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Stable two- and three-dimensional geometrically constrained magnetic structures:
The action of magnetic fields
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We show that equilibrium geometrically constrained domain patterns are two- or three-dimensional magnetic
configurations localized around sharp constrictions. Their typicavgidepends on both the lengthand cross
sizea of the constriction. Whed <L, the valuew=min[(2a+d),Ly], whereL is the conventional wall width.
The localized structures undergo small deformation under magnetic fields and at a threshold field they detach
from the constriction and magnetization reversal occurs.
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I. INTRODUCTION

wzf dV{A(V 0)%+K sirfd—MH}, (1)
Domain structures determine many properties of real

magnetic materials and so there is a great deal of literatur@here 6 is the angle between axisand M; A andK are

devoted to this problerti.® Of particular interest are the do- coefficients of exchange interaction and anisotrdipyis the

main structures in thin ferromagnetic filfis® which have  external magnetic fieldlH =M¢H cosé whenH is parallel

been intensively investigated during the last decade, primd© the axisy. Notice that we consider the gradients in all

rily because of their giant magnetoresistahéecent inves-  Possible directions to minimize the magnetic enevdyi.e.,

tigations have revealed that magnetoresistance variations #fandy for Figs. (a) and Xd); x andz for Fig. 1(b); andXx,y,

ballistic Ni nanocontacts of diameter 10—100 nm can excee@ndz for Fig. 1(c). From Eq.(1) it follows the Euler equation

700% at room temperatufé. Thus one of the core problems for the stationary magnetic structures

of nanomagnetism and spintronic technology is to under- . .

stand the properties of magnetic domain patterns in nano- L2V26—1/2sin 20—h sin6=0. @

scopic objects and thOe action of magnetic fields on them. Here| = /A/K, Lo=2L is the typical width of the Kel or
Estimations shof'°that large ballistic magnetoresistance gjoch domain wall~3 h=HM /2K, where the homogenous

of the Ni nanocontacts can occur when the width of a magmagnetization reversal occurstat 1. We are interested in a

netic domain wallw inside the nanocontacts is less than 1gojytion localized near the constriction and satisfying in ex-

nm, i.e., wherw<L,, whereL, is the width of conventional  tensjve systems|;>L in Fig. 1, the following boundary
domain wall in the bulk. In Ref. 11 it was reported that the conditions: 40 at y,z— == and x—= and 6—m at

width of the geometrically constrained wall near a sharp cony, ;_, + o andx— —o .

striction, nanocontact, is essentially given by its length and | et ys first analyze the magnetic structures near constric-
can be much less thary. Recently, the localized magnetic tjons when their lengtld is much less than their cross siae
configurations were experimentally investigated in thin Feang this condition, as a rule, is fulfilled in the experim&it.
films with sharp constriction§: It would appear natural that typical size of the domain con-

In this paper we study in more detail magnetic domaingqyration near the constriction<L whend<a<L. Owing
structures near a constriction and show that the geometrically, v <[ the first term of Eq.2) is much larger than the

constrained one-dimensiond@D) wall studied in Ref. 11isa ,thers forh<1 and Eq.(2) is reduced to the Laplace equa-
nonequilibrium unstable state. The equilibrium patterns arg,n v29=0_ which does not include any magnetic param-
2D or 3D magnetic configurations localized in the vicinity of oiars This |’oroblem fod<a is an equivalent, well-known
the sharp constrictions and_thelr typical W"’!’m?'epe”ds 0N electrostatic task about distribution of a “potentiab(r)
both the lengthd and cross siza of the constriction. We also near a very short contact of width® For d—0 this task
study the dynamics .Of the formatlon'of .the 2D magneticy 55 exact solution for thin-film systems shown in Fig®) 1
patterns and the action of a magnetic field on them. Oug 4 1b)

attention is focused on a thin-film system with a sharp con- '

striction depicted in Fig. (B). 0(x,{) =12 m+arg a®—x>— 2+ 2iax)], ©)

where {=y for Fig. 1(a) and {=z for Fig. 1(b), and an
approximate solution for Fig.(t) is

We consider idealized magnetic systems with a sharp con-
striction in which the easy axis lies along axisand the
magnetizatiorM changes as shown in Fig. 1. Let us first, as

II. MAGNETIC STRUCTURES NEAR SHORT CONTACTS

O(r)=arctarta/r) for x>0,

well as in Ref. 11, neglect the demagnetizing fiébdrre- 0(r)=m+arctarfa/r) for x<O, (4)
sponding conditions and effect of the demagnetizing fieldsvhere

are discussed belgvand write the energy of magnetic do-

main structures &s° r=(2a) Y \(a%+x?—p?)%+4x%p’°—(a’—x>—p?)].
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(a) strained 1D wall is not an equilibrium state at least widen
X M <a. Moreover, below we show that the 1D wall is an un-
M 1 7 stable state.
—_—
1)
d _).} |<_ LS \l‘ I1l. FORMATION OF STABLE STRUCTURES
a y
Me— 2 @< The dynamics and stability of the magnetic domain struc-
20 tures are described by the Landau-Lifshitz equation in which
®) the magnetic structure energy can be writteh &s
M .
Ax / sz dV{A[(V 0)?+(V ¢)?sirf 6]
l\é Y o 7 +K sirf0—MH — 1/2MH 4}, (5)
d _41 a iv(’_ Z> where ¢ is the angle between the projection Mf onto the
o @ f plane ,z) and thez axis; ¢=m/2 for the above considered
2 stationary structures. Additional terms in E¢) as com-
< pared with Eq(1) take into account that in the process of the

b structure formatiorM ,#0 can arise inducing the demagne-

©) tizing field Hy3=H,= —47M,= —47Mginfcos¢. Thus,

here MH 4= —47M2= — 47MZsirfgcos¢. This statement
is most evident for the thin-film system shown in Figa)l
Using Eg. (5), the Landau-Lifshitz-Gilbert equations for
anglesd and ¢ can be written &s

d0lt=a 'F, sing+F,,

dplatsing=F 45 sind—a 'F,, (6)

F,=2V26—sin 20(V ¢)2—sin 26
—2hsin#—hg sin 26 cog ¢, (7

F4=2sirf9V2p+2 sin 20(V 6V ¢) + hg sir? 6 sin 24,
(8

wherehg=27M2/K and the units of length and time ate
andty,=(1+ a?)M/ayK, wherey is the gyromagnetic ratio
and « is the Gilbert parameter for viscous damping. We
made sure that our main results depend weakly on the value
FIG. 1. Schematic representation of magnetic systems with &f o within the typical range 0.03a<1, and the boundary
constriction. The arrows show the direction of the magnetiza¥on  ~gnditions when the system sizg>4L. Therefore, for defi-
in the Neel-wall domain structures] is the angle between the easy niteness we have useg=1 andnVM =0 on the boundaries
axisy andM and ¢ is the angle between the projectionMfonto  haren js the normal to the system surface. We note that the
the plane ((.‘Z) an_d thez axis, =mi2 for the stationary Structures o, sirained magnetic 1D wall structure found in Ref. 11 sat-
Egger C;’rr:;ier:r'on' ;?ea\r'ﬁ;isfg: 't:ri'escrjczz)s_sl?g)“orgsotzgvi?nsm?éﬁes this boundary condition, i.e., is one of the solutions of
So s A2, T gs. -+ Tesp Y nonlinear Eq.(2) that also results from Eq$6)—(8) for sta-
tionary case and=m/2. Also notice that from Eqg3) and
From Eqgs.(3) and(4) it follows that the constrained domain (4) it follows thatV #=0 on the boundaries, whet=0 or ,
structures are 2D or 3D magnetic configurations and theiat x=1,>4L>a. In other words the boundary conditions
typical sizew is determined atl— 0 by the cross size of the nVM =0 and#=0,7 are essentially equivalent for the exten-
constrictiona; w=a whend<a<L. sive systems.
In Ref. 11 it was reported that the widtt* and energy Numerical analysis of Eq96)—(8) is carried out with
E* of the geometrically constrained 1D wall do not dependintegration stepat=10"°-10"* andAx=0.01L—0.04. on
on S, in extended enough systems presented in Fig. 1 whera net size of 208200 till 400x400. The steps and system
Sy is the cross-section area of the constriction, for examplesizel, are chosen depending upon the parametensda so
for the systenfFig. 1(a)] w* =d andE* = 7?ASy/2d. From  that the system sizé>w. Results are presented in Figs.
Egs.(1) and(3) or (4) it follows that the width of the 2D or 2-7. Shown in these figures are fragments of sizex4L
3D magnetic structures=a>w* and their energ¥ is less  for the calculated magnetic domain structures in the exten-
than the energfe* whend<a. This means that the con- sive systems.

184425-2



STABLE TWO- AND THREE-DIMENSIONAL . .. PHYSICAL REVIEW B65 184425

(2) @ @ ®)

© @

T
0
/2
FIG. 2. The formation of a stable geometrically constrained
magnetic pattern in a thin-film systelfig. 1(a)] for d=0.12. and
a=0.2, (a) the initial state in the form of the constrained 1D wall 0 ) 1 T 1 2
found in Ref. 11y(b) an intermediate state & 2t; (c) the station- ) h 0 /L
ary state at>10ty; (d) the initial state in the form of the conven-
tional Neel wall; (e) an intermediate state & 2to; (f) curvesc are FIG. 3. Stationary magnetic patterns forming in the thin-film

the distributions off along different axeg shown in Fig. 2¢) and  gystem([Fig. 1(a)] in the vicinity of sharp constrictions when their

curveB for the 1D constrained wall. Here and below in Figs. 3—6 |ength is much less than the size of cross section of the constriction

white and black regions correspondde0 and #=r, respectively. (d<a); (@ a=1.6, (b) a=0.8L, (c) a=0.4L, (d) a=0.2L, and(e)

distributions of # along axisx, curvesa—d for Figs. 3a)—(d),

The formation of a constrained magnetic structure in thecurvesN andB for the conventional Rel wall and the constrained

thin-film system[Fig. 1] is shown in Fig. 2 and arising 1D waII_, an_d the curveg andf for t_he constrained patterns pre-

stationary magnetic patterns are presented in Fig. 3 for theented in Figs. @ and 5b), respectively.

cased<a. We used as the initial states the structure of the . .

constrained 1D wal[Fig. 2@] found in Ref. 11 and the Of its lengthd (Fig. 4) and widthw, where 6 changes from

Neel-wall structure; cosi/2=exp(/L) [Fig. 2(d)]. One can 77/4 to 37/4 atx=0 along. the axix normal to the constric-

see that the constrained 1D wall is an unstable state, it exion cross can be approximated as

tends beyond the region of the constrictidfig. 2(b)] and a

stable 2D configuration is formed around Rig. 2(c)]. The wo=2L(a+d/2)(L+a+d)" 1, 9

Neel wall is also unstable, it sharply shrinks in the regions

outside the constrictiofFig. 2(e)] and finally transforms into  with an accuracy of about 20%. In particularg=3d when

the same 2D configuratidifrig. 3(c)]. On increasing the cal- a=d<L, see the curve in Fig. 3(e) for a=d=0.1.

culation time the valueb— /2. The shape of the stationary  All the above results relate to the thin-film systems with a

2D configuration does not depend on the initial state and isharp constriction presented in Figéa)land 1b). We found

determined by the widtla of the constriction(Fig. 2). As  that they also describe roughly the properties of the magnetic

would be expected from Ed3) the width of the magnetic patterns in the system shown in Figcll However, in such

configurationsw=a whena<L andw=L whena>L. In cylindrically symmetrical systems the magnetic configura-

the cased<a the calculation distributiong(¢) coincide ac-  tion is more localized than in the thin-film systems. Compare

curately enough with thé(é) given by Eq.(3) and weakly Figs. 5a) with 5(b) and curvee with curve f presented in

depend on the angle between the axEnd an axist cross-  Fig. 3g).

ing the constriction centéFig. 2(f)]. Such type of symmetri- We emphasize that for smooth constrictiorfFig. 1(d)]
cal configurations were recently experimentally found innaturally exceeds for the short constrictiofiFig. 1(a)]. For
thin-film magnetic systems near sharp constrictiths. example, wherS(x) =ab(1+x?/d?), the model Il in Ref.

The calculations show that the magnetic configuration isl1, the magnetic configuration and its widthfor d=0.1
localized increasingly inside the constriction with extensionand a=0.2 [Fig. 5(c)] coincide approximately with those
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(a) (b) (a)

(b)

(d)

FIG. 5. Stationary magnetic patterns forming in the vicinity of
constrictions in the different system@) in the systems shown in
Figs. 1a—(b) with a=0.1L and d=0.1L, (b) in the cylindrical

0 2 _1' 1 2 symmetry system shown in Fig(d with a=0.1L and p=0.1L,
x/L and (c¢) in the thin-film system shown in Fig.(d) with d=0.1L
and a=0.2L. The curvese and f in Fig. 3e) and curved in

FIG. 4. Stationary magnetic patterns in the thin-film system inFig. 4(e) show the distributions of along axisx for Figs. §a)—(c),
the vicinity of sharp constriction for different lengths at a  respectively.
=0.4L; (8 d=0.04_, (b) d=0.2, (c) d=0.4L, (d) d=1.2L; (e
distributions of ¢ along axisx, the curvesa—d for Figs. 48—(d),  the easy axiy lies in the film plandFig. 1(a)] the Neel-wall
respectively, and curvl for the conventional Nel wall structure is realized and in this case the total magnetic charge

presented in Fig. @) for the system with a sharp constric- is equal to zero and surface magnetic charges do not arise.
tion having substantially larger sizes with=0.4 anda Therefore, the Nel-wall energy is less than that of the Bloch

=04, domain wall. On the other hand, the demagnetizing factor for
the Neel structure in the thin films is very smalN="b/(w
IV. THE ACTION OF EXTERNAL MAGNETIC FIELDS +b), when the film thicknesb<w.?® Therefore, the energy

] o of the demagnetizing field is, as a rule, a negligible compo-

We have emphasized above that the tersm 6in Eq.(2)  nent of the Nel-wall energy in very thin film$.We empha-
describing the action of external magnetic fields on the consjze that this statement is valid to a greater extent for the
strained domain structures is small forc1l when their  constrained magnetic structures localized in a region of size
width w<L. Numerical analysis of Eq$6)—(8) shows that, <L as the density of their exchange interaction energy is
indeed, such strong localized structures are deformed weaklyyych more than those for the “Blewall, i.e., A(V 6)2
ath<1 [Figs. §a) and Gb)] and shift slightly in the region =~ A(7/w)2>A(#/L)2. Indeed, substituting Eq3) into Eq.
where 6= for h>0. We remind that the homogenous mag- (1) we find that the exchange interaction energy,
netization reversal occurs lat-1. The deformation increases ~ 72Ap/2. At the same time the magnetostatic energy is ap-
with d anda (Fig. 6). For not very smaltd anda there is a  proximately E, o~ 7M2w?bN=7MZ2ab?. Thus the condi-
threshold fieldh=h,<1 such that the constrained structure tjon, of neglect of the demagnetizing fiel,, < E.,, is valid
detaches from the constriction andhat O the system trans- |\ a1 ab<(m\)? where \ = (A/27M2)¥2 is the magnetic
forms into a homogeneous state with=0. This process exchange length. For the typical fer?omagn?eatsS—lS nm
is presented in Fig. 7. The calculations show that t_he valu%_g” for NiA=5 nm and for permallop=14 nm. Thus fo,r
he=2d/(a+d) for L>d>0.04. (see also the caption 10 he thin-film systen{Fig. 1(a)] with thickness of 5 nmab
Fig. 6. <(m\)? whena<20—450 nm. The same estimation is ap-
proximately correct for the thin-film system shown in Fig.
1(d). For the system presented in FigblLthe magnetization

Let us now estimate the magnetostatic energy. It is welM outside the domain structure has oMy, component and
knowrf* that in uniaxial ferromagnetic thin films in which we can neglect the magnetic charges on the surfgeed

V. THE INFLUENCE OF DEMAGNETIZING FIELD
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FIG. 7. Dynamics of magnetization reversal under the action of
a magnetic fieldh=0.5 in the thin-film system for constriction with
d=0.12 and a=0.8_; (a) the initial stationary state foh=0;
(b—d) intermediate states at=5t,, t=10t,, andt=15ty; the final
state with6d= 0, white color, is formed for timé&>20t,.

it follows that

QAhg,= — dl9E(Vm), (11)

where §=X,y,z; hg;=Hg:M2K; m=M/Mg=isingsing
+j cosf+k sinfcoseg; and Q=K/277M§. We substituted
the values off(x,y) and ¢= /2 calculated above for sta-
tionary magnetic structure &ty=0 into Eq.(11) and found
hq«(x,y,z). We then used these numerical valuestigy in

FIG. 6. Deformation of constrained magnetic patterns in theth® Landau-Lifshitz-Gilbert equations for anglésand ¢.
thin-film system under the action of external magnetic field directedNe€Xt We substituted the calculated values afi,y) and

along the easy axig. (a), (c), and(e)—stationary states fdn=0;
(b), (d), and (f)—stationary states foh#0. (a) d=0.2L and a
=0.124, (b) d=0.2, a=0.12, and h=0.7 (threshold fieldh,
>1); (c) d=0.12L anda=0.2, (d) d=0.12, a=0.2L, andh
=0.5 (h,=0.7); () d=0.12 and a=0.8_, (f) d=0.124, a
=0.8L, andh=0.2 (h,=0.3); (g) distributions of along axisx,
curvesa, b, e, andf show 6(x) for Figs. Ga), 6(b), 6(e), and &f),
respectively.

andy=I, whenl,>L. Therefore, the total magnetic charge
is also equal to zero and the magnetostatic endfgy
~7M2w?l,=7M2a%l, whend<a=w<L . In this case the
exchange interaction energie,~m?Al,/2 and s0 Ep
<EexWhena<awA=10—50 nm. The same estimation is ap-
proximately correct for the system shown in Figc)lwhen

M outside the domain structure also has kg component
only.

¢(x,y) into Eq. (11) and foundhg.(x,y,z) and then new
values of angle® and ¢. In this way we have estimated the
action of the demagnetizing fieldy. We found that in Co
films for whichQ=0.1-0.3 this action is relatively weak for
the sharp constriction shown in Figal whena<0.3L and
d<<0.3L. The stationary form of the constrained structures
slightly shrinks and changes significantly only near the cor-
ner boundaries of the constriction, i.e., it becomes smoother.
Thus we showed that neglect of the demagnetizing field is
valid for the thin-film systems with the magnetic exchange
lengthA=3 nm at least, but it can limit the correctness of
our calculations for the cylindrical symmetry system shown
in Fig. 1(c). However, we notice that magnetic configurations
near nanocontact between two cylindrical bars with easy axis
along the cylinder axis were studied in a recent pap&he
authors of Ref. 15 take into account the demagnetizing field
and emphasize that the typical scale of the magnetic configu-

To estimate the effect of the demagnetizing field on therations is proportional to the cross size of the nanocontact.
constrained magnetic structures in the thin-film systems we

have used theoommr packagd* and also an iteration
method. From Maxwell equations

V(Hqt4mM)=0, VXHy4=0, (10

VI. CONCLUSION

From our calculations we can stress the following conclu-
sions:
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(1) The typical widthw of the equilibrium geometrically have to assume that a very thin dead layer of thickness
constrained magnetic structures is a function of both the con—1 nm arises accidentally inside the nanocoritact® dur-
striction widtha and lengthd. The results of 1D approach ing the electrodeposition growing procesege, for example,
used in Ref. 11 are approximately valid only whetzd. Ref. 19. The nanocontagber secan be such a dead layer

(2) Whend<a<L the widthw=2a and the distributions and, most likely, its thickness is of atomic dimension. The
of the magnetization, the angl depends weakly on the authors of Refs. 8 and 9 observed switching of the nanocon-
angle between the axis (Fig. 1) and any arbitrary axig  tact resistance and increase of the magnetoresistance under
crossing the constriction center. Such symmetrical configunanocontact current pulses and assumed that these effects
rations were recently found experimentally in thin-film mag- were due to reconstruction of the magnetization configura-
netic systems near sharp constrictidfs. tion in the vicinity of the nanocontact under the action of the

(3) The widthw<L only when bothd anda are much magnetic fields. Such local configurations are closed do-
smaller tharL, i.e.,w=2a+d. In this case the action of an mains on the surface of the wires. They can be roughly con-
external magnetic field on such strong, constrained magnetigidered as domain structures in thin films that constrict and
structures near the sharp constrictions is very weak. cross at the nanocontact region. We showed in Ref. 17 that

(4) Whend<a=L the constrained magnetic structuresthe domain wall is attracted to the nanocontact by the action
determine the process of the magnetization reversal in sysf the magnetic field induced by nanocontact current pulses.
tems with the constrictions and value of the coercive field. The large nanocontact magnetoresistance can be determined

(50 The weak, constrained magnetic structures neaby a shift of the domain wall under the action of external
smooth constrictions are very sensitive to the external magnagnetic field and the relative rotation of the magnetization
netic field (see also Ref. 16 between the Ni layers separated by the nanocontact dead

(6) The experiments with nanocontacts 180 nm in layer™®
diamete? showing ballistic magnetoresistan@MR) up to
700% cannot be explained on the basis of the idea of the ACKNOWLEDGMENTS
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