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g factor of conduction electrons in the de Haas–van Alphen effect
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Although formulas for the semiclassical electrong factor in the de Haas–van Alphen effect were first
derived by Roth in 1966, they are sufficiently complicated and have not been used in practice so far. In this
paper we represent the formulas in a more convenient form which also admits a simple physical interpretation.
It follows from these formulas that numerous computations of theg factor performed earlier did not take into
account the spin dynamics of a semiclassical Bloch electron moving in a magnetic field. This can lead to
inaccurate results for theg factor if the spin-orbit interaction in the crystal under study is not small. We also
point out that the concept of localg factors widely used in the computations has a limited field of application
and is not generally correct for a strong spin-orbit coupling. Finally, we calculate and analyze theg factor for
a three-band model of the electron spectrum which was previously used in describing the so-called needles in
zinc.
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I. INTRODUCTION

A g factor of conduction electrons in a crystal,g, specifies
the splitting of Landau energy levels caused by an interac
of the electron spin with a magnetic field,DE
5g(e\/2mc)H. Heree andm are the charge and mass of a
electron,H is the external magnetic field, and the crystal
implied to have a center of inversion~and only such crystals
are considered below!. The electrong factor in the crystal
can considerably differ from its free-electron value,g52,
and this difference is due to spin-orbit coupling~here we do
not consider the exchange-correlation enhancement of tg
factor!. In metals, theg factors are experimentally foun
from oscillation phenomena~e.g., the de Haas–van Alphe
effect! and from electron paramagnetic resonance.1 In this
paper we restrict our consideration to theg factors recovered
from oscillation effects which are known to occur under t
conditionvctsc.1, wherevc is the cyclotron frequency o
the electron andtsc is the electron-scattering time.

In what follows we treat theg factor only in the semiclas
sical limit when there are a lot of the Landau levels under
Fermi surface. Besides this, the magnetic breakdown is
sumed not to play any role in the case under study. As w
known,2 under these conditions an electron in the crystal i
magnetic field may be considered as a wave packet, with
wave vector of the packetk moving in a semiclassical orbi
G in the Brillouin zone. The orbit is the intersection of th
constant-energy surface of the electron in absence of
magnetic field,«(k)5const, with the planekz5const, where
z is the direction of the external magnetic fieldH. In this
approach the semiclassicalg factor appears in the well
known quantization rule3,4,1 for electron energy« in a mag-
netic field,

S~«,kz!52p
ueuH
\c S n1g6

g~«,kz!m*

4m D , ~1!

where S is the cross-sectional area of theclosedorbit G,
n is a large integer, the cyclotron massm* 5(\2/2p)
3(]S(«,kz)/]«), the constantg is always equal to 1/2 when
0163-1829/2002/65~18!/184426~10!/$20.00 65 1844
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the spin-orbit interaction is taken into account,5,6 and the
g factor g(«,kz) depends on a location of theorbit G in the
Brillouin zone. It should be noted that formulas for th
g factor in terms of electron band parameters were, in fa
derived by Roth,7 but these formulas are sufficiently compl
cated and inconvenient to calculate theg factor in real
situations.

Calculation of theg factors were carried out for variou
metals.8–29 However, it is necessary to stress that in all the
computations Roth’s results7 were not employed, and the ap
proaches commonly used differ from that of Roth mainly
two respects. First, it was common practice to calculate
so-called localg factors g(k), introduced in Ref. 30 for
pointsk on the Fermi surface, while theg factor for an orbit
G was obtained by the integration ofg(k) over this trajectory
G. In contrast to this, only theg factors of closedorbits have
a physical meaning in Roth’s theory, and a pointk of the
Fermi surface can give different contributions to theg factors
for different orbits passing through this point. Second, wh
Roth’s approach is based on the effective one band Ha
tonian of a Bloch electron in a magnetic field,31,32 most of
the g-factor computations used another Hamiltonian wh
does not take into complete account the influence of
magnetic field on the electron. All these disagreements w
the exact theory7 show that an analysis of the existing a
proaches to theg-factor calculations is required.

In this paper, in Sec. II, we present Roth’s results7 for the
g factor in the form which admits a simple physical interpr
tation. In essence, another way of their derivation is outlin
here. We also clarify distinctions between the approache
Roth and of the other authors and point out situations
which the approaches may lead to different results. In S
III the g factor of electron states forming the so-calle
needles in zinc is found and analyzed on the basis of
obtained results. The derived expressions generalize
formulas33 obtained in the vicinity of band edges of Zn an
well agree with the experimental data34 if the appropriate
values35 of the band parameters are used. In the Appendix
give several useful formulas that simplify calculations of t
g factor for real electron-band structures.
©2002 The American Physical Society26-1
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II. FORMULAS FOR g FACTOR

A. Hamiltonian

The quantization rule~1! can be derived using the effec
tive one-band HamiltonianĤe f f of a Bloch electron in a
magnetic field.31,32 Since electron bands are twofold dege
erate in crystals with the inversion symmetry,2 the Hamil-
tonian is a 232 matrix in spinor space. According to Ref
31 and 32, this Hamiltonian to first order in the magne
field H has the form

Ĥe f f5«0~ k̂! 1̂1
e

c
Hm̂0~ k̂!, ~2!

where«0(k) is the electron dispersion relation for the ba
being investigated~from here on we denote this band by th
subscript 0),
f
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k̂5K2
e

c\
AS i

]

]K D ,

A(r ) is the vector potential of the magnetic fieldH, and the
function «0( k̂) in Eq. ~2! is implied to be completely sym
metrized in the components ofk̂. Elements of the matrixm̂0
are the sums,

m0,rr85m0,rr8
s

1m0,rr8
or

of the pure spin partsm0,rr8
s ,

m0,rr8
s

~k!52
\

2mE
v
uk,0r* ~r !s3uk,0r8~r !dk, ~3!

and the orbital contributionsm0,rr
or ,
8

m0,rr8
or

~k!5@v0V0r,0r8#z1
\

2i (
r9,mÞ0

~vx!0r,mr9~vy!mr9,0r82~vy!0r,mr9~vx!mr9,0r8
«m~k!2«0~k!

, ~4!
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where the spin indexesr,r8,r951,2; s3 is the third Pauli
matrix; v05(1/\)(]«0]k); vnr,mr8 andVnr,mr8 are the ma-
trix elements of the velocity operator and the periodic ink
part of the position operator,

Vnr,mr8~k!5 i E
v
uk,nr* ~r !

]

]k
uk,mr8~r !dr , ~5!

calculated in thek representation. In Eqs.~3! and ~5! the
integration is over a unit cell of the crystal lattice,v, and
uk,lr(r ) is the periodic factor in the Bloch wave function o
the l th band,

ck,lr5exp~ ikr !uk,lr .

In what follows we always assume thatuk,l2
5( is2KI )uk,l1 where I, K, and is2K are the spatial inver-
sion, complex conjugation, and time reversal operators,
spectively. With this choice of the spinors, the prope
m0,1152m0,22 holds.36 It is also important to emphasize he
that the quantities (e/c)m0,rr8 do not generally coincide with
the matrix elementsM0,rr8

z of the z component of the elec
tron magnetic momentum in thek representation; viz., one
has

e

c
m0,rr85

e

2c
@v03V0r,0r8#z1M0,rr8

z . ~6!

The difference results from the fact that components ofk̂ in
«0( k̂) @see Eq.~2!# do not commute.31,32
e-

B. Roth’s results

As well known,1 the de Haas–van Alphen effect can b
observed when the electron-scattering timetsc exceeds the
period of the electron motion in the orbit,vctsc.1. Under
this condition a steady state of the electron in the magn
field is realized, with an energy corresponding to one of
Landau levels. In other words, the electron state looks lik
standing wave in the semiclassical orbit. The quantizat
condition ~1! together with the expression for theg factor
can be obtained as follows:5 Using the Hamiltonian~2!, one
finds the semiclassical wave function of the electron to
second order in the small parameter 1/n wheren is the ordi-
nal number of the Landau level, and then imposes the c
straint that the wave function be single valued; i.e., its ph
change over the semiclassical orbit must be equal to 2pn. At
given n, two wave functions differing in a direction of th
electron spin satisfy this condition. In the representation
the Hamiltonian ~2!, they have the formf 1(k)ue(k)&,
f 2(k)ue'(k)&, where the unit vectors in the spinor space,ue&
andue'&, specify directions of the spin in these two mutua
orthogonal states. The scalar functionsf 1(k) and f 2(k) are
not small only near the semiclassical orbitsG1 andG2 cor-
responding to the above-mentioned wave functions~note that
the trajectoriesG1 and G2 slightly differ from each other
and from G defined above30!. A difference in energies of
these two electron states just specifies theg factor.

To describeue(k)&, we shall use the following parametr
zation:

ue&5
1

A~11utu2!
S 1

t D ,

wheret is a complex scalar function ofk. Then, one has
6-2
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ue'&5
1

A~11utu2!
S t*

21D .

Multiplying the Shrödinger equation

Ĥe f f f 1ue&5«1 f 1ue& ~7!

by ^e'u from the left, we arrive at the equation specifying t
function t(k) along the semiclassical orbit:

iv'

dt

dk
5m0,12t

212m0,11t2m0,12* , ~8!

wherev' is the absolute value of projection ofv on the plane
normal toH, anddk is the infinitesimal element of the orbi
In deriving this equation only terms of the leading nonva
ishing order inH ~i.e., in 1/n) have been kept, and we hav
used the formula

^e'u«0~ k̂!ue&52
e

\c
^e'uv0AS i

]

]kD ue&.

Taking into account the well-known relation2 (dk/v')
5(eH/c)dt, Eq. ~8! can be also considered as an equat
for spin dynamics of the electron moving in the semiclass
orbit ~during the motion a direction of the electron sp
changes due to the spin-orbit coupling!. However, in the
steady state the direction of the electron spin must peri
cally return to its initial value. Thus, we arrive at the follow
ing boundary condition to Eq.~8!:

t~0!5t~k0!, ~9!

wheret is written as a function of a length along the electr
trajectory andk0 is the perimeter of the orbit.

Multiplying the Shrödinger equation~7! by ^eu from the
left, neglecting terms of the order ofH2 and higher, and
using Eq.~8!, we find the equation in the functionf 1 ,

«0↑~ k̂! f 15« f 1 , ~10!

which can be considered as the equation for a spinless ‘‘e
tron’’ in the magnetic field with a modified dispersion rel
tion «0↑(k). Here«0↑(k) has the form

«0↑~k!5«0~k!1
eH

c
$m0,11~k!1R@m0,12~k!t~k!#%.

~11!

Note that an equation inf 2 is similar to Eq.~10!, but the
appropriate«0↓(k) is obtained from formula~11! by chang-
ing the sign before (eH/c). Using the well-known quantiza
tion rule3,4 for a spinless particle with the dispersion relati
~11!, one arrives at

S1~«,kz!5
2pueuH

\c S n1
1

2D , ~12!

whereS1 is the cross-sectional area of the orbitG1 defined
by the equality«0↑(k)5«, at a constantkz . SinceH is rela-
tively small, and thus the orbitsG andG1 are close to each
other, one can expressS1 through the areaS of the orbitG,
18442
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S1~«,kz!5S~«,kz!2 R
G

dk

v'

@«0↑~k!2«0~k!#. ~13!

Insertion of the formula~13! into Eq. ~12! gives the quanti-
zation condition~1! and the expression for theg factor:

g52
2m

pm*
R

G

dk

v'
Fm0,111

~tm0,121t* m0,12* !

2 G . ~14!

Formulas~14!, ~8!, and~9! permit one to find theg factor for
any electron orbit. These formulas are equivalent to Eqs~52!
and~64! of Roth’s paper7 and coincide with those of Ref. 5
Several formulas simplifying calculations ofm0,rr8 andv' in
real situations are presented in the Appendix.

Since theg factor is themeasurablequantity, formulas
~8!, ~9!, and ~14! must be invariant under variations o
phases of the Bloch factorsuk,lr in spite of failing32,37 this
property for Hamiltonian~2!. To prove this statement, con
sider the transformation,

uk,018 5uk,01exp@ if~k!#,

wheref(k) is some real function. According to the defin
tion of uk,02, we have, foruk,02,

uk,028 5uk,02exp@2 if~k!#.

Then Eqs.~3!–~5! yield

m0,118 52m0,228 5m0,112 izFv03
]f~k!

]k G ,
m0,128 5m0,12exp@22if~k!#, ~15!

whereiz is the unit vector alongH. Using these equalities, i
is easy to verify that a solution of the transformed equat
~8!, t8(k), can be expressed throught(k) as follows:

t8~k!5t~k!exp@2if~k!#. ~16!

Taking into account Eqs.~15! and ~16! and the relationship

R
G

dk

v'

izFv03
]f~k!

]k G5 R
G
dk

]f~k!

]k
50,

one obtains from formula~14! that g is invariant.
It is also instructive to find theg factor in the following

case studied many years ago:36 a small orbitG is located near
the pointkex of a minimum or a maximum of«0(k). In this
situation the quantitiesm0,rr8(k) calculated in the orbit are
approximately constant,m0,rr8(k)'m0,rr8(kex), and Eq.~8!
with condition ~9! has the solutions

t5
2m0,116A~m0,11!

21um0,12u2

m0,12
, ~17!

wherem0,rr8[m0,rr8(kex). Insertion of Eq.~17! into formula
~14! yields the expression

g56
4m

\
A~m0,11!

21um0,12u2, ~18!
6-3
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which completely agrees with the appropriate formula
Ref. 36 if one takes into account thatv0(kex)50.

C. Analysis of other results

It is important to emphasize that Roth’s result~14! has not
been employed in the calculations of theg factor so far. The
expression

g5
2m

pm*
R

G

dk

v'

@2m0,11~k!# ~19!

proposed by De Graaf and Overhauser30 was used in numer
ous publications.9–29The discrepancy between formulas~14!
and~19! is evident. It originates from the fact that De Gra
and Overhauser completely neglected the dynamics of
electron spin when they analyzed the semiclassical motio
the electron wave packet in the magnetic field. Besides t
it was stated in Ref. 30 that the concept of a localg factor
g(k)}m0,11(k) can be defined. This concept was widely us
in the g-factor calculations.9–29 However, according to Eq
~14!, only the g factor of the orbit has a physical meanin
rather than the localg factors. Indeed, sincet is a solution of
Eqs.~8! and~9!, the value of this function at a pointk, t(k),
depends not only on the electron state of this point@i.e., on
m0,rr8(k)# but also on electron states of the wholeorbit G
@i.e., on m0,rr8(k8) at k8Þk#. Thus, the same point of th
Fermi surface can give different contributions to theg factors
of different orbits passing through this point, and stric
speaking, the concept of the localg factor cannot be defined

However, there is a case in which localg factors can be
defined approximately. Both Eq.~14! and Eq.~19! lead to
g52 in the limit of a negligibly small spin-orbit interaction
Let us now evaluate the discrepancy between these form
when the interaction remains weak but is not negligible.
shall describe the strength of the spin-orbit interaction in
crystal by the parameter

n[
D

E0
!1, ~20!

where D characterizes a shift of energy bands induced
‘‘turning on’’ the interaction, whileE0 is a typical energy
scale of an electron-band structure in the crystal~as a rule,
E0 is of the order of the atomic energies,E0;0.1–1 Ry).
Then, we havem0,11

s ;\/2m, m0,11
or ;m0,12;(\/m)n ~as to

m0,11
or ; see also below!, and Eqs.~8! and ~9! yield

utu; R
G
um0,12u

dk

v'

;um0,12u
m*

\
,

where we have used the well-known relation2 m*
5(\/2p)rGdk/v' . It follows from these estimates that th
discrepancy between formulas~14! and~19! is of the order of
n2, while the correction to the free-electron value ofg is of
the first order inn:

g2252
2m

pm*
R

G

dk

v'

m0,11
or ;n.
18442
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Thus, when the spin-orbit interaction in the crystal is we
the approach of De Graaf and Overhauser is sufficiently
curate, whereas in crystals with strong spin-orbit coupli
formulas~14!, ~8!, and~9! are more suitable to calculate th
g factor.

It was assumed in the estimates given above thatV0r,0r8
}n at smalln. This is really true if there is no linking5 of the
electron orbit to band-contact lines which can exist
crystals.38 But if the linking occurs and energies of the d
generate bands separate linearly ink in a vicinity of the
band-contact line, one has:37,5,6

R
G

V0r,0rdk56p,

even for n→0. Then the first term in formula~4! for mor

contributes to theg factor:

g22'2
2m

pm*
R

G
V0r,0rdk57

2m

m*
.

In other words, we arrive at the following result: even thou
the spin-orbit coupling is very weak, theg factor can essen
tially differ from the free-electron valueg52 when the elec-
tron orbit links to the band-contact line.5,6

The linear muffin-tin orbital~LMTO! method39 is fre-
quently used to calculate electron energy bands of crys
In the framework of this method localg factors of a number
of metals were computed in Refs. 16–29. In those papers
following Hamiltonian of the electron in the magnetic fie
was used to find theg factors:

Ĥ5ĤLMTO1HMz, ~21!

whereĤLMTO is the Hamiltonian of the electron in absen
of the magnetic field written in the LMTO basis (ĤLMTO
includes the spin-orbit interaction here!, while Mz is the
electron magnetic moment calculated in this basis. Diago
ization of Hamiltonian~21! yields the energy bands and th
magnetic momentMz of the electron in thek representation.
It was implied in Refs. 16–29 that this moment in th
k-representation just specifies the second term in Ham
tonian ~2!. However, according to Eq.~6!, M0,11

z generally
differs from (e/c)m0,11. The difference appears in the pro
cess of diagonalizingĤLMTO since components ofk are as-
sumed to commute in the LMTO calculations. Thus, the
proach based on Hamiltonian~21! can lead to inaccurate
results forg factors even though the spin-orbit interaction
sufficiently weak and the concept of localg factors is a good
approximation. In particular, it follows from Eq.~6! that one
should exercise caution whenv0 is not small in the orbit, i.e.,
when the energy band under study is not too narrow and
orbit does not lie near a point of a minimum or a maximu
of «0(k).

III. g FACTOR OF ZINC

As an example, we consider theg factor of zinc. The
Brillouin zone of Zn is a hexagonal prism. Near the pointK
6-4
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lying in the middle of the vertical edge of the prism there a
three bands which are close to each other and to the F
level z, Fig. 1. At the pointK the symmetry types of thes
bands areK7 , K8, andK9,33 and their energies at this poin
are equal to 0,Ec1D/3, andEc2D/3, respectively~all en-
ergies are measured from the levelK7). The parameterEc
characterizes the crystal potential, while the quantityD is the
spin-orbit constant which was estimated to be positive
zinc33,35 ~without the spin-orbit interaction the bandsK8 and
K9 would be degenerate atK). The Fermi level in zinc lies
slightly above the bottom of the third~topmost! band at the
point K. If Ec,2D/3, the third band has symmetry typeK7,
while if Ec.2D/3, it has typeK8. The Fermi surface nea
the pointsK forms the so-called needles~they are long in the
direction of the hexad axis which we denote as thez axis!. In
what follows we shall treat the electron orbits lying on t
needles. We also assume that the magnetic fieldH is parallel
to this z axis andH,2.7 kG; under this condition a prob
ability of the magnetic breakdown between the needles
the second-band hole monster is negligible.35

The energy differences of importance for these bands
all less than 0.01 Ry~see Table I!, while the nearest othe
bands atK lie about E0.0.4 Ry away.35 Thus, only the
three-bandkp Hamiltonian need be considered.33 With ac-
count of spin components, the Hamiltonian matrix can
represented as follows:

Ĥ5S Ĥ1 Ĥ2

Ĥ2
1 Ĥ18

D , ~22!

where

FIG. 1. Electron-energy bands of zinc in the vicinity of the po
K at ky5kz50. The coordinatekx is directed along the line con
necting the center of the Brillouin zone with the pointK and is
measured in the atomic units from this point. The figure is plot
for the case 2b of Table I~i.e., for one of the two possible sets o
band parameters of zinc!. The Fermi levelz is indicated by the
dash-dotted line.
18442
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Ĥ15S 0 ~A1C!k2 ~A2C!k1

~A1C!k1 Ec1
D

3
Bk2

~A2C!k2 Bk1 Ec2
D

3

D . ~23!

Here Ĥ1 and Ĥ8 denote the Hermitian conjugate and tran
pose matrices, respectively; the origin ofk is placed at the
point K; kx is directed along the line connecting th
Brillouin-zone center andK; k65kx6 iky ; A, B, andC are
velocity matrix elements;H2,1252H2,2152Ckz , and all

other elements of matrixĤ2 are equal to zero. The quantityC
is the spin-orbit part of the velocity matrix elements. Its ma
nitude for zinc was evaluated33 asC5\2D/6mA. This leads
to the estimatesC/A;C/B;n;0.01. The band energie
« l(k) ( l 51,2,3) are eigenvalues of the Hamiltonian an
according to Eqs.~22! and~23!, are determined by the equa
tion

2«~D1D22B2k'
2 !2Lk'

2 1B~A22C2!~k1
3 1k2

3 !

24C2kz
2D250, ~24!

where L5(A1C)2D21(A2C)2D1 , D65Ec6D/32«,
andk'

2 5k2k1 . Note also that the three-band model of t
spectrum, Eqs.~22!–~24!, is valid to the main order in the
small parameter max(uEcu,D)/E0;n ~otherwise, other bands o
zinc must be taken into account!. In this context, one may
put C50 in Eq. ~24!.

In zinc the pure spin parts ofm0,rr8 are much less than th
orbital components of these quantities, which is due to
small energy differences in the denominators of Eq.~4! ~their
relative magnitude is of the order ofn). Thus, it is allowed to
completely neglect the pure spin contribution to the effect
Hamiltonian. In this approximation and using Eq.~A7!, we
calculate the 232 Hermitian matricesm̂ l for each of the
three bands (l 51,2,3):

d

TABLE I. Values of the band parameters used in the constr
tion of Figs. 1 and 2.

Case Ec ~mRy! D ~mRy! A ~a.u.! B ~a.u.!

1aa 22.3 2.1 0.66 0.76
1b 22.3 2.1 0.76 0.66
2a 3.0 2.2 0.52 0.75
2bb 3.0 2.2 0.75 0.52
2c 3.0 2.2 0.60 0.60
3a 20.7 2.1 0.66 0.76
3b 20.7 2.1 0.76 0.66
3c 20.7 2.1 0.71 0.71

aCase 2 of Ref. 35.@z2«3(0)#52.7 mRy.
bCase 3 of Ref. 35.@z2«3(0)#52.6 mRy.
6-5
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m l ,11

v'

5
2

uuu F2C2B2kz
2D21~D1D212B2k'

2 !

3S D

3
~A21C2!22AC~Ec2«! D G , ~25!

m l ,12

v'

5
4CkzB

2

uuu @2~A1C!D2k21B~A2C!k1
2 #, ~26!

where the complex quantityu is defined by the formula

u52~D1D22B2k'
2 !$k1~B2«2L!13B~A22C2!k2

2 %.

With expressions~25! and~26!, one can find theg factor for
any of the three bands. Moreover, in the case of zinc, th
formulas can be further simplified. Since Eqs.~22!–~24! are
true to the main order in the parameter max(uEcu,D)/E0, it is
justified to putC50 in formulas~25! and ~26!. Then, we
arrive at

m l ,11

v'

5
2DA2

3uu0u @D1D212B2k'
2 #, m l ,1250, ~27!

whereu0[u(C50). Sincem l ,1250, Eq. ~19! is applicable
to calculate theg factor, and we obtain the formula

d l~«![
glm*

4m U
kz50

52
1

2p R
G l

dk
m l ,11

v'
U

kz50

, ~28!

for the quantityd l(«) measured in the de Haas–van Alph
experiments. Note thatd l are proportional to the small pa
rameterD, which is in agreement with the estimates of S
II C. However, d l are not small in zinc since according
formulas ~27! and ~28!, these quantities for the nea
degenerate spectrum are determined by the r
D/max(uEcu,uzu) which of the order of unity in this metal
Table I.

Consider now the limiting case when the Fermi level l
near the topmost band edge@if Ec,2D/3, this band isK7,
and its energy at the band edge is«3(0)50; otherwise, this
is K8 and «3(0)5Ec1D/3#. Then one obtains, from Eq
~28!,

d352
m3,11m*

\ U
k→0

,

where the formula for the cyclotron mass,m*
5(\/2p)rGdk/v' , has been used. In this limiting case t
cyclotron mass is described by the expression

1

m*
5

1

\2

2~L2«3~k!B2!

~«3~k!~D11D2 !2D1D2! U
k50

,

while d3 is given by the formula

d352U DA2~D1D212B2k'
2 !

3~D1D22B2k'
2 !~L2«3~k!B2!

U
k→0

,
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where «3(k) in D6 and in L must be treated as«3(k)
'«3(0)1\2k'

2 /(2m* ). With the use of the Bennett-Falico
parameterj5Ec /D, one eventually finds

d3~j!

5H 1

6j
, j,2

1

3
,

211
22~B/A!2~3j11!

2 @21~B/A!2~3j11!#
, j.2

1

3
.

~29!

If Ec,2D/3, the expression~29! for d3 coincides with that
of Bennett and Falicov33 ~corrected by Van Dykeet al.35!,
while in the case,Ec.2D/3, it differs by 21 from the
appropriate formula that follows from results of Ref. 3
Since in the semiclassical approach the change ofd by arbi-
trary integer do not affect the energy spectrum, we concl
that Eq.~29! agrees with the results of Bennett and Faliko
Note also thatd in Eq. ~29! continuouslydecreases withj
from 0 atj52` to 23/2 atj51`.

The dependences of the quantityd for the third band on
the Fermi energyz are shown in Fig. 2. At@z2«3(0)#→0,
the values ofd3 agree with Eq.~29!. In the high-energy limit
(z@D,uEcu), the quantityud3u always tends to 0 or to 3/2 i
AÞB, and the limiting value depends on a sign of (b21)
whereb[B/A. In this context it should be noted that atz
@D the role of the spin-orbit interaction decreases, and

FIG. 2. The dependencesd3(z) for different values of the band
parameters, Table I. Here the Fermi energyz is measured from the
edge of the third band,«3(0). Numbers near the curves indicate th
cases in the Table I for which the curves are plotted~the curves with
the number 1 correspond toEc,2D/3, while the curves 2 toEc

.D/3; the caseA,B is described by the dependences 1a–
whereas the curves 1b–3b show the caseA.B). The bold lines
correspond to the possible sets of the band parameters of zinc~Ref.
35!. At A5B, the dependencesd3(z) are shown by the dashe
lines. In this case the limit value ofd3 at largez depends onEc /D
@see Eq.~30!#. The circles mark the experimentally obtained pa
(z,d3) for zinc ~Ref. 34!.
6-6
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might expect to obtaind→0 in the high-energy limit. To
clarify the unusual behavior ofd3 presented in Fig. 2, let u
put D→0 and for definiteness assume thatEc.0. In this
situation there are four band-contact lines in the vicinity
the point K; see Fig. 3. One of them is described by t
equations,kx5ky50, and in this line a contact of the secon
and the third bands occurs at the energyEc . The other three
lines intersect the planekz50 at points which form a equi
lateral triangle with a center at pointK. In these lines ener
gies of the contacting bands are

Econt5
Ec

12b2 .

If b,1 ~i.e., B,A), a contact of the second and third ban
occurs in the lines, while in the caseb.1 the first and sec-
ond bands contact there. It is also essential that the ene
of the bands separate linearly ink in vicinities of all these

FIG. 3. The zinc-type band structure without the spin-orbit co
pling (D50) atky5kz50. The upper and lower panels refer to th
casesB.A andB,A, respectively. The numbers mark the appr
priate bands; the third band is indicated by the bold line. The da
dotted lines represent the Fermi levels at which the semiclas
orbits in the third band are schematically shown in the insets.
crosses indicate the intersections of the band-contact lines with
planekz50 ~only the contact lines between the third and seco
bands are taken into account here; the lines are parallel to tz
axis!. Note that the semiclassical orbits are linked to one or f
band-contact lines depending on the sign ofB2A.
18442
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four lines. According to the results of Refs. 5 and 6~see also
Sec. II C!, if the orbit G surrounds such the contact line
between the band under study and some other one, then
of the lines contributes 1/2~or 21/2) to the appropriated.
When b,1, the orbitG at a sufficiently largez surrounds
the four band-contact lines, and henced350. @Note that in
the semiclassical approximation the integer part ofd has no
effect on the spectrum since it can be absorbed by the n
ber n in Eq. ~1!, and thus, any integerd is equivalent to
zero.# Whenb.1, there is onlyonecontact line between the
third and second bands inside the orbitG, and thus,d3
changes by 3/2 as compared with the case ofb,1. In other
words, the different limiting values ofd3 in Fig. 2 are com-
pletely determined by the number of the band-contact li
which occur for the third band near the pointK.

In the special caseA5B, the high-energy limit ofd3 de-
pends onj5Ec /D, Fig. 2. It can be shown that in this cas
the limiting value ofd3 is given by the formula

d352
3

4
2

3

2p
arctan~A3j!; ~30!

i.e., the value is not generally an integer or a half-integ
This is explained as follows: In the three-band model be
investigated, the magnetic breakdown is absent when the
equality is met:

$3@jD1~12b2!z#21D2%@
B2ueuH

\c
. ~31!

~This inequality is written forEc ,D!z, ub221u!1.! If b
Þ1, one can putD50 in Eq. ~30!, and this condition is
fulfilled due to the large value ofz. However, if b51, we
cannot neglect the spin-orbit interaction, and the limiti
value of d3 is not determined only by the number of th
band-contact lines but also depends on the strength of
spin-orbit coupling. On the other hand, ifuEcu5Duju@D and
the condition~31! is satisfied due toEc , then it follows from
Eq. ~30! thatd3 equals23/2 (Ec.0) or 0 (Ec,0), which is
in complete agreement with the considerations presen
above.

Using data on the magnetoresistance and the de Haas
Alphen effect, the two possible sets of values of the ener
band parameters for the needles in zinc were obtained35; see
Table I. The existence of the two sets is due to the fact t
only udu ~up to an integer! can be found in experiments. Afte
substitution of these two sets, our semiclassical form
leads to the values ofd3(z) coinciding with the experimenta
data,34 Fig. 2. It is also worth noting that the dependences
ud3u on z are qualitatively different for these two sets of th
parameters. This result may be useful in determining
energy-band parameters of zinc.

IV. CONCLUSIONS

The g factor appearing in the de Haas–van Alphen eff
can be calculated using formulas~8!, ~9!, and~14! ~see also
the Appendix!. These formulas differ from Eq.~19! sug-
gested by De Graaf and Overhauser.30 The difference results
from the following: when a Bloch electron moves in i
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semiclassical orbit in an external magnetic field, a direct
of the electron spin changes due to the spin-orbit interact
De Graaf and Overhouser completely neglected this cha
while Eqs.~8!, ~9!, and~14! take it into account. Moreover
since the direction of the spin at a given point of the or
depends on a prehistory of the electron motion, i.e., on c
acteristics of the orbit, the concept of the localg factor in-
troduced in Ref. 30 is not, strictly speaking, correct. Ho
ever, for a weak spin-orbit interaction in the crystal, t
approaches lead to identical results for theg factor to the
main order in the strength of the spin-orbit coupling~the
discrepancy appears only in the next order!. In this approxi-
mation the concept of the localg factor becomes valid.

As an example, we calculate theg factor for the three-
band model of the electron spectrum, Eqs.~22!, ~23!, and
~24!. This model is of interest in itself since it can descri
the so-called electron needles in zinc. In this case the s
orbit coupling is relatively small, and Eq.~19! is applicable
to study theg factor for orbits lying on the needles. W
analyze dependences of thisg factor on the Fermi levelz,
Fig. 2. It is shown thatg factor can essentially differ from
zero even in the high-energy limit whenz considerably ex-
ceeds gaps of the spectrum and the role of the spin-o
interaction becomes negligible. In this case the so-ca
band-contact lines38 give the main contribution to theg fac-
tor. This result is a manifestation of the general statemen5,6:
the g factor is determined not only by the strength of t
spin-orbit coupling but also by band-contact lines linked
the semiclassical orbit. If we use values of the band par
eters andz found in Ref. 35, our results for theg factor are
in agreement with the experimental data for needles
zinc.34

APPENDIX: CALCULATION OF µ0

Expressions~3!–~5! for m̂0 are written in thek represen-
tation, while other sets of basis functions are usually e
ployed in electron-energy-band calculations. Besides this,
definition ofVnr,mr8 , Eq. ~5!, includes the differentiation o
wave functions. It is clear that the differentiation become
troublesome problem when the wave functions are found
merically. Here we point out the way of overcoming th
above-mentioned problems: we derive expressions form̂0,
starting from representations widely used in practice, a
show how to avoid the numerical differentiation.

Below we shall deal with only two sets of basis functio
although our results can be applied to other representat
with insignificant changes. The first set

xk,lr
LK ~r !5eik"ru0,lr~r !

corresponds to the Luttinger-Kohn representation~LKR!.40

Here the periodic factorsuk,lr(r ) of the Bloch functions are
taken at a fixed point of thek space which we denote as zer
This basis is convenient for analytical calculation of«0(k)
and m̂0(k) near the pointk50 if several energy bands ar
close to«0(k) in a vicinity of this point. In this situation
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small energy differences between the bands specify b
«0(k) and m̂0(k) @see, e.g., Eq.~4!# and one can neglect a
other bands.

The formulas given below are also applicable to the ba
used in the LMTO method.39 In this case the basis function
xk,lr

LMTO are Bloch sums of the muffin-tin orbitals. These fun
tions, as well asxk,lr

LK , possess the property of translatio
invariance,

xk,lr~r1a!5eik"axk,lr~r !,

wherea is an arbitrary lattice vector and form the orthogon
and complete basis set~the orthogonality ofxk,lr

LMTO can be
always achieved by the well-known recursive procedure39!.
It is important that thek dependences ofxk,lr

LMTO are deter-
mined by the so-called structure constants and thus
known for any type of lattice.

The Bloch functionsuck,L& can be expressed through an
of the above-mentioned sets as follows:

uck,L&5(
M

uxk,L&SM ,L~k!,

where the capitalsL and M denote couples of band an
spinor indexes~e.g.,L[$ l ,r%), and matrix elements of the
unitary transformationS are

SM ,L~k!5^xk,Muck,L&.

The transformationS diagonalizes a Hamiltonian matri
Ĥx(k) of the electron in absence of the magnetic field in t
x representation (x5LMTO or LK !,

~Ŝ1ĤxŜ!L,M5« l~k!dL,M . ~A1!

With the use of the matrixŜ, one can expressm̂0 in Eq. ~2!
through quantities calculated in thex representation:

m0,rr85~Ŝ1R̂Ŝ!0r,0r81Q0,rr8 , ~A2!

R̂5
1

2
F S V̂y

x
]Ĥx

]kx
1 v̂x

xV̂y
xD 2~x↔y!G1R̂s, ~A3!

Q0,rr85
i

2
F Ŝ1S ]«0

]kx
1

]Ĥx

]kx
D ]Ŝ

]ky
2~x↔y!G

0r,0r8

.

~A4!

In these formulas the spin contributionR̂s and the matrixV̂x

are determined by Eqs.~3! and ~5!, respectively, with the
spinorsuk,lr replaced byuk,lr

x [exp(2ikr )xk,lr ; v̂x is the
matrix of velocity in thex representation. It is important to
emphasize here that thek differentiations in V̂x and in
]Ĥx]ki can be now performed analytically since thek de-
pendences ofxk,lr are known both in the LKR and in the
LMTO bases. However, in the LMTO method the matrixŜ is
found numerically, and thus the problem of calculati
]Ŝ/]ki in Eq. ~A4! appears. This problem can be resolv
using the phase ambiguity ofm̂0 discussed in Sec. II, and w
6-8
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now obtain another formula forQ0,rr8 which enables one to
avoid the numerical differentiations.

To calculateQ0,rr8 , two columns in the matrixŜ marked
by indexes$ l ,r%5$0,1%,$0,2% are required. These column
are eigenvectors of the matrixĤx corresponding to the ei
genvalue«0(k). If we denote these orthonormal vectors
aW 0

r/uaW 0
ru with r51,2, we arrive at the equation inaW 0

r ,

@Ĥx~k!2«0~k!#aW 0
r~k!50 ~A5!

~note that we do not assumeuaW 0
ru51 here!. To proceed fur-

ther, let us representĤx in the block form

Ĥ2N32N
x 5S E0~k! 1̂232 V̂23(2N22)~k!

V̂(2N22)32
1 ~k! M̂ (2N22)3(2N22)~k!

D ,

whereE0(k) is a scalar function, and the subscripts indica
dimensions of some matrixV̂ and M̂ . Construct two
2N-dimensional vectorsaW r (r51,2) as follows:

aW r~k,E!5det~M̂2E!S e(r)

2~M̂2E!21V̂1e(r)D . ~A6!

Here

e(1)5S 1

0D , e(2)5S 0

1D ,

and N is the number of the electron bands that are allow
for the computation. It is follows from formula~A6! that
components of the vectorsaW r(k,E) are polynomials of
Hi j

x (k) andE. If the parameterE is substituted by«0(k), the

vectoraW r reduces to the eigenvectoraW 0
r , Eq. ~A5!. It can be

shown that the quantityQ0,rr8 , Eq. ~A4!, can be found from
the relation
,
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e

d

Q0,rr8~k!5Q0,rr8„k,E5«0~k!…,

where

Q0,rr8~k,E!5
i

2uaW r~E,k!u2

3H S ]aW r~E,k!

]ky
,@Ĥx~k!2E#

]aW r8~E,k!

]kx
D

2~x↔y!J ~A7!

is the function oftwo independentvariablesE andk @i.e., E
is not differentiated with respect tok in Eq. ~A7!#. Here
(aW ,ÂbW )[( i j ai* Ai j bj for any matrixÂ and vectorsaW andbW .

Thus,Q0,rr8 can be expressed through matrix elements ofĤx

and their derivatives with respect tok. Since in the LMTO
representation thek dependences of these matrix eleme
are determined by structure constants39 and the above-
mentioned derivatives can be calculated analytically,
~A7! enables one to avoid numerical differentiations ofŜ(k)
@in principle, with Eqs.~A2!, ~A3!, and~A7! the calculation
of m0,rr8(k) by the LMTO method is not more complicate
than the computation of«0(k)#. Interestingly, formula~A7!
also simplifies calculations in the LKR. In this representati
the elements ofĤx have simple dependences onk, while
V̂LK50 ~and thusR̂ coincides with the spin contributionR̂s,
the latter being relatively small whenmc!m). It is also
worth noting thatv' entering Eqs.~8! and~14! can be found
using the formula (i 5x,y)

v i5
1

uaW 0
ru2 S aW 0

r ,
]Ĥx

]ki
aW 0

rD . ~A8!
hys.
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