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g factor of conduction electrons in the de Haasvan Alphen effect
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Although formulas for the semiclassical electrgrfactor in the de Haas—van Alphen effect were first
derived by Roth in 1966, they are sufficiently complicated and have not been used in practice so far. In this
paper we represent the formulas in a more convenient form which also admits a simple physical interpretation.
It follows from these formulas that numerous computations ofgtfeector performed earlier did not take into
account the spin dynamics of a semiclassical Bloch electron moving in a magnetic field. This can lead to
inaccurate results for thg factor if the spin-orbit interaction in the crystal under study is not small. We also
point out that the concept of locglfactors widely used in the computations has a limited field of application
and is not generally correct for a strong spin-orbit coupling. Finally, we calculate and analygéattter for
a three-band model of the electron spectrum which was previously used in describing the so-called needles in
zinc.
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[. INTRODUCTION the spin-orbit interaction is taken into accodfitand the
g factorg(e,k,) depends on a location of tharbit I" in the
A g factor of conduction electrons in a crystgl,specifies  Brillouin zone. It should be noted that formulas for the
the splitting of Landau energy levels caused by an interactiog factor in terms of electron band parameters were, in fact,
of the electron spin with a magnetic fieldAE derived by RotH, but these formulas are sufficiently compli-
=g(er/2mc)H. Heree andm are the charge and mass of an cated and inconvenient to calculate tgefactor in real
electron,H is the external magnetic field, and the crystal issituations.
implied to have a center of inversigand only such crystals Calculation of theg factors were carried out for various
are considered belowThe electrong factor in the crystal metals®~?° However, it is necessary to stress that in all these
can considerably differ from its free-electron valge=2,  computations Roth's resultsvere not employed, and the ap-
and this difference is due to spin-orbit couplititere we do  proaches commonly used differ from that of Roth mainly in
not consider the exchange-correlation enhancement of the two respects. First, it was common practice to calculate the
facton. In metals, theg factors are experimentally found so-called localg factors g(k), introduced in Ref. 30 for
from oscillation phenomenée.g., the de Haas—van Alphen pointsk on the Fermi surface, while ttgefactor for an orbit
effech and from electron paramagnetic resonahde.this I' was obtained by the integration gfk) over this trajectory
paper we restrict our consideration to théactors recovered I'. In contrast to this, only thg factors of closedrbits have
from oscillation effects which are known to occur under thea physical meaning in Roth’s theory, and a pdnbf the
condition wctg>1, wherew, is the cyclotron frequency of Fermi surface can give different contributions to thiactors
the electron and, is the electron-scattering time. for different orbits passing through this point. Second, while
In what follows we treat the factor only in the semiclas- Roth’s approach is based on the effective one band Hamil-
sical limit when there are a lot of the Landau levels under théonian of a Bloch electron in a magnetic fiéf®? most of
Fermi surface. Besides this, the magnetic breakdown is aghe g-factor computations used another Hamiltonian which
sumed not to play any role in the case under study. As weltloes not take into complete account the influence of the
known? under these conditions an electron in the crystal in anagnetic field on the electron. All these disagreements with
magnetic field may be considered as a wave packet, with thiie exact theoryyshow that an analysis of the existing ap-
wave vector of the packét moving in a semiclassical orbit proaches to the-factor calculations is required.
T in the Brillouin zone. The orbit is the intersection of the  In this paper, in Sec. Il, we present Roth’s results the
constant-energy surface of the electron in absence of thefactor in the form which admits a simple physical interpre-
magnetic fieldg (k) = const, with the plan&,=const, where tation. In essence, another way of their derivation is outlined
z is the direction of the external magnetic fightl In this  here. We also clarify distinctions between the approaches of
approach the semiclassical factor appears in the well- Roth and of the other authors and point out situations for
known quantization rufe*! for electron energy in a mag-  Which the approaches may lead to different results. In Sec.

netic field, Il the g factor of electron states forming the so-called
needles in zinc is found and analyzed on the basis of the
le|H g(e,k,)m* obtained results. The derived expressions generalize the

S(s,kz):2w% T (1) formulas® obtained in the vicinity of band edges of Zn and

well agree with the experimental d&taf the appropriate
where S is the cross-sectional area of tiebosedorbit I',  values® of the band parameters are used. In the Appendix we
n is a large integer, the cyclotron mase* =(%%2m)  give several useful formulas that simplify calculations of the
X(dS(e,k,)/de), the constany is always equal to 1/2 when g factor for real electron-band structures.
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Il. FORMULAS FOR g FACTOR

A. Hamiltonian k=K= &A( 'K )

The quantization rulgl) can be derived using the effec- A(r) is the vector potential of the magnetic figh] and the

tive one-band Ham”tonian:leff of a Bloch electron in a function So(l’(\) in Eq (2) is |mp||ed to be Comp|ete|y sym-

magnetic field>*? Since electron bands are twofold degen-metrized in the components &f Elements of the matri)&
erate in crystals with the inversion symmetrshe Hamil- are the sums 0

tonian is a 22 matrix in spinor space. According to Refs.
31 and 32, this Hamiltonian to first order in the magnetic
field H has the form

L
Ho,pp" = Fopp’ T Mo pp

o of the pure spin partg; .,

Hefr=eo(k) 1+ EH,U«o(k)y (2 .

S _ *

whereeg(k) is the electron dispersion relation for the band Ho,pp (K) = ZmLU"'O”(r)03uk'°’3'(r)dk’ ©
being investigatedfrom here on we denote this band by the

subscript 0), and the orbital contributiongy, .,

h (U )0 H(U ) " 0, r_(U )0 H(U ) " Op!
or x/0p,mp"\¥y/mp",0p y/0p,mp" ¥ x/mp",0p
L(K)=[voQ |+ = , (4)
MO,Pp ( ) [ 0==0p,0p ]z 2“,”%#0 Sm(k)_so(k)
|
where the spin indexes,p’,p"=1,2; o3 is the third Pauli B. Roth’s results
matrix; Vo= (1) (9edK); Vny,m, and Qp, m,- are the ma- As well known! the de Haas—van Alphen effect can be
trix elements qf_the velocity operator and the periodikin  yhserved when the electron-scattering titge exceeds the
part of the position operator, period of the electron motion in the orbity.tsc>1. Under

this condition a steady state of the electron in the magnetic
J field is realized, with an energy corresponding to one of the
an,mp’(k):ij Uﬁ,np(r)% Ug,mpr (1) dr, (5  Landau levels. In other words, the electron state looks like a
v standing wave in the semiclassical orbit. The quantization
condition (1) together with the expression for tlgefactor
calculated in thek representation. In Eq€3) and (5) the  can be obtained as followstUsing the Hamiltoniar(2), one
integration is over a unit cell of the crystal lattice, and  finds the semiclassical wave function of the electron to the
Uk,1,(r) is the periodic factor in the Bloch wave function of second order in the small parameten Wheren is the ordi-
thelth band, nal number of the Landau level, and then imposes the con-
straint that the wave function be single valued; i.e., its phase
change over the semiclassical orbit must be equakto. At
given n, two wave functions differing in a direction of the
electron spin satisfy this condition. In the representation of
In what follows we always assume thaty > the Hamiltonian (2), they have the formf, (k)|e(k)),
= (io2K1)uy 1 wherel, K, andio,K are the spatial inver- f_(k)|e, (k)), where the unit vectors in the spinor spale?,
sion, complex conjugation, and time reversal operators, reand|e, ), specify directions of the spin in these two mutually
spectively. With this choice of the spinors, the propertyorthogonal states. The scalar functidngk) andf_ (k) are
Mo11= — Moz holds® Itis also important to emphasize here not small only near the semiclassical ortits andT_ cor-
that the quantitiese/c) uq,,» do not generally coincide with  responding to the above-mentioned wave functiomde that
the matrix element$/ é’pp, of the z component of the elec- the trajectoried”, and T _ slightly differ from each other
tron magnetic momentum in the representation; viz., one and fromI" defined abov®). A difference in energies of

z,/fk’|p=eXF(ikr)uk’|p .

has these two electron states just specifiesdtfactor.
To describde(k)), we shall use the following parametri-
e e zation:
— z
EIL‘LO,pp’ _Z_C[VOX ﬂOp,Op’]Z_l— Mo,ppf . (6)

1 1
. J1+1AH\ 7
The difference results from the fact that component& of (+]4%
aO(R) [see Eq(2)] do not commuté32 where 7 is a complex scalar function &. Then, one has
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1 7'* ) dx
R — S, (g,k,)=S(e,k,) — fﬁ—[s (k)—eo(k)]. (13
e . + o} 0
= J(1+|r|2>(—1 i © iy
Multiplying the Shralinger equation Insertion of the formula13) into Eq. (12) gives the quanti-
zation condition(1) and the expression for thgefactor:
Herfle)=e,f,|€) 7
e . . . L 2m [ dx (Tpoazt ™ 1512
by (e, | from the left, we arrive at the equation specifying the g=-— " % — | o1t 5 —|. (149
function 7(k) along the semiclassical orbit: mm* Jrvg
dr Formulas(14), (8), and(9) permit one to find the factor for
iv, G = Ho 172 240 19T — I 1, (8) any electron orbit. These formulas are equivalent to &8s
P : : ,

and(64) of Roth’s papet and coincide with those of Ref. 5.

wherev | is the absolute value of projectionwbn the plane ~ Several formulas simplifying calculations g, andv, in
normal toH, andd« is the infinitesimal element of the orbit. '@l Situations are presented in the Appendix.
In deriving this equation only terms of the leading nonvan- _ Since theg factor is themeasurablequantity, formulas

ishing order inH (i.e., in 1h) have been kept, and we have (8): (9), and (14 must be invariant under variations of
used the formula phases of the Bloch factorg, in spite of failing>* this

property for Hamiltonian(2). To prove this statement, con-
sider the transformation,

2 U 01= Uk,0:€XH 1 (K],

Taking into account the well-known relation(d«/v ) . . . -
— (eH/c)dt, Eq. (8) can be also considered as an eqluationwhere‘ﬁ(k) is some real function. According to the defini-
for spin dynamics of the electron moving in the semiclassical'®" Of Ux 02, We have, fotuy oz,
orbit (during the motion a direction of the electron spin r_ .
changes due to the spin-orbit couplindgHowever, in the Ui 02 U 028XHL ~ 1 ¢(K)].
steady state the direction of the electron spin must periodiThen Eqgs.(3)—(5) yield

cally return to its initial value. Thus, we arrive at the follow-

. e 9
(e lootRole) =~ (e Ivoh i |10

ing boundary condition to Eq8): , ) . dp(k)
M0,117 ~ M0,22™ M0,117 Iz Vo X I
7(0)=7(kyg), 9
wherer is written as a function of a length along the electron Mo,12= o XA — 21 p(K) ], (15

trajectory andk, is the perimeter of the orbit.

Multiplying the Shralinger equatior(7) by (e| from the
left, neglecting terms of the order ¢4? and higher, and
using Eq.(8), we find the equation in the function, ,

wherei, is the unit vector alongfl. Using these equalities, it
is easy to verify that a solution of the transformed equation
(8), 7' (k), can be expressed througftk) as follows:

N 7' (k)= 7(k)exd 2i (k) ]. (16)
AU U9 raking Eq€15) and (16) and the relationshi
which can be considered as the equation for a spinless “elec—a ing into account Eqs19) and(16) and the relationship
tron” in the magnetic field with a modified dispersion rela- dx ab(K) Ip(K)
i VOXT}: § 050,
r

tion £¢,(k). Hereeg, (k) has the form — i

rvg

eH ; o .
K)=en(K)+— K)+ N K) 7(K) V. one obtains from formulél4) thatg is invariant.
cor(k)=eolk) c {ro1sk) + R posk) k) Iy It is also instructive to find the factor in the following

(11) case studied many years agj@ small orbitl" is located near
Note that an equation ifi_ is similar to Eq.(10), but the the pointke, of a minimum or a maximum o (k). In this
appropriates,, (k) is obtained from formuld11) by chang- situation the quantitieg.,,’ (k) calculated in the orbit are
ing the sign beforegHic). Using the well-known quantiza- @PProximately constani,, (k)= o, (Kex, and Eq.(8)
tion rulé** for a spinless particle with the dispersion relation With condition (9) has the solutions

(12), one arrives at
_ — ot V(o109 | pod 1
S Koy — 27|e[H 1 12 ™~ Mo,12 ’ 17
+(81 Z)_ ﬁC n+§ ’ ( )

wherewg,, = o, (Key) - Insertion of Eq(17) into formula
whereS. is the cross-sectional area of the oBit defined  (14) yields the expression
by the equalitys o, (k) =€, at a constank,. SinceH is rela-

tively small, and thus the orbits andI", are close to each _ +4_m\/ﬁ
other, one can expre&s through the are& of the orbitT", 9==7V(row) |0.14", (18)
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which completely agrees with the appropriate formula ofThus, when the spin-orbit interaction in the crystal is weak,

Ref. 36 if one takes into account thaj(ke,) =0.

C. Analysis of other results

It is important to emphasize that Roth’s requi) has not
been employed in the calculations of théactor so far. The
expression

2m

B dx
g= fﬁra[ — po,11(K) ] (19

m*

proposed by De Graaf and OverhadSevas used in numer-
ous publication§=?° The discrepancy between formulés?)

and(19) is evident. It originates from the fact that De Graaf

the approach of De Graaf and Overhauser is sufficiently ac-
curate, whereas in crystals with strong spin-orbit coupling,
formulas(14), (8), and(9) are more suitable to calculate the
g factor.

It was assumed in the estimates given above hatg,
« v at smallv. This is really true if there is no linkirgof the
electron orbit to band-contact lines which can exist in
crystals®® But if the linking occurs and energies of the de-
generate bands separate linearlykinin a vicinity of the
band-contact line, one hd5>®

% QOp,Opdk: + ar,
r

and Overhauser completely neglected the dynamics of theven for v—0. Then the first term in formul&d) for u°"
electron spin when they analyzed the semiclassical motion afontributes to they factor:
the electron wave packet in the magnetic field. Besides this,

it was stated in Ref. 30 that the concept of a logdhctor

g(k) > up11(k) can be defined. This concept was widely used

in the g-factor calculation€=2° However, according to Eq.
(14), only the g factor of the orbit has a physical meaning
rather than the locaj factors. Indeed, sinceis a solution of
Egs.(8) and(9), the value of this function at a poikt 7(k),
depends not only on the electron state of this pfiet, on
Mo, (K)] but also on electron states of the whalebit I
[i.e., onug,, (k") atk’#k]. Thus, the same point of the
Fermi surface can give different contributions to thactors

2m _2m

g— 2~ — m FQOp,Opdk_ +F.
In other words, we arrive at the following result: even though
the spin-orbit coupling is very weak, tliefactor can essen-
tially differ from the free-electron valug=2 when the elec-
tron orbit links to the band-contact liné.

The linear muffin-tin orbital(LMTO) method?® is fre-

quently used to calculate electron energy bands of crystals.
In the framework of this method localfactors of a number

of different orbits passing through this point, and strictly of metals were computed in Refs. 16—29. In those papers the

speaking, the concept of the logafactor cannot be defined. following Hamiltonian of the electron in the magnetic field
However, there is a case in which logafactors can be  was used to find thg factors:

defined approximately. Both E¢l4) and Eq.(19) lead to
g=2 in the limit of a negligibly small spin-orbit interaction.
Let us now evaluate the discrepancy between these formulas
when the interaction remains weak but is not negligible. WewhereH 1o is the Hamiltonian of the electron in absence
shall describe the strength of the spin-orbit interaction in thgy the magnetic field written in the LMTO basis:l(MTo
crystal by the parameter includes the spin-orbit interaction heravhile M? is the
electron magnetic moment calculated in this basis. Diagonal-
ization of Hamiltonian(21) yields the energy bands and the
magnetic momeni? of the electron in thé representation.
It was implied in Refs. 16—29 that this moment in the
-representation just specifies the second term in Hamil-
tonian (2). However, according to Eq6), Mg ,; generally
differs from (e/c)up 1. The difference appears in the pro-

cess of diagonalizing LMTo Since components & are as-
sumed to commute in the LMTO calculations. Thus, the ap-
proach based on Hamiltoniaf21) can lead to inaccurate
results forg factors even though the spin-orbit interaction is
sufficiently weak and the concept of logafactors is a good
approximation. In particular, it follows from E@6) that one
where we have used the well-known relafionm* should exercise caution wheg is not small in the orbit, i.e.,
— (h/2m)$rdrlv, . It follows from these estimates that the When the energy band under study is not too narrow and the
discrepancy between formuléi4) and(19) is of the order of orbit does not lie near a point of a minimum or a maximum
v, while the correction to the free-electron valuegis of of &o(k).
the first order inv:

g

H=H wrotHM? (21

—A<1
V—E—O y

(20

where A characterizes a shift of energy bands induced b
“turning on” the interaction, whileE, is a typical energy
scale of an electron-band structure in the crysial a rule,
Eq is of the order of the atomic energigSg~0.1-1 Ry).
Then, we haveug,~7/2m, uol1~ po 1~ (A/m)v (as to
Mg,rn; see also beloyy and Egs(8) and(9) yield

m*

dx
7~ § 1o ~luasd -

Ill. g FACTOR OF ZINC

2m dx or

— S~ . As an example, we consider thgefactor of zinc. The
U !

Brillouin zone of Zn is a hexagonal prism. Near the pdint

g-—2

mm*
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TABLE I. Values of the band parameters used in the construc-

tion of Figs. 1 and 2.

Case E. (mRy) A (mRy) A (a.u) B (a.u)
— 1 -2.3 2.1 0.66 0.76
i3 1b -2.3 2.1 0.76 0.66
> 2a 3.0 2.2 0.52 0.75
5 2b° 3.0 2.2 0.75 0.52
iy, 2¢ 3.0 2.2 0.60 0.60

3a -0.7 21 0.66 0.76

3b -0.7 21 0.76 0.66

3c -0.7 2.1 0.71 0.71

%Case 2 of Ref. 35.{—£5(0)]=2.7 mRy.

-0.01 0 0.01 PCase 3 of Ref. 35.{—&5(0)]=2.6 mRy.
: kx (atomic units)

FIG. 1. Electron-energy bands of zinc in the vicinity of the point 0 (A+C)k- (A=C)k.
K at k,=k,=0. The coordinate, is directed along the line con- A
necting the center of the Brillouin zone with the poidtand is 0, = (A+C)k. Ect+ 3 Bk- (23
1_ .

measured in the atomic units from this point. The figure is plotted
for the case 2b of Table (i.e., for one of the two possible sets of (A—C)k Bk E_ é
band parameters of zincThe Fermi level{ is indicated by the B + c 3
dash-dotted line.

lying in the middle of the vertical edge of the prism there areHereH™ andH’ denote the Hermitian conjugate and trans-
three bands which are close to each other and to the Fermipse matrices, respectively; the originlofis placed at the
level ¢, Fig. 1. At the pointK the symmetry types of these point K; k, is directed along the line connecting the
bands arek,, Kg, andKg,3 and their energies at this point Brillouin-zone center and; k. = ky*iky; A, B, andC are
are equal to 0E.+A/3, andE.— A/3, respectivelyall en-  velocity matrix elements;H, .= —H,,,=2Ck,, and all

ergies are measured from the lewe}). The parameteE.  other elements of matriki, are equal to zero. The quantiy
ch_aracte_rlzes the crystgl potential, whlle the quantitp t_he _is the spin-orbit part of the velocity matrix elements. Its mag-
spin-orbit constant which was estimated to be positive init,de for zinc was evaluatd¥as C=7%2A/6mA. This leads
zinc®* (without the spin-orbit interaction the bankis and (1 the estimate<C/A~C/B~ »—0.01. The band energies
K¢ would be degenerate &t). The Fermi level in zinc lies &, (k) (1=1,2.3) are eigenvalues. of. the Hamiltonian and,

slightly above the bottom of the thirdopmos} band at the ' . i
pointK. If E;<—A/3, the third band has symmetry tyge, filg(r:]ordmg to Bqsi22) and(23), are determined by the equa

while if E.>—A/3, it has typeKg. The Fermi surface near

the pointsK forms the so-called needléthey are long in the

direction of the hexad axis which we denote aszhgis). In

what follows we shall treat the electron orbits lying on the —&(D,D_—B%})—Ak? +B(A?=C?)(K3+k2)

needles. We also assume that the magnetic Fieisl parallel —4C2K2D_=0 (24)

to this z axis andH<2.7 kG; under this condition a prob- z ’

ability of the magnetic breakdown between the needles and

the second-band hole monster is negligiSle. where A=(A+C)?D_+(A—C)?D,, D.=E.,*A/3—¢,
The energy differences of importance for these bands argq k?=Kk_k, . Note also that the three-band model of the

all less than 0.01 Rysee Table), while the nearest other spectrum, Eqs(22)—(24), is valid to the main order in the

. — 5 )
bands atK lie aboutE,=0.4 Ry away. Thus, only the  gma|| parameter maji|,A)/Ey~v (otherwise, other bands of
three-banckp Hamiltonian need be consider&iWith ac-  inc must be taken into accountn this context, one may

count of spin components, the Hamiltonian matrix can be,tc=0 in Eq. (24).

represented as follows: In zinc the pure spin parts gfy ,,» are much less than the
orbital components of these quantities, which is due to the
N N small energy differences in the denominators of @g(their
. Hi H; relative magnitude is of the order ©j. Thus, it is allowed to
- ar Al (22 completely neglect the pure spin contribution to the effective
2 ! Hamiltonian. In this approximation and using E&7), we

calculate the X2 Hermitian matricesw, for each of the
where three bandsl&1,2,3):

184426-5
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2
a2 15c%B%2D +(D,D_+2B%?)
v, |ul
A 2 2
x| 3 (A*+C%)—2AC(E;—e) ||, (25)
4Ck,B <"
“v'—'lz— |Z| [2(A+C)D k_+B(A-C)k2], (26)
1
where the complex quantity is defined by the formula
u=2(D,D_—B%k?){k,(B%—A)+3B(A?—C?)k?}.

With expression$25) and(26), one can find the factor for

any of the three bands. Moreover, in the case of zinc, these
formulas can b,e further. simplified. Since EQ%Z)—(24)'a.re FIG. 2. The dependenceg({) for different values of the band
true to the main order in the parameter MBY(A)/Eq, it is parameters, Table I. Here the Fermi enetgg measured from the
justified to putC=0 in formulas(25) and (26). Then, we  gqge of the third bands;5(0). Numbers near the curves indicate the

arrive at cases in the Table | for which the curves are plotted curves with
5 the number 1 correspond ®,< — A/3, while the curves 2 td,
M|,11 2AA >A/3; the caseA<B is described by the dependences la-—3a,

21,2 _
| [D+D-+2B%L],  w112=0, (27) whereas the curves 1b—3b show the caseB). The bold lines

correspond to the possible sets of the band parameters ofRdéfc
whereup,=u(C=0). Sincey, 1,=0, Eq.(19) is applicable 35). At A=B, the dependenceé;({) are shown by the dashed
to calculate they factor, and we obtain the formula lines. In this case the limit value d¥; at large{ depends orfE. /A
[see EQq.(30)]. The circles mark the experimentally obtained pairs
(¢,85) for zinc (Ref. 34.

Uy 3|UO

gim*
4m

1 JURY]

|
kZ:0 27T T U,

5|(8 =

, (28
k,=0

where g5(k) in D+ and in A must be treated as;(k)
for the quantitys(e) measured in the de Haas—van Alphen ~¢,(0)+%2k?/(2m*). With the use of the Bennett-Falicov
experiments. Note thad are proportional to the small pa- parameteg=E_/A, one eventually finds
rameterA, which is in agreement with the estimates of Sec.
IIC. However, 6, are not small in zinc since according to
formulas (27) and (28), these quantities for the near- S5
degenerate spectrum are determined by the ratio

A/max(Eg,|Z) which of the order of unity in this metal, 1 1
Table |. ge 3
Consider now the limiting case when the Fermi level lies = 5 (29
near the topmost band edfjé E.<—A/3, this band iK-, _ 2—(BIA)(3¢+1) - _ E
and its energy at the band edgecig0)=0; otherwise, this 2[2+(B/IA)*(3é+1)]” 3
is Kg and e5(0)=E.+A/3]. Then one obtains, from Eq.
(28),

If E.<—A/3, the expressiof29) for §3 coincides with that

g pm* of Bennett and Falica (corrected by Van Dykeet al*®),

G3=——4 , while in the caseE.>—A/3, it differs by —1 from the
k—0 appropriate formula that follows from results of Ref. 33.

where the formula for the cyclotron massm* Since in the semiclassical approach the changé loy arbi-

= (h/2m)$rdklv, , has been used. In this limiting case the trary integer do not affect the energy spectrum, we conclude

cyclotron mass is described by the expression that Eq.(29) agrees with the results of Bennett and Falikov.

Note also thats in Eq. (29) continuouslydecreases withg

1 1 2(A—e4(k)B?) from O até=— to —3/2 até=+=.

: The dependences of the quantiyfor the third band on
k=0 the Fermi energy are shown in Fig. 2. Af{—&3(0)]—0,
the values of5; agree with Eq(29). In the high-energy limit
(£>A\|E]), the quantity] 55 always tends to O or to 3/2 if
’ A+B, and the limiting value depends on a sign @g1)
where B=B/A. In this context it should be noted that &t
3(D,D_- szf)(A—es(k)Bz)‘kHO’ > A the role of the spin-orbit interaction decreases, and one

m* %2 (e3(k)(D. +D~)~D.D")
while &3 is given by the formula

AA%(D,D_+2B%?)
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four lines. According to the results of Refs. 5 an¢sée also
Sec. I1Q, if the orbit I' surrounds such the contact lines
between the band under study and some other one, then each
of the lines contributes 1/2or —1/2) to the appropriaté.
When <1, the orbitl" at a sufficiently large/ surrounds
the four band-contact lines, and henég=0. [Note that in
the semiclassical approximation the integer parédfas no
effect on the spectrum since it can be absorbed by the num-
ber n in Eqg. (1), and thus, any integef is equivalent to
zero] WhenpB>1, there is onlyonecontact line between the
third and second bands inside the orbit and thus,d;
changes by 3/2 as compared with the casggafl. In other
words, the different limiting values aof5 in Fig. 2 are com-
pletely determined by the number of the band-contact lines
which occur for the third band near the pokut

In the special casA=B, the high-energy limit of5; de-
pends oné=E./A, Fig. 2. It can be shown that in this case
the limiting value ofd; is given by the formula

Sa= 3.3 tari\/3¢); 30
3™ 4 quarc am g)r ( )

i.e., the value is not generally an integer or a half-integer.
This is explained as follows: In the three-band model being
investigated, the magnetic breakdown is absent when the in-
equality is met:

B?|e|H
e

{3[EA+(1— B2+ A% > (3D

(Ak )/E,

FIG. 3. The zinc-type band structure without the spin-orbit cou-(This inequality is written forE;,A<{, [g?—1|<1) If B
pling (A=0) atk,=k,=0. The upper and lower panels refer to the #1, one can putd=0 in Eq. (30), and this condition is
casesB>A andB<A, respectively. The numbers mark the appro- fulfilled due to the large value of. However, if 3=1, we
priate bands; the third band is indicated by the bold line. The dasheannot neglect the spin-orbit interaction, and the limiting
dotted lines represent the Fermi levels at which the semiclassicalalue of 85 is not determined only by the number of the
orbits in the third band are schematically shown in the insets. Théyand-contact lines but also depends on the strength of the
crosses indicate the intersections of the band-contact lines with thepin-orbit coupling. On the other hand|E.|=A|£/>A and
planek,=0 (only the contact lines between the third and secondihe condition(31) is satisfied due t&., then it follows from
bands are taken into account here; the lines are parallel ta the Eq. (30) that §; equals—3/2 (E.>0) or 0 (E.<0), which is
axis). Note that the semiclassical orbits are linked to one or four;,, complete agreement with the considerations presented
band-contact lines depending on the sigrBef A. above.

) ) ) ) o Using data on the magnetoresistance and the de Haas—van
might expect to obtains—0 in the high-energy limit. To  ajphen effect, the two possible sets of values of the energy-
clarify the unusual behavior of; presented in Fig. 2, let us pang parameters for the needles in zinc were obtdinede
put A—0 and for definiteness assume t&a>0. In this  Tapje |. The existence of the two sets is due to the fact that
situation there are four band-contact lines in the vicinity 0fon|y|5| (up to an integercan be found in experiments. After
the pointK; see Fig. 3. One of them is described by thegpgiitution of these two sets, our semiclassical formula
equationsk,=k,=0, and in this line a contact of the second |g5s to the values afs(¢) coinciding with the experimental
and the third bands occurs at the eneegy The other three 441434 Fig. 2. It is also worth noting that the dependences of
lines intersect the planie,=0 at points which form a equi- |s,| on ¢ are qualitatively different for these two sets of the
lateral triangle with a center at poifit In these lines ener-  narameters. This result may be useful in determining the
gies of the contacting bands are energy-band parameters of zinc.

E =i_ IV. CONCLUSIONS

cont 1_B2
The g factor appearing in the de Haas—van Alphen effect
If <1 (i.e.,B<A), a contact of the second and third bandscan be calculated using formul&), (9), and(14) (see also
occurs in the lines, while in the cags>1 the first and sec- the Appendix. These formulas differ from Eq(19) sug-
ond bands contact there. It is also essential that the energigested by De Graaf and Overhau¥&Fhe difference results

of the bands separate linearly knin vicinities of all these from the following: when a Bloch electron moves in its

184426-7
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semiclassical orbit in an external magnetic field, a directiorsmall energy differences between the bands specify both

of the electron spin changes due to the spin-orbit interaction, (k) and (k) [see, e.g., Eq4)] and one can neglect all
De Graaf and Overhouser completely neglected this changgiher bands.

while Egs.(8), (9), and(14) take it into account. Moreover,  The formulas given below are also applicable to the basis
since the direction of the spin at a given point of the orbitysed in the LMTO methotf In this case the basis functions
depends on a prehistory of the electron motion, i.e., on char,-MTO are Bloch sums of the muffin-tin orbitals. These func-

acteristics of the orbit, the concept of the Iogajactor in- tions, as well aS(k <, possess the property of translation
troduced in Ref. 30 is not, strictly speaking, correct. How-; invariance,
ever, for a weak spin-orbit interaction in the crystal, the
approaches lead to identical results for théactor to the (r+a)=e*2y,, ()
) . . . - Xk,lp Xk,1p\T)s
main order in the strength of the spin-orbit couplifthe ) ) )
discrepancy appears only in the next ojdém this approxi- wherea is an arbitrary lattice vector and form the orthogonal
mation the concept of the locglfactor becomes valid. and complete basis séhe orthogonality OfXIIZ'\I/lpTO can be
As an example, we calculate thefactor for the three- always achieved by the well-known FECULFI\SAQ/g procetfire
band model of the electron spectrum, E¢®2), (23), and It is important that thek dependences of, |, ~ are deter-
(24). This model is of interest in itself since it can describemined by the so-called structure constants and thus are
the so-called electron needles in zinc. In this case the spirknown for any type of lattice.
orbit coupling is relatively small, and Eq19) is applicable The Bloch functiong ¢y | ) can be expressed through any
to study theg factor for orbits lying on the needles. We of the above-mentioned sets as follows:
analyze dependences of thisfactor on the Fermi level,
Fig. 2. It is shown thag factor can essentially differ from _ Su 1 (K
zero even in the high-energy limit whehconsiderably ex- e, 2 X1y S ()

ceeds gaps of the spectrum and the role of the spin-orbit .
interaction becomes negligible. In this case the so-called’Nereé the capitald. :and M denote couples of band and

band-contact lin€€ give the main contribution to thg fac- spinor mdexes{e.g.,_LE{I ,p}), and matrix elements of the
tor. This result is a manifestation of the general stateffent Unitary transformatior$ are

the g factor is determined not only by the strength of the Sy L(K)=( )

spin-orbit coupling but also by band-contact lines linked to M.L XMl ¥hL/-
the semiclassical orbit. If we use values of the band paranithe transformationS diagonalizes a Hamiltonian matrix

eters and, found in Ref. 35, our results for thgfactor are  [4x(k) of the electron in absence of the magnetic field in the
in agreement with the experimental data for needles og( representation=LMTO or LK),

zmc
(STHYS) m=21(K) Sy - (A1)

APPENDIX: CALCULATION OF - 1o With the use of the matri$, one can expresg, in Eq. (2)

Expressiong3)—(5) for lALo are written in thek represen- through quantities calculated in therepresentation:

tation, while other sets of basis functions are usually em-

_/ea+tphae
ployed in electron-energy-band calculations. Besides this, the H0,p1 = (S RS)0p,00 T Qoppr » (A2)
definition of Q,,, m,/, EQ.(5), includes the differentiation of 1 S
wave functions. It is clear that the differentiation becomes a A o
. R: QX_ + XQX _ + RS A
troublesome problem when the wave functions are found nu- 2 ( Y ok, v ) (x=y) ' (A3)

merically. Here we point out the way of overcoming the
above-mentioned problems: we derive expressionsufgr i
starting from representations widely used in practice, and Qopp' =
show how to avoid the numerical differentiation.

Below we shall deal with only two sets of basis functions
although our results can be applied to other representationa these formulas the spin contributiét? and the matrix2X
with insignificant changes. The first set are determined by Eqg$3) and (5), respectively, with the
spinorsuy |, replaced byug ,=exp(=ikr)x,; V¥ is the
matrix of velocity in they representation. It is important to
emphasize here that thie differentiations in QX and in

corresponds to the Luttinger-Kohn representatibKR).*° dH¥ok; can be now performed analytically since thede-
p g P i ) pendences o, are known both in the LKR and in the

Here the periodic factors, | ,(r) of the Bloch functions are . .
taken at a fixed point of thie space which we denote as zero. LMTO bases. However, in the LMTO method the matgixs

This basis is convenient for analytical calculationsg{k) ~ found numerically, and thus the problem of calculating

and io(K) near the poink=0 if several energy bands are 7S/dk; in Eq. (A4) appears. This problem can be resolved
close toey(k) in a vicinity of this point. In this situation using the phase ambiguity ofy discussed in Sec. I, and we

o[ %20, IAX &é
K, ok, ~(xey)
0p,0p’
(A4)

iker

Xicr (1) =€%"ug),(r)
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now obtain another formula fd®, ,,» which enables one to
avoid the numerical differentiations.

To calculateQq,,' , two columns in the matri§ marked

by indexes{l,p}={0,1},{0,2} are required. These columns

are eigenvectors of the matri{X corresponding to the ei-

genvalueey(k). If we denote these orthonormal vectors as

af/|as| with p=1,2, we arrive at the equation &g,
[A¥(k)—eq(k)Jaf(k) =0 (A5)

(note that we do not assunial|=1 herd. To proceed fur-
ther, let us represemi* in the block form

Eo(k)T2x2 sz(2N2)<k>)

I:Vz(Nsz: ~ ~
Vin-2yx2(K) M an-2yx@an-2)(K)

PHYSICAL REVIEW B 65 184426

QO,pp’(k) = QO,pp’(ki E= 80(k))1

where
i
’ k E S —
Qoo B = E P
ga(Ek) . aaf' (E,K)
X[(a—ky’[HX(k)_E]a—kx
—(x<—>y)] (A7)

is the function oftwo independentariablesk andk [i.e., E
is not differentiated with respect th in Eq. (A7)]. Here

a,Ab)=3, a*A; b, for any matrixA and vectorsa andb.
IRl 1Y)

whereE(k) is a scalar function, and the subscripts indicateThus,Qo,, can be expressed through matrix elementsibf

dimensions of some matrix/ and M. Construct two
2N-dimensional vectora” (p=1,2) as follows:

e(P)
A ~ . (A6
—(M—E)1V+e(")) (A6)

1 0
= (@)=
=fofe @=L

a’(k,E)=de{M —E)

Here

and their derivatives with respect ko Since in the LMTO
representation th& dependences of these matrix elements
are determined by structure constdhtand the above-
mentioned derivatives can be calculated analytically, Eqg.
(A7) enables one to avoid numerical differentiationsS¢k)

[in principle, with Eqs.(A2), (A3), and (A7) the calculation

of wo,, (k) by the LMTO method is not more complicated
than the computation ofy(k)]. Interestingly, formulaA7)
also simplifies calculations in the LKR. In this representation

the elements ofi* have simple dependences &n while

Fay LK_ 2 . . . . . PR
andN is the number of the electron bands that are allowed? =0 (and thusR coincides with the spin contributioR®,

for the computation. It is follows from formuléA6) that
components of the vectoré”(k,E) are polynomials of
HJ (k) andE. If the parameteE is substituted by o(k), the
vectora” reduces to the eigenvectaf, Eq. (A5). It can be

shown that the quantit®, ,,. , Eq.(A4), can be found from
the relation

the latter being relatively small whem.<m). It is also
worth noting that, entering Eqs(8) and(14) can be found
using the formulai(=x,y)

1

|ag|?

(A8)

V=

- IHX -
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