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Dynamical coherent-potential approximation to the magnetism in a correlated electron system
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A dynamical coherent-potential approximation for correlated electron systems has been developed on the
basis of a functional integral method and the harmonic approximation that neglects the mode-mode couplings
between dynamical potentials. Within the single-site approximation, the theory becomes exact in the high-
temperature limit, reproduces the results of the second-order perturbation theory for small Coulomb interaction,
and takes into account the terms that are needed to describe the strongly correlated limit. The theory interpo-
lates between the weak Coulomb interaction limit and the atomic limit. An approximation scheme has been
developed to implement the numerical calculations. The model calculations have been performed for the
electron numben=1.44 (bcc andn=1.80(fcc). In the case of the former, the magnetization vs temperature
curve and the Curie-Weiss susceptibility are obtained. It is found that the Curie temperature is reduced by a
factor of 2 due to dynamical effects. In the case of the latter, the dynamical effects are found to make the
ferromagnetism unstable. In both cases a many-body satellite peak and a band narrowing are found in the
paramagnetic density of states for the single-particle excitation energy.
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[. INTRODUCTION were emphasized to be crucial for the stability of ferromag-
netism by Gutzwiller, Hubbard® and Kanamort® Kake-

A theory describing the electron correlations from a weakhashi and Fuld&'~*®therefore, developed a variational ap-
Coulomb interaction to a strong one has intrigued us for groach (VA) to the electron correlations at finite
long time because of its basic importance in solid-state physemperatures. The theory adiabatically takes into account the
ics, as well as our basic interest for a unified understandingutzwiller-type local electron correlatiolfsthat certainly
of a variety of properties of materials. In the theory of mag-persist over the characteristic temperature range of magne-
netism, such an interpolation theory has been attempted tiism. They showed a large reduction B (by a factor of 3
explain the magnetic properties of transition metals and alin case of Fgand strong suppression of charge fluctuation
loys showing the localized as well as itinerant electronaboveT.. Hasegaw® developed a similar theory at finite
behaviors: For example, the noninteger ground-state magnetemperatures using the slave-boson functional integral
tization (in units of the Bohr magnetorand the large Som- technique'® Although the Nel temperatures calculated from
merfeld coefficienty in Fe, Co, Ni have been explained by the VA and the slave boson functional integral method have
the band model, while their reduced magnetization curvesecently been verified to be reasonable for the half-filled
and the Stoner-Wohlfarth ratidge., the ratios of the effec- band by means of the high-temperature expansion
tive Bohr magneton number to the ground-state magnetizatechniqué’ and the other alternative theori¥sthe entropy
tion) are close to those expected from the Heisenberg modein the static approximation remains unimproved because

A theory that incorporates the distinct features mentionedhese theories adiabatically take into account the correlation
above was first proposed by Cyain the basis of the func- energy at finite temperatures.
tional integral methott* and the narrowband modef. He Dynamical effects have to be directly taken into account
showed that the functional integral method, in which the in-to go beyond the adiabatic approximation. We proposed such
teracting Hamiltonian is transformed into one-electrona theory called the dynamical CPAThe theory takes into
Hamiltonian with time-dependent random fictitious fields, account all the dynamical effects within the single-site ap-
can describe both localized and itinerant features because pfoximation and chooses the best surrounding medium by
its interpolating character. Hubbdrénd Hasegawainde-  using the CPA. Applying the Monte Carlo sampling tech-
pendently established the single-site spin fluctuation theorpique, we obtained reasonable amplitudes of local moments,
adopting the coherent-potential approximaliéBPA) in the  the satellite structure in the single-particle excitation spectra,
functional integral method. The theory explained qualita-and the Fermi-liquid-like momentum distribution at finite
tively or semiquantitatively the magnetization vs temperaturgemperatures. Although recent developments of the Monte
curves, the Curie temperaturekd), the Curie-Weiss suscep- Carlo method and the other computational technitfliesve
tibilities as well as the large specific heatsTatin transition  allowed us to calculate various physical quantities accurately,
metals and alloys, assuming phenomenological effectivéhere is still difficulty in calculating magnetic properties at
Coulomb integrals. low temperatures, including the Curie temperature.

The theories mentioned above are based on the static ap- We propose in the present paper an approximate, but more
proximation in the functional integral method, in which the analytic theory of dynamical CPA adopting the harmonic ap-
time dependence of the field variables is neglected. The statgroximation (HA) to the functional integral technique. The
approximation reduces to the Hartree-Fock one at the groundA, which was proposed by Amit and Bendérand Amit
state. It neglects the ground-state electron correlations thaind Keiter?? is the neglect of the mode-mode couplings be-
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tween dynamical potentials. In spite of its simplicity, the HA Il. DYNAMICAL CPA
holds the following features:
(1) the zeroth harmonic approximation is the static ap- We adopt here a narrowband model Hamiltonian with a
proximation that interpolates between the weak and strongingle orbital, which is given by
Coulomb interaction limits and has been applied to various
problems>-2¢ )
(2) The approximation is accurate up to the second order H=2> (ef—hio)ni,+ 2 tjala,+> Unin.
in the Coulomb interactiodJ when the free energy is ex- " e ' 1)
panded with respect to.

. (3) The approximation quantitatively describes the KondoHereeo, h, t;, andU; denote the atomic energy level, the
limit when it is applied to the Anderson modél. local ' t'] field. the t for int | bet itasd
(4) The approximation does not depend on the amplitudeoca magnetic fied, the transter integral be wesn Sias
of spin fluctuations, therefore one may expect that the HA: and the_ C°“'°'_””'_° |r_1tegral on snt,erespectlvelyai(,(a_i(,) IS
describes large dynamical spin fluctuations as well as smaH1e cregtlpr(annlhnanqrr) opgrator for an electron with spin
ones. o on sitei, andn;,=a;,a;, is the number operator for the
These features indicate that the HA is one of the suitabl&l€ctron. _ ,
approximations for constructing a dynamical interpolation M the functional integral method, the free energyf the
theory. interacting HamiltonianH is transformed into that of the
In the following section, we review the dynamical CPA. one-electron HamiltoniarH(7,&,%) with time-dependent
Applying the functional integral method, we express the fredictitious random field§¢;(7), ;(7)} acting on each site, by
energy for interacting electrons by means of a time-using the Hubbard-Stratonovich transformatféA’
dependent one-electron Hamiltonian with random spin and
charge fictitious fields. We then introduce the coherent po- N
tential (i.e., the effective medium and expand the scattering g 87= f [H SE 87 )
potential in the effective medium with respect to the site. i=1
Neglecting the intersite interactions and choosing the best 1 8
effective medium, we reach the free energy of the dynamical Xex[{ -— E f drU[7(1)2+&(D?]|, (2
CPA. In the present paper, we use the free energy that is 45 Jo
expressed by the effective potential projected onto the static-
field variables. We derive it in the remaining part of Sec. Il. 1
We develop 'Fhe analytic the_ory of the_ dyljam|cal CPA in H(T,§,77)=E (E?_M_hngr Einm(T)
Sec. Il A adopting the harmonic approximation. Integrating jo
the dynamical part over all the finite frequency components 1
of the field variables, we derive the analytic expression of the - §Uj§j(7)0) Njo(7)+ E tijaiT(r( 7)aj,(7).
effective potential, from which we obtain the expressions of o
various thermodynamic quantities. To implement the numeri- 3)
cal calculations, we need further approximations to the dy-

namical potential. We propose the asymptotic approximatiorlL'ere we adopted the two-field method introducing the spin

in Sec. Il B, which greatly reduces the number of terms t0nd char " i :
SIS ge auxiliary fictitious fieldg£;(7)} and {#;(7)}.
be calculated. The approximation is an approach from th?éfi denotes the functional integral over the imaginary time

ls_tff?tn?t Coul?mb-|nieract|ontrl:m|t ork t_h(ta hlgth-temp_eratureT that varies from 0 tg8, B being the inverse temperature
ImiL. TL1S not easy 1o cover the weak-interaction région Us-y /v - s the number of lattice pointslin the trace is the

?ng the agymptotic ap_proximation. We', th(_arefo_re, Propose af} o ordered product. The operators in the time-dependent
interpolation scheme in Sec. Il C, which is suitable for bOthHamiItonian (3) are given in the interaction representation

the weak and the strong Coulomb interaction limits. : . : s
. . with r he noninteracting Hamiltonia
We present in Sec. IV the numerical examples for the bcc_t espect to the noninteracting - Hamiltoniaii,

model band with the electron number=1.44 (=7.2/5) _Ei.’j"’t”ar”aj"' Furthermorey. denotes the chemical po-
: . tential for electrons.

which we call Fe, and for the fcc model band witkr 1.80 The Fourier representation of the partition functi@ is

(=9.0/5) which we call Ni. We will demonstrate that the _. b

dynamical effects reduce the Curie temperature by a factor gi'ven by

2 in the case of Fe, while the dynamical effects make the

ferromagnetism unstable in the case of Ni. The susceptibility _gF N

and amplitude of local moment are also calculated there, and e =f .Hl 6&i 67

are compared with those of the static approximation as well

as the previous results of calculations based on the VA. Cal-

culated single-particle excitation spectra in the paramagnetic ~ E[£,7]=— B8 tInTr(e #Ho)— g7 Trin(1-vg)

state show a many-body satellite peak and a narrowing of the

main band for both cases. A summary and the discussions on + 1 > Ui a2+ 1&11D (5)

the HA are given in Sec. V. e o

B
Tr( Texp{ — fo H(r, & n)dr

e BEL&EW] (4
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()it ojmo =V i @ =1 @) 8 Sy Here tf)) means the trace on sitésandj. Note that their
0 interaction strength is determined by the single-titeatrix
=[(& —u—hio)oim defined by

+3Ui(im 1—m— & 1-m0) 180501 - (6)

Here the Fourier representation of the functional integral is , i i
expressed as The diagonal coherent Green functibg, (i w) and the off-

diagonal ond=/; (iw,) in Eqs.(10)—(13) are defined, respec-

ijo

t=(1-6v,F;)) tov;. (13)

tively, by
f 0§ om
Fio(io)=(g" = 2)idig (14)
[ [BY; /BU; = BYU; L, BU;
_J Edgio Edmo Eﬁd é”ﬁd it |- Fio(io)=(0" =)0 .(1-8)). (15
() The dynamical CPA neglects the intersite dynamical inter-

The variablesé; () in Egs. (5)—(7) are thel frequency action energ\AE. The free energy is then given by

components of random spircharge field &(7) [7(7)]. 9
;jenc:_t'es the Green function matrix for the noninteracting sys- Femn=F— > 13—1|nj S5, 577ie—ﬁE(i)[§i 7l (16)
emH,. i

In the effective medium approac¢hwe replace the dy- o o
namical potentialy in Eq. (5) with the diagonal coherent The coherent potentidl;,(iw)) is determined in such a way
potential 3 |,,(i ), which is independent of the field vari- that the effect ofAE becomes as small as possible. This
ables, and expand the remaining part of free energy witlyields the condition
respect to the site.

J’ 5é, 5,7&29—5E(i)[§i 7]

I1 6&54 (th= _ -o0. (17)
| Jafiéﬂie‘BE(')[gi*’?i]

F=F-p 1n J

: (8) The above equation is also written as

xexp{—ﬁ( > EO[&,p]+AE

Here the zeroth-order terd is the coherent part of the free (Giglioy,iw))=Fi,(io), (18)
energy, which does not depend on any dynamical potentials,
Gigliw o) =[(F "= ov) Tigio. (19
T— _p-1 —BHpy_ p—1 _
F==pInTr(e ) =g rin(1 - 2g). © Here(G;,(iw,iw))) at the left-hand sidéhs) is the impu-
The first-order term in Eq(8) consists of the sum of the Iity Green function in the effective medium, which is derived
single-site energie$E()[ &, 7]} that only depend on the from the impurity Hamiltonian in the effective medium de-

dynamical potential on the same site, ined by*
EVL& ,7i]=— B~ rIn(1- 6v;F)) HO(n)=H(n)+Uin;;(1)n; (1)
B
+%E| Ui(|ml?+&11%). (10 _fo dT’; al (NI (r—7)a,(7), (20

Here Sv;=v;—2;, and tr denotes the trace on a site. _ o
The energyAE in Eq. (8) describes the intersite dynami-  H(7)=>, (€ —pm—hjo)n;,( )+ D tjal,(1)ay,(7)
cal correlations. b bhe

~ +E ﬁdT'ajU(T)EJU(T— 7)aj,(71"). (21
AE=—ﬁ‘1Trln<1—tF'>=;)d>i,-[§mi,§mj]+~--. o Jo
L]

(11)  Since(G;,(iw;,iw))) is the temperature Green function for

o ] the impurity Hamiltonian in the effective mediuththe co-
The lowest-order term is given by the RKKY-type pair ener-perent potential; (i w) is the self-energy of the system in

gies®;;[ &7, 7;] that are expressed by the single-site approximation.
B ~ Note that the CPA equatioii8) is also obtained from the
D[ &ni & m]=— B HrDIn(1-TF"). (12 stationary condition
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0F cpa 1 . o 0F cpa 1 . ~
k(1005 (o)) B Fis(iw)—(Gi (iw,iw))]=0. k(o) oS (ion) B <(FU(Iw|) O,(iw))
(22)
5Edyn(§v77)
HereK(,(Iw|)=1—Fm(|w|)725Fm(lw|)/520(|w|) +BK (lw)52 (|w))> =0.
Equation(17) or (18) determines the coherent potential, oV TS ATV T e
therefore, the free energy. The difficulty in the dynamical (30

CPA approach is in calculating the average impurity Gree
function in Eq.(18) as well as the impurity energi10). We
adopted in our previous papérthe Monte Carlo(MC)

r]I'herefore, we obtain the expression of the impurity Green
function in the medium as

method to implement the dynamical CPA. Although it is ex- SEaurl € 7)
act in principle, the MC method needs a large amount of (G, (iw, ,iw|)>:<aa(|)—ﬁ — > -
computing time to obtain quantitative results in particular at Ko(iw) % 4(1w)) eff

low temperatures. We propose in the next section simpler but (31

more analytic method. _ Here (~).s means the classical average with respect to the
Before we proceed to the next step, we rewrite the fregsaciive potentiaE (£, 7) .

energy (16) by means of the effective potential projected The neglect of the dynamical potenti&,(£, ) is called

onto the zero-frequency variablés- o and 7= 7o, the static approximation. In the static approximation, the
present theory reduces to the single-site spin fluctuation
Fron=F—pg-1 f R /@ @ ~ BE(£&,7) theory by Hubbarfland Hasegaw& The static approxima-
CPA ,3 In dg d?’]e . . . . .
A A tion becomes exact in the atomic limit because the charge
(23)  and spin operatorsn{ and m;) commute with the Hamil-
] ~ ) tonian there, and it also becomes exact in the high-
Here we have redefineficps and.# by those per site assum- temperature limit because the time dependence of the field
ing that aII_ the sites are equwalen't to each qthe_r. Moreoveﬂrariablesgi(q-) and 7, () are negligible in the limit. Further-
h_ere _a_nd in the following we omit all the site indices for more, the static approximation yields the Hartree-Fock ap-
simplicity. _ . . proximation at the ground state, which is correct in the weak
The effective potentiaE(¢£,7) consists of the static en- coylomb-interaction limit. In the intermediate region, how-
ergy E(&,7) and the dynamical one. The latter describes alleyer, one has to take into account the dynamical potential

the dynamical effects.

E(&,7)=Es(& 1)+ Eqgy(£,7), (29)

1
Es(&,m)=—B"1r In(1-6voF)+ ZU(772+ &), (25

e‘ﬁEdyn(fﬂ?): DTDl:f |:|1_[ %d2§|%d2nl DTDl
=1
U o
Xex;{—%lzl(hmzﬂfﬂz) ) (26)
D, =det] dim—v (i 0~ i 0y) g, (iwy)]. (27

Here Svgy in Eq. (25 is defined by év,(0)=v,(0)
-3 ,(iw)). The upper bar in Eg26) denotes the Gaussian

average with respect to all the field variables with finite fre-

quenciesv,(iw) in the determinanD, is the dynamical

potential without the zero-frequency part, agjydi w|) is the
static Green function on an impurity site.

V(i) =v,(iw)—v,(0)80, (28)

(i) =[Fy (i) 1=dv,0)] % (29)

The variational principlg22) for the free energy23) is
then written as

Eayn(€,77) in general.

IIl. HARMONIC APPROXIMATION TO DYNAMICAL CPA
A. Harmonic approximation and its thermodynamics

The difficulty in obtaining the dynamical correction origi-
nates in the determinant of the scattering matrix given by Eq.
(27). We expand here the determinant with respect to the

frequency modes of the dynamical potenﬁ@(i w,) as

D0:1+2 (DVU—1)+ Z (DVV’U_DVJ_DV’U+1)

(v,v")

+.., (32

DVU:det[5|m_[l~)()’(in) §|—m,v

+0,(iw-,) 8 —m 10, (iwm], (33

DVV’O': det[ 5Im_ [;o(l wV) 5I7m,v

+0 (10 ,) 8- - ]9, (i0m) —[V(1,) 8 -,

+0,(10_ ) 8 —m - 19, (i 0m) . (34)

The first term in Eq(32) corresponds to the zeroth approxi-
mation (i.e., the static approximationthe second term ex-
presses the independent scattering due to each dynamical po-
tential v,(iw,), and the higher-order terms express the
mode-mode couplings. We neglect here these mode-mode
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coupling terms and only take into account the independergshown numerically that the harmonic approximation quanti-

frequency terms. This is called the
approximatiorf122
The approximation is exactly up to the second ordedin

in the weak Coulomb interaction region.

exq_ﬁEdyn(ga 7])]:1+ Uzgl E%ES}B%— sy (35)

ey 1w < -
Co=5,2, 9ol =1)8o(1). (36)

Here and in the followings, we express, asl for simplic-

ity. In the strong Coulomb interaction region, it has been

1 1
Ayt k(r( V) 1
D (k)= BurlV)
0

harmonic tatively reproduces the Kondo susceptibility obtained by the

renormalization group approachwhen it is applied to the
Anderson modet’ More important is the fact that the ap-
proximation is independent of the strength of the Coulomb
interaction. Therefore, the harmonic approximation is con-
sidered to be suitable for the description of the intermediate
region where a variety of interesting phenomena occur in the
condensed matters.

The determinanD,,, in the harmonic approximation is
written by the product of those of tridiagonal matrices as
follows 2

DVU:DVO'(O)DVO'(]-)'"DVU(V_]-): (37)
0
1
1 1 38
av+ka( V) 1 1
a2v+ko( V)

HereD, (k) is the determinant of the tridiagonal matrix consisting of the Green functions with the frequency renkefimder

the modulusy, anda,.(v) is defined by

amr( V) :;(r( V); (r( - V)a(r( n— V)aa( n) .

(39

Note that according to the Laplace expansion theoej(k) is expressed by the determinants of the submatrices as

(0)

D,,(k)=D®(v,k) DO (- »,k)—

1 1

Am+1)p’ +kol V) 1

DM’ k)=

The determinanD(V'E)(t v,k) is expanded as followssee
Appendix A).

DU+ 1K= 5, (=)0 (11T~ A,
@2)

Here

AS =1, (43)

vko

A(m+2)v’ +kol V)

¢

a,(¥)D (v, kD= v k), (40)
0
1
1 1
Am+3)+ko(v) 1 1 (42)
[
® 1,-2 Ih_1—-2
n*vko I1=2m+1I2:m+1 |n=2+l |1(_V)+ka—(V)
><5|2(tv)+ka(v)'"é|n(¢y)+ka(v), (44)
and
an,(»)=0,(N—)g,(n). (45)

Substituting Eq.(42) for m=0 and 1 into Eq.(40), we
obtain an expression @ ,,(k) with respect to the dynami-
cal potential as follows:
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[e2] ~ ~ I
D=3, o LA ey

Here

BO(k)=1, (47)
2
B‘V'z(k>=<—>'n(ii/;)[ fS&ﬁE (ARKA - ko

A 1 1
+ ak(TAI(mZkaAl(*)l* m— Vko) .

(48)

Therefore, we obtain the expansion formD@f,, from Egs.

(37) and (46) as follows.

e

P

D=2 %(4,8%( aL (,(—V»'(ﬁ) Bly, (49

Bly= X '—'{H Bi‘f(k)} (50
E =1 |£[0 |k|:|

The dynamical potential is obtained by substituting the

first and second terms of E(B2) into Eq. (26).

e PEarléM=11+> (D,,—1)||1+> (D, -
v=1 v=1
+2, 6D, 6D, (52)
v=1

Here 6D,,=D,,—D,,. D,, and D,D,,

obtainD,,=1 and

©

H 2l
I i
_ 2 | ggt
D, D, Z,Ou (2771/) BI)B(). (52)

Therefore, Eq.(51) yields the following expression of the

dynamical potential.

1 o
Egyr( )=~ 5In 1+V§1<DVTDV1—1> . (53

The impurity Green function is obtained from Ed81)
and(53) as

(G, (1,0)y=(G¥ (&, 7.))er, (54)
- &D,D,)
~ v=1 Ko’(l)ézo(l)
GEN(g nH=9,(N+—= . (55

1+ > (DD, —1)
v=1

are calculated
from Eq. (49) by using the Gaussian integrals, so that we

PHYSICAL REVIEW B 65 184420

LLECHN P

2y 8Bl
k()62 (1) 7=, 2771/) (

Tke(1) 0% (1)
(56)

Here G®™(&,7,1) is the effective impurity Green function
projected onto the static field variables.

The first term on the right-hand sidehs) of Eq. (55) is
the static Green function and the second term is the dynami-
cal correction. Note that the second term vanishes inlthe
—0 limit as it should be. Furthermore, it also vanishes in the
atomic limit becauseD,;D,; does not depend ol ,(I)
there.

The CPA equatiori18) is then expressed as

(G (&, 7)) e=F (1), (57)
- p(e)de
Fa(')—fm. (58

Herep(e) is the density of statedOS) in the noninteract-
ing system described byl .

Equations(23), (24), (53), and(57) completely determine
the thermodynamics of the system. The local charge and
magnetic moment are obtained by taking the derivatives,
afcpA/(S’GO and - afCPA/(?h as

(=i et (59

(M) =(&)efr- (60)

The amplitudes of charge and local moments are calculated
from (n)+=2(n;n|) anddFcpa/dU=(nin ),

2 IE gyn
B_U+2<[ U H

(61)

1 1
() =() = 5 {7en 5{Eerrt

2\ 1 2 1 2 2 5Edyn
(m >_<n)+§<77 >eﬁ+§<§ >eﬁ_w_2<{ J L> ﬁ.
(62

Here[ ], means taking the derivative fixing the static po-
tentialv ,(0), and isgiven by

i DVTDVQ}
Pam __ 2 72 : 63
&U . ﬂ o0 o H
1+V§=:l(D,,TD,,l—1)
d(D,;D,)) i o2 i 2IB(|)B(|) 64
T | TE 27y - (69

184420-6
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The entropy is obtained frorB29Fcpal 98 as

_IF ,JE
S—ﬁ @‘F ,8 @ -1

U U
+|nf \/’i—ﬂ_d&\/’i—ﬂ_dn

e~ BEEN~(Eer)

(65)
2(9'7:_
%——ZJ dep(e)[{1—f(e)}in{1—f(e)}
2,(h
+f(e)|nf(e)]+§ jdep(e) In(l_iw|—s)
. P2 (1) 6
(io—e)lio=2,(1)—e]]’
E R
<ﬁ 78] "\ & M=o OF (D] )
+<In 1+ (D,,TD,,l—l))>
v=1 eff
- |oD,D,,
N 1/21 07:3 ®S
. (67

PHYSICAL REVIEW B65 184420

B. Asymptotic approximation

The key term to implement the theoretical framework pre-
sented in the last subsection is the dynamical correction
D,,D,,, which is calculated fronB) [Eq. (50)] or B{}) (k)

[EQ. (48)]. The number of terms iMA{T)_ from which
B{)(k)'s are calculated, however, exponentially increases
with increasingn, as seen from Eq44), which makes the
actual calculations impossible. We, therefore, develop an ap-
proximate calculation scheme in this section.

Note that the determinantD{™(+v,k)} (m=0,1) de-
fined by Eq.(41) have the following recursive relation as is
verified by using Laplace’s expansion theorem.

DO(+v,k)=DV(£1,k)—a., ,(1)DB(£v,k),
(69)

D(V](-)?(i Vlk)z Dsfr)(t Vik)_aZ(i V)+ko'( V)Dg?(i V,k),
(70)

DM (+p,k)
=DM (£ 1,K) = 8my 1y( 1y ko 2)DIFD (£ 1,K).
(71)

The determinanD{™(+v,k) consists of the static Green
functions{g,(1)} with the frequency|!| higher than|mu|.
This means that one may replaB&™(=+ »,k) with an ap-
proximate determinard{™(+ v,k), which becomes exact in
the asymptotically largém| limit.

Here Eg.(66) denotes the contribution from the coherent
self-energy as well as the entropy of noninteracting elec-
trons.f(e) denotes the Fermi distribution function. The first
term in Eq.(67) expresses the contribution from the static  Such an approximate forrﬁ(ﬂ)(i v,K) is obtained as
impurity potential, the second and the third terms are thdollows. The coherent potential (I) reduces to the Hartree-
contributions of the dynamical potential. Note that Fock value(v ,(0))es in the large|l| limit, therefore, the

[¢D,,D,,/dB],s means to take the derivative fixing the fre- static impurity Green function behaves @s(1) ~ 1/iw, for

quencyi w; and the coherent potential,(1). The lasttermin  |arge|||. In this region, we have the following relations
Eq. (65 produces the magnetic entropy when the local mo-

ment is well defined.
The thermodynamic energy is obtained from the relation

DM (+1,k)y=~DM(+ k). (72

9,((1—1)v+k)g, (1 v+k)

F+pB 'Sas B~ ~
~ 50,1 =D+ -G, (lv+k)], (73
(H-uNy== 3 | F(I)+1U[< 2) g ()
- = W5 n eff ™ 11 e - - -
SRR A VAR 5 (1=2)p+KG, (1~ 1) v+ k)G, (1 7+ K)
o |dD,D,, B - ~
2 V; B s ~5 55, L9((1=2)r+K)g,((1=1)r+k)
——}— - . (69 _ B
~ 0, (1= D) v+K)g,(Ir+k)]. (74)

1+, (D,D,,—1)
v=1

eff Successive application of the above relations{§™) }

vko
Here the first term on the rhs is the coherent contribution o¥i€lds the following relations.
the kinetic energy, the second one corresponds to the double
counting term in the Hartree-Fock energy, the last term is the

B -~
) = . : M A ~———g,(mv+k), 75
dynamical correction in the single-site approximation. rke 9o (Mot 79

2miv
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A2Vk0'~ E 27T| go’(mv+ k)ga'((m+ 1)V+ k) (76)
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The asymptotic approximation becomes exact irrespective
of mwhen it is applied to the Anderson model with a wide
conduction band because the relatidnd) and (74) exactly

Repeating the same procedure, we obtain the asymptothwold true for the noninteracting Anderson impurity Green

form DM (= »,k) as follows.

DM (+ v,k>=n§0 ()"0 (1) o(— )AL,

)
~ 1 n.
Ak :m(%) 9o(mvk)

g, (Mm+n—1)p+Kk),
(79

Xg,(m+1)p+Kk)--

- 1 "~
A= | | Bume D010

X9, (M+2)(—v)+K)---g,(M+n)(—v)+KkK).

(79

Here we defined®{",, .= 1. We call the approximatiofv2)
the mth-order asymptotic approximation.

Explicit forms of D{9(+v,k) and D{(+v,k) in the
asymptotic approximation are obtained from E@9)—(71)
and(77). SubstitutingD{®)(+ »,k) andD{Y)(+ »,k) into Eq.
(40), we obtain the asymptotic form d,,(k) and, there-
fore, that ofB{)(k) as follows:

) |
Buk=3 [ (M) BU®K. (80

2Ty

HereB(?(k)=1 andB! (k) for I>0 is given by

-1 |
Bla(=bD(rk)+ >, <—>'-m< m)

2a(l—m)v

(0) (0)
x| (v, k)b{® 3

| —ma

(—v,k)+

XGo(— v+ k)G (KD (v, k)b, 1, (— v,k |.

(81)
The functionsb(®)(+v,k) and b{!)(+ »,k) in the zeroth-

function on the upper complex plafkSuch a dynamical
correction has yielded a reasonable description in the Kondo
limit.?” Therefore, we expect that even the zeroth-order
asymptotic approximation can describe reasonably the physi-
cal properties in the strongly correlated region. In fact, the
Green functiong,(n) is expanded in the atomic region,
where the transfer integrals are small as compared with the
Coulomb interaction, as follows.

~ 1
go(n)=

(83

O s
Here M, is the second moment defined by,
=[€’p(e)de, which is comparable tdN?, W being the
bandwidth for noninteracting system.

The condition that the asymptotic approximation holds
true, therefore, is given bji w,— (v ,(0))et]>>M,. In the
case of the half-filled band, it reduces to

w2+ U2>W? (n>m). (84)

Therefore, one can expect that the asymptotic approximation
is valid for the strong Coulomb interaction regiod;/W

>1 or for the high-temperature regiom/W>1 even ifm

~1. Whenm is increased, Eq(84) is satisfied at smaller
Coulomb interaction or lower temperatures. This means that
the asymptotic approximation is suitable either in the
strongly correlated region or in the high-temperature region.

C. Interpolation theory

The asymptotic approximation to the dynamical potential
is an approach from a lardgé/W or T/W limit. Therefore, it
is not easy to describe the dynamical effects in the region of
small U/W or small T/W. We propose here a simple inter-
polation scheme that is valid in both weak and strong Cou-
lomb interaction limits.

The idea basic to finding such a unified scheme is that
both the dynamical correction in the original harmonic ap-
proximation and that in the asymptotic approximation have
the same form; equation$2) and (82) are expanded in a
series olU in the same way. Only their coefficier{8!/B{)}
are different each other. Because timth asymptotic ap-
proximation is not expected to be valid for small Coulomb

order and the second-order asymptotic approximation argteractionU, we replace the coefficien{é(') A} up to the

presented in Appendix B.

The dynamical correctio ;D in the asymptotic ap-
proximation is given by Eq(52) in which B{") has been

replaced by its asymptotic for() .

(82

« i 2l
|
B =S u2l—| BOBO
D, lzou (2771/) BIBY).

Here B(') is defined by Eq(50) with B(')(k) replaced by
BU(.

2lth order with the original ones,

I £\ 2n
_ |

— 2n (MR
D, D, E U 57y ) BBy

2n
b o ) BOBD. (g9
n=1+1
Here the first few terms dB{") are given as follows:
BV=1, (86)
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B, = 3 I:EO[5,,0—v>6(,<|>+§,,<l+v>*§a<l>*],
(87)
@) 27y 2 ~ - - - -
BI2=| 5| R8 22 0ol = )8u(N[Go(1 ~20)g,(1 1)
+9,(1-)9,(N+9,() g, (1 + )]
r—1

+B(2, (89)

- .Zo [9,(1—)g,(1)]?

We call the approximatior{85) the (2,m) asymptotic

approximation. It should be noted that one can control the

accuracy of the dynamical correction increasing eitheor2
m, or increasing both [2andm within the harmonic approxi-
mation.

In the application of the theory to the magnetism, the spin
fluctuations are more important in most cases. We may ne-

PHYSICAL REVIEW B65 184420

()= (00 & 5 (e ]

aEdyn(g)
+2<{ U } > , (95
vl eff
2\ _ _ 1 2 4 1 2 _ 2 )
<m >_<n> §<n(§) >eﬁ z <§ >eff B_U
IE gyr( £)
_2< an H 96
The entropy derived from Ed89) is given by
_ 2(9;:% Z&Eeﬁ(g) _1
S=p (9,8+ B [ 2
+In f \ /%dg e~ AEei(&) ~(Eerl(E)er)  (97)

glect the thermal charge fluctuations in such a case using thEhe first and second terms at the rhs are given by FGf.

local saddle-point approximation to the static-charge figld
The free energy23) is then given by

~ [BU
Fepa=F— B 1n f %dge—ﬁEeﬁ<f>, (89

Eert(§) =Es(§) + Edyn( §). (90)

Here Eq(£)=Ex(£,7*) and Egyr(€)=Eqn(£,7*) with Eq.
(85). n* is the saddle-point value defined by

1
i7*=n(&)=—= > G n*(&))). (91

B |, o

and(67) with the saddle-point value* . The thermodynamic
energy is given by Eq(68) in which {7?)es—2/8U, the
second term at the rhs, has been replaced-Ky(£)?)s.
All the other expressions are the same as before except that
7 has been replaced by its saddle point vaitfe

In the simplified calculation scheme(é)er and x
=4 §2>eﬁ have to be determined self-consistentl§) we
start from a set of input value&)es, %, and[v,(0)](&
==*x) (i.e.,eg—u+tU[N(=x)Fx0]/2), (2) calculate the
dynamical coherent potential, () solving Eq.(92), (3) un-
der the mediun, ,(I), obtainn(&) solving the saddle-point
equation(91) for each¢, (4) calculate the effective potential
Een(€) [Eq. (90)], (5) determine the chemical potential ac-
cording to Eq.(93), (6) calculate a new set @f¢)qs, X, and
[v,(0)](é==Xx). The steps(1)—(6) are repeated until the
self-consistency is achieved.

Furthermore, we adopt the decoupling approximation to the

CPA equation57) that is correct up to the second moment,

1
2.3

q==

<§>eff

+_
1qx

)[Gfreﬁ)(fyﬂ*(f),|)]g=qx:Fa(|)-
(92)

Herex= (&) , and[ ]¢=qx Means taking the value &t
=gx. Note that the classical averages).i here and in the
followings are taken with respect to the enelgy(£).
The local charge and moment derived from E8p) are
given by
(M=(N(&))er. (93

<m>:<§>eff- (94)

IV. NUMERICAL EXAMPLE

We present in this section the numerical results of our
model calculations obtained by the dynamical CPA. Bearing
in mind Fe and Ni showing both localized and itinerant be-
haviors in their magnetism, we consider here two cagbs:
the electron numben=1.44 (=7.2/5), the Coulomb inter-
action 2J/W=2.289, and the bcc noninteracting DOQ)
n=1.80 (=9.0/5), AJ/W=3.429, and the fcc noninteract-
ing DOS. The same sets of input parameters have been used
in our previous investigations with use of the VAAIl the
numerical calculations have been done on the level of4he
2) asymptotic approximation. The-frequency sum in the
dynamical potential53) has been taken into account up to
Vmax=100, and the sum df} expansion in Eq(85) has been
taken up ton,o=16. The matsubara frequency sums such as
Egs. (25), (68), and (91) show a slow convergence and an
oscillation with increasing the number of terms. We, there-

The expressions of the amplitudes of the charge and locdbre, adopted the random phase method that we deVissd

moment,(61) and(62), are replaced by

Appendix. Q.
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10 T T T T T T T T

n=1.44 (para)

FIG. 1. Calculated densities of statd80S)
of the single-particle excitations in the dynamical
CPA (solid curve and the static approximation
(dashed curvefor the bcc Fe in the paramagnetic
state, which is defined by the electron numher
e =1.44, the Coulomb interactionl®W=2.289,
the temperature ®W=0.0281, and the noninter-
acting density of states shown by the dotted
curve. The bandwidthV is chosen to be 0.45 Ry
for convenience.

DOS (states/ Ry atom)

0.6

Energy (Ry)

Figure 1 shows the average DOS in the paramagnetisuppressed. The static approximation forms the three-peak
state for Fei.e., case(1)]. The single-particle DOS for the structure that is well understood by the simple Stoner model
dynamical CPA was calculated by the Pauemerical ana- and the noninteracting DOS presented in Fig. 1. On the other
lytic continuation>> The DOS in the static approximation hand, the main peak of the upspin DOS in the correlated
show the bonding-antibonding structure and the band broacklectrons is split into two peaks and the weight of the peak
ening due to thermal static spin fluctuations. The dynamicahroundw= —0.45 Ry is enhance(see the dashed curve in
effects suppress such an excess band broadening and creatéig 2). Note that the dynamical effects on the downspin
satellite peak at-0.6 Ry as seen in Fig. 1. The main band band are much less than those for the upspin band. This
around the Fermi level shows the narrowing by 20% when ifeature seems to stabilize the ferromagnetism. The resulting
is compared with the noninteracting DOS. This feature istotal DOS shows a band narrowing by about 10% as com-
also found in the recent ground-state calculations with use gbared with that of the static approximation or the Stoner
the quantum chemical approach and the Mori-Zwanzig promodel, which seems to be consistent with the photoemission
jection techniqué® and is considered to remain even abovedata of Fe*>6

Tc because the related energy scdlés much higher than Various calculated effective potentials of Fe in the para-
Tc, although the satellite peak in the paramagnetic state iagnetic state are presented in Fig. 3. It is remarkable that
not found in Fe experimentalfy. the effective potential with dynamical correlations shows a

In the ferromagnetic state with a large exchange splittingsingle minimum ag =0, while the static potential shows the
the dynamical effects on the DOS become less important adouble minima at= *+0.46ug, because the dynamical po-
shown in Fig. 2, because the electron-hole excitations artential shows a deep minimum §&=0 and saturate af=

7 T T T T T T T

5 n=1.44 (ferro) y

4 FIG. 2. Calculated DOS in the dynamical
CPA for the ferromagnetic Fe at T2W
=0.007 04. Full curve: the total DOS, dashed
curve: the upspin DOS, dotted curve: the down-
spin DOS. The total DOS in the static approxi-
. mation is shown by the thin solid curve.

DOS (states/ Ry atom)

0.6

Energy (Ry)
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0.06 -
n=1.44 (para) )
0.04
FIG. 3. Effective potentials of the paramag-
netic Fe in the dynamical CP&solid curve, the
E 0.02 static approximation(dashed curve and the
o variational approach(VA) (dot-dashed curye
W which are calculated at @W=0.0281, Z/W
N 0 =0.0281, and Z/W=0.009 84, respectively.
The dynamical contributionsEyy, at 2T/W
=0.0281 and Z/W=0.281 are also given by
-0.02 | HA —— A dotted curves. All the curves are shifted so that
?,t,gt'c — they are zero af=0.
AEar (3289
oo b iy (0.281) e 1
-1 0.5 0 0.5 1
€ (U
+. The results qualitatively agree with that of the VA, We have calculated the magnetic moments and suscepti-

which was determined by using the variational principle tobilities for Fe self-consistently at each temperature. The re-
the effective potential and the Gutzwiller-type ground-statesults are presented in Fig. 5. The magnetization in the static
theory. The basic difference between the present theory argpproximation takes the valuey=0.511(=2.56/5) ug at

the VA is that the latter adiabatically takes into account theT=0, and gradually decrease with increasing temperature.
ground-state energy, while the former takes into account th&he calculated Curie temperature i 2/W=0.0253 (T
nonadiabatic effects automatically. In fact, the dynamical po=900 K for W=0.45 Ry). In the dynamical CPA, we ob-
tential in the present theory becomes small when the tentained the ground-state magnetizatiog=0.494 &2.47/5)
perature /W is increased as shown in Fig. 3, and finally by extrapolation to T=0 and the Curie temperature
the effective potential reduces to that of the static approxi2To/W=0.0118 =420 K for W=0.45 Ry), which is
mation in the high-temperature limit. In the ferromagneticsmaller than that of the static approximation by a factor of 2.
state, the effective potential becomes asymmetric due to thEhe VA leads to a smaller ground-state magnetizatign
ferromagnetic molecular field from the surrounding polar-=0.443 (2.215/5)ug and a lower Curie temperature
ized spins, and show a minimum &t 0.49p (see Fig. 4  2T-/W=0.0084(300 K for W=0.45 Ry). The dynamical
Note that the effective potential in the VA has also the sameesult for T, which is much smaller than the experimental
feature, although it has a shallower minimum because of thealue 1040 K’ is attributed to the strong quantum spin fluc-
stronger dynamical correction in the VA. The effective po-tuations in the single-orbital model. The amplitude of local
tential in the static approximation shows a double minimummoments are 0.78z at T=0 for both the static approxima-
structure even in the ferromagnetic state, although it has thigon and the dynamical CPA, and hardly change with varying

minimum até=0.51ug. temperature as shown in Fig. 5.
0.06 . T
A n=1.44 (ferro)
0.04 |
002 F N\ RN
= ST NN FIG. 4. Effective potentials of the ferromag-
N el RS e . ; netic Fe in the dynamical CP#solid curve, the
w IR el o / static approximatioridashed curve and the VA
S T (dot-dashed curye which are calculated at
0.02 | ;o 2T/W=0.00422. The dynamical contribution
Eayn is also given by dotted curve.
A \\\ /
ooa | yte T -
AEdyn -------- S
-0.06 L !
-1 0.5 0 0.5 1

£ (up)
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0.8 T T T T / T 0.0

o e .

0.6 x ! Jo.0

B —— i FIG. 5. Magnetization vs temperature curves,
T the inverse susceptibility curves, and the curves
;if oal Tl NGy doo of amplitude of local moments in the bcc Fe ob-
" T ' tained by the dynamical CP#solid curves$, the

0.3 ] static approximatioridotted curveg and the VA

' (dashed curves respectively. The curves below

02 Y doo 2T/W=0.003 in the dynamical CPA were ob-

' | ' tained by an extrapolation.

o n=1.44 !

I
)
1 % 1 1 1 1

0 0.005 0.01 0.015 0.02 0.025

2T/W

The inverse susceptibilities have been calculated by takand the band narrowin? are reported to dg=—0.46 Ry
ing the derivative §(2h/W)/8(m) numerically. Both the and 25%, respectiveff:*?~4*
static approximation and the dynamical CPA yield the Curie- Calculated effective potentials show a single minimum for
Weiss susceptibility. The calculated effective Bohr magnetorboth static and dynamical cases as shown in Fig. 7. The
numbers defined by~ '=3(T—©)/mZ; are, however, dif- dynamical effects make the effective potential steeper, so
ferent from each othemg;/my=1.75 (static and VA and that the thermal spin fluctuations are suppressed. It should be
1.39 (dynamical CPA. The latter is comparable to the ex- noted that the steeper potential is not obtained simply by
perimental valu& 1.44. adding the dynamical potential to the static result; it is ob-
In the case of N[i.e., the cas€2)], the situation is some- tained by a self-consistent depolarization of medium.
what different from Fe. We did not find the ferromagnetic ~Magnetic moments and susceptibilities for Ni are shown
solution in the present theory; the dynamical effects makén Fig. 8. In the case of the static approximation we obtain
the ferromagnetism unstable. The calculated DOS in the¢he ground-state magnetizationy=0.146 (=0.730/5) g
paramagnetic state are presented in Fig. 6. The thermal statimd the Curie temperatureT2/W=0.0192 (530 K for W
spin fluctuations in the static approximation broaden the=0.35 Ry), as well as the Curie-Weiss susceptibility with
DOS. The dynamical effects create a satellite pealwat the effective Bohr magneton number;/my=3.2. The VA
=—0.5 Ry and shrink the main band by about 15% as comalso yields the ferromagnetism witiny=0.123ug and T¢
pared with that of the noninteracting system. These values-0.0156. However, the dynamical CPA yields the paramag-
are in good agreement with the detailed calculations at theetic state over all temperatures as seen from the temperature
ground staté***~*'The experimental satellite peak position dependence of its inverse susceptibility in Fig. 8. The ampli-

10 n=1.80 (para) _ .

FIG. 6. Calculated densities of statd80S)

4 in the dynamical CPAsolid curve and the static
approximation(dashed curvefor the fcc Ni in
the paramagnetic state, which is defined by
=1.80, U/W=3.429, ZI/'W=0.0362. The non-
interacting density of states shown by the dotted
. curve. The bandwidthV is chosen to be 0.35 Ry
for convenience.

DOS (states/ Ry atom)

0.6

Energy (Ry)
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0.08 T Iy
0.06 | -
0.04 FIG. 7. Effective potentials of the paramag-
5 netic Ni in the dynamical CPAsolid curve and
= the static approximatioidashed curjethat are
o oeer calculated at Z/W=0.0362. The dynamical con-
P tribution Eg4y, at the same temperature, and the
............................ static potential in the ferromagnetic state at
0 2T/W=0.003 62 are also given by dotted curves.
All the curves are shifted so that they are zero at
002 n=1.80 HA —— - ¢=0.
Stat-
0.04 L L
-1 0.5 0 0.5 1

£ (W)

tudes of local moments being extrapolated Te=0 is  to stabilize the magnetic state excessively in the lafdienit
V(m?)(T=0)=0.464ug, which is enhanced by 6% as com- when the electron number deviates from the half-filled. Ni
pared with the static case/,(m2>(T=0)=0.437;LB. might be the case because of largg/2V(=3.429). The
Although it has not been clarified yet quantitatively underHilbert space has to be expanded more carefully in such a
what condition the ferromagnetism is stabilized on the fccstrongly correlated electron systefgee Chap. 5 in Ref. 1,
lattice in the single-band model, the present result of thdor example.
paramagnetism for Ni is quite conceivable because the cal-
culated DOS is consistent with those of the ground-state cal-
culations and because the condition to the ferromagnetism
becomes very severe in general in the low-density We have developed the dynamical CPA to the correlated
region1®1®4°Recent Monte Carlo calculations of the Hub- electron system on the basis of the functional integral
bard model based on the dynamical mean-field tHéalgo  method and the HAharmonic approximation The theory
showed the paramagnetism for=1.8 and the intermediate describes the electron correlations at finite temperatures by
U values when only the nearest-neighbor hoppings are takemeans of the coherent potential put over all the lattice sites
into account on the fcc lattice. In our previous VA calcula- and the dynamical impurity potential embedded in the me-
tions, the local electron correlations were treated by means afium. The latter was treated within the HA that takes into
the local ansat? that describes best the correlations in ratheraccount all the single-mode dynamical scatterings, and the
weak Coulomb interaction region by means of the local opformer is determined so that the temperature Green function
eratorO;=(n;; —(n;;))(n;; —(n;;)). The local ansatz tends on the impurity site becomes identical to the coherent one,

V. SUMMARY

0.5 T T T T T T T
0.45 [ =15
0s | ) _
035 [ :
03 110 FIG. 8. Magnetization vs temperature curves,
2 the inverse susceptibility curves, and the curves
=1 ; U )
= 025 i - of amplitude of local moments in Ni obtained by
= 02 b | the dynamical CPAsolid curve$ and the static
’ approximation(dotted curvel respectively. The
015 f Hos curves below I/W=0.005 in the dynamical
.................................................. (m) CPA were obtained by an extrapolation.
orF T T
0.05 - n=180 e i
0 1 1 1 e 1 1 1
o} 0.005 0.01 0.015 0.02 0.025 0.03 0.035
2T/W
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which is called the CPA. We have proposed an approximateowing due to the correlations are found to be 20% (10%) in
calculation scheme to the dynamical potential called tHe (2 the paramagneti¢ferromagnetig state in the bcc Fe, and
m) asymptotic approximation, which uses the correct resultd5% in the case of Ni. These results are consistent with the
of the HA up to 2th order inU and replaces the higher-order recent ground-state calculations. In the case of the ferromag-
terms by means of those in timsth asymptotic approxima- netic Fe, the DOS calculated by the dynamical CPA does not
tion. show any clear satellite structure but shows a band narrow-
The present theory becomes accurate in the highing by about 10%. This feature is consistent with the photo-
temperature limit, reproduces exactly the free energy up temission data.
the second order in the small limit, and describes quanti- The single-band model to the bcc Fe and the fcc Ni cer-
tatively the physical quantities in the strokhhdimit within tainly overestimates the quantum fluctuations; it yields too
the single-site approximation. There is no need to adopt amall aT. (420 K for W=0.45 Ry) in the case of Fe, and
statistical method such as Monte Carlo sampling to obtairyields the paramagnetism in the case of Ni. Taking into ac-
the coherent potentidl.e., the self-energy so that one can count thes, p, d orbitals and realistic band structure, we
easily obtain the single-particle DOS using the Padalytic ~ expect the Curie temperaturdg~ 1500 K for Fe andT¢
continuation to the self-energy. Moreover, there is a clear-~1000 K for Ni. The interatomic spin fluctuations as de-
relation between the present theory and the single-site spiscribed by Eq(12) should reduce the Curie temperature to
fluctuation theory by Hubbard and Hasegawa that the formethe experimental valued 040 K for Fe and 630 K for Ni
reduces to the latter when the dynamical part of the formeflo realize such a scenario, further developments of the dy-
theory is neglected. namical CPA towards the realistic description of the mag-
We have performed the model calculations to the bcc Feetic properties are highly desired.
and the fcc Ni using the sets of parameters employed in the
previous VA calculations. Numerical results for Fe in tde ACKNOWLEDGMENTS
2) asymptotic approximation showed that the dynamical ef-
;egjrir:%g;;hseugg;;iﬁl?gf \?vriztir:u;ﬁ gﬁizﬁlggo(ﬁrzrﬁggg gt'g}rllg’rofgssor Peter Fulde for vaIL{abIe discussions and a critical
number that is smaller than that of the static approximatior{eadlng of the manuscript. He is also grateful to Dr. N. Shan-

by 20%. The calculated amplitude of the local moment ishon for correcting the manuscript. Numerical calculations

found to be close to that of the static approximation anohave been done partly with use of the facilities of the Super-

hardly changes with varying temperature. In the case of Nig?r_pgf;ﬁr Center, Institute for Solid State Physics, University

we found that the dynamical effects make the ferromag-
netism unstable. The amplitude of local moment is enhanced
by 6% due to the dynamical correlations. We found in both
cases that the dynamical CPA creates a satellite peak in the Let us consider the determinant of a finite matrix as fol-
single-particle DOS in the paramagnetic state. The band natews.
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APPENDIX A: DERIVATION OF EQ. (42

1 1 0
A(m+1)p+k 1 1
A(m+2)w+k 1 1
D(mM)— Amrzwrk 1 1 _ (A1)
0
aApmp+k 1
|
By using the Laplace expansion, we have the recursion rela- DMM=pmn-1_g  DM"-2) (A3)
tion as
D™ =1 -2 1),k (A4)
D(m'M):D(m’M_l)_an+kD(m'M_2). (AZ)
DMM=1, (A5)
In the same way, we obtain the following recursion relations
in general. Now, we start from the following identity:
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M
DMM =14+ > (DM)_pMmli-1)) (AB)
l;=m+1
Substituting Eq(A3) into Eq. (A6), we obtain
M
DMW=1— > a,, DM (A7)
li=m+1 1

Repeating the same procedure BY™'1~2), we have

M -2
DMM=1— > a ,.|1- X a_,.DM22]
l;=m+1 1 lo=m+ 2

(A8)
and finally we reach the following expansion.

M -2 In_1-2
M) _
DMM =14+ ()" X > Ay kA ik
n=1 lob=m+1 lp=m+1

(A9)

Substituting a,=v ,(»)v,(—»)g,(n—r)g,(n) into Eq.
(A9) and taking the limitM — oo, we obtain Eq(42).

APPENDIX B: b{%(»,k) AND b{(»,k) IN THE ZEROTH
AND SECOND-ORDER ASYMPTOTIC APPROXIMATION

B!)(k) in the asymptotic approximation is obtained from
the functions{b{®(+ »,k)} and{b{Y)(+ »,k)} (0<n<I) as
shown in Eq.(81).

In the zeroth-order asymptotic approximation, these func
tions are given by

b{%(1,k) =P, (0,n—1), (B1)
bl(’]?r)(_vlk):pkaa'(lin)! (BZ)
b (v,K)=P,ko(1,1), (B3)
b= v, K)=p_ (2,0 +1). (B4)
Here
IT 9,(nv+k)| (m=1)
pvk(r(lam): n=l (BS)
1 (m<l).

In the second-order asymptotic approximation, they ar
given by

bO(v,k)=p,ia(2,0)

9,(n+1)r+Kk)

2

TNV~

75 9o+ {0, 0, (N+ 1w +i} |,

(B6)
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bO(—v,k)=p_ ke(3N+1)[ G, ((N+2)(— ) +k)

2mNv -
+ IB g,,(2(—v)+k){g(,(—v+k)

+0,((N+2)(—v)+K)}|, (B7)
27N~

b{ (71K =P (20 + 1) 1= —5=0,(v+K) |, (BY)
2mNv.

b(—1,k)=p_ ie(3N+2)| 1+ 5 Ou(—2vik].
(B9)

APPENDIX C: RANDOM-PHASE TECHNIQUE
FOR FREQUENCY SUM

Let us consider the local chargeee Eq.(91)] for sim-
plicity. It is obtained from the following summation.

L

n(é)= % ReX > eiGf0(g D). (CY
Here L is an infinitely large positive integer, ang is an
infinitesimally small, positive number. The phase factor
explw) is essential to the numerical calculation, although
we omitted it in the equations in the text for simplicity. It
was introduced to obtain the correct operator ordering lead-
ing to Eq.(5), and is necessary to hold the equations derived
from the free energ$ In fact, in the case of)=0, Eq.(C1)
reduces to the usual relation between the charge and the tem-
perature Green function for noninteracting system. The rela-
tion does not hold true if we neglect the phase factor, be-
cause in that case we have an additional contribution from
the integral along a semicircle contour on the Re0 plane
when we express the rhs of Eq1) by means of the contour
integral on the complex plane.

In the numerical calculations, we choose a large but finite
integerL and a small but finite numbef, and take the sum
of Eq. (C1). Such a calculation generally yields very slow
and oscillating convergence as a functionLofThe oscilla-
tion and its phase are caused by the smdltiat is not related
to the final valuen(¢). We, therefore, introduce a very small
Gaussian random numbérwith the average valué, and
standard deviatios(<¢;), and average EqC1) over all £.
Such a superposition cancels the long-range oscillations each
other, and yields

e

2 - 1
n(§)= zReX 3 expimido- Eszw.z) GED (£, 7))
(c2

Because of the damping factor exps(za),Z/Z) in the above
expression, we obtain a rapid convergence of the frequency
sum.

184420-15



Y. KAKEHASHI

1See, for example, P. Fuld&lectron Correlations in Molecules
and Solids(Springer, Berlin, 1995 Chap. 11.

2M. Cyrot, J. Phys(Parig 33, 25 (1972.

SR.L. Stratonovich, Dokl. Akad. Nauk. SSSRL5 1097 (1958
[Sov. Phys. Dokl2, 416(1958)].

4J. Hubbard, Phys. Rev. Le®, 77 (1959.

SM.C. Gutzwiller, Phys. Rev. Lettl0, 159 (1963.

6J. Hubbard, Proc. R. Soc. London, SerAR76, 238 (1963.

7J. Hubbard, Phys. Rev. B9, 2626(1979; 20, 4584(1979; 23,
5974(1981).

8H. Hasegawa, J. Phys. Soc. Jg6, 1504(1979; 49, 178(1980.

9P, Soven, Phys. Rei56, 809 (1967); H. Ehrenreich and L. M.
Schwarz,Solid State Physi¢c®dited by H. Ehrenreich, F. Seitz,
and D. Turnbull(Academic, New York, 1980 \ol. 30.

103, Kanamori, Prog. Theor. Phy&0, 275 (1963.

11y, Kakehashi and P. Fulde, Phys. Rev3B 1595(1985.

12y, Kakehashi and H. Hasegawa, Phys. Re\B® 4066 (1987);
37, 7777(1988.

13y, Kakehashi, Phys. Rev. B8, 6928(1988.

1G. stollhoff and P. Fulde, Z. Phys. B9, 231(1978; J. Chem.
Phys.73, 4548(1980.

15H. Hasegawa, J. Phys.: Condens. Mafte®325(1990.

168G, Kotliar and A.E. Ruckenstein, Phys. Rev. Lef7, 1362
(1986.

17K ok-Kwei Pan and Yung-Li Wang, Phys. Rev.55, 2981(1997).

PHYSICAL REVIEW B 65 184420

Fernandez-Baca and W. Y. ChirtgVorld Scientific, Singapore,
1995, Chap. 1.

26y, Kakehashi, S. Akbar, and N. Kimura, itinerant Electron
Magnetism: Fluctuation Effects & Critical Phenomenl. 55
of NATO Advanced Study Institute, Series 3: High Technology
edited by D. Wagner, W. Brauneck, and A. Solontsgluwer
Academic, Dordrecht, 1998p. 193.

2'Dai Xianxi, J. Phys.: Condens. Matt8y 4389(1991).

28\W.E. Evanson, J.R. Schrieffer, and S.Q. Wang, J. Appl. PAys.
1199(1970; J.R. Schrieffer, W.E. Evanson, and S.Q. Wang, J.
Phys.(Parig, Collog. 32, C1-1(1971).

29G. Morandi, E. Galleani D’'Agliano, F. Napoli, and C.F. Ratto,
Adv. Phys.23, 867 (1974.

30y, Kakehashi, J. Magn. Magn. Mate04-107 677 (1992.

31D.R. Hamann, Phys. Rev. B 1373(1970.

321 R. Krishna-murthy, J.W. Wilkins, and K.G. Wilson, Phys. Rev.
B 21, 1003(1980.

33H.J. Vidberg and J.W. Serene, J. Low Temp. Phg8, 179
(1977.

34p. Unger, J. Igarashi, and P. Fulde, Phys. Rev5@® 10 485
(1994.

35R.E. Kirby, E. Kisker, F.K. King, and E.L. Garwin, Solid State
Commun.56, 425(1985.

36D.E. Eastman, F.J. Himpsel, and J.A. Knapp, Phys. Rev. #4tt.
95 (1980.

37R. M. Bozorth,FerromagnetisnfVan Nostrand, Princeton, 1968

18yplande H. Szczech, Michael A. Tusch, and David E. Logan,388.Arajs and R.V. Colvin, J. Phys. Chem. Sol#§ 1233(1963.

Phys. Rev. Lett74, 2804(1995.

19y, Kakehashi, Phys. Rev. B5, 7196(1992.

20gee, for exampleComputational Physicedited by K. H. Hoff-
mann and M. SchreibdSpringer, Berlin, 1996

21D .J. Amit and C.M. Bender, Phys. Rev.8 3115(1977).

22p.J. Amit and H. Keiter, J. Low Temp. Physl, 603(1973.

ZMetallic Magnetismedited by H. Capellmann, Topics in Current
Physics Vol. 42(Springer-Verlag, Berlin, 1987 Chap. 5.

24y, Kakehashi, Prog. Theor. Phys01, 105(1990.

25The Magnetism of Amorphous Metals and Alloggited by J. A.

39D.R. Penn, Phys. Rev. Le#2, 921 (1979.

40A. Liebsch, Phys. Rev. Let#3, 1431(1979.

4IR.H. Victora and L.M. Falicov, Phys. Rev. Le85, 1140(1985.

42D E. Eastman, F.J. Himpsel, and J.A. Knapp, Phys. Rev. &@tt.
1514(1978; F.J. Himpsel, J.A. Knapp, and D.E. Eastman, Phys.
Rev. B19, 2919(1979.

43\W. Eberhardt and E.W. Plummer, Phys. Rev2B 3245 (1980).

44H. Martensson and P.O. Nilsson, Phys. Re\3® 3047(1984).

4SW. Nolting and W. Borgiel, Phys. Rev. B9, 6962(1989.

46M. Ulmke, Eur. Phys. J. B, 301(1998.

184420-16



