 1. apparent from the spectrum, unless an isolated stripe is
It is the principal purpose of this paper to elucidate hownearly half-filled (which is physically implausible it will
this apparently two-dimensional structure arises naturallynot have any low-energy spectral weight néaw2,m7/2).
from a slightly more sophisticated analysis of the band-This is the reason for the absence of spectral weight in the
structure of a stripy system. In doing so we extend the initiahodal region of the ordered array since its wave functions are
work of Ref. 1, and complement a recent study of the effect8loch states constructed from single stripe bound states.
of realistic band parameters on the spectrum by Fleck, Pa- In the disordered array of stripes, the spectral weight in
varini, and Andersefi.We show that a system can exhibit the nodal regions originates primarily from anomalously
what seems to be a Fermi surface of a two-dimensional metalose pairs of stripes. This is demonstrated in Figs. 9 and 10,
despite the fact that théynamicsof its low-energy electrons which show that for an isolated bistripe, there is low-energy
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FIG. 1. (Color) Distribution of low-energy spectral weight in the first Brillouin zone as measured by ARPES for various cuprates. The
spectral weight was integrated over an energy window of 30 meV below the Fermi energy. Results are stiawrafqr ,Nd, ,Sr,CuO,
(x=0.15) measured at 15 Krom Ref. 7, (b) La, ,Sr,CuQ, (x=0.15) measured at 15 Krom Ref. 7, and(c) overdoped Pb-doped
Bi,S,CaCyOg, 5 (T.=70 K) measured at 20 Kfrom Ref.11.

spectral weight in the vicinity of £/2,77/2), even when the tions can be understood in terms of our results, as discussed
stripes are roughly quarter filled. The idea that the intensityn Sec. VI.

of the nodal spectral weight is related to the degree of stripe  When residual interactions between electrons on a stripe
disordef conforms with the experimental findirigee Fig. 1 are considered, each noninteracting localized band gives rise
of more pronounced Fermi segments in the nodal direction it® @ one-dimensional Luttinger liquid. As in the noninteract-
optimally doped LSCO, where the stripes do not staticallying case the two-dimension&l space structure, and espe-
order, than in LNSCO, where long-range stripe order is seegially the Fermi surface, remain prominent features of the
in neutron diffraction'® Several other experimental observa- low-energy spectral response. However, along a cut in the
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FIG. 2. (Colon (a) The low-energy spectral
i weight in the first quadrant of the Brillouin zone
4 integrated over an energy internvaw=0.2 below
w for a disordered stripe array with mean spac-
ingsl=4 andm=1 at5=1/8 doping. The system
size is 32320 and the amplitude color is coded
from blue through green to red, as in Fig.(b)
Typical electron density profile of the array as a
function of x (perpendicular to the stripe axis
) While some of the dips correspond to stripe po-
f sitions, others, such as the onexat53, corre-
spond to bistripes. Thus, in comparison to Fig. 3,
0.95 below, the density of dips is smaller although the
density of stripes is the same.
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BZ perpendicular to the Fermi surface, the spectral functiorshould also be stressed that, throughout this paper, we will be
mimics Luttinger-liquid behavior(See, e.g., the behavior concerned with intermediate energies and length scales.
along the nodal direction in Fig. 21This justifies the appli- Thus, for our purposes, the distinction between long-range
cation of one-dimensional physics along directions that ar@nd mesoscale stripe order, and between static and fluctuat-
not necessarily aligned with the stripes, as recently done ifg stripes isunimportant although of course these distinc-
Ref. 6. tions are essential at low energies and long wave-lengths.

It is important to stress that we view the present results as
reliable for exploring the qualitative effects of stripes on
electronic structure, but not as a realistic study of the cuprate
superconductors. The parameters in our model have not been Since high-temperature superconductors are doped anti-
carefully adjusted to optimize any sort of fit to the data. Weferromagnets, it is reasonable to expect slow fluctuations of a
have certainly not included any “realistic” band-structure ef- collective field representing the local staggered magnetiza-
fects, such as second neighbor hoppitig,nor, except in tion. One can think of this field as resulting from a Hubbard-
Sec. V, considered any strong correlation effects, other thaStratonovich transformation of the interacting many-body
the stripes themselves. Phonons, dynamical stripe fluctugroblem. However, we do not solve a Hartree-Fock theory
tions, effects of transverse deformations of the stripe potenfor this field, i.e., we do not find the configuration that mini-
tial, dynamical magnetic fluctuations, and all other forms ofmizes the Hartree-Fock energy. Instead we take as a minimal
static or dynamical disorder are neglected in our calculationanodel a set of non-interacting electrons on a square lattice
They will all certainly have important consequences for theinteracting with a static, staggered field which represents a
details of the measured electronic structures. However, itharacteristic “snapshot” of the field configuration,

Il. MODEL
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FIG. 3. (Color) Same as in Fig. 2, but for an
ordered stripe array with=4, §=1/8, andAw
=0.2.

X

kY
AT
4
0 T N =
5 x
2
p )
0.95
0.925 “
n.9
D.875
0.85
0.825
)
0.& |
0.775
Elﬂ ‘.u E'u ﬂ.u
H= —X; (€] y oCus 1y, Cly oCrys 10+ HC)
+X; 0‘(_1)x+ym(X,Y)Cl‘y’UCX’y'U, (1)

wherec, , , is the electron destruction operator at siey(

pending on the choice of the st} the potential can either
be regular or disordered in the transve(sedirection.

Some features of the solution below do depend on details
of this choice, such as whether the stripes are site or bond
centered, whether they are of width 1 or wider, whether we
include an additional collective field that couples to the
charge density,etc.; effects that we have explored to some

and spinoe==*, and we have chosen units such that theextent. However, the important qualitative physics is appar-
hopping matrix element and the lattice constant equal 1. Speent in this simplest of models, so we only report results for
cifically, we consider the simplest possible ansatz to reprethis model. Two more serious omissions, which are beyond

sent stripe configurations in which

m(x.y>=m1;[ O (X—Xs), (2)

wherem is a constant{xs} are a given set of positions of
antiphase domain walls, and whefeis the antisymmetric
step-function:® (x)= -0 (—x)=1 for x>0 and®(0)=0.

the scope of the present paper, are the neglect of effects of
the dynamical character of the collective fields, and the ne-
glect of any shape deformations of the stripe order. The latter
approximation implies that the electronic states are Bloch
waves in they direction, with a wave vectok,, which is
conserved modr (due to the presence of the staggered field
Without the domain walls the system has an energy gap of
magnitude 2, and two bands with energiesE

This corresponds to an array of perfectly straight, site-=*m?+¢2, with e=—2[cosk)+cosky)]. An isolated

centered stripes of width 1 oriented in thedirection. De-

domain wall generates midgap states which are localized in
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the direction orthogonal to the wall, as shown analytically Clearly, a number of salient features of the low-energy
below. spectral weight of these various stripe arrays are reminiscent
For an array of domain walls, it would be exceedingly of those measured in ARPES. In particular the disordered
difficult to find analytical solutions for the midgap states. array (Fig. 2) looks strikingly like the corresponding spec-
Instead we diagonalize such systems numerically for a givetrum in LSCO. In both cases, most of the spectral weight is
realization of the model. In each case, we take 1 which  in a broad, flat region close to ther(0) point with a fainter
corresponds to an “intermediate coupling” value of the ratioimage near (Qr). For the ordered array this exhausts the
of the energy gap to the bandwidth of 2/8/4. We study low-energy spectral weight, but for the disordered array, as in
systems with finite width_, in the x direction, where typi- the experiments, a small amount of spectral weight lies along
cally L,=320; according to all tests we have applied, this iswhat would have been the band-structure Fermi surface in
large enough to eliminate most finite size effects. Skces  the nodal region(Of course, in order to compare the results
a good quantum number, the only place the finite size in thenore closely with the ARPES measurements we should sym-
y direction enters our calculations is when we perform sumsnetrize these results aroukg=k, to allow for stripes run-
overk,; here, it is easy to show that the system sizes wening in both directions in different domains.
have considered,,= 320, are more than adequate to elimi-  These results demonstrate that two-dimensional struc-

nate finite-size effects. tures, including an apparent Fermi surface, can appear in the
ARPES data of a system which is dynamically one-
IIl. BAND STRUCTURE OF A STRIPE ARRAY dimensional. It is also noteworthy thgtdirected stripes not

only lead to substantial low-energy spectral weight in the
In this section, we consider the spectral weight distribu-antinodal region near (@), as naively expected, but also in
tion and band structure of a stripe array. If one ignores detailg,e reciprocal region, nearr(0), as well.(This observation
concerning the matrix elements describing the photoexcitays important in systems with macroscopic stripe orientational
tion process one can infer directly the single-particle spectra(l)rder’ including, potentially, YB&u;0,_ 5.*2 We also note
function, A(k,»), from ARPES. For noninteracting elec- that for the ordered array, there are oscillations in the spectral
trons,A(IZ,w) can be expressed in terms of the exact singleweight as a function ok, . It is apparent from Fig. 3 that
particle energy eigenstateisa(F) and energie€,, : these pscn_Ianns reflect the periodicity of the arrayw_(@
= /2 in this case. We have checKédhat for longer period
arrays, for example with=6, the period of these oscillations
shifts accordingly. That such oscillations have been ob-
served in LNSCOfurther corroborates the stripe interpreta-
. . . tion of the results.
A(r,r’,w)=2 Y (NV(r')é(w—E,). 3 We have also calculated the electronic density distribu-
“ tions of the disordered and ordered arrays and they are
In order to characterize the momentum distribution of the_ShOWn next to the spectral maps in Figs. 2 and 3. We see that
low-energy spectral weight and reveal features such as tH8 the .o.rdered case, the denslty modylaﬂong have the same
Fermi surface, it is appropriate to integrate the spectral funcper'odICIty as the stripe potential, but in the disordered array,
tion over a narrow energy window below the chemical po-the mean spacing between troughs peaks of the density

tential w:

A(K,@)=(LyLy) 1> e AT w),
r,r’

is larger than the mean spacing between stripes. This reflects
the fact that only a single density depression occurs where
R u . two stripes are close together. To demonstrate this fact, and
|(k)=f Ak, w)do. (49 to make a connection with neutron-diffraction experiments,
p—Aw .
we have computed structure factors from the Fourier trans-
The experimental data in Fig. 1, and the theoretical results iforms of the densities of electronic chargg) (and z-spin
later figures are expressed in this way. component of the sping,). For the ordered array of period 4
In Fig. 3 we report results for an ordered array with athe charge signal is strongly peakedkat=0 with a small
spacing between stripes b 4. In Fig. 2, we do the same satellite atk,=/2 and the spin signal is peaked kt
for an array with a distribution of stripe spacings chosen=37/4 andk,=5/4. For the disordered array the charge
randomly between 1 and 7, i.e., a flat distribution with meanand spin peaks are shifted towatg=0 andk,= 7 respec-
I=4. In both cases, we have fixed such that the average tively. In Fig. 4 we show the Fourier transform of the auto-
electron density per site is16 whereé=1/2. (§is known  correlation function of the random fieloh. (We show the
as the density of “doped holes. This correspond®sn the  results form rather than folS,, because it can be computed
averageto quarter-filled stripes, such that for 4 we obtain  for very large arrays, where the result is self-averaging.
6=1/8. In these figures, we have chostw=0.2, but the However, we have verified that the two quantities give simi-
qualitative character of the distribution is not highly sensitivelar results:®) The fact that for the disordered array, the spin
to this choice. The data for the disordered array is for a givepeaks are not only broadened, but are shifted toward the
realization of the stripe distribution, but the system is large( 7, 7) point seems to be generic behavior for disordered
enough that the results are self averaging in the sense that therays.
corresponding figures look similar to the eye for different ~ Sincek, is still a good quantum number, we can still talk
realizations. about a(one-dimensionalband structure of the disordered
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. . real space along, we have confirmed that all the states in
sof the gap decay exponentially in a few lattice constants,
whereas the scattering states are essentially delocalized. Fi-
nally, we have computed the participation ratiB,

=3 ¥ (r)]*~(2&) "L, where¢ is the localization length.
For a system of size 320320, we findP’s for the states
with |E|>m of order P~ 1/100 (which might become even
smaller for larger system sizesvhile for |E|<m, typically
P~0.1-0.25. For moderate dopingthe Fermi energy al-
ways lies inside the set of highly localized bantSee, for
example, Fig. 5, where the value of the Fermi energy corre-
sponding tos=1/8 is indicated. It is clear that all of the
spectral weight shown in Fig. 2 comes from these localized,
and hence dynamically entirely one-dimensional states.

4 4 IV. ISOLATED STRIPES AND BISTRIPES

~ FIG. 4. The squared magnitude of the Fourier transform of the | order to obtain a better understanding of the nature of
field m(x,y) for a disordered array of sidg,=100,000. This quan-  hq |ocalized states and how they give rise to the very char-
tity is proportlonal_to the spin-spin correlation function measuredacteristic two-dimensional distribution of spectral weight, we
by neutron scattering. look at some simpler problems consisting of a single or a
o . pair of proximate domain walls. Consider the situation in
array, as shown in Fig. 5. However, as there are preciselyhich the defects, i.e., one or more stripes, are confined to a
2L, bands, this figure becomes rather dense for a large NUMagion abouk=0. It is straightforward to explicitly write the
ber of stripes, so we have purposely reduced the system sigg,, e functions for fixedk, in the asymptotic regions to the
to L,=80 and the energy window tfE|<2 for graphical et and right of the defect: the eigenvalue problem is then
clarity. We devote Sec. IV to a closer examination of thisgg|yed by matching these solutions across the defect region.
band-structure. For |E|<m, the asymptotic states are exponentially falling

Because for each value kf, the effective Hamiltonian is - ¢,nctions ofx. For instance, to the right of the defect, Hamil-
that of a one-dimensional disordered system inxtdrec-  i5nian (1) is diagonalized by

tion, we knowa priori that all the states are exponentially
localized transverse to the stripes. However, for the states b (X,y) =e el @XTkYI[ ] 4 glagh m(x+¥)] (5
that lie within the Mott gap]E|<m=1, one might expect Y

the states to be highly localized in the neighborhood of onévhere the quantities, g, and« are the implicit functions of
or two stripes, while for|E|>m=1, the states are more Ky and the energ§ which (for o=1) satisfy

likely extended scattering states, that are only weakly local-

ized. That this expectation is realized can be seen in at least 0=cogg)cosfix) +cogky), ©®
three ways. It is clear from Fig. 5 that there is a dense set of 22 4w .

states aE>m=1, whereas foE<m=1 there is a spider E*=m’—4 sinf(«)sin(q), (7)
web of identifiable one-dimensional bands; the discreteness ei“=[E+2i sinh( )sin(q)]/m. )

of these bands is a reflection of their large degree of local-
ization in the transverse direction. By plotting the states inlt follows from Eqgs.(6)—(8) that if Eq. (5) is a solution then
so is Eq.(5) with g— —q,a— —a, and the same energy.
E Thus the total wave functioﬁ)ky(x,y) is a linear superposi-
tion of the two. To the left of the defect the same equations
hold after substitutingc— — x and, in the case of an an-
tiphase defectm— —m. A fourth equation, which depends
on the nature of the defect, is obtained by integrating the
Schralinger equation across the defect region, and defines
the eigenvalue problerkE=E(k,). (If the defect region is
sufficiently broad, there may be multiple solutions to the
eigenvalue equation, corresponding to multiple midgap
bands).
Much of the interesting physics is already implicit in
_ 25 = these relations. The distribution of spectral weight in the
=T e ] two-dimensional BZ associated with a state of given crystal

FIG. 5. Band structure of a disordered array with mean stripemomentumky IS given by|q’ky(_kx)| '_Whe_req’ is the Fou-
spacingl=4 andm=1. x is the T=0 chemical potential for a rier transform of®. Clearly, this weight is peaked neky
density of doped holeg=1/8. The system size is 80320. =q(k,) in a region of widthAk,~ «(k,). For smallx, Eq.
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E As advertisedg(k,) precisely traces out the diamond Fermi
0.6 surface.x‘l(ky)~vp(ky)/m is the extent of the wave func-
tion in real space, implying thehlfky(kx)|2 is quite sharply
oo peaked neak,=q(ky) in the nodal regions, where the Fermi
0.2 velocity vg is large, and is much more diffused in the anti-
, , % nodal regions, where—0. (Wherevg=0, the expression
id 3mid ¥ for x breaks down and we find~ \/m.) These features are,
‘0.z to a large extent, independent of the nature of the defect, so
ol long asm is not too large. It is also worth noting that the
energy width of the midgap band is of ordef, although the
-0.8 gap itself is 2n, and hence much larger.

The single antiphase domain-wall solution captures most

FIG. 6. DispersionE(ky) of the bound states of a single an- of the general features of the array of domain walls: The
tiphase domain wall wittm=1. spectral weight is concentrated about the diamond Fermi sur-
face, it is largest in a broad antinodal region, and is larger in

(6) implies thatq(k,) simply traces out the underlying “dia- the lower half than in the upper half of the BZ quadrant.
mond” Fermi surface given by the unperturbed band-Indeed, the low-energy spectral distribution of the ordered
structure. stripe arrays is, to a first approximation, simply the sum of
To be explicit, let us consider the case of a single sitecontributions of isolated stripes, even when the stripe spac-

centered antiphase domain wall,7|7-|T|1) of the type ing is only four lattice constants.

which appears in Eg2). In this case, the eigenvalue equa- However, the disordered stripe array is not simply a su-

tion is readily derived: perposition of single-wall states, especially in the nodal re-
gion. In fact, while it is clear from the band structure of the
E(ky)=*2 tanﬁ(,()cog(ky)_ (9)  disordered array shown in Fig. 5, that a large fraction of the

midgap bands are very similar to the mid-gap band of a
The resulting band-structure and spectral weight distributiorsingle isolated stripéFig. 6), there are other bands, espe-
in the BZ is shown in Figs. 6 and 7. Note that the midgapcially those that dominate the spectrumlgt= /2 and E
band has energy zero precisely whiye= 7/2, so that, for a  nearu, that look very different.
hole-doped stripe, for which the Fermi energy will certainly ~ Guided by the observation that the nodal weight is miss-
lie at negative energies, there will never be low-energy spedng for an ordered array, it is reasonable to assume that this
tral weight at the nodal point. A generic feature of the specfeature is related to local configurations with two or more
tral weight distribution that is apparent in the figure is thedomain walls in close proximity. Consider, therefore, the
fact that the negative-energy states have more weight in throblem of two anti-phase domain walls in close proximity.
lower half of the first quadrant of the BZ than in the upperClearly, the statement of proximity is related to the decay

half. This feature is seen very clearly also in the disorderedendthé =1/« of the single-domain-wall problem. If the dis-
array problem(Fig. 2. tance between the walls is greater thgnthe walls can be

It is particularly illuminating to examine this result in the considered independent, while for smaller distances they in-

smallim limit. The four implicit equations can be solved to '([jerfetre. Eorm=|1 we tfr|1n(3 ész and”only wea:d)é (El)epen-
leading order inm to obtain(for 0<k, <) entonky, Implying that domain walls seéparated by more
than two sites are roughly independent. Figure 8 shows the

(10 energy spectrum for the bound_states of two antiphase do-
main walls separated by one site. The spectrum is gapped
and it is clear that doping such a system can give rise to

- (11) low-energy spectral weight arourld = /2. In Fig. 9 we

2 sin(ky) ' repeat the same calculation for two proximate stripes.
Particularly interesting is the distribution of spectral
E(ky) = *2k%(ky)cogk,). (120  weight in momentum space for this system, as shown in Fig.
10. As with the single-wall problem, the weight hovers

m T around the band-structure Fermi surface, but with the distinct

a b feature that the weight of the negative-energy states is shifted

toward the zone center, whereas the positive-energy states

Ky Ky are shifted toward the#,7) point. We find that the magni-

tude of this shift increases wit. Intuitively it is of course

not surprising that the negative-energy states are shifted to-

7t T wards the zone center where the tight-binding energies are

x Ky lower, and conversely for the positive energy states.

FIG. 7. Integrated spectral weight over all negativae} and V. INCLUDING INTERACTIONS
positive-(b) energy bound states of a single antiphase domain wall

with m=1. The apparent discontinuity acrdgs= /2 is due to the So far we have been concerned with the distribution of
band crossing. spectral weight in the noninteracting model defined in Eq.
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0.5 FIG. 10. Integrated spectral weight over all negativ@- and

’ positive-(b) energy states of an in-phase domain wall consisting of

0.75 two one-site antiphase domain walls one site apart withl.

FIG. 8. Spectruni(k,) of the bound states of an effective in- we see, in this case, the spectral function exhibits one-
phase domain wall consisting of two one-site wide antiphase doeimensional behavior over the entire BZ. This description is
main walls one site apatt | T|-1-[17]), with m=1. valid as long as the stripe array is sufficiently dilute such that

the overlaps between different localized bands are small.
(1), when holes are introduced into its single-particle levels. For intermediate values oh performing the convolution
Including the effects of interactions between electrons in an Eq. (13) is difficult, owing to the complicated distribution
dODEd Stripe is a natural extension of this model. In the fOl'of the |0W_energy Spectra| We|ght in momentum space. How-
lowing we consider this issue for the case of the disorderedver, the spectral function continues to mimic one-
stripe array. dimensional behavior along directions that are not necessar-

To the extent that the localized bands shown in Flg 5 Cal“y aligned with the stripes. To demonstrate this point, we
be considered as independent we may calculate the lowonsider the spectral function along a cut in the BZ that runs
energy and long-wavelength spectral response of the systej the nodal directiorifrom (0,0) to (r,7)]. Since the zero-
as a sum over interacting Luttinger-liquid Contributionstemperature Ag(k—kg,@;y) vanishes unless |o|
Arg(k 0): >min(ve.vg|k—kg.2 it is clear that the important contribu-

R tion to A(IZ,w) along this cut, and at low energies, comes
Ak, 0)=>, |\PkF(kX)|2A1d[ky—kF ,;v(ke)]. (13)  from bands that cross the Fermi energy rigas /2. More-
ke over, we have shown that these bands produce a spectral
Here the sum runs over the localized bands that cross th&eight that is concentrated along a line parallel to the antidi-
Fermi energy. Every crossing point is a Fermi pokg  agonal(w,0) to (Oar)]. Therefore, for our purpose, we may
EEF~§/ for the one-dimensional channel defined by the bandaPpProximate the spectral distribution by a Lorentzian distri-

Each channel is also characterized by geprofile of its bution centered on this line with a half-width at half-

wave functiom?, (k.) and its Luttinger paramete and ma_ximum ofk. In Fig. 11 we present the speptral function
i kF.( ) . ger p s . which results from Eq(13) under the assumption of such a

velocitiesv ¢ which are collectively denoted ag(kg) in weight distribution

(13. )

. . o The spectral function in Fig. 11 shows a close resem-
The evaluation of spectral functidd3) simplifies in the blance to one-dimensional spectral functideempare, for
smallim limit where the spectral weight is concentrated

o . - ~~“ example, with Ref. B In particular it exhibits a striking di-
(within a width of orderm) along the diagonal connecting chotomy between sharp momentum distribution curves

the antinodal points and is roughly constant. The total Spec[(MDC’s), cuts at constanb] and broad energy distribution

tr:;l functiorr: is then prodporti(i)narI] mld(kx: kyi”’“’&”)’ curves[(EDC’s), cuts at constark], which we believe is a
where we have assumed thais the same for all bands. As telltale of electron fractionalizatiohlt is interesting to note,

E however, thaIA(IZ,w) in Fig. 11 is smoother than the corre-
sponding zero-temperature one-dimensional spectral func-
tion, and does not diverge at=vk for k<O like the latter.
This divergency is smeared by the convolution in ELB),
0.5 and the result is a spectral function that resembBlggk, w)
but at a finite temperature.
% The present analysis is the first which combines the re-
! markable non-Fermi-liquid features of the one-dimensional
electron gas with the two-dimensional structure of a Fermi
-0.5 surface. At a qualitative level, it justifies the analysis pre-
sented in Ref. 6, in which the measured spectral functions of
the high-temperature superconductors was analyzed in terms
of the corresponding expressions for a one-dimensional Lut-
FIG. 9. SpectrunE(k,) of the bound states of a two-site wide tinger liquid. In particular, here we have presented a micro-
in-phase domain walli(| T]--T]}7T1) with m=1. scopic rationale, which was missing at the time of that earlier
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' -0.1 0 0.1

FIG. 11. (Colon (a) The zero-temperature
spectral functionA(k,w) calculated from Eg.
(13) assuming a Lorentzian distribution of spec-
tral weight centered on a line parallel to the an-
tidiagonal. Herev.=vs=1, Ks=1, y.=(K.
+K_*—2)/8=0.3, andx=0.5 (which is what
we find for a single stripe wittm=1). k is mea-
sured along the BZ diagonal and relative to the
Fermi point near £/2,7/2), » is measured rela-
tive to the chemical potentigk. (b) MDC at w
=0, (c) EDC atk=0.

o

k.
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P B

work, for the existence of approximate one-dimensional dy{irst. Nevertheless, as noted above, stripes induce low energy

namics in the nodal region of the Fermi surface. spectral weight in both antinodal regions, although with dif-
ferent spectral weights—this is a consequence of strong mix-
VI. FURTHER CONSEQUENCES ing between states separated by the antiferromagnetic wave

. o _vector (,7). The observed anisotropy is reproduced natu-
In addition to the gross similarities between the eXperi-4|ly by the present model—see Fig. 2.

mentally observed spectral functions in LSCO, LNSCO, and 5,4 would generally expect electrons diffracting off an

BSCCO and those obtained from simple stripe models, therSrdered stripe array to exhibit intensity modulations with the
are a number of other aspects of the present results that a

potentially relevant to the interpretation of experiment. g?r:c?tsu egnsdég?] ?r?r;fid’ ZS {/r\]/(;esglilesvaepﬁsrznﬁ;g;?:n?ifvfﬁ the
A phenomenon that is fairly generally observed in ARPES g. S A g

measurements on high-temperature superconductors is tha{rgerpretatmn proposed by Zhat al.” that this effect has

sharp quasi-particle-like peak appears in the spectrum in th@ ready been seen in ARPES spectra of LNSC&nce all

antinodal regions as the temperature is reduced balpw _preyious observations of charge—density wave ordgring.are
Recent experiments on untwinned Y@a,0, ; (YBCO) mdwgct(e.g., the)_/ detect the.acc.ompanylrjg lattice distortion
crystals have found that the spectral-weight of this sharp fesd€nsity wavg this observation is potentially of more far
ture exhibits strong anisotropy between the different antiféaching importance as a method for detecting charge order.
nodal regions of the BZ? There are good empiric4i*® and Experiments on both electron and hole-doped cuprates in-
theoretical® reasons to believe that the stripes in this matedicate that the chemical potential remains within the Mott
rial are partially oriented by the chain potential on the Cu-Ogap, and is a remarkably slowly varying function of dopant
planes. Thus a large anisotropy in plane-related features is ®oncentration; instead, new dopant-induced states appear in
be expected. Moreover, we have previously shothat the  the gap:’~*° Of course, this behavior is characteristic of the
emergence of such a peak is naturally explained as a dimesert of stripe models envisaged here, in which the density of
sional crossover in a quasi-one-dimensional superconductastripes increases with dopant concentration so as to accom-
However, the presence of low-energy spectral weight in thenodate the added charges in midgap states. This is a form of
anti-nodal region transverse to the stripes seems surprising 4bpological doping”® analogous to soliton doping of

184501-9
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polyacetylené! As is the case in polyacetylene, we expect aearly and then saturates. Our present results suggest that, at
variety of additional aspects of topological doping to beleast in part, the saturation of the incommensurability may
manifest in experiments on the cuprates, including dopantreflect increasingly strong stripe fluctuations, rather than a

induced midgap optical absorptiod, dopant-induced sudden saturation of the stripe concentration.
infrared-active phonon modésetc.

Finally, the observation that the structure factor of a dis-
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