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Classical generalized constant-coupling method for geometrically frustrated magnets:
Microscopic formulation and effect of perturbations beyond nearest-neighbor interactions

Angel J. Garcia-Adevaand David L. Huber
Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706
(Received 23 May 2001; revised manuscript received 19 February 2002; published 29 Apyil 2002

The critical behavior of the pyrochlore lattice with nearest-neighddN) interactions, next-nearest-
neighbor(NNN) interactions, and site dilution by nonmagnetic impurities is studied within the framework of
the microscopic formulation of the generalized constant-coupling method. In the paramagnetic regime, we
recover all the results previously obtained in a more phenomenological way, which were shown to be in
excellent agreement with Monte Carlo calculations for this lattice. In the absence of applied magnetic field, it
is found that, for antiferromagnetic interactions, the equilibrium configuration is a noncollinear configuration in
which the total magnetization of the unit is zero and the condition under which such an ordered state occurs is
also obtained from the calculation. However, frustration inhibits the formation of such a state, and the system
remains paramagnetic down to O K, if only nearest-neighbor interactions are taken into account, in agreement
with the now generally accepted idea. NNN interactions, however, can stabilize a noncollinear ordered state, or
ferromagnetic one, depending on the relation between NN and NNN interactions, in agreement with mean-field
calculations, and the phase diagram is calculated. Finally, it is found that site dilution is not enough by itself to
form such an ordered state.
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[. INTRODUCTION tion can break the nontrivial degeneracy of the ground state
and lead to some kind of ordered state. Therefore, it is espe-
The study of the magnetic ordering in geometrically frus-cially important to incorporate these possible perturbations in
trated antiferromagnet&FAF’s) with a pyrochlore lattice is  any model that tries to explain the low-temperature phases of
not a new problem in condensed matter physics. Howevethese systems. Examples of perturbations present in real sys-
there has been a renewed interest during recent years in tH&Ms are next-nearest-neighb@NN) interactions, small
lattice, mainly because, experimentally, a rich phenomenol@nisotropies, long-range dipole-dipole interaction, or dilution
ogy has been found at low temperatures and novel phas&y nonmagnetic impurities, to cite some.

; 21
have been identified, even though this system is a relatively N al_senc;as r?f reccﬁilnlt( papers? the presentllauthorshh:?jve .
simple crystal~3To summarize a very long story, it is found generalized the well-known constant-coupling method o

that the susceptibility in materials belonging to this cIassm""gnetisnﬁz23t0 deal with geometrically frustrated lattices,

exhibits a high-temperature phase in which it follows the!” both the classical and quantum cases, in the cooperative

e i paramagnetic region. The magnetic properties calculated
Curie W?'SS(CW) Iayv. Be.'o"_v _the Curie We|s_s temperature, within the framework of the classical generalized constant-
geometrical frustration inhibits the formation of a long-

. coupling(GCQ) method were found to be in excellent agree-
range-ordered RO) state, and the system remains paramagyent with Monte Carlo(MC) calculations for those same

neFic, even though th.ere are strong porrelations betweeauantitiesl,l*24'25for both thekagomeand pyrochlore lattices.
units. This phase is universally present in these systems, afghe main idea behind this technique is very simple, and it is
it is called the cooperative paramagnetic phase. Finally, at gased in the experimental and numerical observation that
certain temperatur&;, which depends on the particular ma- correlations in GFAF’s are always short ranged1216:17
terial and, usually, is well below the CW temperature, thereTherefore, in order to calculate any thermodynamic quantity,
appear nonuniversal phases: some of the systems remaie can start by calculating the partition function of an iso-
paramagnetic down to the lowest temperature reachelted cluster withp spins and, later, add the interactions with
experimentally, some of them exhibit noncollinear ordered the surroundingp—1 spins outside the cluster by means of
states,® or even some of them form a spin glass sfafe, an effective field which is fixed by a self-consistency condi-
even though the amount of disorder in the structure is veryion. This, almost phenomenological, formulation of the
small. It is thus easy to understand the amount of theoreticahethod allows one to easily compute thermodynamic quan-
attention these systems have generatetf tities, mainly the susceptibility, in the paramagnetic region,
In the simplest theoretical description of GFAF's, the by using a single effective field to characterize all the inter-
spins on the lattice are regarded as Heisenberg spins witictions with spins outside the cluster. However, it is not very
only nearest-neighbdiNN) interactions. In this picture, itis useful to study the critical properties of these systems when
predicted that the nontrivial degeneracy of the ground stat®IN interactions are antiferromagnetic. The reason is very
inhibits the formation of a LRO state, and the system resimple. It is now generally accepted that the ordered state of
mains paramagnetic down to zero temperatfirdowever, these GFAF, if any, is not a simple antiferromagnetic con-
due to the presence of frustration, the NN exchange does néityjuration, as in bipartite lattices, but a noncolling&C)
fix an energy scale in the problem, and any small perturbaene, in which the total spin momentum of the unit is identi-
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cally zero' Obviously, we cannot characterize such an or- c c c
dered state by using a single order parameter fixed by a
single effective field(EF). What is even worse, even we
know that we have to introduce different order parameters
for each of the spins in the cluster, and different EF for the
neighboring spins outside the cluster, it is not easy to intu-
itively see how these EF enter into the expressions of the
order parameters. Therefore, we need to go beyond the phe-
nomenological formulation of the GCC method introduced in

3 A A B
the aforementioned works. This is precisely the intention of
this work. We have constructed the GCC method from first
principles by using rigorous identities in terms of averages .

over finite-size clusters. In this way, the EF naturally emerge
as averages over the microscopic spin variables. This micro-
scopic formulation of the GCC method not only allows us to

(a) Kagomé lattice

recover all the results obtained Refs. 19 and 21 in the para- c
magnetic regime but, also, gives us the possible ordered con-

figurations of the system and the conditions for a transition

to one of these states to occur. Moreover, as the GCC method - '

is constructed in the real space, it is especially easy to in-
clude further perturbations in the system. Particularly, we
have studied the effect of NNN interactions and site dilution

by nonmagnetic impurities. In the present work, we will only

present the main results we have found in this framework for
the critical properties of the pyrochlore lattice. A more de-

tailed presentation of the method and the results for other
frustrated lattices will be published elsewhéfe.

(b) Pyrochlore lattice

FIG. 1. Examples of highly frustrated lattices,B,C, ... de-
IIl. SUSCEPTIBILITY AND CRITICAL BEHAVIOR note the sublattices in which the whole lattice is subdivided. All
IN THE FRAMEWORK OF THE GCC METHOD these lattices share the following property: if we consider a spin

As stated above, the original formulation of the GCcnSide a cluster formed by spins, there arp—1 NN spins outside
method®2is not well suited to study the critical behavior of the cluster. Notice also that one spin belonglng_to one sublattice
GFAF. Indeed, it is now generally accepted that the groun(‘iioes not have NN belonging to the same sublattice.
state of the pyrochlore ankhgomelattices is fixed by the
condition that the total spin momentum of the tetrahedral or,, _ z 2 > 2 g z
triangular unit, respectively, is zero, though frustration inhib-rH Klgﬁ <.Ej> Sia S‘BJFKZ;ﬁ <<iZ,j)) Sia*Sjst Ho ; Siar
its the formation of such a state and the system remains (1)
paramagnetic in the whole temperature range if only NN
interactions are present. Obviously, we cannot CharacteriZ\Qhere§ia are the classical Heisenberg spins of unit length.
such an ordered state with a single order parameter, as Wehe « index labels the sublattice to which the considered
did in Refs. 19 and 20, which restricts the applicability of thespin belonggand takes the values=A,B,C, . . .),whereas
GCC method to the study of the paramagnetic region or, aghe i index labels the spins belonging to a given sublattice.
most, the ferromagnetic case, which is of less interest, due t0 . .) represents sum over NN pairs, wheréés -)) stands
the absence of geometrical frustration. A relatively simplefor sum over NNN pairsk,=J, /T (K>0 for ferromagnetic
way of circumventing this shortcoming of the method hasinteractions andk <0 for antiferromagnetic ongss the di-
been pointed out in Refs. 10 and 27, and essentially consistfensionless NN exchange interaction, &ag=J,/T is the
of introducing different sublattices characterized by differenty; . ansionless NNN exchange interaction. Finalli,

order parameters. The minimum number of sublattices we -~ L . .
b =hy/T, with hy the applied magnetic field.

d to int is gi th f spins in th . ,
gliiterotrlgtr(i)g ugea:]sd %{eror; t?i);agc?mr:algr?gepry?ociﬁ)(l)cz IIr:t- ® The central idea of the GCC method is to calculate the
tices, respectivelysee Fig. L With this subdivision, spins order pqramete@for (,each suplattlc)efor two clusters O.f dif-
ferent sizesp and p’, replacing the effect of the spins not

belonging to one sublattice only interact with spins belong-, ; X ;
ing to different sublattices. Therefore, the dimensionles UC'“ded in the cluste(NN and NNN by fixed effective

Heisenberg Hamiltonian of a lattice formed by corner shar-'elds’ which act as a symmetry breaking fi€8BP) and, by

ing clusters withp spins, and NN and NNN interactions, in using the self-consistency condition
the presence of a uniform magnetic field, can be put in the . .
form My o(K) =My, (K), )
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obtain an equation to determine these effective fields and, 0 @ 2 SN
thus, the magnetization. The order parameter is calculated by z,(K)= J dg ¢?e? ZK(T) (10
making use of the Callen-Suzuki idenfify’ 0
- and
Moo= (Sia) <—Trpsmer 3 2
Mpa={Sia)= H : o sing\P~2[ cosq sin
Trpe'™ H Z,la(K):f dq qzquIZK( qq) qq - 2q :
0

where the partial trace is taken over the setpofariables . (12)

specified by the finite-size cluster Hamiltoniak, and
()4 indicates the usual canonical thermal average ovelncidentally, the first term in Eq(10) corresponds to the

the ensemble defined by the complete Hamiltorfian partition function for noninteracting clusters with no applied
The Hamiltonian of a one-spin cluster in sublattiegan ~ field, which were first calculated by Moessner and
be cast in the form Berlinsky:~ The additional termg,(K) allow us to study not
only the paramagnetic regime, but also the behavior of the
Hip=S10" €10 (4)  system near a critical point, as we will see below.

Taking into account the definition of the SBF and the
where the subindexd makes reference to the fact that the fact that‘]1<§ia>7-l:‘]1<§j a>H:ﬁ;. after some algebra we ar-

Hamiltonian corresponds to a cluster of one spin belongrnghve at
to sublattice, and &;,, stands for the symmetry breaking

field acting on the spin of the one-spin cluster, which belongs 1 o
to sublatticea. The expression for this SBF when both NN my,=———=1{[1—(p—1)Ap(T)]ho+[1—(1+2Z'\)(p
and NNN interactions are taken into account is given by [34]

>Apﬁ>]g hp—(1+2'N)(p—1)A(TR,

z z'
Ho+ Ky X 2 §i3+K22 2 §iﬁ, 5)
BFa i BFa i

wherezis the number of NN on each sublatti@,stands for ] ) ~ 1
the number of NNN on each sublattice’ €4 for the pyro- Where we have introduced the functiol,(T)=z;
chlore latticg. The order parameter for this cluster can be(— T)/z (- T) for antiferromagnetic interactions. By drrect
trivially evaluated by using Eq.3), and near a critical point substltutlon it is simple to verify the relation

can be put, up to first order in the SBF, as

(12

i ep(T)=—(p—DALT), (19
. (b -
mla:< 13>H. (6)  whereg,(T) is defined a¥
ini ive fieldsh! =J(S V.= J(s: ~ 272 4 -
B_y_ defining the effectwe_fleldsha 31_<S|a>H J1(Sja)u ep(T)= T in2F)-1. (14)
(i,j#1), we arrive at the final expression for the order pa- p g1 P

rameter for sublattice of the one-spin cluster:
Substituting Eqs(12) and (7) into Eq. (2) we arrive at

- 1 2 , the following system of linear equations in the effective
my,= 3| I ho+2(1+2' M[#ah (7) fieldsh,
wherex=J,/J;, T=1/|K,|=T/|J;|, and we have taken into (p—2) >,
account that each spin has two NN on each sublattice differ- (1+2 )\)SP(T)h M )\)( -1) p(T ; hs

ent from the considered one. .
With some more effort, we can also calculate the order =g,(T)hg, (15)
parameter for a cluster with atoms. Up to first order in the

SBF, this quantity is given by and its solution is given by

G B o i oD 5
mpa=%—3ng(Kl) 2 (Eop) ®) “ T (p—D[I—(1+2'N)ey(T)]

where the SBF are now given by Substituting back into the expression of the one-spin
cluster order parameter we find the expression for the
susceptibility:

z—1 7
Hot+ Ky X E §i,8+K22 2 §iﬁa 9)
BFa i BFa i

and we have introduced the functions

1 1+e,(T)
3194 T 1-(1+2'N)ep(T)

gcc_

Xp

17
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0.25 T T T T T IIl. EFFECT OF DILUTION BY NONMAGNETIC
\ IMPURITIES
0225} — A=0
------- A=0.1 So far, nothing has been said about dilution by nonmag-
02k “« T ;‘:g-? netic impurities. In order to add this effect we ne_ed_ to aver-
S e A=0.75 age the order parameters and SBF over the distribution of
0.175 - ——— 1 nonmagnetic impurities. For simplicity, we will assume that
c=ee= A=-01 the distribution of nonmagnetic impurities is purely random.
— o015 N - == A=-0325 Under this condition, the number of units withspins, for a
~" lattice which, in the absence of dilution, is formed by units
20125 Wit_h p_spins, for a concentration of nonmagnetic impurities,
X, is given by
0.1F D
Pg(x)=( )(1—x)qqu. (22
0.075 q
However, this distribution is normalized with respect to
0.05 units, whereas we need a distribution function normalized
[ | . [ . with respect to a single spin. The adequate distribution func-
0025 0.5 1 1.5 tion, for the SBF, is then given by
TJ lI
Ph(X)=———Ph(x), (23
FIG. 2. Effect of NNN interactions on the susceptibility of the pP(1=x)
pyrochlore lattice. whereas the corresponding one for the order parameter is
given by
This susceptibility is depicted in Fig. 2 for different values of
X\ and antiferromagnetic NN interactions. Q) =(1—x)(q—1)P{(X). (29

In the absence of an applied field, the systé@®) has two

o ) X ; In the following, we will use the following notation to denote
nontrivial solutions: the first one occurs if

averages with respect to dilution:

oo P7D
P 1+z'\

p
(18) [fq]pzqgl PR(X)fq, (25)

wheref is any quantity, and it will be understood that we
are using the distributiof23) when averaging over SBF and
the distribution(24) when averaging over the order param-
2 m =0 (19 eter. _ o
~ Therefore, if we construct the average over dilution of the
self-consistency conditiof®), i.e.,

and corresponds to an ordered state in which

We will call this kind of state a NC ordered state. Actually, - -
this condition includes, as particular cases, states in which [Mialp=[Mgalp, (26)
spins in different sublattices are antiferromagneticallyand follow the same steps as in the previous section, we

aligned with each other, that s, collinear states. However, thgasily arrive at an expression for the averaged susceptibility
most general state described by this condition is a noncoln the paramagnetic region:
linear one. The second solution of E45) occurs if

1-x 1+8p

[Xlp= = —. (27)
~ 1 3|4 T 1-(1+2Z'A
ep(T)=——— (20) |94 (1+2'Nep
(1+2'N) In this expression,
and corresponds to an ordered state in which _ 272 ¢ o=
gp=—7—— =In zp(T,x)—l, (28
P(1—-x) 4T

rﬁazrﬁﬁzrﬁyz--~ Ya,B,7, ..., (21 -

wherez, is the average oig with respect to dilution, given

1

that is, ferromagnetic order. by?

We will postpone the analysis of the critical behavior until P

the effects of dilution by nonmagnetic impurities are intro- 0= H Zo(':l-)Pg(x)_ (29)
duced in the next section. Prg=a P
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In the absence of an applied magnetic field, the condition for 7 T T T T T T r
the existence of a ferromagnetic ordered state is very easil L i
obtained to b#

_ 1
£p= ,
P14z

(30

whereas the corresponding one for a noncollinear orderec
state is given by

— (DX
P 1+z2'n

T VI

c

(31

These conditions have been studied for different values of
x and the ratio between NN and NNN interactions, and the
corresponding phase diagrams are depicted in Fig. 3. Also, ir
Fig. 4 we have depicted the values\aix), that is, the value
of J,/J, above which a noncollinear ordered state is formed
at a finite temperature, for a given valuexofWe have only
depicted this quantity for antiferromagnetic NN interactions,
as the correspondiny, for ferromagnetic NN interactions (@)
does not change upon dilution.

Let us first discuss the phase diagram for the nondiluted
case k=0). As we can see from Fig. 3, NNN interactions
can stabilize different ordered states depending on the valus
of A and the sign of the NN interaction. For antiferromag-
netic NN interactions an{ll,| <0.5J,|, the system remains
paramagnetic down to 0 K. For antiferromagnetic NN and
NNN interactions, a NC ordered state is selected at finite
temperature forx>3. However, for antiferromagnetic NN~
interactions and ferromagnetic NNN interactions, a ferro- ~
magnetic ordered state is selected ¥t —3. On the other ©
hand, the case of ferromagnetic NN interactions is slightly
more complex. For ferromagnetic NNN interactions, a ferro-
magnetic ordered state is selected fe<\. In the range
—1<\<-1%, the system remains paramagnetic down to 0 K
and, in the rangé<—3, a NC ordered state is selected. In
any case, from the analysis of this section, it seems very
unlikely that the noncollinear ordered states experimentally
found in some pyrochlore systems are due to NNN
interactions,?° as in real pyrochlore syster3,|~0.1]J,|, a
value well inside the region of the phase diagram in which () A
the system is found to remain paramagnetic down to 0 K. It
is also important to stress that the present treatment of NNN F|G. 3. Phase diagrams with both NNN interactions and site
interactions is only approximate, and it does not contradict inilution. In these figures, FM stands for ferromagnetic order, PM
any way previously published results in which is shown thatfor paramagnetic phase, and NC for noncollinear order.
NNN interactions could stabilize some kind of incommensu-
rate staté:* In fact, in order to treat this problem consis- magnetic for all values ok if A=0, in contrast with the
tently, we should include new sublattices in such a way thagualitative picture suggested in other works. The main effect
spins in one sublattice do not interact with spins in the samef dilution seems to be to increase the transition temperature
sublattice. In doing so, it can happen that new kinds of orto a NC ordered state while decreasing the transition tem-
dered states arise, even in regions where our present simpjserature to a ferromagnetic state igr< 0, whereas the trend
fied analysis predicts the system to remain paramagnetigs exactly the opposite fai;>0.
However, our main intention here is to check if the NC state
given is selected by NNN interactions. The general problem
with more sublattices will be studied elsewhere.

If we now turn our attention to the effect of dilution on In this work we have presented the main results emerging
the phase diagram, we can easily see that dilution by itselfrom the microscopic formulation of the generalized
cannot induce a NC ordered state: the system remains pareenstant-coupling method for classical Heisenberg spins in

T

IV. CONCLUSIONS
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05 T T T T T T T 1 direction, in the present framework, is still necessary.
Regarding the effects of site dilution, it has been argued

0451 B that this kind of effect, always present in real materials,
04l - could break the nontrivial degeneracy of the ground state and
cause a transition to some kind of long-range-ordered state at
0351~ m finite temperature. However, in our calculation, we find that
03l N this is not the case: Site dilution by itself does not induce a

—_ transition, for any amount of dilution. It is necessary to in-
< oast — clude simultaneously both dilution and next-nearest-neighbor
< interactions.

0.21= 7] A word of caution must be said here, however. In the last
0.15 _ part of this work, we have focused our attention on studying
if a noncollinear ordered state given by the rule that the total
01 - magnetization of the tetrahedral unit is zero is estabilized by
any of these perturbations. However, these are not the only
0051 N possible ordered configurations when we include these ef-
ob— L 111y fects. For example, Reimers and co-work€showed that,
0 01 02 03 04 05 06 07 08 09 1 in the framework of mean-field theory, next-nearest-neighbor
X interactions can induce both noncollinear ordered states as

the ones studied in this work or ordered states characterized
by an incommensurate wave vector. It is not easy to describe
these incommensurate states with a real space method, and it

the presence of NN interactions, NNN interactions, and di_could be the case that site dilution would lead to such an
lution by nonmagnetic impurities’ and how these ef,“fects af_incommensurate state. Therefore, more theoretical work in

fect the critical properties of geometrically frustrated mag-that direction should be necesary before ruling out the pos-
nets with a pyrochlore lattice. sibility of a Ipng-r_an_ge-ordered state induced by small
When a magnetic field is applied to the system, this2mounts of site dilution or—what would be even more
method allows us to easily compute the averaged susceptfit€resting—the possibility of a transition to some kind of
bility, and we recover previous results obtained in the pheSPin glass state induced by dilution. ,
nomenological formulation of the GCC method, which were N conclusion, the formulation of the generalized
shown to be in excellent agreement with MC results for botreonstant-coupling method presented in this work provides us
the kagomeand pyrochlore lattice. However, the present for-& conceptual framework in which both thermodynamic quan-
mulation allows Us to also study the critical behavior of thetities and the critical behawor of geometrically frustrated_
system when no applied magnetic field is present. One adl'@gnets can be properly described. The method can be easily
vantage of the present formulation is that it is constructed iffeneralized to deal with further perturbations always present
real space, which makes it very easy to include additional real systems. We_ have presented the classical limit of the
perturbations to the system beyond NN interactions. Particulethod. However, in order to compare the calculated quan-
larly, we have studied the effect of next-nearest-neighbor inliti€S With experimental data for these systems, the corre-
teractions and site dilution by nonmagnetic impurities for theSPONding quantum generalized constant coupling method
pyrochlore lattice. The phase diagrams have been calculate§f!0uld be used. This issue, the occurrence of incommensu-
It is found that, for certain values of the ratio=J,/J;, a rate states dye to dllutlon,_and _the effect o_f the_: inclusion of
noncollinear or ferromagnetic ordered state can be stabilized®"9-ange dipolar interactions in the Hamiltonian are open
However, the minimum value of above which a noncol- issues which deserve further theoretical work.
linear configuration is stable, for any concentration of non-
magnetic impurities, seems to be too large to explain the
formation of long-range order found in some systems, nota- A.J.G.A. wants to thank the Spanish Ministerio de Cien-
bly in Gd,Ti,0,.° Besides, the main perturbation in this sys- cia y Tecnologia for financial support under the Subprograma
tem seems to come from long-range dipolar interactionsGeneral de Formacion de Doctores y Tecnologos en el Ex-
which are highly anisotropic. Further theoretical work in this tranjero.

FIG. 4. Minimum value ofn for which a NC ordered state is
formed for different concentrations of nonmagnetic impurities.
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