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Dynamical coherent-potential approximation to the magnetism in a correlated electron system

Y. Kakehashi
Max-Planck Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany

~Received 27 November 2001; published 29 April 2002!

A dynamical coherent-potential approximation for correlated electron systems has been developed on the
basis of a functional integral method and the harmonic approximation that neglects the mode-mode couplings
between dynamical potentials. Within the single-site approximation, the theory becomes exact in the high-
temperature limit, reproduces the results of the second-order perturbation theory for small Coulomb interaction,
and takes into account the terms that are needed to describe the strongly correlated limit. The theory interpo-
lates between the weak Coulomb interaction limit and the atomic limit. An approximation scheme has been
developed to implement the numerical calculations. The model calculations have been performed for the
electron numbern51.44 ~bcc! andn51.80 ~fcc!. In the case of the former, the magnetization vs temperature
curve and the Curie-Weiss susceptibility are obtained. It is found that the Curie temperature is reduced by a
factor of 2 due to dynamical effects. In the case of the latter, the dynamical effects are found to make the
ferromagnetism unstable. In both cases a many-body satellite peak and a band narrowing are found in the
paramagnetic density of states for the single-particle excitation energy.

DOI: 10.1103/PhysRevB.65.184420 PACS number~s!: 75.10.Lp, 75.50.Bb, 75.50.Cc, 71.10.2w
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I. INTRODUCTION

A theory describing the electron correlations from a we
Coulomb interaction to a strong one has intrigued us fo
long time because of its basic importance in solid-state ph
ics, as well as our basic interest for a unified understand
of a variety of properties of materials. In the theory of ma
netism, such an interpolation theory has been attempte
explain the magnetic properties of transition metals and
loys showing the localized as well as itinerant electr
behaviors.1 For example, the noninteger ground-state mag
tization ~in units of the Bohr magneton! and the large Som
merfeld coefficientg in Fe, Co, Ni have been explained b
the band model, while their reduced magnetization cur
and the Stoner-Wohlfarth ratios~i.e., the ratios of the effec-
tive Bohr magneton number to the ground-state magnet
tion! are close to those expected from the Heisenberg mo

A theory that incorporates the distinct features mention
above was first proposed by Cyot2 on the basis of the func
tional integral method3,4 and the narrowband model.5,6 He
showed that the functional integral method, in which the
teracting Hamiltonian is transformed into one-electr
Hamiltonian with time-dependent random fictitious field
can describe both localized and itinerant features becaus
its interpolating character. Hubbard7 and Hasegawa8 inde-
pendently established the single-site spin fluctuation the
adopting the coherent-potential approximation9 ~CPA! in the
functional integral method. The theory explained quali
tively or semiquantitatively the magnetization vs temperat
curves, the Curie temperatures (TC), the Curie-Weiss suscep
tibilities as well as the large specific heats atTC in transition
metals and alloys, assuming phenomenological effec
Coulomb integrals.

The theories mentioned above are based on the static
proximation in the functional integral method, in which th
time dependence of the field variables is neglected. The s
approximation reduces to the Hartree-Fock one at the gro
state. It neglects the ground-state electron correlations
0163-1829/2002/65~18!/184420~16!/$20.00 65 1844
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were emphasized to be crucial for the stability of ferroma
netism by Gutzwiller,5 Hubbard,6 and Kanamori.10 Kake-
hashi and Fulde,11–13 therefore, developed a variational a
proach ~VA ! to the electron correlations at finit
temperatures. The theory adiabatically takes into account
Gutzwiller-type local electron correlations14 that certainly
persist over the characteristic temperature range of ma
tism. They showed a large reduction ofTC ~by a factor of 3
in case of Fe! and strong suppression of charge fluctuati
aboveTC . Hasegawa15 developed a similar theory at finit
temperatures using the slave-boson functional integ
technique.16 Although the Ne´el temperatures calculated from
the VA and the slave boson functional integral method ha
recently been verified to be reasonable for the half-fil
band by means of the high-temperature expans
technique17 and the other alternative theories,18 the entropy
in the static approximation remains unimproved beca
these theories adiabatically take into account the correla
energy at finite temperatures.

Dynamical effects have to be directly taken into accou
to go beyond the adiabatic approximation. We proposed s
a theory called the dynamical CPA.19 The theory takes into
account all the dynamical effects within the single-site a
proximation and chooses the best surrounding medium
using the CPA. Applying the Monte Carlo sampling tec
nique, we obtained reasonable amplitudes of local mome
the satellite structure in the single-particle excitation spec
and the Fermi-liquid-like momentum distribution at fini
temperatures. Although recent developments of the Mo
Carlo method and the other computational techniques20 have
allowed us to calculate various physical quantities accurat
there is still difficulty in calculating magnetic properties
low temperatures, including the Curie temperature.

We propose in the present paper an approximate, but m
analytic theory of dynamical CPA adopting the harmonic a
proximation ~HA! to the functional integral technique. Th
HA, which was proposed by Amit and Bender,21 and Amit
and Keiter,22 is the neglect of the mode-mode couplings b
©2002 The American Physical Society20-1
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Y. KAKEHASHI PHYSICAL REVIEW B 65 184420
tween dynamical potentials. In spite of its simplicity, the H
holds the following features:

~1! the zeroth harmonic approximation is the static a
proximation that interpolates between the weak and str
Coulomb interaction limits and has been applied to vario
problems.23–26

~2! The approximation is accurate up to the second or
in the Coulomb interactionU when the free energy is ex
panded with respect toU.

~3! The approximation quantitatively describes the Kon
limit when it is applied to the Anderson model.27

~4! The approximation does not depend on the amplitu
of spin fluctuations, therefore one may expect that the
describes large dynamical spin fluctuations as well as sm
ones.

These features indicate that the HA is one of the suita
approximations for constructing a dynamical interpolati
theory.

In the following section, we review the dynamical CP
Applying the functional integral method, we express the f
energy for interacting electrons by means of a tim
dependent one-electron Hamiltonian with random spin
charge fictitious fields. We then introduce the coherent
tential ~i.e., the effective medium!, and expand the scatterin
potential in the effective medium with respect to the si
Neglecting the intersite interactions and choosing the b
effective medium, we reach the free energy of the dynam
CPA. In the present paper, we use the free energy tha
expressed by the effective potential projected onto the sta
field variables. We derive it in the remaining part of Sec.

We develop the analytic theory of the dynamical CPA
Sec. III A adopting the harmonic approximation. Integrati
the dynamical part over all the finite frequency compone
of the field variables, we derive the analytic expression of
effective potential, from which we obtain the expressions
various thermodynamic quantities. To implement the num
cal calculations, we need further approximations to the
namical potential. We propose the asymptotic approxima
in Sec. III B, which greatly reduces the number of terms
be calculated. The approximation is an approach from
strong Coulomb-interaction limit or the high-temperatu
limit. It is not easy to cover the weak-interaction region u
ing the asymptotic approximation. We, therefore, propose
interpolation scheme in Sec. III C, which is suitable for bo
the weak and the strong Coulomb interaction limits.

We present in Sec. IV the numerical examples for the
model band with the electron numbern51.44 (57.2/5)
which we call Fe, and for the fcc model band withn51.80
(59.0/5) which we call Ni. We will demonstrate that th
dynamical effects reduce the Curie temperature by a facto
2 in the case of Fe, while the dynamical effects make
ferromagnetism unstable in the case of Ni. The susceptib
and amplitude of local moment are also calculated there,
are compared with those of the static approximation as w
as the previous results of calculations based on the VA. C
culated single-particle excitation spectra in the paramagn
state show a many-body satellite peak and a narrowing of
main band for both cases. A summary and the discussion
the HA are given in Sec. V.
18442
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II. DYNAMICAL CPA

We adopt here a narrowband model Hamiltonian with
single orbital, which is given by

Ĥ5(
i ,s

~e i
02his!nins1 (

i , j ,s
t i j ais

† aj s1(
i

Uini↑ni↓ .

~1!

Heree i
0 , hi , t i j , andUi denote the atomic energy level, th

local magnetic field, the transfer integral between sitesi and
j, and the Coulomb integral on sitei, respectively.ais

† (ais) is
the creation~annihilation! operator for an electron with spin
s on site i, andnis5ais

† ais is the number operator for th
electron.

In the functional integral method, the free energyF of the
interacting HamiltonianĤ is transformed into that of the
one-electron HamiltonianH(t,j,h) with time-dependent
fictitious random fields$j i(t),h i(t)% acting on each site, by
using the Hubbard-Stratonovich transformation.28,29

e2bF5E F)
i 51

N

dj idh i GTrS T expF2E
0

b

H~t,j,h!dtG D
3expF2

1

4 (
i
E

0

b

dtUi@h i~t!21j i~t!2#G , ~2!

H~t,j,h!5(
j ,s

S e j
02m2hjs1

1

2
iU jh j~t!

2
1

2
U jj j~t!s Dnj s~t!1 (

i , j ,s
t i j ais

† ~t!aj s~t!.

~3!

Here we adopted the two-field method introducing the s
and charge auxiliary fictitious fields,$j i(t)% and $h i(t)%.
*dj i denotes the functional integral over the imaginary tim
t that varies from 0 tob, b being the inverse temperatur
1/T. N is the number of lattice points.T in the trace is the
time ordered product. The operators in the time-depend
Hamiltonian ~3! are given in the interaction representatio
with respect to the noninteracting HamiltonianH0

5( i , j ,st i j ais
† aj s . Furthermore,m denotes the chemical po

tential for electrons.
The Fourier representation of the partition function~2! is

given by

e2bF5E F)
i 51

N

dj idh i Ge2bE[ j,h] , ~4!

E@j,h#52b21ln Tr~e2bH0!2b21Tr ln~12vg!

1
1

4 (
i

(
l

Ui~ uh i l u21uj i l u2!, ~5!
0-2
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DYNAMICAL COHERENT-POTENTIAL APPROXIMATION . . . PHYSICAL REVIEW B65 184420
~v ! i l s jms85vs~ iv l2 ivm!d i j dss8

[@~e i
02m2his!d lm

1 1
2 Ui~ ih i l 2m2j i l 2ms!#d i j dss8 . ~6!

Here the Fourier representation of the functional integra
expressed as

E dj idh i

5EAbUi

4p
dj i0AbUi

4p
dh i0S )

l 51

`
bUi

2p
d2j i l

bUi

2p
d2h i l D .

~7!

The variablesj i l (h i l ) in Eqs. ~5!–~7! are thel frequency
components of random spin~charge! field j i(t) @h i(t)#. g
denotes the Green function matrix for the noninteracting s
tem H0.

In the effective medium approach,19 we replace the dy-
namical potentialv in Eq. ~5! with the diagonal coheren
potential S j s( iv l), which is independent of the field var
ables, and expand the remaining part of free energy w
respect to the site.

F5F̃2b21ln E F)
i

dj idh i G
3expF2bS (

i
E( i )@j i ,h i #1DED G . ~8!

Here the zeroth-order termF̃ is the coherent part of the fre
energy, which does not depend on any dynamical potent

F̃52b21ln Tr~e2bH0!2b21Tr ln~12Sg!. ~9!

The first-order term in Eq.~8! consists of the sum of the
single-site energies$E( i )@j i ,h i #% that only depend on the
dynamical potential on the same site,

E( i )@j i ,h i #52b21tr ln~12dv iFi !

1
1

4 (
l

Ui~ uh i l u21uj i l u2!. ~10!

Heredv i5v i2S i , and tr denotes the trace on a site.
The energyDE in Eq. ~8! describes the intersite dynam

cal correlations.

DE52b21Tr ln~12 t̃ F8!5(
( i , j )

F i j @j ih i ,j jh j #1•••.

~11!

The lowest-order term is given by the RKKY-type pair ene
giesF i j @j ih i ,j jh j # that are expressed by

F i j @j ih i ,j jh j #52b21tr( i j )ln~12 t̃ F8!. ~12!
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Here tr( i j ) means the trace on sitesi and j. Note that their
interaction strength is determined by the single-sitet-matrix
defined by

t ĩ5~12dv iFi !
21dv i . ~13!

The diagonal coherent Green functionFis( iv l) and the off-
diagonal oneFi j s8 ( iv l) in Eqs.~10!–~13! are defined, respec
tively, by

Fis~ iv l !5~g212S! i l s i l s
21 , ~14!

Fi j s8 ~ iv l !5~g212S! i l s j l s
21 ~12d i j !. ~15!

The dynamical CPA neglects the intersite dynamical int
action energyDE. The free energy is then given by

FCPA5F̃2(
i

b21ln E dj idh ie
2bE( i )[ j i ,h i ] . ~16!

The coherent potentialS is( iv l) is determined in such a wa
that the effect ofDE becomes as small as possible. Th
yields the condition

^t ĩ&[
E dj idh i t ĩe

2bE( i )[ j i ,h i ]

E dj idh ie
2bE( i )[ j i ,h i ]

50. ~17!

The above equation is also written as

^Gis~ iv l ,iv l !&5Fis~ iv l !, ~18!

Gis~ iv l ,iv l !5@~Fi
212dv i !

21# i l s i l s . ~19!

Here ^Gis( iv l ,iv l)& at the left-hand side~lhs! is the impu-
rity Green function in the effective medium, which is derive
from the impurity Hamiltonian in the effective medium de
fined by30

Ĥ ( i )~t!5H̃~t!1Uini↑~t!ni↓~t!

2E
0

b

dt8(
s

ais
† ~t!S is~t2t8!ais~t8!, ~20!

H̃~t!5(
j ,s

~e j
02m2hjs!nj s~t!1 (

i , j ,s
t i j ais

† ~t!aj s~t!

1(
j ,s

E
0

b

dt8aj s
† ~t!S j s~t2t8!aj s~t8!. ~21!

Since^Gis( iv l ,iv l)& is the temperature Green function fo
the impurity Hamiltonian in the effective medium,31 the co-
herent potentialS is( iv l) is the self-energy of the system i
the single-site approximation.

Note that the CPA equation~18! is also obtained from the
stationary condition
0-3
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dFCPA

ks~ iv l !dSs~ iv l !
5b21@Fis~ iv l !2^Gis~ iv l ,iv l !&#50.

~22!

Hereks( iv l)512Fis( iv l)
22dFis( iv l)/dSs( iv l).

Equation~17! or ~18! determines the coherent potentia
therefore, the free energy. The difficulty in the dynamic
CPA approach is in calculating the average impurity Gre
function in Eq.~18! as well as the impurity energy~10!. We
adopted in our previous paper19 the Monte Carlo~MC!
method to implement the dynamical CPA. Although it is e
act in principle, the MC method needs a large amount
computing time to obtain quantitative results in particular
low temperatures. We propose in the next section simpler
more analytic method.

Before we proceed to the next step, we rewrite the f
energy ~16! by means of the effective potential projecte
onto the zero-frequency variablesj5j i0 andh5h i0,

FCPA5F̃2b21ln EAbU

4p
djAbU

4p
dhe2bE(j,h).

~23!

Here we have redefinedFCPA andF̃ by those per site assum
ing that all the sites are equivalent to each other. Moreo
here and in the following we omit all the site indices f
simplicity.

The effective potentialE(j,h) consists of the static en
ergyEst(j,h) and the dynamical one. The latter describes
the dynamical effects.

E~j,h!5Est~j,h!1Edyn~j,h!, ~24!

Est~j,h!52b21tr ln~12dv0F !1
1

4
U~h21j2!, ~25!

e2bEdyn(j,h)5D↑D↓5E F)
l 51

`
bU

2p
d2j l

bU

2p
d2h l GD↑D↓

3expF2
bU

2 (
l 51

`

~ uh l u21uj l u2!G , ~26!

Ds5det@d lm2 ṽs~ iv l2 ivm!g̃s~ ivm!#. ~27!

Here dv0 in Eq. ~25! is defined by dvs(0)5vs(0)
2Ss( iv l). The upper bar in Eq.~26! denotes the Gaussia
average with respect to all the field variables with finite f
quencies.ṽs( iv l) in the determinantDs is the dynamical
potential without the zero-frequency part, andg̃s( iv l) is the
static Green function on an impurity site.

ṽs~ iv l !5vs~ iv l !2vs~0!d l0 , ~28!

g̃s~ iv l !5@Fs~ iv l !
212dvs~0!#21. ~29!

The variational principle~22! for the free energy~23! is
then written as
18442
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ks~ iv l !dSs~ iv l !
5b21K S Fs~ iv l !2g̃s~ iv l !

1b
dEdyn~j,h!

ks~ iv l !dSs~ iv l !
D L

eff

50.

~30!

Therefore, we obtain the expression of the impurity Gre
function in the medium as

^Gis~ iv l ,iv l !&5 K g̃s~ l !2b
dEdyn~j,h!

ks~ iv l !dSs~ iv l !
L

eff

.

~31!

Here ^;&eff means the classical average with respect to
effective potentialE(j,h) .

The neglect of the dynamical potentialEdyn(j,h) is called
the static approximation. In the static approximation, t
present theory reduces to the single-site spin fluctua
theory by Hubbard7 and Hasegawa.8 The static approxima-
tion becomes exact in the atomic limit because the cha
and spin operators (ni and mi) commute with the Hamil-
tonian there, and it also becomes exact in the hi
temperature limit because the time dependence of the
variablesj i(t) andh i(t) are negligible in the limit. Further-
more, the static approximation yields the Hartree-Fock
proximation at the ground state, which is correct in the we
Coulomb-interaction limit. In the intermediate region, how
ever, one has to take into account the dynamical poten
Edyn(j,h) in general.

III. HARMONIC APPROXIMATION TO DYNAMICAL CPA

A. Harmonic approximation and its thermodynamics

The difficulty in obtaining the dynamical correction orig
nates in the determinant of the scattering matrix given by
~27!. We expand here the determinant with respect to
frequency modes of the dynamical potentialṽs( ivn) as

Ds511(
n

~Dns21!1 (
(n,n8)

~Dnn8s2Dns2Dn8s11!

1•••, ~32!

Dns5det@d lm2@ ṽs~ ivn!d l 2m,n

1 ṽs~ iv2n!d l 2m,2n#g̃s~ ivm!#, ~33!

Dnn8s5det@d lm2@ ṽs~ ivn!d l 2m,n

1 ṽs~ iv2n!d l 2m,2n#g̃s~ ivm!2@ ṽs~ ivn8!d l 2m,n8

1 ṽs~ iv2n8!d l 2m,2n8#g̃s~ ivm!#. ~34!

The first term in Eq.~32! corresponds to the zeroth approx
mation ~i.e., the static approximation!, the second term ex
presses the independent scattering due to each dynamica
tential vs( ivn), and the higher-order terms express t
mode-mode couplings. We neglect here these mode-m
0-4
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coupling terms and only take into account the independ
frequency terms. This is called the harmon
approximation.21,22

The approximation is exactly up to the second order inU
in the weak Coulomb interaction region.

exp@2bEdyn~j,h!#511U2(
n51

`

c̃n↑
(1)c̃n↓

(1)1•••, ~35!

c̃ns
(1)5

1

b (
l 52`

`

g̃s~ l 2n!g̃s~ l !. ~36!

Here and in the followings, we expressiv l as l for simplic-
ity. In the strong Coulomb interaction region, it has be
18442
ntshown numerically that the harmonic approximation quan
tatively reproduces the Kondo susceptibility obtained by
renormalization group approach,32 when it is applied to the
Anderson model.27 More important is the fact that the ap
proximation is independent of the strength of the Coulo
interaction. Therefore, the harmonic approximation is co
sidered to be suitable for the description of the intermed
region where a variety of interesting phenomena occur in
condensed matters.

The determinantDns in the harmonic approximation is
written by the product of those of tridiagonal matrices
follows.22

Dns5Dns~0!Dns~1!•••Dns~n21!, ~37!
r

Dns~k!5U� 1 1 0

a2n1ks~n! 1 1

aks~n! 1 1

an1ks~n! 1 1

0 a2n1ks~n!

�

U . ~38!

HereDns(k) is the determinant of the tridiagonal matrix consisting of the Green functions with the frequency remaindek for
the modulusn, andans(n) is defined by

ans~n!5 ṽs~n!ṽs~2n!g̃s~n2n!g̃s~n!. ~39!

Note that according to the Laplace expansion theoremDns(k) is expressed by the determinants of the submatrices as

Dns~k!5Dns
(0)~n,k!Dns

(0)~2n,k!2aks~n!Dns
(1)~n,k!Dns

(1)~2n,k!, ~40!

Dns
(m)~n8,k!5U 1 1 0

a(m11)n81ks~n! 1 1

a(m12)n81ks~n! 1 1

a(m13)n81ks~n! 1 1

�

0

U . ~41!
-

The determinantDns
(m)(6n,k) is expanded as follows~see

Appendix A!.

Dns
(m)~6n,k!5 (

n50

`

~2 !n@ ṽs~n!ṽs~2n!#nAn6nks
(m) .

~42!

Here

A06nks
(m) [1, ~43!
An6nks
(m) 5 (

l 15m11

`

(
l 25m11

l 122

••• (
l n5m11

l n2122

âl 1(6n)1ks~n!

3âl 2(6n)1ks~n!•••âl n(6n)1ks~n!, ~44!

and

âns~n!5g̃s~n2n!g̃s~n!. ~45!

Substituting Eq.~42! for m50 and 1 into Eq.~40!, we
obtain an expression ofDns(k) with respect to the dynami
cal potential as follows:
0-5
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Dns~k!5(
l 50

`
1

l !
S ib ṽs~n!ṽs~2n!

2pn
D l

Bns
( l ) ~k!. ~46!

Here

Bns
(0)~k![1, ~47!

Bns
( l ) ~k!5~2 ! l l ! S 2pn

ib D lFAlnks
(0) 1 (

m50

l 21

~Amnks
(0) Al 2m2nks

(0)

1âksAmnks
(1) Al 212m2nks

(1) !G . ~48!

Therefore, we obtain the expansion form ofDns from Eqs.
~37! and ~46! as follows.

Dns5(
l 50

`
1

l !
~4b ṽs~n!ṽs~2n!! l S i

8pn D l

Bns
( l ) , ~49!

Bns
( l ) 5 (

(
k50

n21

l k5 l

l !

F )
k50

n21

l k! G F )
k50

n21

Bns
( l k)

~k!G . ~50!

The dynamical potential is obtained by substituting t
first and second terms of Eq.~32! into Eq. ~26!.

e2bEdyn(j,h)5F11 (
n51

`

~D̄n↑21!GF11 (
n51

`

~D̄n↓21!G
1 (

n51

`

dDn↑dDn↓. ~51!

Here dDns5Dns2D̄ns . D̄ns and Dn↑Dn↓ are calculated
from Eq. ~49! by using the Gaussian integrals, so that
obtainD̄ns51 and

Dn↑Dn↓5(
l 50

`

U2l S i

2pn D 2l

Bn↑
( l )Bn↓

( l ) . ~52!

Therefore, Eq.~51! yields the following expression of th
dynamical potential.

Edyn~j,h!52
1

b
lnF11 (

n51

`

~Dn↑Dn↓21!G . ~53!

The impurity Green function is obtained from Eqs.~31!
and ~53! as

^Gs~ l ,l !&5^Gs
(eff)~j,h,l !&eff , ~54!

Gs
(eff)~j,h,l !5g̃s~ l !1

(
n51

`
d~Dn↑Dn↓!

ks~ l !dSs~ l !

11 (
n51

`

~Dn↑Dn↓21!

, ~55!
18442
d~Dn↑Dn↓!

ks~ l !dSs~ l !
5 (

l 851

`

U2l 8S i

2pn D 2l 8
Bn2s

( l 8)
dBns

( l 8)

ks~ l !dSs~ l !
.

~56!

Here Gs
(eff)(j,h,l ) is the effective impurity Green function

projected onto the static field variables.
The first term on the right-hand side~rhs! of Eq. ~55! is

the static Green function and the second term is the dyna
cal correction. Note that the second term vanishes in theU
→0 limit as it should be. Furthermore, it also vanishes in
atomic limit becauseDn↑Dn↓ does not depend onSs( l )
there.

The CPA equation~18! is then expressed as

^Gs
(eff)~j,h,l !&eff5Fs~ l !, ~57!

Fs~ l !5E r~e!de

iv l2Ss~ l !2e
. ~58!

Herer(e) is the density of states~DOS! in the noninteract-
ing system described byH0.

Equations~23!, ~24!, ~53!, and~57! completely determine
the thermodynamics of the system. The local charge
magnetic moment are obtained by taking the derivativ
]FCPA/]e0 and2]FCPA/]h as

^n&5^ ih&eff , ~59!

^m&5^j&eff . ~60!

The amplitudes of charge and local moments are calcula
from ^n&62^n↑n↓& and]FCPA/]U5^n↑n↓&,

^n2&5^n&2
1

2
^h2&eff2

1

2
^j2&eff1

2

bU
12K F]Edyn

]U G
v
L

eff

,

~61!

^m2&5^n&1
1

2
^h2&eff1

1

2
^j2&eff2

2

bU
22K F]Edyn

]U G
v
L

eff

.

~62!

Here @ #v means taking the derivative fixing the static p
tential vs(0), and isgiven by

F]Edyn

]U G
v

52
1

b

(
n51

` F ]~Dn↑Dn↓!

]U G
v

11 (
n51

`

~Dn↑Dn↓21!

, ~63!

F ]~Dn↑Dn↓!

]U G
v

5(
l 51

`

2lU 2l S i

2pn D 2l

Bn↑
( l )Bn↓

( l ) . ~64!
0-6
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The entropy is obtained fromb2]FCPA/]b as

S5b2
]F̃
]b

1 K b2
]E

]b L 21

1 ln E FAbU

4p
djAbU

4p
dhGe2b„E(j,h)2^E&eff…,

~65!

b2
]F̃
]b

522E der~e!@$12 f ~e!% ln$12 f ~e!%

1 f ~e!ln f ~e!#1(
l ,s

E der~e!F lnS 12
Ss~ l !

iv l2e D
1

iv lSs~ l !

~ iv l2e!@ iv l2Ss~ l !2e#G , ~66!

K b2
]E

]b L
eff

5K (
ls

ln@12dvs~0!Fs~ l !#L
eff

1K lnS 11 (
n51

`

~Dn↑Dn↓21!D L
eff

1K (
n51

`

bF ]Dn↑Dn↓
]b G

vS

11 (
n51

`

~Dn↑Dn↓21!
L

eff

. ~67!

Here Eq. ~66! denotes the contribution from the cohere
self-energy as well as the entropy of noninteracting el
trons. f (e) denotes the Fermi distribution function. The fir
term in Eq. ~67! expresses the contribution from the sta
impurity potential, the second and the third terms are
contributions of the dynamical potential. Note th
@]Dn↑Dn↓/]b#vS means to take the derivative fixing the fr
quencyiv l and the coherent potentialSs( l ). The last term in
Eq. ~65! produces the magnetic entropy when the local m
ment is well defined.

The thermodynamic energy is obtained from the relat
F1b21S as

^H2mN&5
1

b (
l ,s

iv lFs~ l !1
1

4
UF ^h2&eff2

2

bU
1^j2&eff

2
2

bUG2K (
n51

` F ]Dn↑Dn↓
]b G

vS

11 (
n51

`

~Dn↑Dn↓21!
L

eff

. ~68!

Here the first term on the rhs is the coherent contribution
the kinetic energy, the second one corresponds to the do
counting term in the Hartree-Fock energy, the last term is
dynamical correction in the single-site approximation.
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B. Asymptotic approximation

The key term to implement the theoretical framework p
sented in the last subsection is the dynamical correc
Dn↑Dn↓, which is calculated fromBns

( l ) @Eq. ~50!# or Bns
( l ) (k)

@Eq. ~48!#. The number of terms inAnnks
(m) from which

Bns
( l ) (k)’s are calculated, however, exponentially increas

with increasingn, as seen from Eq.~44!, which makes the
actual calculations impossible. We, therefore, develop an
proximate calculation scheme in this section.

Note that the determinants$Dns
(m)(6n,k)% (m50,1) de-

fined by Eq.~41! have the following recursive relation as
verified by using Laplace’s expansion theorem.

Dns
(0)~6n,k!5Dns

(1)~6n,k!2a6n1ks~n!Dns
(2)~6n,k!,

~69!

Dns
(1)~6n,k!5Dns

(2)~6n,k!2a2(6n)1ks~n!Dns
(3)~6n,k!,

~70!

•••

Dns
(m)~6n,k!

5Dns
(m11)~6n,k!2a(m11)(6n)1ks~n!Dns

(m12)~6n,k!.

~71!

The determinantDns
(m)(6n,k) consists of the static Gree

functions $g̃s( l )% with the frequencyu l u higher thanumnu.
This means that one may replaceDns

(m)(6n,k) with an ap-

proximate determinantD̃ns
(m)(6n,k), which becomes exact in

the asymptotically largeumu limit.

Dns
(m)~6n,k!'D̃ns

(m)~6n,k!. ~72!

Such an approximate formD̃ns
(m)(6n,k) is obtained as

follows. The coherent potentialSs( l ) reduces to the Hartree
Fock value^vs(0)&eff in the largeu l u limit, therefore, the
static impurity Green function behaves asg̃s( l );1/iv l for
large u l u. In this region, we have the following relations

g̃s„~ l 21!n1k…g̃s~ ln1k!

;
b

2p in
@ g̃s„~ l 21!n1k…2g̃s~ ln1k!#, ~73!

g̃s„~ l 22!n1k…g̃s„~ l 21!n1k…g̃s~ ln1k!

;
1

2

b

2p in
@ g̃s„~ l 22!n1k…g̃s„~ l 21!n1k…

2g̃s„~ l 21!n1k…g̃s~ ln1k!#. ~74!

Successive application of the above relations to$Annks
(m) %

yields the following relations.

A1nks
(m) ;

b

2p in
g̃s~mn1k!, ~75!
0-7
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A2nks
(m) ;

1

2 S b

2p in D 2

g̃s~mn1k!g̃s„~m11!n1k…. ~76!

Repeating the same procedure, we obtain the asymp
form D̃ns

(m)(6n,k) as follows.

D̃ns
(m)~6n,k!5 (

n50

`

~2 !n@ ṽs~n!ṽs~2n!#nÃnnks
(m) , ~77!

Ãnnks
(m) 5

1

n! S b

2p in D n

g̃s~mn1k!

3g̃s„~m11!n1k…•••g̃s„~m1n21!n1k…,

~78!

Ãn2nks
(m) 5

1

n! S b

22p in D n

g̃s„~m11!~2n!1k…

3g̃s„~m12!~2n!1k…•••g̃s„~m1n!~2n!1k….

~79!

Here we definedÃ06nks
(m) 51. We call the approximation~72!

the mth-order asymptotic approximation.
Explicit forms of Dns

(0)(6n,k) and Dns
(1)(6n,k) in the

asymptotic approximation are obtained from Eqs.~69!–~71!
and~77!. SubstitutingDns

(0)(6n,k) andDns
(1)(6n,k) into Eq.

~40!, we obtain the asymptotic form ofDns(k) and, there-
fore, that ofBns

( l ) (k) as follows:

D̃ns~k!5(
l 50

`
1

l !
S ib ṽs~n!ṽs~2n!

2pn
D l

B̃ns
( l ) ~k!. ~80!

Here B̃ns
(0)(k)51 andB̃ns

( l ) (k) for l .0 is given by

B̃ns
( l ) ~k!5bls

(0)~n,k!1 (
m50

l 21

~2 ! l 2mS l

mD
3Fbms

(0)~n,k!bl 2ms
(0) ~2n,k!1

2p~ l 2m!n

ib

3g̃s~2n1k!g̃s~k!bms
(1)~n,k!bl 2m21s

(1) ~2n,k!G .
~81!

The functionsbms
(0)(6n,k) and bms

(1)(6n,k) in the zeroth-
order and the second-order asymptotic approximation
presented in Appendix B.

The dynamical correctionDn↑Dn↓ in the asymptotic ap-
proximation is given by Eq.~52! in which Bns

( l ) has been

replaced by its asymptotic formB̃ns
( l ) .

D̃n↑D̃n↓5(
l 50

`

U2l S i

2pn D 2l

B̃n↑
( l )B̃n↓

( l ) . ~82!

Here B̃ns
( l ) is defined by Eq.~50! with Bns

( l ) (k) replaced by

B̃ns
( l ) (k).
18442
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The asymptotic approximation becomes exact irrespec
of m when it is applied to the Anderson model with a wid
conduction band because the relations~73! and ~74! exactly
hold true for the noninteracting Anderson impurity Gre
function on the upper complex plane.21 Such a dynamical
correction has yielded a reasonable description in the Ko
limit.27 Therefore, we expect that even the zeroth-ord
asymptotic approximation can describe reasonably the ph
cal properties in the strongly correlated region. In fact,
Green functiong̃s(n) is expanded in the atomic region
where the transfer integrals are small as compared with
Coulomb interaction, as follows.

g̃s~n!5
1

ivn2vs~0!2
M2

ivn2Ss~n!
1•••

. ~83!

Here M2 is the second moment defined byM2
5*e2r(e)de, which is comparable toW2, W being the
bandwidth for noninteracting system.

The condition that the asymptotic approximation hol
true, therefore, is given byu ivn2^vs(0)&effu2@M2. In the
case of the half-filled band, it reduces to

vn
21U2@W2 ~n.m!. ~84!

Therefore, one can expect that the asymptotic approxima
is valid for the strong Coulomb interaction region;U/W
@1 or for the high-temperature region;T/W@1 even if m
;1. Whenm is increased, Eq.~84! is satisfied at smaller
Coulomb interaction or lower temperatures. This means
the asymptotic approximation is suitable either in t
strongly correlated region or in the high-temperature regi

C. Interpolation theory

The asymptotic approximation to the dynamical poten
is an approach from a largeU/W or T/W limit. Therefore, it
is not easy to describe the dynamical effects in the region
small U/W or small T/W. We propose here a simple inte
polation scheme that is valid in both weak and strong C
lomb interaction limits.

The idea basic to finding such a unified scheme is t
both the dynamical correction in the original harmonic a
proximation and that in the asymptotic approximation ha
the same form; equations~52! and ~82! are expanded in a
series ofU in the same way. Only their coefficients$Bn↑

( l )Bn↓
( l )%

are different each other. Because themth asymptotic ap-
proximation is not expected to be valid for small Coulom
interactionU, we replace the coefficients$B̃n↑

( l )B̃n↓
( l )% up to the

2l th order with the original ones,

Dn↑Dn↓5 (
n50

l

U2nS i

2pn D 2n

Bn↑
(n)Bn↓

(n)

1 (
n5 l 11

`

U2nS i

2pn D 2n

B̃n↑
(n)B̃n↓

(n) . ~85!

Here the first few terms ofBns
(n) are given as follows:

Bns
(0)51, ~86!
0-8
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Bns
(1)5

2p in

b (
l 50

`

@ g̃s~ l 2n!g̃s~ l !1g̃s~ l 1n!* g̃s~ l !* #,

~87!

Bns
(2)5S 2pn

b D 2

ReF2(
l 50

`

g̃s~ l 2n!g̃s~ l !@ g̃s~ l 22n!g̃s~ l 2n!

1g̃s~ l 2n!g̃s~ l !1g̃s~ l !g̃s~ l 1n!#

2 (
l 50

n21

@ g̃s~ l 2n!g̃s~ l !#2G1Bns
(1)2. ~88!

We call the approximation~85! the (2l ,m) asymptotic
approximation. It should be noted that one can control
accuracy of the dynamical correction increasing either 2l or
m, or increasing both 2l andm within the harmonic approxi-
mation.

In the application of the theory to the magnetism, the s
fluctuations are more important in most cases. We may
glect the thermal charge fluctuations in such a case using
local saddle-point approximation to the static-charge fieldh.
The free energy~23! is then given by

FCPA5F̃2b21ln EAbU

4p
dje2bEeff(j), ~89!

Eeff~j!5Est~j!1Edyn~j!. ~90!

Here Est(j)5Est(j,h* ) and Edyn(j)5Edyn(j,h* ) with Eq.
~85!. h* is the saddle-point value defined by

ih* 5n~j!5
1

b (
l ,s

Gs
(eff)

„j,h* ~j!,l …. ~91!

Furthermore, we adopt the decoupling approximation to
CPA equation~57! that is correct up to the second momen

(
q561

1

2 S 11q
^j&eff

x D @Gs
(eff)

„j,h* ~j!,l …#j5qx5Fs~ l !.

~92!

Herex5A^j2&eff , and@ #j5qx means taking the value atj
5qx. Note that the classical averages^;&eff here and in the
followings are taken with respect to the energyEeff(j).

The local charge and moment derived from Eq.~89! are
given by

^n&5^n~j!&eff , ~93!

^m&5^j&eff . ~94!

The expressions of the amplitudes of the charge and l
moment,~61! and ~62!, are replaced by
18442
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^n2&5^n&1
1

2
^n~j!2&eff2

1

2 S ^j2&eff2
2

bU D
12K F]Edyn~j!

]U G
v
L

eff

, ~95!

^m2&5^n&2
1

2
^n~j!2&eff1

1

2 S ^j2&eff2
2

bU D
22K F]Edyn~j!

]U G
v
L

eff

. ~96!

The entropy derived from Eq.~89! is given by

S5b2
]F̃
]b

1 K b2
]Eeff~j!

]b L
eff

2
1

2

1 ln E FAbU

4p
djGe2b„Eeff(j)2^Eeff(j)&eff…. ~97!

The first and second terms at the rhs are given by Eqs.~66!
and~67! with the saddle-point valueh* . The thermodynamic
energy is given by Eq.~68! in which ^h2&eff22/bU, the
second term at the rhs, has been replaced by2^n(j)2&eff .
All the other expressions are the same as before except
h has been replaced by its saddle point valueh* .

In the simplified calculation scheme,̂j&eff and x
5A^j2&eff have to be determined self-consistently;~1! we
start from a set of input valueŝj&eff , x, and @vs(0)#(j
56x) „i.e.,e02m1U@n(6x)7xs#/2…, ~2! calculate the
dynamical coherent potentialSs( l ) solving Eq.~92!, ~3! un-
der the mediumSs( l ), obtainn(j) solving the saddle-poin
equation~91! for eachj, ~4! calculate the effective potentia
Eeff(j) @Eq. ~90!#, ~5! determine the chemical potential a
cording to Eq.~93!, ~6! calculate a new set of̂j&eff , x, and
@vs(0)#(j56x). The steps~1!–~6! are repeated until the
self-consistency is achieved.

IV. NUMERICAL EXAMPLE

We present in this section the numerical results of o
model calculations obtained by the dynamical CPA. Bear
in mind Fe and Ni showing both localized and itinerant b
haviors in their magnetism, we consider here two cases:~1!
the electron numbern51.44 (57.2/5), the Coulomb inter-
action 2U/W52.289, and the bcc noninteracting DOS,~2!
n51.80 (59.0/5), 2U/W53.429, and the fcc noninterac
ing DOS. The same sets of input parameters have been
in our previous investigations with use of the VA.11 All the
numerical calculations have been done on the level of the~4,
2! asymptotic approximation. Then-frequency sum in the
dynamical potential~53! has been taken into account up
nmax5100, and the sum ofU expansion in Eq.~85! has been
taken up tonmax516. The matsubara frequency sums such
Eqs. ~25!, ~68!, and ~91! show a slow convergence and a
oscillation with increasing the number of terms. We, the
fore, adopted the random phase method that we devised~see
Appendix. C!.
0-9
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Y. KAKEHASHI PHYSICAL REVIEW B 65 184420
FIG. 1. Calculated densities of states~DOS!
of the single-particle excitations in the dynamic
CPA ~solid curve! and the static approximation
~dashed curve! for the bcc Fe in the paramagnet
state, which is defined by the electron numbern
51.44, the Coulomb interaction 2U/W52.289,
the temperature 2T/W50.0281, and the noninter
acting density of states shown by the dott
curve. The bandwidthW is chosen to be 0.45 Ry
for convenience.
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Figure 1 shows the average DOS in the paramagn
state for Fe@i.e., case~1!#. The single-particle DOS for the
dynamical CPA was calculated by the Pade´ numerical ana-
lytic continuation.33 The DOS in the static approximatio
show the bonding-antibonding structure and the band bro
ening due to thermal static spin fluctuations. The dynam
effects suppress such an excess band broadening and cr
satellite peak at20.6 Ry as seen in Fig. 1. The main ban
around the Fermi level shows the narrowing by 20% whe
is compared with the noninteracting DOS. This feature
also found in the recent ground-state calculations with us
the quantum chemical approach and the Mori-Zwanzig p
jection technique,34 and is considered to remain even abo
TC because the related energy scaleU is much higher than
TC , although the satellite peak in the paramagnetic stat
not found in Fe experimentally.35

In the ferromagnetic state with a large exchange splitti
the dynamical effects on the DOS become less importan
shown in Fig. 2, because the electron-hole excitations
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suppressed. The static approximation forms the three-p
structure that is well understood by the simple Stoner mo
and the noninteracting DOS presented in Fig. 1. On the o
hand, the main peak of the upspin DOS in the correla
electrons is split into two peaks and the weight of the pe
aroundv520.45 Ry is enhanced~see the dashed curve i
Fig. 2!. Note that the dynamical effects on the downsp
band are much less than those for the upspin band. T
feature seems to stabilize the ferromagnetism. The resu
total DOS shows a band narrowing by about 10% as co
pared with that of the static approximation or the Ston
model, which seems to be consistent with the photoemiss
data of Fe.35,36

Various calculated effective potentials of Fe in the pa
magnetic state are presented in Fig. 3. It is remarkable
the effective potential with dynamical correlations shows
single minimum atj50, while the static potential shows th
double minima atj560.46mB , because the dynamical po
tential shows a deep minimum atj50 and saturate atj5
l

d
n-
i-
FIG. 2. Calculated DOS in the dynamica
CPA for the ferromagnetic Fe at 2T/W
50.007 04. Full curve: the total DOS, dashe
curve: the upspin DOS, dotted curve: the dow
spin DOS. The total DOS in the static approx
mation is shown by the thin solid curve.
0-10
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FIG. 3. Effective potentials of the paramag
netic Fe in the dynamical CPA~solid curve!, the
static approximation~dashed curve!, and the
variational approach~VA ! ~dot-dashed curve!
which are calculated at 2T/W50.0281, 2T/W
50.0281, and 2T/W50.009 84, respectively.
The dynamical contributionsEdyn at 2T/W
50.0281 and 2T/W50.281 are also given by
dotted curves. All the curves are shifted so th
they are zero atj50.
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6`. The results qualitatively agree with that of the VA,11

which was determined by using the variational principle
the effective potential and the Gutzwiller-type ground-st
theory. The basic difference between the present theory
the VA is that the latter adiabatically takes into account
ground-state energy, while the former takes into account
nonadiabatic effects automatically. In fact, the dynamical
tential in the present theory becomes small when the t
perature 2T/W is increased as shown in Fig. 3, and fina
the effective potential reduces to that of the static appro
mation in the high-temperature limit. In the ferromagne
state, the effective potential becomes asymmetric due to
ferromagnetic molecular field from the surrounding pol
ized spins, and show a minimum atj50.49mB ~see Fig. 4!.
Note that the effective potential in the VA has also the sa
feature, although it has a shallower minimum because of
stronger dynamical correction in the VA. The effective p
tential in the static approximation shows a double minim
structure even in the ferromagnetic state, although it has
minimum atj50.51mB .
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We have calculated the magnetic moments and susc
bilities for Fe self-consistently at each temperature. The
sults are presented in Fig. 5. The magnetization in the st
approximation takes the valuem050.511(52.56/5) mB at
T50, and gradually decrease with increasing temperat
The calculated Curie temperature is 2TC /W50.0253 (TC
5900 K for W50.45 Ry). In the dynamical CPA, we ob
tained the ground-state magnetizationm050.494 (52.47/5)
by extrapolation to T50 and the Curie temperatur
2TC /W50.0118 (TC5420 K for W50.45 Ry), which is
smaller than that of the static approximation by a factor of
The VA leads to a smaller ground-state magnetizationm0
50.443 (2.215/5)mB and a lower Curie temperatur
2TC /W50.0084~300 K for W50.45 Ry). The dynamica
result forTC , which is much smaller than the experiment
value 1040 K,37 is attributed to the strong quantum spin flu
tuations in the single-orbital model. The amplitude of loc
moments are 0.73mB at T50 for both the static approxima
tion and the dynamical CPA, and hardly change with vary
temperature as shown in Fig. 5.
-

t
n

FIG. 4. Effective potentials of the ferromag
netic Fe in the dynamical CPA~solid curve!, the
static approximation~dashed curve!, and the VA
~dot-dashed curve! which are calculated a
2T/W50.004 22. The dynamical contributio
Edyn is also given by dotted curve.
0-11
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FIG. 5. Magnetization vs temperature curve
the inverse susceptibility curves, and the curv
of amplitude of local moments in the bcc Fe o
tained by the dynamical CPA~solid curves!, the
static approximation~dotted curves!, and the VA
~dashed curves!, respectively. The curves below
2T/W50.003 in the dynamical CPA were ob
tained by an extrapolation.
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The inverse susceptibilities have been calculated by
ing the derivatived(2h/W)/d^m& numerically. Both the
static approximation and the dynamical CPA yield the Cur
Weiss susceptibility. The calculated effective Bohr magne
numbers defined byx2153(T2Q)/meff

2 are, however, dif-
ferent from each other:meff /m051.75 ~static and VA! and
1.39 ~dynamical CPA!. The latter is comparable to the ex
perimental value38 1.44.

In the case of Ni@i.e., the case~2!#, the situation is some
what different from Fe. We did not find the ferromagne
solution in the present theory; the dynamical effects m
the ferromagnetism unstable. The calculated DOS in
paramagnetic state are presented in Fig. 6. The thermal s
spin fluctuations in the static approximation broaden
DOS. The dynamical effects create a satellite peak atvs
520.5 Ry and shrink the main band by about 15% as co
pared with that of the noninteracting system. These val
are in good agreement with the detailed calculations at
ground state.34,39–41The experimental satellite peak positio
18442
k-

-
n

e
e
tic
e

-
s
e

and the band narrowing are reported to bevs520.46 Ry
and 25%, respectively.36,42–44

Calculated effective potentials show a single minimum
both static and dynamical cases as shown in Fig. 7.
dynamical effects make the effective potential steeper,
that the thermal spin fluctuations are suppressed. It shoul
noted that the steeper potential is not obtained simply
adding the dynamical potential to the static result; it is o
tained by a self-consistent depolarization of medium.

Magnetic moments and susceptibilities for Ni are sho
in Fig. 8. In the case of the static approximation we obt
the ground-state magnetizationm050.146 (50.730/5) mB
and the Curie temperature 2TC /W50.0192 ~530 K for W
50.35 Ry), as well as the Curie-Weiss susceptibility w
the effective Bohr magneton numbermeff /m053.2. The VA
also yields the ferromagnetism withm050.123mB and TC
50.0156. However, the dynamical CPA yields the param
netic state over all temperatures as seen from the temper
dependence of its inverse susceptibility in Fig. 8. The am
ed
FIG. 6. Calculated densities of states~DOS!
in the dynamical CPA~solid curve! and the static
approximation~dashed curve! for the fcc Ni in
the paramagnetic state, which is defined byn
51.80, 2U/W53.429, 2T/W50.0362. The non-
interacting density of states shown by the dott
curve. The bandwidthW is chosen to be 0.35 Ry
for convenience.
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FIG. 7. Effective potentials of the paramag
netic Ni in the dynamical CPA~solid curve! and
the static approximation~dashed curve! that are
calculated at 2T/W50.0362. The dynamical con
tribution Edyn at the same temperature, and th
static potential in the ferromagnetic state
2T/W50.003 62 are also given by dotted curve
All the curves are shifted so that they are zero
j50.
-

e
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ca
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tudes of local moments being extrapolated toT50 is
A^m2&(T50)50.464mB , which is enhanced by 6% as com
pared with the static case,A^m2&(T50)50.437mB .

Although it has not been clarified yet quantitatively und
what condition the ferromagnetism is stabilized on the
lattice in the single-band model, the present result of
paramagnetism for Ni is quite conceivable because the
culated DOS is consistent with those of the ground-state
culations and because the condition to the ferromagne
becomes very severe in general in the low-dens
region.10,16,45 Recent Monte Carlo calculations of the Hu
bard model based on the dynamical mean-field theory46 also
showed the paramagnetism forn51.8 and the intermediate
U values when only the nearest-neighbor hoppings are ta
into account on the fcc lattice. In our previous VA calcul
tions, the local electron correlations were treated by mean
the local ansatz14 that describes best the correlations in rath
weak Coulomb interaction region by means of the local
eratorOi5(ni↑2^ni↑&)(ni↓2^ni↓&). The local ansatz tend
18442
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to stabilize the magnetic state excessively in the largeU limit
when the electron number deviates from the half-filled.
might be the case because of large 2U/W(53.429). The
Hilbert space has to be expanded more carefully in suc
strongly correlated electron system~see Chap. 5 in Ref. 1
for example!.

V. SUMMARY

We have developed the dynamical CPA to the correla
electron system on the basis of the functional integ
method and the HA~harmonic approximation!. The theory
describes the electron correlations at finite temperatures
means of the coherent potential put over all the lattice s
and the dynamical impurity potential embedded in the m
dium. The latter was treated within the HA that takes in
account all the single-mode dynamical scatterings, and
former is determined so that the temperature Green func
on the impurity site becomes identical to the coherent o
s,
es
y

FIG. 8. Magnetization vs temperature curve
the inverse susceptibility curves, and the curv
of amplitude of local moments in Ni obtained b
the dynamical CPA~solid curves! and the static
approximation~dotted curves!, respectively. The
curves below 2T/W50.005 in the dynamical
CPA were obtained by an extrapolation.
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which is called the CPA. We have proposed an approxim
calculation scheme to the dynamical potential called the (l ,
m) asymptotic approximation, which uses the correct res
of the HA up to 2l th order inU and replaces the higher-orde
terms by means of those in themth asymptotic approxima
tion.

The present theory becomes accurate in the h
temperature limit, reproduces exactly the free energy up
the second order in the smallU limit, and describes quanti
tatively the physical quantities in the strong-U limit within
the single-site approximation. There is no need to adop
statistical method such as Monte Carlo sampling to ob
the coherent potential~i.e., the self-energy!, so that one can
easily obtain the single-particle DOS using the Pade´ analytic
continuation to the self-energy. Moreover, there is a cl
relation between the present theory and the single-site
fluctuation theory by Hubbard and Hasegawa that the for
reduces to the latter when the dynamical part of the form
theory is neglected.

We have performed the model calculations to the bcc
and the fcc Ni using the sets of parameters employed in
previous VA calculations. Numerical results for Fe in the~4,
2! asymptotic approximation showed that the dynamical
fects reduce the Curie temperature by a factor of 2, and y
a Curie Weiss susceptibility with an effective Bohr magne
number that is smaller than that of the static approximat
by 20%. The calculated amplitude of the local moment
found to be close to that of the static approximation a
hardly changes with varying temperature. In the case of
we found that the dynamical effects make the ferrom
netism unstable. The amplitude of local moment is enhan
by 6% due to the dynamical correlations. We found in bo
cases that the dynamical CPA creates a satellite peak in
single-particle DOS in the paramagnetic state. The band
el

n

18442
te

ts

-
to

a
in

r
in

er
r

e
e

f-
ld
n
n
s
d
i,
-
d

h
he
r-

rowing due to the correlations are found to be 20% (10%)
the paramagnetic~ferromagnetic! state in the bcc Fe, and
15% in the case of Ni. These results are consistent with
recent ground-state calculations. In the case of the ferrom
netic Fe, the DOS calculated by the dynamical CPA does
show any clear satellite structure but shows a band narr
ing by about 10%. This feature is consistent with the pho
emission data.

The single-band model to the bcc Fe and the fcc Ni c
tainly overestimates the quantum fluctuations; it yields
small aTC ~420 K for W50.45 Ry) in the case of Fe, an
yields the paramagnetism in the case of Ni. Taking into
count thes, p, d orbitals and realistic band structure, w
expect the Curie temperaturesTC;1500 K for Fe andTC
;1000 K for Ni. The interatomic spin fluctuations as d
scribed by Eq.~12! should reduce the Curie temperature
the experimental values~1040 K for Fe and 630 K for Ni!.
To realize such a scenario, further developments of the
namical CPA towards the realistic description of the ma
netic properties are highly desired.
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APPENDIX A: DERIVATION OF EQ. „42…

Let us consider the determinant of a finite matrix as f
lows.
D (m,M )5U 1 1 0

a(m11)n1k 1 1

a(m12)n1k 1 1

a(m13)n1k 1 1

�

0

aMn1k 1

U . ~A1!
By using the Laplace expansion, we have the recursion r
tion as

D (m,M )5D (m,M21)2aMn1kD
(m,M22). ~A2!

In the same way, we obtain the following recursion relatio
in general.
a-

s

D (m,n)5D (m,n21)2ann1kD
(m,n22), ~A3!

D (m,m11)512a(m11)n1k , ~A4!

D (m,m)51. ~A5!

Now, we start from the following identity:
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D (m,M )511 (
l 15m11

M

~D (m,l 1)2D (m,l 121)!. ~A6!

Substituting Eq.~A3! into Eq. ~A6!, we obtain

D (m,M )512 (
l 15m11

M

al 1n1kD
(m,l 122). ~A7!

Repeating the same procedure forD (m,l 122), we have

D (m,M )512 (
l 15m11

M

al 1n1kS 12 (
l 25m11

l 122

al 2n1kD
(m,l 222)D ,

~A8!

and finally we reach the following expansion.

D (m,M )511 (
n51

M

~2 !n (
l 25m11

l 122

••• (
l n5m11

l n2122

al 1n1k•••al nn1k .

~A9!

Substituting an5 ṽs(n) ṽs(2n)g̃s(n2n)g̃s(n) into Eq.
~A9! and taking the limitM→`, we obtain Eq.~42!.

APPENDIX B: bns
„0…

„n,k… AND bns
„1…

„n,k… IN THE ZEROTH
AND SECOND-ORDER ASYMPTOTIC APPROXIMATION

Bns
( l ) (k) in the asymptotic approximation is obtained fro

the functions$bns
(0)(6n,k)% and $bns

(1)(6n,k)% (0<n< l ) as
shown in Eq.~81!.

In the zeroth-order asymptotic approximation, these fu
tions are given by

bns
(0)~n,k!5pnks~0,n21!, ~B1!

bns
(0)~2n,k!5p2nks~1,n!, ~B2!

bns
(1)~n,k!5pnks~1,n!, ~B3!

bns
(1)~2n,k!5p2nks~2,n11!. ~B4!

Here

pnks~ l ,m!5H F)
n5 l

m

g̃s~nn1k!G ~m> l !

1 ~m, l !.
~B5!

In the second-order asymptotic approximation, they
given by

bns
(0)~n,k!5pnks~2,n!F g̃s„~n11!n1k…

2
2pnn

ib
g̃s~n1k!$g̃s~k!1g̃s„~n11!n1k…%G ,

~B6!
18442
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bns
(0)~2n,k!5p2nks~3,n11!F g̃s~~n12!~2n!1k!

1
2pnn

ib
g̃s„2~2n!1k…$g̃s~2n1k!

1g̃s„~n12!~2n!1k…%G , ~B7!

bns
(1)~n,k!5pnks~2,n11!F12

2pnn

ib
g̃s~n1k!G , ~B8!

bns
(1)~2n,k!5p2nks~3,n12!F11

2pnn

ib
g̃s~22n1k!G .

~B9!

APPENDIX C: RANDOM-PHASE TECHNIQUE
FOR FREQUENCY SUM

Let us consider the local charge@see Eq.~91!# for sim-
plicity. It is obtained from the following summation.

n~j!5
2

b
Re(

s
(
l 50

L

eiv lzGs
(eff)~j,h,l !. ~C1!

Here L is an infinitely large positive integer, andz is an
infinitesimally small, positive number. The phase fac
exp(ivlz) is essential to the numerical calculation, althou
we omitted it in the equations in the text for simplicity.
was introduced to obtain the correct operator ordering le
ing to Eq.~5!, and is necessary to hold the equations deriv
from the free energy.28 In fact, in the case ofU50, Eq.~C1!
reduces to the usual relation between the charge and the
perature Green function for noninteracting system. The re
tion does not hold true if we neglect the phase factor,
cause in that case we have an additional contribution fr
the integral along a semicircle contour on the Rez,0 plane
when we express the rhs of Eq.~C1! by means of the contou
integral on the complex plane.

In the numerical calculations, we choose a large but fin
integerL and a small but finite numberz, and take the sum
of Eq. ~C1!. Such a calculation generally yields very slo
and oscillating convergence as a function ofL. The oscilla-
tion and its phase are caused by the smallz that is not related
to the final valuen(j). We, therefore, introduce a very sma
Gaussian random numberz with the average valuez0 and
standard deviations(!z0), and average Eq.~C1! over all z.
Such a superposition cancels the long-range oscillations e
other, and yields

n~j!5
2

b
Re(

s
(
l 50

L

expS iv lz02
1

2
s2v l

2DGs
(eff)~j,h,l !.

~C2!

Because of the damping factor exp(2s2vl
2/2) in the above

expression, we obtain a rapid convergence of the freque
sum.
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