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Maximally localized Wannier functions in antiferromagnetic MnO within the FLAPW formalism
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We have calculated the maximally localized Wannier functions of MnO in its antiferromagnetic~AFM!
rhombohedral unit cell, which contains two formula units. Electron Bloch functions are obtained with the
linearized-augmented-plane-wave method within both the local-spin density~LSD! and the LSD1U schemes.
The thirteen uppermost occupied spin-up bands correspond in a pure ionic scheme to the five Mn 3d orbitals
at the Mn1 ~spin-up! site and the four O 2s/2p orbitals at each of the O1 and O2 sites. Maximal localization
identifies uniquely four Wannier functions for each O, which are trigonally distortedsp3-like orbitals. They
display a weak covalent bonding between O 2s/2p states and minority-spind states of Mn2, which is absent in
a fully ionic picture. This bonding is the fingerprint of the interaction responsible for the AFM ordering, and its
strength depends on the one-electron scheme being used. The five Mn Wannier functions are centered on the
Mn1 site, and are atomic orbitals modified by the crystal field. They are not uniquely defined by the criterion
of maximal localization and we choose them as the linear combinations that diagonalize ther 2 operator, so that
they display theD3d symmetry of the Mn1 site.
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I. INTRODUCTION

The mean-field one-particle description of the electro
struture of periodic crystalline solids is usually based on
tended Bloch functions~BF’s!. Within the Born–von
Kármán periodic boundary conditions, the cyclic transl
tional subgroup, which commutes with the effective on
electron Hamiltonian, containsN translations by correspond
ing direct lattice vectorsR. This Abelian subgroup hasN
one–dimensional irreducible representations, which are
beled with wave vectorsk within the first Brillouin zone
~BZ!. Therefore, extended Bloch statescmk(r ) in this de-
scription are classified with two quantum numbers, the b
index m and the crystal momentumk, and are obtained by
diagonalization of the effective one–electron Hamiltonia
An alternative description can be derived in terms of loc
ized Wannier functions1 ~WF’s! wn(r2R), which are defined
in real space via a unitary transformation performed on
Bloch functions. They are also labeled with two quantu
numbers, the orbital indexn and the direct lattice vectorR,
indicating the unit cell they belong to. In contrast to BF
WF’s are useful, for example, in visualizing chemical bon
or in describing the dielectric properties of nonmetallic m
terials. They can be considered as the generalization to s
of the concept of ‘‘localized molecular orbitals’’ for finite
systems.2 However, one major problem in practical calcul
tions within this representation is the nonuniqueness
WF’s, related to the phase arbitrariness of the BF’s, and
the arbitrary unitary transformations that can be perform
on the BF’s at any givenk point in the BZ. As demonstrate
0163-1829/2002/65~18!/184422~11!/$20.00 65 1844
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recently by Marzari and Vanderbilt,3 this nonuniqueness ca
be resolved in principle by imposing the further condition
maximal localization. However, some residual arbitrarine
remains, related to the choice of the localization criterion

The late transition-metal~TM! monoxides MnO, FeO,
CoO, and NiO challenge the theory of electronic states si
several decades. These highly correlated materials featu
Mott insulator character, and the conventional local-sp
density ~LSD! scheme4 gets into difficulties with the local-
ized TM d orbitals, predicting incorrectly in particular the
spectral weight and their energy relative to O 2p states. All
these oxides have the rocksalt structure in their paramagn
phase, while below the Ne´el temperatureTN , a type II anti-
ferromagnetic~AFM! ordering occurs.5 The experimentally
well-documented compound MnO, which is considered to
in the intermediate charge-transfer/Mott-Hubbard regime
a particularly suitable case study, since the available theo
ical schemes apply best to this material. Indeed, becaus
the exchange stabilization of its half-filledd shell, even LSD
predicts its insulating character, although the correspond
energy gap and magnetic moment are much smaller t
experimental data. Several electronic structure calculati
have been performed for MnO, using traditional ban
structure schemes, such as unrestricted Hartree-Fock6 ~UHF!
and local-spin density~LSD!, as well as more innovative
approaches taking into account at various levels the la
value of the on-site Coulomb repulsion for the metal 3d
states, such as the SIC~Ref. 7! and the LSD1U ~Ref. 8!
methods, and the more recentGW model scheme.9,10Among
the quantities calculated within the latter approach, spe
©2002 The American Physical Society22-1
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attention has been devoted to the quasiparticle spectr9

and recently to the zone-center optic phonon frequencies
the Born effective charge tensor.6 Comparison with experi-
mental data of the various physical quantities computed
the different schemes has demonstrated a monotonic t
with the separation energy between occupied and empd
bands, which is too small within LSD, too high within UHF
and has about the correct value within theGW model. This
energy separation is strongly related to the on-site interac
U. The analysis of all these results has been performe
terms of the extended Bloch states.

On the other hand, noab initio investigation exists of the
electronic states in AFM MnO in terms of localized Wann
functions. Keeping in mind the inherent limitations of th
mean-field one-particle approaches, it would be, howe
instructive to materialize within the WF description how s
perexchange~which is responsible for AFM ordering! mani-
fests itself in a first-principles one-electron picture. Furth
more, the maximal localization method of Marzari a
Vanderbilt has been applied in the past to several perio
systems,3,11,12but not yet to a low~trigonal! symmetry solid
such as AFM MnO, nor to a compound with a partially fille
cationd shell.

Motivated by the reasons above, we present in this w
an ab initio calculation of the maximally localized Wannie
functions of AFM MnO corresponding to the uppermost o
cupied bands, using the all–electron, full–potent
linearized–augmented–plane–wave~FLAPW! method.13,14

Because the trends in the electronic properties from UHF
LSD are already known for this system, most of the com
tations have been performed for convenience within the
ter scheme. To investigate the effects related to the on
Coulomb interaction, we have also used the LSD1U
method, implemented with the same FLAPW techni
ingredients15 used in the LSD computations.

The manuscript is organized as follows. In Sec. II we g
technical details of the FLAPW implementation and stru
tural information relevant to AFM MnO. The necessary i
gredients of our WF calculations are then introduced. As
follow closely the formalism of Ref. 3, we will not describ
in detail the method itself. A general result regarding ma
mal localization ofs-p WF’s is deferred to the Appendix. In
Sec. III, we present and discuss the results of our maxim
localized WF calculations. Finally, in Sec. IV we draw o
conclusions.

II. METHOD

A. FLAPW calculations

All quantities presented and discussed in this paper h
been computed using the semirelativistic FLAP
method,13,14 expanded with local orbitals16 ~LO’s! where ap-
propriate. Inclusion of LO’s in addition to the norma
FLAPW basis enforces mutual state orthogonality and
creases variational freedom. This allows us to treat the se
core Mn 3s,3p states together with the valence states, a
helps in dealing with the linearization of Mn 3d and O
2s,2p states. Core states are calculated fully relativistica
and self-consistently in the crystal potential. For the LS
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calculations, the Hedin and Lundqvist exchange-correlat
functional has been adopted. In the calculations perform
within the LSD1U method, the values of the Hubbard an
exchange constants,U56.9 eV andJ50.86 eV, have been
taken from Ref. 8. The atomic-sphere radii for Mn and O a
chosen to be 2.0 and 1.8 a.u., respectively, and the FLA
basis size is set to include all plane waves with energy up
16.0 Ry. Four special points inside the irreducible wedge
the BZ were used for evaluating the charge density dur
self-consistency cycles.

B. Structural details

AFM ordering occurs in MnO belowTN5117 K along
any one of thê 111& directions. The transition is accompa
nied by a small crystallographic distortion that transform
the cubic structure into a rhombohedral one:17 the 90° angle
between the lattice vectors increases only by 0.624°.
have shown6 earlier that the effect of this distortion on th
calculated zone-center optic phonon frequencies and B
effective charge tensor is negligible compared to the ani
ropy induced solely by the magnetic order. Therefo
throughout the present study we use the ionic positions of
perfect rocksalt chemical cell, with the experimental latti
constant valuea54.435 Å . In the AFM phase, the mag
netic moments of MnO are arranged into ferromagne
sheets which are parallel to~111!, while the direction of
magnetization in neighboring planes is reversed. The m
netic and crystalline structure of MnO is shown in Fig.
The rhombohedral magnetic cell, whose volume is twice t
of the paramagnetic rocksalt one, corresponds to the sp
group D3d

5 (R3̄m). Several choices for the primitive trans
lation vectors are possible. However, in order to minim
discrete mesh effects ink-space integrations, and also fo
taking advantage of symmetry properties~see below!, we

FIG. 1. Antiferromagnetic structure of MnO. Magnetic momen
are arrayed in ferromagnetic sheets~shaded areas! parallel to~111!
planes. Mn1 , Mn2, and O1,2 sites are given by large black, larg
gray, and small open circles, respectively. The trigonal coordin
axes are also indicated with long-dashed lines.
2-2
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MAXIMALLY LOCALIZED WANNIER FUNCTIONS IN . . . PHYSICAL REVIEW B 65 184422
consider here the following primitive translation vectors~in

the cubic coordinate system!: t15a(1,1
2 , 1

2 ), t25a( 1
2 ,1,12 ),

and t35a( 1
2 , 1

2 ,1). The twoequivalent anions O1 and O2,
whose site symmetry isC3v , are located at position

6a( 1
2 , 1

2 , 1
2 ), while the two nonequivalent cations Mn1 ~spin

up! and Mn2, whose site symmetry isD3d , are at (0,0,0) and
a(1,1,1). With our choice of origin on Mn1, the two oxygen
sites are therefore related by spatial inversion.

C. Maximally localized Wannier functions

We consider the general case of acomposite groupof
energy bands labeled by their band indexm51,2, . . . ,f , and
connected among themselves by degeneracies along
symmetry lines, but isolated from all other bands at low
and higher energy. The phase arbitrariness~gauge depen-
dence! of each ucmk& with respect to the set of allowedk
values propagates to the corresponding Wannier funct
uwnR&, labeled byn51,2, . . . ,f and lattice vectorsR. This
resulting nonuniqueness manifests itself through an arbit
unitary matrixUmn

(k) appearing in the most general transfo
mation between BF’s and WF’s, which is given by

uwnR&5
V

~2p!3EBZ
dke2 ik•R(

m
Umn

(k)ucmk&, ~1!

where V is the real-space primitive cell volume. A dire
consequence of this arbitrariness is that linear combinat
of the WF’s in the set$uwnR&% also form a suitable basis.

The strategy of Ref. 3 is to pick out from this arbitra
choice of WF’s the particular set that is maximally localiz
according to some criterion. Once this criterion has be
chosen, and the composite group of bands specified,
search for the set of maximally localized WF’s become
problem of functional minimization in the space of the m
tricesUmn

„k… . The selected functional, which measures the s
of the quadratic spreads of the WF’s probability density,
given by

V5(
n

@^r 2&n2^r &n
2#, ~2!

where ^r &n5^wn0ur uwn0&5 i @V/(2p)3#*BZdk^un,ku“kuun,k&
and ^r 2&n5^wn0ur 2uwn0&n . In these expressions,un,k(r )
5e2 ik•r(mUmn

(k)cmk(r ) is a periodic function that can be ob
tained from the Bloch functions of the composite group
bands. Practically, one calculates the BF’s on equispa
Monkhorst-Pack18 meshes ofk points in the unit cellBZ
~whose volume is equal to the conventional BZ one!, built on
the reciprocal-lattice vectors. The grids have been offse
order to includeG. With our chosen cell geometry of MnO
the reciprocal lattice vectors areg15(p/a)(3,21,21), g2
5(p/a)(21,3,21), and g35(p/a)(21,21,3). We then
express the matrix elements of the gradient“k appearing in
the localization functional in terms of finite differences. A
shown in Ref. 3, the only information needed is the over
matrix Mnn8

(k,b)
5^unkuun8,k1b&, whereb are vectors connect

ing each mesh point to its nearest neighbors. From th
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quantities, the gradient of the spread functionalV with re-
spect to an infinitesimal unitary transformationdUmn

(k) of the
BF’s can also be evaluated. Once this gradient is compu
the minimization can take place via a steepest-descen
conjugate-gradient algorithm.

It is important to stress that if the minimum ofV is flat
~as it will be shown to be the case for some of the Mn
WF’s!, its precise location may be hindered by the vario
numerical approximations involved in the calculations.
this work, we have especially taken care of the followi
features, which clearly become irrelevant in the limit of
dense mesh (N→`, b→0): ~i! the regular mesh$k%BZ has
been chosen in order to have the lattice symmetry, i.e
transforms into itself by application of the point group o
erationsR of the crystal;~ii ! the shell ofb vectors used in the
finite-difference formula for“k has been constructed on th
12 vectors of type$332% and$11̄0% ~in internal units!. They
are the side midpoints of cubes that can be built on partic
points of the rhombohedral mesh, and this set of 12 point
therefore compatible with the highest possible symmetry

Finally, and following the procedure described in Eq
~62!–~64! of Ref. 3, we start the minimization procedure b
constructing a set of ‘‘trial functions’’ in the unit cell, which
are an initial guess of the final WF’s. We use Gaussia
centered on atomic sites and modulated by an approp
combination of spherical harmonics, with a rms width val
such that the Gaussian is negligible outside the correspo
ing atomic sphere. A unitary rotation among the initial BF
is then performed in order to maximize their projection
the trial functions.

It has been shown19 that Wannier functions can be chose
with well-defined symmetry properties, and forming~gener-
ally reducible! representations of the crystal point group.
order to investigate the nature and possible reductions
these representations in the case of MnO, and also to b
the position to use group–theory methods for further ana
sis, we need to calculate the representation matrix elem
^wn80uPRuwn0&, wherePR is the transformation operator co
responding to the operationR of the point group, and the
WF’s are in the central cell. For simplicity, we restrict th
formalism to symmorphic space groups~which is actually
the case forD3d

5 ). Using Eq.~1! with the k-point discretiza-
tion andR50, we have for the rotated Wannier function

PRuwn0&5
1

N (
kPBZ

(
m

Umn
(k)PRucmk&, ~3!

and, with the ‘‘periodic gauge’’ condition,cmRk(r )
5cmRk1Gk

(r ),

^wn80uPRuwn0&NV

5
1

N2 (
k,k8PBZ

(
m,m8

Um8n8
* (k8)Umn

(k)^cm8k8uPRucmk&NV

5
1

N (
kPBZ

(
m,m8

U
m8n8
* (Rk1Gk)

Umn
(k)^cm8Rk1Gk

uPRucmk&V .

~4!
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The last bra-ket is trivial only in the case of nondegener
BF’s. In the general case, on the other hand, we have

PRcmk~r !5cmk~R21r !5(
m8

Dm8m~R,k!cm8Rk~r !, ~5!

whereDm8m(R,k) is a unitary transformation associated wi
the symmetry operationR, and the summation is over state
degenerate withcm8Rk(r ). If this latter state is nondegene
ate,Dm8m(R,k)5dm8m , and Eq.~5! becomes the usual for
mula. We note that the above formulas allow us to deco
pose uwn0& into a linear combination of basis function
transforming according to the relevant irreducible repres
tations of the point group.

III. RESULTS

For our Wannier-function description of the electro
states in AFM MnO, we have considered as a single co
posite group the topmost thirteen valence bands~O 2s, O
2p, Mn 3d). In this way, the corresponding Wannier fun
tions display the highest localization, and therefore can
considered as the ‘‘elementary building blocks’’ of the occ
pied electron states. As it is convenient to interpret some
our results in terms of combinations of atomic orbitals,
give in Table I the relevantOh representations correspondin
to s, p, and d orbitals and their reduction into irreducibl
representations ofD3d and C3v , together with their corre-
sponding basis. Cartesian coordinates in the parent cubic
erence system are written usingx, y, andz symbols, whileX,
Y, andZ correspond to the trigonal reference system (Z axis
along the cubic@111# direction!. Throughout this work, we
use the Bethe notation for the irreducible representations20

We have first studied the convergence of the spread fu
tional V in terms of the mesh density, using a sampling
the Brillouin zone BZ defined by the Monkhorst-Pac
meshesn3n3n with n52, 4, 6, and 8. Analysis has bee
done on the various terms of the localization functionalV
discussed in Ref. 3. We found that a satisfactory level

TABLE I. Classification ofs, p, andd atomic orbitals according
to the irreducible representations ofOh together with their reduction
into irreducible representations ofD3d and C3v , and the corre-
sponding basis. Bethe notation~Ref. 20! is used. The cubic and
trigonal coordinate systems are denoted byx,y,z and X,Y,Z, re-
spectively.

Oh irreducible Reduction intoD3d (C3v) irreducible
representations representations and basis

G1
1 s G1

1(G1) s
px G2

2(G1) (px1py1pz)/A3[pZ

G4
2 py (px1py22pz)/A6[pX

pz G3
2(G3) (px2py)/A2[pY

dx22y2 dx22y2

G3
1 dz2 G3

1(G3) dz2

dxy G1
1(G1) (dyz1dzx1dxy)/A3[dZ2

G5
1 dyz (dyz1dzx22dxy)/A6

dzx G3
1(G3) (dyz2dzx)/A2
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convergence is achieved using the 63636 mesh, which
represents a good compromise between accuracy and
puter burden. Also, such a mesh is large enough to pre
difficulties related to finite grids and the occurrence of pe
odic WF replica. The 63636 sampling has been retaine
throughout this work.

The minimization of the localization functional, which de
termines the unitary matrixUmn

(k) , has been performed using
mixed strategy: a simple fixed-step steepest-descent pr
dure is used during the first iterations, followed by seve
iterations with a conjugate–gradient procedure that is rese
steepest descent every 100 iterations. Because of the de
convergence of the Mn WF’s, and in order to be on the s
side, we used a very large number~40 000–80 000! of itera-
tions.

Several choices of trial orbitals have been tested to init
ize efficiently the minimization procedure. In particular~see
Sec. II C!, we have considered the following sets of initi
trial orbitals:~i! Gaussians times real combinations of sphe
cal harmonicss, px , py , and pz on the O1 and O2 oxygen
sites, anddz2, dx22y2, dxy , dyz , anddzx on the manganese
Mn1 site. These real harmonics, reported in Table I, form
basis of reducible representations ofC3v ~O site! and of
D3d (Mn1 site!, and are oriented along cubic axes.~ii ! The
same centers as above, but with Gaussians modulate
spherical harmonics combinationss, pX , pY , pZ , anddZ2,
dX22Y2, dXY , dYZ , anddZX , i.e., basis functions of the irre
ducible representations ofC3v and D3d . ~iii ! Combinations
of the two above possibilities. All these sets of initial tri
orbitals eventually lead, at convergence, to the same W
which are real, in agreement with the discussion in Ref.
However, the set~i! corresponds to a much faster conve
gence than the other choices. The reason is directly relate
the shape and orientation of the final O 2s/2p WF’s, and this
point will be discussed further below.

TABLE II. Center and spread of the four Wannier functions f
the O1 site corresponding to the uppermost LSD spin-up vale

bands of MnO. Center componentsr̄ x , r̄ y , and r̄ z are given with
respect to the atomic site in the cubic reference system. The su
WF centers and the total spread are also displayed. Values in pa
theses correspond to the LSD1U scheme. Considering theC3v
symmetry of the O1 site, WF 1 belongs toG1 while WF’s 2, 3, and
4 are equivalent to each other. WF’s 5–8 for the O2 site have the

sameV and oppositer̄ .

WF r̄ x (Å) r̄ y ~Å! r̄ z ~Å! V (Å2)

1 0.174 0.174 0.174 0.751
~0.186! ~0.186! ~0.186! ~0.686!

2 20.387 0.036 0.036 0.773
~20.366! ~0.049! ~0.049! ~0.704!

3 0.036 20.387 0.036 0.773
~0.049! ~20.366! ~0.049! ~0.704!

4 0.036 0.036 20.387 0.773
~0.049! ~0.049! ~20.366! ~0.704!

Total 20.141 20.141 20.141 3.069
~20.082! ~20.082! ~20.082! ~2.797!
2-4
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MAXIMALLY LOCALIZED WANNIER FUNCTIONS IN . . . PHYSICAL REVIEW B 65 184422
We give in Table II the converged Wannier centers a
spreads corresponding to the four oxygen WF’s at the O1 site
for the spin-up channel.r̄ x , r̄ y , andr̄ z are the components o
the Wannier center position with respect to the correspond
atomic site. We give also the total spreadV of these four
WF’s, and the sum of the corresponding centers whose in
pretation will be discussed below. WF’s related to the O2 site
have the sameV and oppositer̄ . The spreads correspondin
to the five LSD WF’s~9–13! at the Mn1 site are given in the
first line of Table III. By symmetry, these WF’s are center
on the Mn1 site ~origin!. Because the two oxygen sites a
equivalent, corresponding results for the spin-down chan
can be simply obtained by reversing Mn1 and Mn2. The total
spread~sum of the 13 individual spreads! is 9.332 Å2. We
note also that the sum of centers has all Cartesian com
nents equal to zero. Indeed, this quantity represents the
tronic polarization~modulo a lattice vector! corresponding to
valence states, and its zero value is compatible with the
that the system is centrosymmetric. In order to analyze
detail Table II, it is useful to construct the matrix elements
the representation of the symmetry operations of theD3d
point group on the basis of the 13 Wannier functions. This
done by using Eq.~4!. First, we have verified by constructin
the multiplication table that these 12 matrices form indee
representation ofD3d . For nontrivial operations of the poin
groupD3d , they display the following structure:~i! There is
an 838 block corresponding to O 2s/2p Wannier functions.
Each line of this block consists of zeros, except for one e
ment that is equal to 1. Because the origin is on the Mn1 site,
the operations ofD3d are simply transforming all WF’s on
both O sites into each other.~ii ! There is a 535 block cor-
responding to Mn1 3d Wannier functions. This block doe
not display a well-defined structure, and in general all
elements are nonzero.~iii ! The two off-diagonal blocks~con-
necting O 2s/2p and Mn1 3d WF’s! have all their elements
equal to zero, at an accuracy better than 1027. Therefore, the
13313 representation is block-diagonal, and in particular
535 Mn1 3d block makes a~reducible! representation by
itself.

We discuss first the O 2s/2p Wannier functions. The two
nonequivalent WF’s corresponding to site O1 are shown in
Fig. 2, with a viewpoint which is about the same as in Fig.
The equivalent WF’s corresponding to site O2 can simply be
obtained by inversion symmetry with respect to the origin.
the absence of discrimination between Mn1 and Mn2 sites,
the oxygen site would have cubic (Oh) symmetry, and the

TABLE III. The spreads~in Å2) of the five Wannier functions
~9–13! centered at the origin (Mn1 site! corresponding to the up
permost LSD and LSD1U spin–up valence bands of MnO. Tota
spreads are also indicated. The meaning of s-LSD and s-LSD1U is
explained in the text.

9 10 11 12 13 Tot.~9–13!

LSD 0.6220 0.6218 0.6497 0.6493 0.6493 3.193
s–LSD 0.5950 0.5950 0.6248 0.6899 0.6899 3.194
s-LSD1U 0.4713 0.4713 0.5133 0.5163 0.5163 2.488
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four converged WF’s originating froms andp states on the
same O1 site would besp3 hybrids. This is a general resul
which is demonstrated in the Appendix: from localized ato
centereds-p orbitals, the maximal localization algorithm a
ways favorssp3-like Wannier functions, provided that th
symmetry is cubic or higher. This situation occurs, e.g., in
hypothetical ferromagnetic~FM! MnO crystal, which will be
briefly described later. In AFM MnO, Mn1 and Mn2 sites are
nonequivalent, so that the symmetry of the oxygen site
reduced toC3v . However, reminiscence of thesp3 hybrids
persists: disregarding for the moment thed admixture, we
see in panel~a! of Fig. 2 that the WF 1, withG1 symmetry,
displays clearly the shape of a nonsymmetricpz orbital, with
its center shifted from the atomic site along the@111# direc-
tion (pz-s mixing!, as also indicated in Table II. The thre
other WF’s are equivalent to each other under the operat
of C3v ~they have the same spread!, and their centers are
located much closer to the cubic axes than to the diagon
This can be explained by considering the interaction with
3d orbitals of Mn2: all these WF’s display a substantia
bonding 3d contribution from the three neighboring unocc
pied Mn2 sites. As the first-neighbor shell of Mn sites is a
octahedron centered on each O, the above interaction fa
the orientation of the equivalent WF’s 2, 3, and 4 along cu
axes. We display in panel~b! of Fig. 2 the WF 2 whose
center is close to the@100# axis. The sum of WF center
given in Table II is a measure of the trigonal distortion of t
sp3-like orbitals, since it would be vanishing in a perfe
cubic environment. This configuration of the converg
WF’s justifies also our choice of trial orbitals:px , py , andpz
orbitals are already good guesses of final WF’s 2, 3, and
During the iterations, most of the effort is devoted to buil
ing up WF 1~thepz–s hybrid oriented along@111#!. We note
also in Fig. 2 small features on the neighboring Mn1 sites.
They correspond to a weak bonding contribution from un
cupied states on these sites.

We consider next the five Mn1 3d Wannier functions.
They are exactly centered at the Mn1 site and their spread
do not display any well-defined symmetry. When conv
gence of O 2s/2p Wannier functions is practically achieved
further iterations of the localization process have the o

FIG. 2. LSD Wannier functions of AFM MnO corresponding
the whole spin-up valence–band complex~13 bands!. ~a! The 2s/2p
WF of O1 with center along the@111# direction;~b! one of the three
equivalent O1 WF’s, with center close to the@100# axis. The Mn1 ,
Mn2, and O1,2 sites are denoted by large black, large gray, and sm
white spheres, respectively. Light gray and dark gray colors indic
the positive and negative amplitudes of the WF contours.
2-5
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effect of modifying slightly~essentially by amounts compa
rable to the numerical noise! the individual spreads of the
five Mn1 3d WF’s, while their total spread remains un
changed. These five WF’s are not uniquely defined by
criterion of maximal localization. In fact, any set of WF
obtained by applying a unitary transformation to the origin
set will in general have different individual spreads, but t
same value of the total spread. Since it is advisable that
final WF’s display explicitly as much symmetry as possib
we exploit this nonuniqueness and perform a symmetry
duction of the fivefold representation of the Mn1 3d WF’s,
which decomposes intoG1

112G3
1 according toD3d symme-

try.
We note that the Hermitian operatorr 2, which appears in

the localization functional Eq.~2!, has the full rotational
symmetry, and therefore its matrix representation^r 2&n8n

5^wn80ur 2uwn0& belongs to theG1
1 representation ofD3d .

These matrix elements can be calculated through a sim
generalization of Eq.~23! of Ref. 3, and are given by

^wn80ur 2uwn0&5
1

N (
k,b

wb@2dn8n2Mn8n
(k,b)

2Mnn8
(k,b)* #.

~6!

We choose the five new WF’s as the linear combinations
the original set that diagonalize ther 2 matrix, Eq.~6!. We get
in this way an extra unitary transformation that allows us
update the matricesU (k). The resulting WF’s, which display
the expected (G1

112G3
1) symmetry, are indicated with th

header ‘‘s-LSD’’ in Table III, and are shown in Fig. 3. W
note that an arbitrariness~up to a 232 unitary transforma-
tion! remains in the definition of the partners in the twoG3

1

representations. Figure 3 shows that the WF’s 9–13 are
sentially atomic orbitals modified by theD3d crystal field.

The picture above depicting the whole set of WF’s
AFM MnO has been confirmed by similar calculations p
formed for a hypothetical FM MnO crystal. In this case, t
symmetry is cubic~space groupOh

5!, and the majority-spin
channel contains 18 valence states~O 2s, O 2p, and Mn
3d), while the minority-spin channel has 8 valence states~O
2s, O 2p). As in AFM MnO, the Mn 3d WF’s are found to
be essentially atomic orbitals. By contrast, the O 2s/2p WF’s
in both chanels are here undistortedsp3 hybrids~see Appen-
dix!. In the minority-spin channel,both lobes of each hybrid
display a substantial bonding 3d contribution from the three
neighboring unoccupied Mn sites, while these features
absent in the majority-spin channel~occupied Mn sites!. The
sp3-like oxygen WF’s, with the center along the@111# direc-
tion, are shown in Fig. 4 for both spin channels.

The covalent interaction in AFM MnO between O an
Mn2 3d orbitals, clearly singled out in Fig. 2 for the case
the spin-up channel~we remind the reader that correspon
ing results for the spin-down case are obtained by rever
Mn1 and Mn2), is the fingerprint of superexchange in a on
electron picture. The superexchange mechanism resul
fact from indirect many-body interactions, involving met
atoms~here Mn1 and Mn2) with an intervening oxygen. The
shared covalency of nearest-neighbor pairs of magnetic
leads to an antiferromagnetic alignment of their moments
18442
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a matter of fact, supposing, e.g., a spin-up WF on the M1
site, the neighboring Mn WF has the choice between t
spin orientations, corresponding to a FM or an AFM ord
ing. The FM choice will be energetically less favorable, d
to the required orthogonalization to the Mn1 WF, while in the
AFM alignment, the spin part of the wave function accoun
for this necessary orthogonalization. The textbook expla
tion above of AFM ordering can be discussed in light of o

FIG. 3. Same as Fig. 2, but for the five Mn1 3d WF’s within
LSD, after diagonalization of̂r 2&n8n . The WF’s~a! and~b!, as well
as~c! and~d!, are partners of aG3

1 representation ofD3d , while ~e!
belongs toG1

1 .

FIG. 4. LSD Wannier functions of FM MnO. Thesp3-like O
WF with the center along the@111# direction for~a! majority and~b!
minority spin. Notations are the same as in Fig. 2.
2-6
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calculations, showing a real-space representation of the W
for an AFM system. The maximally localized WF’s bring o
the relevant physical information, namely the covalent int
action with empty Mn 3d states. We also notice that the F
alignment, on the other hand, is favored by kinetic ener
This can be seen in Figs. 2 and 4 from the larger numbe
covalent interactions~6 instead of 3 in AFM case! associated
with the O sp3-like WF’s, which leads eventually to a
broader bandwidth.

It is useful at this point to contrast this rather simple on
electron picture of AFM MnO, obtained in real space usi
the localized Wannier-function description, with the more e
tangled picture based on the energy band structure of
extended Bloch-function description. For this purpose,
show in the left panel of Fig. 5 the spin-up band structure
MnO along theX-G-Z directions, calculated within the LSD
scheme. Starting from the lowest energies, we find first aG1

1

and aG2
2 state atk50. They arise fromG1 O 2s orbitals on

the two O sites~related by inversion symmetry!, forming
symmetric (G1

1) and antisymmetric (G2
2) combinations, re-

spectively. The primary origin of the next composite gro
of 6 bands is O 2p triplets on the two O sites, which are sp
into a G1 singlet and aG3 doublet by trigonalC3v site sym-
metry. They lead to one set of symmetric combinations (G1

1 ,
G3

1), and one set of antisymmetric combinations (G2
2 , G3

2)
between the two sites. Next, the occupiedt2g orbitals of the
Mn1 atom are split atG into a doublet plus a singlet (G3

1 ,
G1

1), while the eg orbitals remain a doublet (G3
1). These

Mn1 3d orbitals give rise to the uppermost occupied co
posite group of five bands. Clearly, states of the Mn1 3d and
O 2p complexes that belong to the sameG1

1 ~or G3
1) repre-

sentation interact with each other, so that eventually both
G1

1(Mn1 d), G1
1(O p) andG3

1(Mn1 d), G3
1(O p) consist

of bonding and antibonding partners of Mn1 3d/O 2p hy-
brids. A mirror picture~relative to Fermi energy! of the de-

FIG. 5. Energy bands of antiferromagnetic MnO calcula
along theX-G-Z lines of the rhombohedral magnetic zone using~a!
the local-spin-density approximation and~b! the LSD1U scheme.
Shaded areas correspond to the fundamental gap. Irreducible r
sentations atG ~Bethe notation! are also given on the left and righ
of the energy axis, for states of primary Mn and O origin, resp
tively. Bands corresponding to states with high probability in t
Mn atomic spheres are drawn with dashed lines.
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scription above applies to the conduction bands that origin
from the Mn2 3d orbitals, if we exclude the lowest conduc
tion band atG, which is free-electron-like, has mostly M
4s/O 3s character, and is not relevant to the present disc
sion. The description above would leave completely em
the spin-up 3d states of the Mn2 atom. However, a covalen
interaction ~clearly depicted in Fig. 2 within the Wannier
function description! between O 2p and the unoccupied
Mn2 3d states takes place, and some amount of spin
charge appears at the Mn2 sites, which would be totally
empty in a completely ionic picture. For instance, the high
antibondingG3

1 valence state atG has 60%d occupancy in
the Mn1 sphere, 7%p occupancy in each of the two O
spheres, and 14%d occupancy in the Mn2 sphere.

With the above results in mind, it is instructive to inve
tigate WF’s within other one-electron schemes, leading
different degrees of wave-function localization, covalent
teraction, and magnetic moments. Data corresponding to
LSD1U scheme are presented in Tables II and III for t
spin–up channel. Values for the Mn1 3d WF’s are those
obtained after diagonalization of̂r 2&n8n . All individual
spreads, as well as the total spread~whose value is
8.083 Å2), are smaller than those in the LSD case: the
2s/2p and Mn 3d Wannier functions are more localized b
9% and 22%, respectively, and this is consistent with
narrower valence bandwidth. This property appears also
Fig. 6, where we show the LSD1 U result for the WF 2
derived from O 2s/2p states. This LSD1U orbital is similar
to the corresponding one calculated within LSD, and d
played in Fig. 2~b!. The most noticeable difference appea
in the weaker covalent interaction between O and
Mn2 3d orbitals. This is clearly visible in the right panel o
Fig. 6, where we display thed-like differential charge density
(rLSD1U2rLSD) associated with this particular oxygen W
The five Mn1 3d WF’s, obtained within LSD1U, are very
similar to the LSD ones, and are essentially atomic orbit
modified by the crystal field.

The more localized character of all WF’s within th
LSD1U scheme, together with the weaker covalent inter
tion between O and Mn2 3d orbitals, is the fingerprint in the
Wannier-function description of the larger on-site interacti
U of cation 3d states. It is worth realizing that this simpl
trend is more easily detectable in terms of Wannier functio

re-

-

FIG. 6. ~a! The 2s/2p WF of O1 as in Fig. 2~b!, but calculated
within the LSD1U scheme;~b! charge-density difference (LSD
1U minus LSD! corresponding to the WF of panel~a!. Light gray
~a ‘‘1’’ sign has been added for clarity! and dark gray colors indi-
cate positive and negative contour values, respectively.
2-7
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than Bloch functions. To this end, we show in the right pa
of Fig. 5 the LSD1 U band structure of MnO. It differs in
several respects from the LSD one. The energy gap~2.0 eV!,
though still smaller than the experimental one~3.8–4.2 eV!,
is closer to it than the LSD value~0.8 eV!. The energy sepa
ration between occupied and emptyd states, which is due to
the on-site interactionU between cation 3d states, has also
increased. Furthermore, the three Mn1 3d bands corre-
sponding to the lowerG3

1 andG1
1 states (t2g) no longer form

a composite group of bands by themselves, but rather
with the O 2p complex. This results in a narrowing of th
valence-band width~6.3 eV against 7.2 eV in LSD!.

The distinct features of the WF’s computed within LS
and LSD1U can be used for discussing the behavior of
Born dynamical charge tensorZ* within these different
many-body approximations. In fact, asZ* can be defined in
terms of the relative displacement of WF centers,21 it carries
along relevant information. In particular, ap-d interaction
between valence and conduction states in mixed io
covalent materials22 leads to anomalousZ* , while atomiclike
occupied WF’s correspond to a nominal value. Therefore
MnO, one expects smalleruZ* u ~i.e., closer to 2, its nomina
value! within the LSD1U scheme, to which correspon
more localized WF’s than within LSD. We performed th
calculation of the@111# component of this tensor, using th
WF description, and obtained within LSD the valueuZi* u
52.36, which is consistent with the one obtained previous6

using the Berry phase approach. The LSD1U scheme, on
the other hand, gives as expected a smaller valueuZi* u
52.26. These results relate the behavior of two import
physical quantities~the superexchange energy andZ* ) to the
same information contained in the AFM MnO WF’s, name
the magnitude of their amplitudes on unoccupied Mn2 sites
in the different approximations.

IV. CONCLUSION

We have used the maximum localization criterion for co
structing Wannier functions of AFM MnO within both LSD
and LSD1U schemes. This is the first application of th
method to a magnetic low-symmetry system, with a partia
filled d band. The LSD1U approach has been consider
here, as it improves the LSD description of the ground-s
properties of strongly correlated materials. The Wann
function description, which can be viewed as a general
tion to extended systems of the localized molecular-orb
description of molecules, provides in the case of MnO
simple picture complementary to the Bloch-function one.
obtain two distinct groups of WF’s:~i! the five Mn 3d WF’s
centered on the Mn1 site, which are atomic orbitals modifie
by the crystal field;~ii ! the four trigonally distortedsp3 WF’s
associated with each of the O1 and O2 sites, which are not
centered on these sites. The latter display a substantial c
lent bonding with 3d states on Mn2 sites, which is consisten
with the AFM ordering of this material. Concerning the M
WF’s, they are not uniquely defined by the criterion of ma
mal localization. We have exploited this feature to obta
symmetrized maximally localized WF’s. We impose this fu
ther condition by diagonalization of ther 2 operator.
18442
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APPENDIX: MAXIMALLY LOCALIZED WANNIER
FUNCTIONS FROM ONE s-LIKE AND THREE p-LIKE

ORBITALS FOR CUBIC SITE SYMMETRY

We consider the four-dimensional Hilbert spaceH4
spanned by four orthonormal localized basis functionsuf1&,
uf2&, uf3&, anduf4&, centered on a given site~taken here as
the origin! with cubic point-group symmetry (T, Th , O, Td ,
or Oh). uf1& is the basis function of a representationG1 ~for
T, O, andTd) or G1

1 ~for Th andOh). uf2&, uf3&, anduf4&
are the basis functions of a threefold representationG4 ~for T
and O), G5 (Td), G4

1 (Th), or G4
2 (Oh). More precisely,

uf2&5ufx& P x row of the threefold representation, an
uf3&5C3

21ufx&, uf4&5C3ufx&, whereC3 is the rotation by
2p/3 around the@111# axis. We consider realuf i& func-
tions, as the maximally localized WF’s turn out to be re
apart from an arbitrary overall phase factor.3 Finally, we sup-
pose that theuf i& ( i 51, . . . ,4) aresufficiently localized so
that ^f i ur uf j& and ^f i ur 2uf j& exist and are finite.

We demonstrate below that minimizing withinH4 the lo-
calization functional, Eq.~2!, leads tosp3-like Wannier func-
tions, as opposed to the original atomiclikeuf i& functions.
The solution is unique and corresponds to one of the
tetrahedra defined by the cubic point-symmetry group if
latter isT or Td . For the higher symmetry groupsTh , O, and
Oh , maximal localization leads to an infinity ofsp3-like
solutions constructed fromuf1& and unitary transformed
threefold functionsuf2&, uf3&, uf4& according to any of the
333 orthogonal matricesD(1)(a,b,g) representing a rota
tion of the Cartesian coordinates of a vector.

As the operatorr 2 belongs to the identity representatio
it is diagonal in theuf i& basis, and we have

^f i ur 2uf i&5~Vs Vp Vp Vp!, ~A1!

where cubic symmetry has been taken into account. S
larly, writing r5xi1yj1zk and using projection operators
we find after some algebra

^f i ur uf j&5S 0 l i l j lk

l i 0 dk d j

l j dk 0 d i

lk d j d i 0

D , ~A2!

with l5^fsujufj&, where j5x,y,z, and d5^fxuyufz&
5^fyuzufx&5^fzuxufy&. The phase arbitrariness of the o
bitals allows us to setl>0. We note that symmetry require
d50 in the case ofTh , O, or Oh . The total spread of the
original atomiclikeuf i& functions is
2-8
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Vf5(
i

@^f i ur 2uf i&2u^f i ur uf i&u2#5Vs13Vp .

~A3!

We consider now the four orbitalsuc i& obtained from the
uf j& by a general orthogonal transformationO, given explic-
itly by

uc i&5(
j

Oi j uf j& ~ i , j 51, . . . ,4!. ~A4!

There are 6 independent matrix elements, and 10 ortho
mality conditions for columns or rows. Using Eqs.~A1! and
~A4! and the orthonormality conditions, we obtain

(
i

^c i ur 2uc i&5(
i

@Oi1
2 Vs1~Oi2

2 1Oi3
2 1Oi4

2 !Vp#

5(
i

@Oi1
2 Vs1Vp~12Oi1

2 !#5Vs13Vp ,

~A5!

which verifies the trace invariance property of Eq.~A1! un-
der orthogonal transformations, and gives for the total spr
Vc of the functions defined by~A4! the inequality

Vc5(
i

^c i ur 2uc i&2(
i

u^c i ur uc i&u2

5Vs13Vp2(
i

u^c i ur uc i&u2

<Vs13Vp5Vf . ~A6!
o

18442
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Therefore, the atomiclikeuf i& functions correspond to the
maximum value of the spread, and the problem of the to
spread minimization reduces to minimizing the second te
2( i u^c i ur uc i&u2 of the localization functional, which can b
evaluated using Eqs.~A2! and ~A4!.

We consider next the two particular orthogonal transf
mations Õ and Õ8 of the uf i& corresponding to the two
possible choices for the foursp3 hybrid orbitals uc̃ i& and

uc̃ i8& ~written together belowuc̃ i
(8)&), and given explicitly by

uc̃111
(8) &5

1

2
~ uf1&6uf2&6uf3&6uf4&),

uc̃11̄1̄
(8)

&5
1

2
~ uf1&6uf2&7uf3&7uf4&), ~A7!

uc̃ 1̄11̄
(8)

&5
1

2
~ uf1&7uf2&6uf3&7uf4&),

uc̃ 1̄1̄1
(8)

&5
1

2
~ uf1&7uf2&7uf3&6uf4&),

wherei 51, . . . ,45(111), . . . ,(1̄1̄1). Using theÕ transfor-
mation and Eq.~A2!, we get for the^c̃ i ur uc̃ j& matrix ele-
ments
1

2 S ~l1d!~ i1 j1k! ~l2d!i ~l2d!j ~l2d!k

~l2d!i ~l1d!~ i2 j2k! 2~l2d!k 2~l2d!j

~l2d!j 2~l2d!k ~l1d!~2 i1 j2k! 2~l2d!i

~l2d!k 2~l2d!j 2~l2d!i ~l1d!~2 i2 j1k!

D . ~A8!
he
.

We note that taking theO8̃ transformation corresponds t
changingl into 2l in Eq. ~A8! for the ^c̃ i8ur uc̃ j8& matrix
elements. Using this latter equation, together with Eq.~A6!,
we obtain the total spreads of theuc̃ i& and uc̃ i8& WF’s,

Vc̃5(
i

@^c̃ i ur 2uc̃ i&2u^c̃ i ur uc̃ i&u2#

5Vs13Vp23~d1l!25Vf23~d1l!2<Vf

~A9!

and
Vc̃85Vf23~d2l!2<Vf . ~A10!

Two cases have to be considered according asd is zero
~point groupsTh , O, Oh) or not ~point groupsT andTd).

If d50, the two spreadsVc̃ and Vc̃8 are both equal to
Vf23l2. We demonstrate first that this latter value is t
minimum of the spread, Eq.~A6!. To this end, using Eqs
~A2! and ~A4!, and the orthonormality conditions( jOi j

2 51
and( iOi1

2 51, we are led to minimizing

Vc5Vf24l2(
i

Oi1
2 ~Oi2

2 1Oi3
2 1Oi4

2 !

5Vf24l214l2(
i

Oi1
4 , ~A11!
2-9
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with the constraint

C5(
i

Oi1
2 2150. ~A12!

The conditions for an extremum ofVc , introducing the La-
grangian multiplierL are

]Vc

]Oi1
1L

]C

]Oi1
516l2Oi1

3 12LOi150, ~A13!

from which we get

O11
2 5O21

2 5O31
2 5O41

2 5
1

4
, ~A14!

and the result

minVc5Vf23l25Vc̃[Vc̃8<Vf . ~A15!

We demonstrate next that in addition toÕ andO8̃, there is in
fact aninfinity of orthogonal transformations producinguc i&
orbitals with this same minimum spread value. For this p
pose, we introduce the operatorR(a,b,g) corresponding to
a geometrical rotation specified by its Euler angles, and
three-dimensional unitary representationD (1)(a,b,g)mm8 ,
whose basis functions are the spherical harmonicsY1m , with
m51,0,21. Consistently with our choice of the basis fun
tions uf2&, uf3&, and uf4&, we consider instead the equiva
lent, real orthogonal representationD (1)(a,b,g)jj8 with
j,j85x,y,z, which is the usual transformation of the Cart
sian coordinates of a vector. We then build from this mat
the following orthogonal transformation acting in the fou
dimensional Hilbert spaceH4,

D~a,b,g!5S 1 0 0 0

0

0

0

D (1)~a,b,g!jj8D . ~A16!
h
,

h

c

184422
-

s

We write uĉ i&5(kÕik( jD(a,b,g)k juf j&, and get after some
algebra, using Eqs.~A2! and ~A4!,

Vĉ[Vc̃5Vf23l2 ;a,b,g. ~A17!

It is important to remember that theuf i& are basis functions
of irreducible representations of a cubic group, andnot of the
full rotation group. Therefore, applying the transformati
~A16! on the original basis functionsuf i& does not result in
rotatedf i(r ) functions, i.e.,f i„R

21(a,b,g)r …, but in linear
combinations of the original basis functions, defining t
same Hilbert spaceH4, and carrying the same chemical in
formation as the original functions.

WhendÞ0 ~case ofT andTd), the two transformationsÕ
and Õ8 produceuc̃ i& and uc̃ i8& orbitals with different total
spreads

Vc̃,Vc̃8 if d.0 ~ld>0!

~A18!
Vc̃.Vc̃8 if d,0 ~ld<0!.

We prove finally thatVc̃ for d.0 ~or Vc̃8 for d,0) is a
local minimum of the total spread. To this end, we consi
an infinitesimal orthogonal transformation of theuc̃ i& ~or
uc̃ i8&)

O~e!5I 1eA1
1

2
e2A21O~e3!, ~A19!

where A is an antisymmetrical operator defined by 6 re
parameters. Using Eq.~A8! and applying Eq.~A19! to the
sets ofsp3 hybrid orbitalsuc̃ i& and uc̃ i8&, we obtain for the
infinitesimal variations of the spreads, up to second-or
terms in e, positive semi-definite quadratic forms in th
parameters of theA operator. Hence the correction t
Vc̃ (Vc̃8) induced by the infinitesimal transformation, a
non-negative. The spreadVc̃ (Vc̃8) therefore correspond
for d.0 (d,0) to a local minimum of the localization
functional.
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