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Michel Posternak and Alfonso Baldereschi
Institute of Theoretical Physics, Swiss Federal Institute of Technology Lausanne, EPFL, PHB-Ecublens,
CH-1015 Lausanne, Switzerland

Sandro Massidda
Istituto Nazionale di Fisica della MaterieDipartimento di Fisica, Universitali Cagliari, Cittadella Universitaria,
1-09042 Monserrato (CA), Italy

Nicola Marzari
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
(Received 3 October 2001; published 30 April 2p02

We have calculated the maximally localized Wannier functions of MnO in its antiferromagidiid)
rhombohedral unit cell, which contains two formula units. Electron Bloch functions are obtained with the
linearized-augmented-plane-wave method within both the local-spin déhSiB) and the LSB-U schemes.

The thirteen uppermost occupied spin-up bands correspond in a pure ionic scheme to the fideoNditeBds

at the Mn (spin-up site and the four O €2p orbitals at each of the Oand G sites. Maximal localization
identifies uniquely four Wannier functions for each O, which are trigonally distsEdike orbitals. They

display a weak covalent bonding between §2p states and minority-spid states of Mg, which is absent in

a fully ionic picture. This bonding is the fingerprint of the interaction responsible for the AFM ordering, and its
strength depends on the one-electron scheme being used. The five Mn Wannier functions are centered on the
Mn; site, and are atomic orbitals modified by the crystal field. They are not uniquely defined by the criterion

of maximal localization and we choose them as the linear combinations that diagonaliZeferator, so that

they display theD ;4 symmetry of the Mnp site.
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[. INTRODUCTION recently by Marzari and Vanderbiltthis nonuniqueness can
be resolved in principle by imposing the further condition of

The mean-field one-particle description of the electronicmaximal localization. However, some residual arbitrariness
struture of periodic crystalline solids is usually based on exyemains, related to the choice of the localization criterion.
tended Bloch functions(BF's). Within the Born—von The late transition-metalTM) monoxides MnO, FeO,
Karman periodic boundary conditions, the cyclic transla- CoO, and NiO challenge the theory of electronic states since
tional subgroup, which commutes with the effective one-several decades. These highly correlated materials feature a
electron Hamiltonian, contairls translations by correspond- Mott insulator character, and the conventional local-spin-
ing direct lattice vectorsR. This Abelian subgroup hall  density(LSD) schemé gets into difficulties with the local-
one—dimensional irreducible representations, which are laized TM d orbitals, predicting incorrectly in particular their
beled with wave vector& within the first Brillouin zone spectral weight and their energy relative to @ &tates. All
(BZ). Therefore, extended Bloch statés,(r) in this de- these oxides have the rocksalt structure in their paramagnetic
scription are classified with two quantum numbers, the banghase, while below the Né&temperaturdy, a type Il anti-
index m and the crystal momentutk, and are obtained by ferromagnetictAFM) ordering occurs. The experimentally
diagonalization of the effective one—electron Hamiltonian.well-documented compound MnO, which is considered to be
An alternative description can be derived in terms of local-in the intermediate charge-transfer/Mott-Hubbard regime, is
ized Wannier functions(WF'’s) w,(r —R), which are defined a particularly suitable case study, since the available theoret-
in real space via a unitary transformation performed on thecal schemes apply best to this material. Indeed, because of
Bloch functions. They are also labeled with two quantumthe exchange stabilization of its half-filletshell, even LSD
numbers, the orbital indem and the direct lattice vectdr, predicts its insulating character, although the corresponding
indicating the unit cell they belong to. In contrast to BF's, energy gap and magnetic moment are much smaller than
WF's are useful, for example, in visualizing chemical bondsexperimental data. Several electronic structure calculations
or in describing the dielectric properties of nonmetallic ma-have been performed for MnO, using traditional band-
terials. They can be considered as the generalization to solidsructure schemes, such as unrestricted Hartree®RotkF)
of the concept of “localized molecular orbitals” for finite and local-spin densitfLSD), as well as more innovative
systems. However, one major problem in practical calcula- approaches taking into account at various levels the large
tions within this representation is the nonuniqueness ofalue of the on-site Coulomb repulsion for the metal 3
WF'’s, related to the phase arbitrariness of the BF’s, and tstates, such as the SIRef. 7) and the LSD-U (Ref. 8
the arbitrary unitary transformations that can be performednethods, and the more rece®W model schemé° Among
on the BF’s at any giveR point in the BZ. As demonstrated the quantities calculated within the latter approach, special
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attention has been devoted to the quasiparticle spectrum,
and recently to the zone-center optic phonon frequencies and
the Born effective charge tensbComparison with experi-
mental data of the various physical quantities computed in
the different schemes has demonstrated a monotonic trend
with the separation energy between occupied and erdpty
bands, which is too small within LSD, too high within UHF,
and has about the correct value within {B&/ model. This
energy separation is strongly related to the on-site interaction
U. The analysis of all these results has been performed in
terms of the extended Bloch states.

On the other hand, nab initio investigation exists of the
electronic states in AFM MnO in terms of localized Wannier
functions. Keeping in mind the inherent limitations of the
mean-field one-particle approaches, it would be, however,
instructive to materialize within the WF description how su-
perexchangéwhich is responsible for AFM orderingnani-
fests itself in a first-principles one-electron picture. Further-
more, the maximal localization method of Marzari and FIG. 1. Antiferromagnetic structure of MnO. Magnetic moments
Vanderbilt has been applied in the past to several periodiere arrayed in ferromagnetic sheébaded areaparallel to(111)
systems:1*2but not yet to a low(trigona) symmetry solid ~ planes. MR, Mn,, and Q , sites are given by large black, large
such as AFM MnO, nor to a compound with a partially filled gray, and small open circles, respectively. The trigonal coordinate
cationd shell. axes are also indicated with long-dashed lines.

Motivated by the reasons above, we present in this work
an ab initio calculation of the maximally localized Wannier calculations, the Hedin and Lundgvist exchange-correlation
functions of AFM MnO corresponding to the uppermost oc-functional has been adopted. In the calculations performed
cupied bands, using the all—electron, full-potentialwithin the LSD+U method, the values of the Hubbard and
linearized—augmented—plane—way€LAPW) method!*'*  exchange constants,=6.9 eV and]=0.86 eV, have been
Because the trends in the electronic properties from UHF teaken from Ref. 8. The atomic-sphere radii for Mn and O are
LSD are already known for this system, most of the compu-<chosen to be 2.0 and 1.8 a.u., respectively, and the FLAPW
tations have been performed for convenience within the latbasis size is set to include all plane waves with energy up to
ter scheme. To investigate the effects related to the on-sit&€6.0 Ry. Four special points inside the irreducible wedge of
Coulomb interaction, we have also used the LSD  the BZ were used for evaluating the charge density during
method, implemented with the same FLAPW technicalself-consistency cycles.
ingredient$® used in the LSD computations.

The manuscript is organized as follows. In Sec. Il we give
technical details of the FLAPW implementation and struc-
tural information relevant to AFM MnO. The necessary in- AFM ordering occurs in MnO below =117 K along
gredients of our WF calculations are then introduced. As weany one of the/111) directions. The transition is accompa-
follow closely the formalism of Ref. 3, we will not describe nied by a small crystallographic distortion that transforms
in detail the method itself. A general result regarding maxi-the cubic structure into a rhombohedral dii¢he 90° angle
mal localization ofs-p WF'’s is deferred to the Appendix. In  between the lattice vectors increases only by 0.624°. We
Sec. lIl, we present and discuss the results of our maximalljrave showh earlier that the effect of this distortion on the
localized WF calculations. Finally, in Sec. IV we draw our calculated zone-center optic phonon frequencies and Born

B. Structural details

conclusions. effective charge tensor is negligible compared to the anisot-
ropy induced solely by the magnetic order. Therefore,
Il. METHOD throughout the presenF study we use the ionic 'positions of the
. perfect rocksalt chemical cell, with the experimental lattice
A. FLAPW calculations constant valuea=4.435 A . In the AFM phase, the mag-

All quantities presented and discussed in this paper havBeétic moments of MnO are arranged into ferromagnetic
been computed using the semirelativistic FLAPW Sheets which are parallel td11), while the direction of
method'>**expanded with local orbital& (LO’s) where ap- ~Magnetization in _ne|ghbor|ng planes |s_reversed._The_ mag-
propriate. Inclusion of LO's in addition to the normal Netic and crystalline structure of MnO is shown in Fig. 1.
FLAPW basis enforces mutual state orthogonality and in-The rhombohedral magnetic cell, whose volume is twice that
creases variational freedom. This allows us to treat the semff the paramagnetic rocksalt one, corresponds to the space
core Mn 3,3p states together with the valence states, andyroup ng (R3m). Several choices for the primitive trans-
helps in dealing with the linearization of Mnd3and O lation vectors are possible. However, in order to minimize
2s,2p states. Core states are calculated fully relativisticallydiscrete mesh effects ik-space integrations, and also for
and self-consistently in the crystal potential. For the LSDtaking advantage of symmetry propertiesee below, we
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consider here the following primitive translation vectoirs  quantities, the gradient of the spread functioflalwith re-

the cubic coordinate systemt;=a(1,3,3), t,=a(%,1.3), spect to an infinitesimal unitary trans.formatiléhlﬂ{?1 of the

and t;=a(%,},1). The twoequivalent anions Qand O, BF's can a}lso.be evaluated. Once thls gradient is computed,
whose site symmetry isC are located at positions the_m|n|m|zat|o_n can ta!<e place via a steepest-descent or

L1 . Svo ] ) conjugate-gradient algorithm.

+a(z,3,2), while the two nonequivalent cations Mfspin It is important to stress that if the minimum 6 is flat

up) and M, whose site symmetry B34, are at (0,0,0) and  (as it will be shown to be the case for some of the MnO
a(1,1,1). With our choice of origin on Mnthe two oxygen WF's), its precise location may be hindered by the various

sites are therefore related by spatial inversion. numerical approximations involved in the calculations. In
this work, we have especially taken care of the following
C. Maximally localized Wannier functions features, which clearly become irrelevant in the limit of a

dense meshN—<, b—0): (i) the regular meskk}gz has
been chosen in order to have the lattice symmetry, i.e., it

connected among themselves by degeneracies along hi@ﬁ:\n'sforms into itself by application of the point group 0p-
symmetry lines, but isolated from all other bands at Iower.rfflt'on_sR of the crystal{ii) the shell ofb vectors used in the
and higher energy. The phase arbitrarinégauge depen- finite-difference formula foiVy has pegn construt':ted on the
dence of each|yy,) with respect to the set of allowed 12 vectors of typg332} and{110} (in internal unitg. They
values propagates to the corresponding Wannier functiondre the side midpoints of cubes that can be built on particular
|Wng), labeled byn=1,2, ... f and lattice vectorR. This  Points of the rhombohedral mesh, and this set of 12 points is
resulting nonuniqueness manifests itself through an arbitrarjherefore compatible with the highest possible symmetry.
unitary matrixU), appearing in the most general transfor- _ Finally, and following the procedure described in Egs.
mation between BF’s and WF’s, which is given by (62)—(64) 'of Ref. 3, we §tart thg mlnlmlzatlon _procedure by
constructing a set of “trial functions” in the unit cell, which
are an initial guess of the final WF’'s. We use Gaussians
dke*ik'RE UE#%I k) (1) centered on atomic sites and modulated by an appropriate
m combination of spherical harmonics, with a rms width value
such that the Gaussian is negligible outside the correspond-

where V is the real-space primitive cell volume. A direct ; . . . o \
. oo . . .. ing atomic sphere. A unitary rotation among the initial BF's
consequence of this arbitrariness is that linear combinations

of the WF's in the sef|w,)} also form a suitable basis. IS then performed in order to maximize their projection on

/ . . . the trial functions.
The strategy of Ref.. 3 is to pick O.Ut f“’”.‘ this arbltr_ary It has been showh that Wannier functions can be chosen
choice of WF'’s the particular set that is maximally localized

according to some criterion. Once this criterion has bee with well-defined symmetry properties, and formi(ggner-

We consider the general case ofcamposite groupof
energy bands labeled by their band inadex 1,2, ... f, and

|WnR>:(2’77)3 B7

problem of functional minimization in the space of the ma- L
. . . the position to use group—theory methods for further analy-
tricesU®) . The selected functional, which measures the su P group y y

i , - - >~ sis, we need to calculate the representation matrix elements
of the quadratic spreads of the WF'’s probability density, IS<Wn'O|PR|WnO>1 wherePg is the transformation operator cor-
given by

responding to the operatioR of the point group, and the
WF’s are in the central cell. For simplicity, we restrict the
Q:E [<f2>n—<f>ﬁ]a (2)  formalism to symmorphic space groupshich is actually
n the case foD3y). Using Eq.(1) with the k-point discretiza-
where (f>n=<Wno|f|Wno>=i[V/(ZW)S]fBzdk<Un,k|Vk|Un,k> tion andR=0, we have for the rotated Wannier function

and (r?),=(Wno|r%|Wno)n. In these expressiongy; (r) 1
=e kry Uy (r) is a periodic function that can be ob- PelWn) = = > > URPL g, @)
tained from the Bloch functions of the composite group of N sz m

bands. Practically, one calculates the BF's on eqln_spacegnd with the *
Monkhorst-Pack meshes ofk points in the unit cellBZ :,T,,' )
(whose volume is equal to the conventional BZ piteiilt on MRCEGET
the reciprocal-lattice vectors. The grids have been offset in
order to includel’. With our chosen cell geometry of MnO,

periodic gauge” condition, ,r(T)

(Wn ol PrlWno)nv

the reciprocal lattice vectors agg=(n/a)(3,—1,—1), 0, 1 ,

—(mla)(—1,3~1), and gs=(m/a)(—1,—1,3). We then == X 2 UL US o PRlYmidny
express the matrix elements of the gradi®ptappearing in N keBZ mm’

the Iocglization functional _in terms_ of finite dif_ferences. As 1 * (RK+G),

shovyn m(:?ef. 3, the only information needed is the overlap =N kzﬁ n%’ U Kyl ,/,m,Rk+Gk|PR| Ymiv -
matrix M € '

nn,b)=<unk|un,vk+b>, whereb are vectors connect-

ing each mesh point to its nearest neighbors. From these (4)
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TABLE I. Classification ofs, p, andd atomic orbitals according TABLE 1. Center and spread of the four Wannier functions for
to the irreducible representations@f together with their reduction the Q site corresponding to the uppermost LSD spin-up valence
into irreducible representations @34 and Cg,, and the corre-  pands of MnO. Center components, r_y andr, are given with
sponding basis. Bethe notatidRef. 20 is used. The cubic and respect to the atomic site in the cubic reference system. The sum of
trigonal coordinate systems are denotedxXpy,z and X,Y,Z, re-  WF centers and the total spread are also displayed. Values in paren-

spectively. theses correspond to the LS scheme. Considering th€s,
symmetry of the @ site, WF 1 belongs td’; while WF's 2, 3, and
Oy, irreducible Reduction int®34 (Cs,) irreducible 4 are equivalent to each other. WF's 5—8 for the site have the
representations representations and basis same() and opposite .
ry S r(y) S — - — 2
R e R YRt T S G B o NP o M G
L, Py (Px+Py—2p,)/J6=px 1 0.174 0.174 0.174 0.751
P, I'5(C) (Px—Py)/\2=py (0.186 (0.186 (0.186  (0.686
dy2_y2 dy2_y2 2 —-0.387 0.036 0.036 0.773
ry d,2 I;(T3) d, (—0.366 (0.049 (0.049 (0.709
dyy ri(Ty) (dyz+ Ayt dy)/\B=d2 3 0.036 ~0.387 0.036 0.773
ri dy, (dyz+ dpy—20,,) /6 (0.049  (—0.366 0.049  (0.704
d,, I(T,) (dy,—d,)/2 4 0.036 0.036  —0.387 0.773
(0.049 (0.049 (—0.366 (0.709
The last bra-ket is trivial only in the case of nondegeneratdotal —-0.141 —0.141 —-0.141 3.069
BF'’s. In the general case, on the other hand, we have (—0.082 (—0.082 (—0.082 (2.797

Prtvmk(1) = m(R7I) =2, Diym(RK) hre(r), (5)  convergence is achieved using the<6x6 mesh, which

m’ represents a good compromise between accuracy and com-
whereD,, n(R,k) is a unitary transformation associated with puter burden. Also, such a mesh is large enough to prevent
the symmetry operatioR, and the summation is over states difficulties related to finite grids and the occurrence of peri-
degenerate withy,, rc(r). If this latter state is nondegener- odic WF replica. The &6Xx6 sampling has been retained
ate, Dy m(R,k) = 8,y m, and Eq.(5) becomes the usual for- throughout this work.
mula. We note that the above formulas allow us to decom- The minimization of the localization functional, which de-
pose |w,o) into a linear combination of basis functions termines the unitary matrid ), has been performed using a
transforming according to the relevant irreducible represenmixed strategy: a simple fixed-step steepest-descent proce-

tations of the point group. dure is used during the first iterations, followed by several
iterations with a conjugate—gradient procedure that is reset to
IIl. RESULTS steepest descent every 100 iterations. Because of the delicate

convergence of the Mn WF’s, and in order to be on the safe

For our Wannier-function description of the electron side, we used a very large numké0 000—80 00pof itera-
states in AFM MnO, we have considered as a single comtions.
posite group the topmost thirteen valence baf@s2s, O Several choices of trial orbitals have been tested to initial-
2p, Mn 3d). In this way, the corresponding Wannier func- ize efficiently the minimization procedure. In particulaee
tions display the highest localization, and therefore can be&ec. 11 O, we have considered the following sets of initial
considered as the “elementary building blocks” of the occu-trial orbitals: (i) Gaussians times real combinations of spheri-
pied electron states. As it is convenient to interpret some ofal harmonicss, px, py, andp, on the Q and G oxygen
our results in terms of combinations of atomic orbitals, wesites, andd,2, dy2_,2, dyy, dy,, andd,, on the manganese
give in Table | the relevar®;, representations corresponding Mn; site. These real harmonics, reported in Table I, form the
to s, p, andd orbitals and their reduction into irreducible pasis of reducible representations ©f, (O site and of
representations oDy and C,, together with their corre- D4, (Mn, site), and are oriented along cubic axéi) The
sponding basis. Cartesian coordinates in the parent cubic re§ame centers as above, but with Gaussians modulated by
erence system are written usirgy, andz symbols, whileX, spherical harmonics combinatiosspy, py, pz, andd,z,
Y, andZ correspond to the trigonal reference systefrakis  dy._v2, dyy, dyz, andd,y, i.e., basis functions of the irre-
along the cubid111] direction. Throughout this work, we ducible representations &, andDgq. (iii) Combinations
use the Bethe notation for the irreducible representafidns. of the two above possibilities. All these sets of initial trial

We have first studied the convergence of the spread funGrbitals eventually lead, at convergence, to the same WF's,
tional Q) in terms of the mesh density, using a sampling ofwhich are real, in agreement with the discussion in Ref. 3.
the Brillouin zone BZ defined by the Monkhorst-Pack However, the seti) corresponds to a much faster conver-
meshesy X vX v with v=2, 4, 6, and 8. Analysis has been gence than the other choices. The reason is directly related to
done on the various terms of the localization functiofial the shape and orientation of the final &2p WF'’s, and this
discussed in Ref. 3. We found that a satisfactory level ofpoint will be discussed further below.
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TABLE Ill. The spreads(in A?) of the five Wannier functions
(9—-13 centered at the origin (Mnsite) corresponding to the up-
permost LSD and LSDB-U spin—up valence bands of MnO. Total
spreads are also indicated. The meaning of s-LSD and s3I
explained in the text.

9 10 11 12 13 Tot(9-13

LSD 0.6220 0.6218 0.6497 0.6493 0.6493 3.193
s—LSD 0.5950 0.5950 0.6248 0.6899 0.6899 3.194 (a) (b)
s-LSD+U 0.4713 0.4713 0.5133 0.5163 0.5163 2.488

FIG. 2. LSD Wannier functions of AFM MnO corresponding to
the whole spin-up valence—band comp(&8 bands (a) The 2s/2p
dWF of O; with center along thg111] direction;(b) one of the three
equivalent Q@ WF's, with center close to thgl00] axis. The Mn,
Mn,, and Q , sites are denoted by large black, large gray, and small

for the sp!n-up Channe".x_v My, fi”drz are the components Of_ white spheres, respectively. Light gray and dark gray colors indicate
the Wannier center position with respect to the correspondinghe positive and negative amplitudes of the WF contours.

atomic site. We give also the total spre@dof these four

WF’s, and the sum of the corresponding centers whose integg converged WF'’s originating frors and p states on the
pretation will be discussed be_Iow. WF's related to thestle  game Q site would besp® hybrids. This is a general result,
have the samé€ and opposite. The spreads corresponding which is demonstrated in the Appendix: from localized atom-
to the five LSD WF’s(9—-13 at the Mn, site are given in the centereds-p orbitals, the maximal localization algorithm al-
first line of Table Ill. By symmetry, these WF's are centeredways favorssp’-like Wannier functions, provided that the
on the Mn site (origin). Because the two oxygen sites are symmetry is cubic or higher. This situation occurs, e.g., in a
equivalent, corresponding results for the spin-down channedypothetical ferromagnetidM) MnO crystal, which will be
can be simply obtained by reversing Mand Mn,. The total  briefly described later. In AFM MnO, Mnand My, sites are
spread(sum of the 13 individual spreads 9.332 . We  nonequivalent, so that the symmetry of the oxygen site is
note also that the sum of centers has all Cartesian compeeduced toCg,. However, reminiscence of thep® hybrids
nents equal to zero. Indeed, this quantity represents the elepersists: disregarding for the moment theadmixture, we
tronic polarizationNmodulo a lattice vectgrcorresponding to  see in panela) of Fig. 2 that the WF 1, witH’; symmetry,
valence states, and its zero value is compatible with the fadlisplays clearly the shape of a nonsymmejrjorbital, with
that the system is centrosymmetric. In order to analyze irts center shifted from the atomic site along fH41] direc-
detail Table Il, it is useful to construct the matrix elements oftion (p,-s mixing), as also indicated in Table Il. The three
the representation of the symmetry operations of Bhg  other WF's are equivalent to each other under the operations
point group on the basis of the 13 Wannier functions. This isof C5, (they have the same spreadnd their centers are
done by using Eq4). First, we have verified by constructing located much closer to the cubic axes than to the diagonals.
the multiplication table that these 12 matrices form indeed & his can be explained by considering the interaction with the
representation dD 4. For nontrivial operations of the point 3d orbitals of Mny: all these WF's display a substantial
groupD3q, they display the following structuréi) There is  bonding 31 contribution from the three neighboring unoccu-
an 8x8 block corresponding to Os2Z2p Wannier functions. pied Mn, sites. As the first-neighbor shell of Mn sites is an
Each line of this block consists of zeros, except for one eleoctahedron centered on each O, the above interaction favors
ment that is equal to 1. Because the origin is on the Bite,  the orientation of the equivalent WF’s 2, 3, and 4 along cubic
the operations oDy are simply transforming all WF’'s on axes. We display in pandb) of Fig. 2 the WF 2 whose
both O sites into each othefii) There is a 55 block cor-  center is close to th¢100] axis. The sum of WF centers
responding to Mp 3d Wannier functions. This block does given in Table Il is a measure of the trigonal distortion of the
not display a well-defined structure, and in general all itssp-like orbitals, since it would be vanishing in a perfect
elements are nonzer@ii ) The two off-diagonal blockécon-  cubic environment. This configuration of the converged
necting O 3/2p and Mn, 3d WF’s) have all their elements WF's justifies also our choice of trial orbitalgy, p,, andp,
equal to zero, at an accuracy better than L@ herefore, the orbitals are already good guesses of final WF’s 2, 3, and 4.
13X 13 representation is block-diagonal, and in particular theDuring the iterations, most of the effort is devoted to build-
5X5 Mn; 3d block makes greduciblg representation by ing up WF 1(the p,—s hybrid oriented alongj111]). We note
itself. also in Fig. 2 small features on the neighboring ;Miites.
We discuss first the Os22p Wannier functions. The two They correspond to a weak bonding contribution from unoc-
nonequivalent WF’'s corresponding to sitg @e shown in  cupied states on these sites.
Fig. 2, with a viewpoint which is about the same as in Fig. 1. We consider next the five Mn3d Wannier functions.
The equivalent WF’s corresponding to sitg €an simply be  They are exactly centered at the Msite and their spreads
obtained by inversion symmetry with respect to the origin. Indo not display any well-defined symmetry. When conver-
the absence of discrimination between Mand Mn, sites,  gence of O 3/2p Wannier functions is practically achieved,
the oxygen site would have cubi©f) symmetry, and the further iterations of the localization process have the only

We give in Table Il the converged Wannier centers an
spreads corresponding_toihe four_oxygen WF's at thei@
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effect of modifying slightly(essentially by amounts compa-
rable to the numerical noigeghe individual spreads of the
five Mn; 3d WF's, while their total spread remains un-
changed. These five WF’s are not uniquely defined by the
criterion of maximal localization. In fact, any set of WF’'s
obtained by applying a unitary transformation to the original
set will in general have different individual spreads, but the
same value of the total spread. Since it is advisable that the
final WF's display explicitly as much symmetry as possible,
we exploit this nonuniqueness and perform a symmetry re-
duction of the fivefold representation of the Mi8d WF's,
which decomposes intB; +2I'; according toD 34 symme-

try.

We note that the Hermitian operatof, which appears in
the localization functional Eq(2), has the full rotational
symmetry, and therefore its matrix representati@f),
=(Wpo|r?|Wyo) belongs to thel'; representation oD .
These matrix elements can be calculated through a simple
generalization of Eq(23) of Ref. 3, and are given by

1 kb kb
(Wrrol %[ Wio) = N % W[ 28,0~ MED —mloP*,

(6)

We choose the five new WF’s as the linear combinations of
the original set that diagonalize thé matrix, Eq.(6). We get

in this way an extra unitary transformation that allows us to
update the matriced®. The resulting WF’s, which display
the expectedI(; +2I';) symmetry, are indicated with the
header “s-LSD” in Table 1ll, and are shown in Fig. 3. We
note that an arbitrarinegsip to a 2<2 unitary transforma-
tion) remains in the definition of the partners in the tg

PHYSICAL REVIEW B65 184422
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representations. Figure 3 shows that the WF’'s 913 are es- FIG. 3. Same as Fig. 2, bzut for the five Mi8d WF's within
sentially atomic orbitals modified by tH2,4 crystal field. LSD, after diagonalization ofr >+n’n- The WF's(a) and(b), as well
The picture above depicting the whole set of WF’s in as(c) and(d), are partners of &3 representation db 4, while (e)

AFM MnO has been confirmed by similar calculations per-
formed for a hypothetical FM MnO crystal. In this case, the
symmetry is cubidspace grou;Dﬁ), and the majority-spin
channel contains 18 valence stat€s 2s, O 2p, and Mn
3d), while the minority-spin channel has 8 valence sté@s
2s, O 2p). As in AFM MnO, the Mn 31 WF's are found to
be essentially atomic orbitals. By contrast, the €2p WF'’s

in both chanels are here undistortf hybrids(see Appen-
dix). In the minority-spin channehothlobes of each hybrid
display a substantial bondingdxontribution from the three

belongs tol'; .

a matter of fact, supposing, e.g., a spin-up WF on thg Mn
site, the neighboring Mn WF has the choice between two
spin orientations, corresponding to a FM or an AFM order-
ing. The FM choice will be energetically less favorable, due
to the required orthogonalization to the WWF, while in the
AFM alignment, the spin part of the wave function accounts
for this necessary orthogonalization. The textbook explana-
tion above of AFM ordering can be discussed in light of our

neighboring unoccupied Mn sites, while these features are

absent in the majority-spin chann@ccupied Mn sites The
sp’-like oxygen WF's, with the center along th&11] direc-
tion, are shown in Fig. 4 for both spin channels.

The covalent interaction in AFM MnO between O and
Mn, 3d orbitals, clearly singled out in Fig. 2 for the case of
the spin-up channglwe remind the reader that correspond-

ing results for the spin-down case are obtained by reversing

Mn; and Mn,), is the fingerprint of superexchange in a one-
electron picture. The superexchange mechanism results
fact from indirect many-body interactions, involving metal
atoms(here Mn and Mnp) with an intervening oxygen. The

in

FIG. 4. LSD Wannier functions of FM MnO. Thep®-like O

shared covalency of nearest-neighbor pairs of magnetic iong/F with the center along tHd 11] direction for(a) majority and(b)
leads to an antiferromagnetic alignment of their moments. Agninority spin. Notations are the same as in Fig. 2.
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(@) (b)

FIG. 6. (a) The 2s/2p WF of O, as in Fig. Zb), but calculated
within the LSD+U scheme;(b) charge-density difference (LSD
+U minus LSD corresponding to the WF of pang&l). Light gray
X r z X r z (a “+” sign has been added for clarjtyand dark gray colors indi-
cate positive and negative contour values, respectively.

FIG. 5. Energy bands of antiferromagnetic MnO calculated
along theX-I'-Z lines of the rhombohedral magnetic zone udiag
the local-spin-density approximation afig) the LSD+U scheme.

Shaded areas correspond to the fundamental gap. Irreducible rep band atl". which is f | like h |
sentations af' (Bethe notatiopare also given on the left and right t'0N band atl’, which is free-electron-like, has mostly Mn
of the energy axis, for states of primary Mn and O origin, respec_45/0 3s character, and is not relevant to the present discus-

tively. Bands corresponding to states with high probability in theSion. The description above would leave completely empty
Mn atomic spheres are drawn with dashed lines. the spin-up 8 states of the Mpatom. However, a covalent
interaction (clearly depicted in Fig. 2 within the Wannier-

calculations, showing a real-space representation of the Wr&nction description between O P and the unoccupied
for an AFM system. The maximally localized WF's bring out M2 3d states takes place, and some amount of spin-up
the relevant physical information, namely the covalent intercharge appears at the Mrsites, which would be totally
action with empty Mn @ states. We also notice that the FM empty ina coinpletely ionic picture. For instance, the hlghest
alignment, on the other hand, is favored by kinetic energy@ntibondingl’; valence state df has 60%d occupancy in
This can be seen in Figs. 2 and 4 from the larger number o€ Mny sphere, 7%p occupancy in each of the two O

covalent interactionés instead of 3 in AFM cageassociated ~SPheres, and 14% occupancy in the Masphere. _
with the O sp-like WF's, which leads eventually to a _ With the above results in mind, it is instructive to inves-

broader bandwidth. tigate WF's within other one-electron schemes, leading to

electron picture of AFM MnO, obtained in real space usingteraction, and magnetic moments. Data corresponding to the
the localized Wannier-function description, with the more en-LSD+U scheme are presented in Tables Il and Ill for the
tangled picture based on the energy band structure of th@Pin—up channel. Values for the Mr8d WF's are those
extended Bloch-function description. For this purpose, weobtained after diagonalization ofr?),,. All individual
show in the left panel of Fig. 5 the spin-up band structure oSPreads, as well as the total spre@athose value is
MnO along theX-T'-Z directions, calculated within the LSD 8.083 X), are smaller than those in the LSD case: the O
scheme. Starting from the lowest energies, we find filsfa 25/2p and Mn 3 Wannier functions are more localized by
and al'; state ak=0. They arise froni’; O 2s orbitals on 9% and 22%, respectively, and this is consistent with the
the two O sites(related by inversion symmetryforming  narrower valence bandwidth. This property appears also in

symmetric ;) and antisymmetricI{,) combinations, re- Fig. 6, where we show the LSB- U result for the WF 2

; : - - derived from O 2/2p states. This LSB- U orbital is similar
spectively. The primary origin of the next composite group : - .
of 6 bands is O P triplets on the two O sites, which are split to the corresponding one calculated within LSD, and dis-

into al'; singlet and d 5 doublet by trigonalCs, site sym- played in Fig. 2b). The most noticeable difference appears

metry. They lead to one set of symmetric combinatiang ( in the weaker covalent interaction between O and the
T Y- y . ym S Mn, 3d orbitals. This is clearly visible in the right panel of
I';), and one set of antisymmetric combinatiods, (, I';)

X s Fig. 6, where we display the:like differential charge density
between the two sites. Next, the occuptggl orbitals of the (pLspsu—pLsp) associated with this particular oxygen WF.

Mn, atom are split af’ into a doublet plus a singlef(g ,  The five Mn, 3d WF's, obtained within LSB-U, are very
I'1), while the e, orbitals remain a doubletl;). These  similar to the LSD ones, and are essentially atomic orbitals
Mn; 3d orbitals give rise to the uppermost occupied com-modified by the crystal field.

posite group of five bands. Clearly, states of the,M8d and The more localized character of all WF's within the
O 2p complexes that belong to the saii¢ (or I';) repre-  LSD+U scheme, together with the weaker covalent interac-
sentation interact with each other, so that eventually both setfon between O and Mn 3d orbitals, is the fingerprint in the
I'{(Mn; d), T'{(O p) andl';(Mn; d), ['3(O p) consist Wannier-function description of the larger on-site interaction
of bonding and antibonding partners of MBd/O 2p hy- U of cation 3 states. It is worth realizing that this simple
brids. A mirror picture(relative to Fermi energyof the de-  trend is more easily detectable in terms of Wannier functions

scription above applies to the conduction bands that originate
rfégm the Mn, 3d orbitals, if we exclude the lowest conduc-

184422-7



POSTERNAK, BALDERESCHI, MASSIDDA, AND MARZARI PHYSICAL REVIEW B65 184422

than Bloch functions. To this end, we show in the right panel ACKNOWLEDGMENTS
of Fig. 5 the LSD+ U band structure of MnO. It differs in
several respects from the LSD one. The energy(@apeV),

though still smaller than the experimental di3e8—4.2 eV,

is closer to it than the LSD valu®.8 e\). The energy sepa-
ration between occupied and emptgtates, which is due to
the on-site interactiotd between cation @ states, has also
increased. Furthermore, the three MBd bands corre-

It is a pleasure to acknowledge stimulating discussions
with D. Vanderbilt. We would like to thank N. Bernstein for
providing us with his graphics program “dan.” This work
was supported by the Swiss National Science Foundation
(Grant No. 20-59121.99

sponding to the loweF; andl'; states {2) no longer form APPENDIX: MAXIMALLY LOCALIZED WANNIER
a composite group of bands by themselves, but rather mix FUNCTIONS FROM ONE s-LIKE AND THREE p-LIKE
with the O 20 complex. This results in a narrowing of the ORBITALS FOR CUBIC SITE SYMMETRY

valence-band widtl6.3 eV against 7.2 eV in LSD . . . .
The distinct features of the WF's computed within LSD We cansider the four-dimensional Hilbert spagé,
and LSD+U can be used for discussing the behavior of thespanned by four orthonormal Iocahz_ed bas_ls functipps,
|b,), |#3), and| ¢,4), centered on a given sitéaken here as

Born dynamical charge tensdt* within these different h iain with cubi : T. OT
many-body approximations. In fact, @& can be defined in the origin with cubic point-group symmetryT, T, O, Tq,
or Oy). | #4) is the basis function of a representation (for

terms of the relative displacement of WF centerit,carries 4

along relevant information. In particular, @d interaction 1+ O andTa) or I'y (for Ty andOp). [¢2), |bs), and|¢s)
between valence and conduction states in mixed ionic@'® the basis f“”Ct'OfS of a threefold representatiptfor T
covalent materiaf€ leads to anomalou&* , while atomiclike ~ @nd0), I's (Tqg), Ty (Th), or I'; (On). More precisely,
occupied WF's correspond to a nominal value. Therefore if®2)=|¢x) € X row of the threefold representation, and
MnO, one expects small¢Z* | (i.e., closer to 2, its nominal |$3)=Cs '|¢), |#4)=Cs| by), whereCs is the rotation by
value within the LSD+U scheme, to which correspond 27/3 around the[111] axis. We consider redlg;) func-
more localized WF’s than within LSD. We performed the tions, as the maximally localized WF's turn out to be real,
calculation of the[111] component of this tensor, using the apart from an arbitrary overall phase fg&(ﬁinally, we sup-
WF description, and obtained within LSD the valligf| ~ pose that the¢;) (i=1, .. .,4) aresufficiently localized so
—2.36, which is consistent with the one obtained previdusly that{#i|r|¢;) and(¢|r? ;) exist and are finite.

using the Berry phase approach_ The 1-SD Scheme, on We _demonsi{l’ate belOW that m|n|m|2|ng W|th}m4 the IO'
the other hand, gives as expected a smaller V;qu qallzatlon functional, Eq(2), Iggds tcxsp3—l!kg Wannier func—
—2.26. These results relate the behavior of two importanfions. as opposed to the original atomiclilg;) functions.

physical quantitie§the superexchange energy afid) to the The solution i_s unique and C_orres_ponds to one of the_z two
same information contained in the AFM MnO WF’s, namely, tetrahedra defined by the cubic point-symmetry group if the

the magnitude of their amplitudes on unoccupied,Mites  |atterisT or Tq. For the higher symmetry groufis, 03 and
in the different approximations. Oy, maximal localization leads to an infinity afp°-like

solutions constructed from¢,) and unitary transformed

threefold functionge,), |$3), |$4) according to any of the

3% 3 orthogonal matrice®Y)(«,3,v) representing a rota-
We have used the maximum localization criterion for con-tion of the Cartesian coordinates of a vector.

structing Wannier functions of AFM MnO within both LSD As the operator? belongs to the identity representation,

and LSD+U schemes. This is the first application of the it is diagonal in thd ¢;) basis, and we have

method to a magnetic low-symmetry system, with a partially

filled d band. The LSB-U approach has been considered (dilr2d)=(Qs Q, Q, Q) (A1)

here, as it improves the LSD description of the ground-state ' ' SR e e

properties of strongly correlated materials. The Wannler-Where cubic symmetry has been taken into account. Simi-

I_uncttlon dtes%rlp(;lon, ,:Nh'Ch ﬁﬂ ble V'T.W? asla g?neralgia arly, writing r=xi+yj+zk and using projection operators,
ion to extended systems of the localized molecular-orbital, . after some algebra

description of molecules, provides in the case of MnO a
simple picture complementary to the Bloch-function one. We

IV. CONCLUSION

obtain two distinct groups of WF'gi) the five Mn 3 WF’s 0 A A Ak
centered on the Mnsite, which are atomic orbitals modified N 0 Sk 6
by the crystal field(ii) the four trigonally distorted p> WF’s (ilr|py)= Ni Sk 0 sl (A2)
associated with each of the;@nd G sites, which are not J !
centered on these sites. The latter display a substantial cova- Ak o6 ol 0

lent bonding with 8l states on Mg sites, which is consistent

with the AFM ordering of this material. Concerning the Mn with N=(¢¢|£{|¢s), where £=x,y,z, and §=(¢y|y|®,)
WF's, they are not uniquely defined by the criterion of maxi- =(¢y|z| ¢,) =(#,|x| ¢,). The phase arbitrariness of the or-
mal localization. We have exploited this feature to obtainbitals allows us to set=0. We note that symmetry requires
symmetrized maximally localized WF's. We impose this fur- =0 in the case ofl},, O, or O,,. The total spread of the
ther condition by diagonalization of th& operator. original atomiclike|¢;) functions is
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n¢=2i [(ilr? i) —|( bilr| i) 2] = Qs+ 30,
(A3)

We consider now the four orbitalss;) obtained from the
|¢j) by a general orthogonal transformati®n given explic-
itly by

|wi>=§ Oyl (i,ji=1,....4. (A4)

PHYSICAL REVIEW B 65 184422

Therefore, the atomiclikée;) functions correspond to the
maximum value of the spread, and the problem of the total
spread minimization reduces to minimizing the second term
—3i[(i|r|4:)|? of the localization functional, which can be
evaluated using Eq$A2) and (A4).

We consider next the two particular orthogonal transfor-
mationsO and O’ of the |¢;) corresponding to the two
possible choices for the fowsp® hybrid orbitals|¢~//i> and

%) (written together below{")), and given explicitly by

There are 6 independent matrix elements, and 10 orthonor-

mality conditions for columns or rows. Using Ed&1) and
(A4) and the orthonormality conditions, we obtain

2 (lr? gy = 2 [04Qs+(05+0%5+07)0,]

_2[0 Qe+ Q,(1-03)]=0Q+3Q,

(A5)
which verifies the trace invariance property of E41) un-

~ 1
|¢(11)1>:§(|¢1>i|¢2>i|¢3>i|¢4>):
|Ir/’111>_ (|¢l>i|¢2>1|¢3>1|¢4>)1 (A7)

~ 1
957D = 50T b2) = ba) ¥ b)),

der orthogonal transformations, and gives for the total spread

Q,, of the functions defined byA4) the inequality
sz:Ei <¢i|rz|¢i>_2i (il | ga)]?

=QS+SQp—Ei [Calr )2

<0+30,=0,. (A6)
|
(N4 8)(i+]+k) (A= &)i
1 (A= &)i (N +8)(i—]—K)
2 (A= )j — (A= d)k
(A=06)k —(N=9)]

We note that taking th®’ transformation corresponds to
changing\ into —\ in Eq. (A8) for the (¥ |r|]) matrix
elements. Using this latter equation, together with &d),
we obtain the total spreads of thé;) and|4/) WF's,

Q~¢=Ei [<Ji|rz|7ﬂi>_|<T/fi|r|:0i>|2]

=0+30,-3(8+N)?=04—3(5+N)?<Q,
(A9)

and

| 111> (|¢l>:|¢2>1|¢3>i|¢4>),

wherei=1, ..., 4=(111),... ,(Hl). Using theD transfor-

mation and Eq(A2), we get for the(y;|r|;) matrix ele-
ments

(N=0)j (A= 8k
—(A—0)k —(N—9)j
(N+8)(—i+j—k) — (A= )i (A8)
—(N— )i (N 8)(—i—j+k)
[
07 =04=3(6-N)23<Qy. (A10)

Two cases have to be considered accordingsas zero
(point groupsTy,, O, O}) or not(point groupsT andTy).

If 6=0, the two spread$)y, and ()7, are both equal to
94, 3\2. We demonstrate flrst that thls latter value is the
minimum of the spread, EqA6). To this end, usmg Egs.
(A2) and(A4), and the orthonormality conditions; O =1
and>;03=1, we are led to minimizing

Q,=Q,— 4\ Z 02(0%+0%+02)

=Q¢—4)\2+4)\22i of, (A11)
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with the constraint

C=>, 04-1=0. (A12)
|

The conditions for an extremum 6 ,, introducing the La-
grangian multiplierA are

oy C =16\203 + 2A0,,=0 A13
30, 70, i i1=0, (A13)
from which we get
2 2 2 2 1
01,=05,=05,= 04121’ (A14)
and the result
minQ,=0,-3\*=0;=07,<Q,.  (Al5)

We demonstrate next that in addition@andO’, there is in
fact aninfinity of orthogonal transformations producihg; )

orbitals with this same minimum spread value. For this pur-
pose, we introduce the operate(«,B,y) corresponding to

PHYSICAL REVIEW B65 184422

We write|<}i)=2k6ikEjD(a,,8,y)kj|¢j>, and get after some
algebra, using EqgA2) and (A4),

0;=0;=0,-3\? Va,B,v. (A17)

It is important to remember that the;) are basis functions
of irreducible representations of a cubic group, aotiof the

full rotation group. Therefore, applying the transformation
(A16) on the original basis functionss;) does not result in
rotatede;(r) functions, i.e..¢;(R™*(a,B8,7)r), but in linear
combinations of the original basis functions, defining the
same Hilbert spacé{,, and carrying the same chemical in-
formation as the original functions.

When§+ 0 (case ofT andTy), the two transformation®

and O’ produce|y;) and|y!) orbitals with different total
spreads

05<Qy if 6>0 (A6=0)
. (A18)
05>Qy  if 6<0 (A6<0).
We prove finally tha€)y, for 6>0 (or 3, for 6<0) is a

local minimum of the total spread. To this end, we consider

a geometrical rotation specified by its Euler angles, and itgn infinitesimal orthogonal transformation of the;) (or

three-dimensional unitary representatiod®)(a,8,7) mm »
whose basis functions are the spherical harmoWigs, with

m=1,0,— 1. Consistently with our choice of the basis func-
tions | ¢,), | ¢3), and|¢,), we consider instead the equiva-

lent, real orthogonal representatidd*)(a,,7) . with

%))

1
O(e)=I1+€eA+ 562A2+ O(ed), (A19)

£,& =x,y,z, which is the usual transformation of the Carte-Where A is an antisymmetrical operator defined by 6 real
sian coordinates of a vector. We then build from this matrixParameters. Using EA8) and applying Eq(A19) to the
the following orthogonal transformation acting in the four- sets ofsp® hybrid orbitals|;) and|¢/), we obtain for the

dimensional Hilbert spacg,,

1 0 0 O
D(LY,,B:'Y): 0 D(l)(a,ﬂ,’y)gg, (AlG)
0

infinitesimal variations of the spreads, up to second-order
terms in e, positive semi-definite quadratic forms in the
parameters of theA operator. Hence the correction to
Q7 (3) induced by the infinitesimal transformation, are
non-negative. The spread;, ({1;) therefore corresponds
for 6>0 (6<0) to a local minimum of the localization
functional.
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