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Classical generalized constant-coupling method for geometrically frustrated magnets:
Microscopic formulation and effect of perturbations beyond nearest-neighbor interactions

Angel J. Garcia-Adeva* and David L. Huber
Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706

~Received 23 May 2001; revised manuscript received 19 February 2002; published 29 April 2002!

The critical behavior of the pyrochlore lattice with nearest-neighbor~NN! interactions, next-nearest-
neighbor~NNN! interactions, and site dilution by nonmagnetic impurities is studied within the framework of
the microscopic formulation of the generalized constant-coupling method. In the paramagnetic regime, we
recover all the results previously obtained in a more phenomenological way, which were shown to be in
excellent agreement with Monte Carlo calculations for this lattice. In the absence of applied magnetic field, it
is found that, for antiferromagnetic interactions, the equilibrium configuration is a noncollinear configuration in
which the total magnetization of the unit is zero and the condition under which such an ordered state occurs is
also obtained from the calculation. However, frustration inhibits the formation of such a state, and the system
remains paramagnetic down to 0 K, if only nearest-neighbor interactions are taken into account, in agreement
with the now generally accepted idea. NNN interactions, however, can stabilize a noncollinear ordered state, or
ferromagnetic one, depending on the relation between NN and NNN interactions, in agreement with mean-field
calculations, and the phase diagram is calculated. Finally, it is found that site dilution is not enough by itself to
form such an ordered state.

DOI: 10.1103/PhysRevB.65.184418 PACS number~s!: 75.10.Hk, 75.25.1z, 75.40.Cx
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I. INTRODUCTION

The study of the magnetic ordering in geometrically fru
trated antiferromagnets~GFAF’s! with a pyrochlore lattice is
not a new problem in condensed matter physics. Howe
there has been a renewed interest during recent years in
lattice, mainly because, experimentally, a rich phenomen
ogy has been found at low temperatures and novel ph
have been identified, even though this system is a relativ
simple crystal.1–3 To summarize a very long story, it is foun
that the susceptibility in materials belonging to this cla
exhibits a high-temperature phase in which it follows t
Curie-Weiss~CW! law. Below the Curie-Weiss temperatur
geometrical frustration inhibits the formation of a lon
range-ordered~LRO! state, and the system remains param
netic, even though there are strong correlations betw
units. This phase is universally present in these systems,
it is called the cooperative paramagnetic phase. Finally,
certain temperatureTf , which depends on the particular m
terial and, usually, is well below the CW temperature, th
appear nonuniversal phases: some of the systems re
paramagnetic down to the lowest temperature reac
experimentally,4 some of them exhibit noncollinear ordere
states,5,6 or even some of them form a spin glass state7–9

even though the amount of disorder in the structure is v
small. It is thus easy to understand the amount of theore
attention these systems have generated.10–18

In the simplest theoretical description of GFAF’s, th
spins on the lattice are regarded as Heisenberg spins
only nearest-neighbor~NN! interactions. In this picture, it is
predicted that the nontrivial degeneracy of the ground s
inhibits the formation of a LRO state, and the system
mains paramagnetic down to zero temperature.10 However,
due to the presence of frustration, the NN exchange does
fix an energy scale in the problem, and any small pertur
0163-1829/2002/65~18!/184418~7!/$20.00 65 1844
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tion can break the nontrivial degeneracy of the ground s
and lead to some kind of ordered state. Therefore, it is es
cially important to incorporate these possible perturbation
any model that tries to explain the low-temperature phase
these systems. Examples of perturbations present in real
tems are next-nearest-neighbor~NNN! interactions, small
anisotropies, long-range dipole-dipole interaction, or diluti
by nonmagnetic impurities, to cite some.

In a series of recent papers,19–21 the present authors hav
generalized the well-known constant-coupling method
magnetism,22,23 to deal with geometrically frustrated lattice
in both the classical and quantum cases, in the coopera
paramagnetic region. The magnetic properties calcula
within the framework of the classical generalized consta
coupling~GCC! method were found to be in excellent agre
ment with Monte Carlo~MC! calculations for those sam
quantities,11,24,25for both thekagome´ and pyrochlore lattices
The main idea behind this technique is very simple, and i
based in the experimental and numerical observation
correlations in GFAF’s are always short ranged.4,5,11,12,16,17

Therefore, in order to calculate any thermodynamic quan
we can start by calculating the partition function of an is
lated cluster withp spins and, later, add the interactions wi
the surroundingp21 spins outside the cluster by means
an effective field which is fixed by a self-consistency con
tion. This, almost phenomenological, formulation of th
method allows one to easily compute thermodynamic qu
tities, mainly the susceptibility, in the paramagnetic regio
by using a single effective field to characterize all the int
actions with spins outside the cluster. However, it is not v
useful to study the critical properties of these systems w
NN interactions are antiferromagnetic. The reason is v
simple. It is now generally accepted that the ordered stat
these GFAF, if any, is not a simple antiferromagnetic co
figuration, as in bipartite lattices, but a noncollinear~NC!
one, in which the total spin momentum of the unit is iden
©2002 The American Physical Society18-1
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cally zero.10 Obviously, we cannot characterize such an
dered state by using a single order parameter fixed b
single effective field~EF!. What is even worse, even w
know that we have to introduce different order paramet
for each of the spins in the cluster, and different EF for
neighboring spins outside the cluster, it is not easy to in
itively see how these EF enter into the expressions of
order parameters. Therefore, we need to go beyond the
nomenological formulation of the GCC method introduced
the aforementioned works. This is precisely the intention
this work. We have constructed the GCC method from fi
principles by using rigorous identities in terms of averag
over finite-size clusters. In this way, the EF naturally eme
as averages over the microscopic spin variables. This mi
scopic formulation of the GCC method not only allows us
recover all the results obtained Refs. 19 and 21 in the p
magnetic regime but, also, gives us the possible ordered
figurations of the system and the conditions for a transit
to one of these states to occur. Moreover, as the GCC me
is constructed in the real space, it is especially easy to
clude further perturbations in the system. Particularly,
have studied the effect of NNN interactions and site dilut
by nonmagnetic impurities. In the present work, we will on
present the main results we have found in this framework
the critical properties of the pyrochlore lattice. A more d
tailed presentation of the method and the results for o
frustrated lattices will be published elsewhere.26

II. SUSCEPTIBILITY AND CRITICAL BEHAVIOR
IN THE FRAMEWORK OF THE GCC METHOD

As stated above, the original formulation of the GC
method19,20 is not well suited to study the critical behavior o
GFAF. Indeed, it is now generally accepted that the grou
state of the pyrochlore andkagome´ lattices is fixed by the
condition that the total spin momentum of the tetrahedra
triangular unit, respectively, is zero, though frustration inh
its the formation of such a state and the system rem
paramagnetic in the whole temperature range if only N
interactions are present. Obviously, we cannot characte
such an ordered state with a single order parameter, as
did in Refs. 19 and 20, which restricts the applicability of t
GCC method to the study of the paramagnetic region or
most, the ferromagnetic case, which is of less interest, du
the absence of geometrical frustration. A relatively sim
way of circumventing this shortcoming of the method h
been pointed out in Refs. 10 and 27, and essentially con
of introducing different sublattices characterized by differe
order parameters. The minimum number of sublattices
need to introduce is given by the number of spins in
cluster, that is, 3 and 4 for thekagome´ and pyrochlore lat-
tices, respectively~see Fig. 1!. With this subdivision, spins
belonging to one sublattice only interact with spins belon
ing to different sublattices. Therefore, the dimensionl
Heisenberg Hamiltonian of a lattice formed by corner sh
ing clusters withp spins, and NN and NNN interactions, i
the presence of a uniform magnetic field, can be put in
form
18441
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H5K1 (
aÞb

(
^ i , j &

sW ia•sW j b1K2 (
aÞb

(
^^ i , j &&

sW ia•sW j b1HW 0•(
a,i

sW ia ,

~1!

wheresW ia are the classical Heisenberg spins of unit leng
The a index labels the sublattice to which the consider
spin belongs~and takes the valuesa5A,B,C, . . . ),whereas
the i index labels the spins belonging to a given sublatti
^•••& represents sum over NN pairs, whereas^^•••&& stands
for sum over NNN pairs,K15J1 /T (K.0 for ferromagnetic
interactions andK,0 for antiferromagnetic ones! is the di-
mensionless NN exchange interaction, andK25J2 /T is the
dimensionless NNN exchange interaction. Finally,HW 0

5hW 0 /T, with hW 0 the applied magnetic field.
The central idea of the GCC method is to calculate

order parameter~for each sublattice! for two clusters of dif-
ferent sizes,p and p8, replacing the effect of the spins no
included in the cluster~NN and NNN! by fixed effective
fields, which act as a symmetry breaking field~SBF! and, by
using the self-consistency condition

mW p8a~K !5mW pa~K !, ~2!

FIG. 1. Examples of highly frustrated lattices.A,B,C, . . . de-
note the sublattices in which the whole lattice is subdivided.
these lattices share the following property: if we consider a s
inside a cluster formed byp spins, there arep21 NN spins outside
the cluster. Notice also that one spin belonging to one sublat
does not have NN belonging to the same sublattice.
8-2
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obtain an equation to determine these effective fields a
thus, the magnetization. The order parameter is calculate
making use of the Callen-Suzuki identity28,27

mW pa5^sW ia&5K TrpsW iaeHp

TrpeHp
L

H
, ~3!

where the partial trace is taken over the set ofp variables
specified by the finite-size cluster HamiltonianHp and
^•••&H indicates the usual canonical thermal average o
the ensemble defined by the complete HamiltonianH.

The Hamiltonian of a one-spin cluster in sublatticea can
be cast in the form

H1a5sW1a•jW1a , ~4!

where the subindex 1a makes reference to the fact that th
Hamiltonian corresponds to a cluster of one spin belong
to sublatticea, and jW1a stands for the symmetry breakin
field acting on the spin of the one-spin cluster, which belon
to sublatticea. The expression for this SBF when both N
and NNN interactions are taken into account is given by

jW1a5HW 01K1 (
bÞa

(
i

z

sW ib1K2 (
bÞa

(
i

z8

sW ib , ~5!

wherez is the number of NN on each sublattice,z8 stands for
the number of NNN on each sublattice (z854 for the pyro-
chlore lattice!. The order parameter for this cluster can
trivially evaluated by using Eq.~3!, and near a critical poin
can be put, up to first order in the SBF, as

mW 1a.
^jW1a&H

3
. ~6!

By defining the effective fieldshW a85J1^sW ia&H5J1^sW j a&H
( i , j Þ1), we arrive at the final expression for the order p
rameter for sublatticea of the one-spin cluster:

mW 1a5
1

3uJ1uT̃ FhW 012~11z8l! (
bÞa

hW b8 G , ~7!

wherel5J2 /J1 , T̃51/uK1u5T/uJ1u, and we have taken into
account that each spin has two NN on each sublattice di
ent from the considered one.

With some more effort, we can also calculate the or
parameter for a cluster withp atoms. Up to first order in the
SBF, this quantity is given by

mW pa5
^jW pa&

3
2

zp
1~K1!

3zp
0~K1!

(
bÞa

^jW pb&, ~8!

where the SBF are now given by

jW pa5HW 01K1 (
bÞa

(
i

z21

sW ib1K2 (
bÞa

(
i

z8

sW ib , ~9!

and we have introduced the functions
18441
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zp
0~K !5E

0

`

dq q2eq2/2KS sinq

q D p

~10!

and

zp
1~K !5E

0

`

dq q2 eq2/2KS sinq

q D p22S cosq

q
2

sinq

q2 D 2

.

~11!

Incidentally, the first term in Eq.~10! corresponds to the
partition function for noninteracting clusters with no applie
field, which were first calculated by Moessner a
Berlinsky.11 The additional termszp

1(K) allow us to study not
only the paramagnetic regime, but also the behavior of
system near a critical point, as we will see below.

Taking into account the definition of the SBF and t
fact thatJ1^sW ia&H5J1^sW j a&H5hW a8 , after some algebra we ar
rive at

mW pa5
1

3uJ1uT̃ H @12~p21!Ap~ T̃!#hW 01@12~11z8l!~p

22!Ap~ T̃!# (
bÞa

hW b82~11z8l!~p21!Ap~ T̃!hW a8 J
~12!

where we have introduced the functionAp(T̃)5zp
1

(2T̃)/zp
0(2T̃) for antiferromagnetic interactions. By direc

substitution, it is simple to verify the relation

«p~ T̃!52~p21!Ap~ T̃!, ~13!

where«p(T̃) is defined as19

«p~ T̃!5
2T̃2

p

]

]T̃
ln zp

0~ T̃!21. ~14!

Substituting Eqs.~12! and ~7! into Eq. ~2! we arrive at
the following system of linear equations in the effecti
fields hW a :

2~11z8l!«p~ T̃!hW a81F12~11z8l!
~p22!

~p21!
«p~ T̃!G (

bÞa
hW b8

5«p~ T̃!hW 0 , ~15!

and its solution is given by

hW a85
«p~ T̃!

~p21!@12~11z8l!«p~ T̃!#
hW 0 . ~16!

Substituting back into the expression of the one-s
cluster order parameter we find the expression for
susceptibility:

xp
gcc5

1

3uJ1uT̃

11«p~ T̃!

12~11z8l!«p~ T̃!
. ~17!
8-3
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This susceptibility is depicted in Fig. 2 for different values
l and antiferromagnetic NN interactions.

In the absence of an applied field, the system~15! has two
nontrivial solutions: the first one occurs if

«p~ T̃!52
~p21!

11z8l
~18!

and corresponds to an ordered state in which

(
a

mW a50W . ~19!

We will call this kind of state a NC ordered state. Actual
this condition includes, as particular cases, states in wh
spins in different sublattices are antiferromagnetica
aligned with each other, that is, collinear states. However,
most general state described by this condition is a non
linear one. The second solution of Eq.~15! occurs if

«p~ T̃!5
1

~11z8l!
~20!

and corresponds to an ordered state in which

mW a5mW b5mW g5••• ;a,b,g, . . . , ~21!

that is, ferromagnetic order.
We will postpone the analysis of the critical behavior un

the effects of dilution by nonmagnetic impurities are intr
duced in the next section.

FIG. 2. Effect of NNN interactions on the susceptibility of th
pyrochlore lattice.
18441
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III. EFFECT OF DILUTION BY NONMAGNETIC
IMPURITIES

So far, nothing has been said about dilution by nonm
netic impurities. In order to add this effect we need to av
age the order parameters and SBF over the distribution
nonmagnetic impurities. For simplicity, we will assume th
the distribution of nonmagnetic impurities is purely rando
Under this condition, the number of units withq spins, for a
lattice which, in the absence of dilution, is formed by un
with p spins, for a concentration of nonmagnetic impuritie
x, is given by11

Pq
p~x!5S p

qD ~12x!qxp2q. ~22!

However, this distribution is normalized with respect
units, whereas we need a distribution function normaliz
with respect to a single spin. The adequate distribution fu
tion, for the SBF, is then given by

P p
p~x!5

q

p~12x!
Pq

p~x!, ~23!

whereas the corresponding one for the order paramete
given by

Q q
p~x!5~12x!~q21!P q

p~x!. ~24!

In the following, we will use the following notation to denot
averages with respect to dilution:

@ f q#p5 (
q51

p

P q
p~x! f q , ~25!

where f q is any quantity, and it will be understood that w
are using the distribution~23! when averaging over SBF an
the distribution~24! when averaging over the order param
eter.

Therefore, if we construct the average over dilution of t
self-consistency condition~2!, i.e.,

@mW 1a#p5@mW qa#p , ~26!

and follow the same steps as in the previous section,
easily arrive at an expression for the averaged susceptib
in the paramagnetic region:

@x#p5
12x

3uJ1uT̃

11 «̄p

12~11z8l!«̄p

. ~27!

In this expression,

«̄p5
2T̃2

p~12x!

]

]T̃
ln z̄p

0~ T̃,x!21, ~28!

wherez̄p
0 is the average ofzp

0 with respect to dilution, given
by21

z̄p
05 )

q51

p

zp
0~ T̃!Pq

p(x). ~29!
8-4
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In the absence of an applied magnetic field, the condition
the existence of a ferromagnetic ordered state is very ea
obtained to be26

«̄p5
1

11z8l
, ~30!

whereas the corresponding one for a noncollinear orde
state is given by

«̄p52
~p21!~12x!

11z8l
. ~31!

These conditions have been studied for different value
x and the ratio between NN and NNN interactions, and
corresponding phase diagrams are depicted in Fig. 3. Als
Fig. 4 we have depicted the values oflc(x), that is, the value
of J2 /J1 above which a noncollinear ordered state is form
at a finite temperature, for a given value ofx. We have only
depicted this quantity for antiferromagnetic NN interaction
as the correspondinglc for ferromagnetic NN interactions
does not change upon dilution.

Let us first discuss the phase diagram for the nondilu
case (x50). As we can see from Fig. 3, NNN interaction
can stabilize different ordered states depending on the v
of l and the sign of the NN interaction. For antiferroma
netic NN interactions anduJ2u,0.5uJ1u, the system remains
paramagnetic down to 0 K. For antiferromagnetic NN a
NNN interactions, a NC ordered state is selected at fin
temperature forl.1

2. However, for antiferromagnetic NN
interactions and ferromagnetic NNN interactions, a fer
magnetic ordered state is selected forl,21

2. On the other
hand, the case of ferromagnetic NN interactions is sligh
more complex. For ferromagnetic NNN interactions, a fer
magnetic ordered state is selected for21

6,l. In the range
21

2,l,21
6, the system remains paramagnetic down to 0

and, in the rangel,21
2, a NC ordered state is selected.

any case, from the analysis of this section, it seems v
unlikely that the noncollinear ordered states experiment
found in some pyrochlore systems are due to NN
interactions,5,29 as in real pyrochlore systemsuJ2u;0.1uJ1u, a
value well inside the region of the phase diagram in wh
the system is found to remain paramagnetic down to 0 K
is also important to stress that the present treatment of N
interactions is only approximate, and it does not contradic
any way previously published results in which is shown t
NNN interactions could stabilize some kind of incommens
rate state.5,10 In fact, in order to treat this problem consi
tently, we should include new sublattices in such a way t
spins in one sublattice do not interact with spins in the sa
sublattice. In doing so, it can happen that new kinds of
dered states arise, even in regions where our present sim
fied analysis predicts the system to remain paramagn
However, our main intention here is to check if the NC st
given is selected by NNN interactions. The general probl
with more sublattices will be studied elsewhere.

If we now turn our attention to the effect of dilution o
the phase diagram, we can easily see that dilution by it
cannot induce a NC ordered state: the system remains p
18441
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magnetic for all values ofx if l50, in contrast with the
qualitative picture suggested in other works. The main eff
of dilution seems to be to increase the transition tempera
to a NC ordered state while decreasing the transition te
perature to a ferromagnetic state forJ1,0, whereas the trend
is exactly the opposite forJ1.0.

IV. CONCLUSIONS

In this work we have presented the main results emerg
from the microscopic formulation of the generalize
constant-coupling method for classical Heisenberg spins

FIG. 3. Phase diagrams with both NNN interactions and s
dilution. In these figures, FM stands for ferromagnetic order, P
for paramagnetic phase, and NC for noncollinear order.
8-5
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the presence of NN interactions, NNN interactions, and
lution by nonmagnetic impurities and how these effects
fect the critical properties of geometrically frustrated ma
nets with a pyrochlore lattice.

When a magnetic field is applied to the system, t
method allows us to easily compute the averaged susc
bility, and we recover previous results obtained in the p
nomenological formulation of the GCC method, which we
shown to be in excellent agreement with MC results for b
thekagome´ and pyrochlore lattice. However, the present fo
mulation allows us to also study the critical behavior of t
system when no applied magnetic field is present. One
vantage of the present formulation is that it is constructed
real space, which makes it very easy to include additio
perturbations to the system beyond NN interactions. Part
larly, we have studied the effect of next-nearest-neighbor
teractions and site dilution by nonmagnetic impurities for
pyrochlore lattice. The phase diagrams have been calcula
It is found that, for certain values of the ratiol5J2 /J1, a
noncollinear or ferromagnetic ordered state can be stabili
However, the minimum value ofl above which a noncol-
linear configuration is stable, for any concentration of no
magnetic impurities, seems to be too large to explain
formation of long-range order found in some systems, no
bly in Gd2Ti2O7.5 Besides, the main perturbation in this sy
tem seems to come from long-range dipolar interactio
which are highly anisotropic. Further theoretical work in th

FIG. 4. Minimum value ofl for which a NC ordered state i
formed for different concentrations of nonmagnetic impurities.
c

hy
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direction, in the present framework, is still necessary.
Regarding the effects of site dilution, it has been argu

that this kind of effect, always present in real materia
could break the nontrivial degeneracy of the ground state
cause a transition to some kind of long-range-ordered sta
finite temperature. However, in our calculation, we find th
this is not the case: Site dilution by itself does not induc
transition, for any amount of dilution. It is necessary to i
clude simultaneously both dilution and next-nearest-neigh
interactions.

A word of caution must be said here, however. In the l
part of this work, we have focused our attention on study
if a noncollinear ordered state given by the rule that the to
magnetization of the tetrahedral unit is zero is estabilized
any of these perturbations. However, these are not the
possible ordered configurations when we include these
fects. For example, Reimers and co-workers10 showed that,
in the framework of mean-field theory, next-nearest-neigh
interactions can induce both noncollinear ordered state
the ones studied in this work or ordered states character
by an incommensurate wave vector. It is not easy to desc
these incommensurate states with a real space method, a
could be the case that site dilution would lead to such
incommensurate state. Therefore, more theoretical work
that direction should be necesary before ruling out the p
sibility of a long-range-ordered state induced by sm
amounts of site dilution or—what would be even mo
interesting—the possibility of a transition to some kind
spin glass state induced by dilution.

In conclusion, the formulation of the generalize
constant-coupling method presented in this work provides
a conceptual framework in which both thermodynamic qu
tities and the critical behavior of geometrically frustrat
magnets can be properly described. The method can be e
generalized to deal with further perturbations always pres
in real systems. We have presented the classical limit of
method. However, in order to compare the calculated qu
tities with experimental data for these systems, the co
sponding quantum generalized constant coupling met
should be used. This issue, the occurrence of incomme
rate states due to dilution, and the effect of the inclusion
long-range dipolar interactions in the Hamiltonian are op
issues which deserve further theoretical work.
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