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We develop a finite-temperature perturbation theory for quasi-one-dimensional quantum spin systems, in the
manner suggested by Schulz in Phys. Rev. LéR. 2790 (1996 and use this formalism to study their
dynamical response. The corrections to the random-phase approximation formula for the dynamical magnetic
susceptibility obtained with this method involve multipoint correlation functions of the one-dimensional theory
on which the random-phase approximation expansion is built. This “anisotropic” perturbation theory takes the
form of a systematic high-temperature expansion. This formalism is first applied to the estimation 6ethe Ne
temperature 06= 1/2 anisotropic cubic lattice Heisenberg antiferromagnets. It is then applied to the compound
Cs,CuCl,, a frustratedS=1/2 antiferromagnet with a Dzyaloshinskii-Moriya spin anisotropy. Using the next
leading order to the random-phase approximation, we determine the improved values for the critical tempera-
ture and incommensurability. Despite the nonuniversal character of these quantities, the calculated values
compare remarkably well with the experimental values for both compounds.
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[. INTRODUCTION formula for the dynamical susceptibilfyand it differs nota-
bly from what follows. Their work has found applications in

Quasi-one-dimensional magnets are notoriously difficulthe estimation of the N temperature of cubic lattice quasi-
to tackle. The backbones of those compounds, namely, thene-dimensional antiferromagnets KGuFSrLCuQ;, and
spin chains, are by now very well understood, in some caseSa,CuQ;. Their estimation deviates from the RPA result by
even by analytical methods. But until how no natural and25%.
efficient framework has been developed to describe their be- In the following, we will develop a systematic expansion
havior when they are coupled by a weak interchain exchangand will embed the RPA formula for the dynamical suscep-
J, . tibility in it as a natural leading order approximation. We will

Useful results have nonetheless been obtained by combime mainly concerned with lattices made $f 1/2 Heisen-
ing one-dimensional exact results with a random-phase agberg spin chains. Yet the formalism equally applies to spin
proximation (RPA) approach to cope with interchain chains with anisotropy in spin spat&uch an expansion has
couplings'— Recently such a method has even been applietheen developed by Arrigohifor the physics of Luttinger
to frustrated quasi-one-dimensional systényselding sen- liquids. The main differences with our approach are the fol-
sible predictions. lowing. Because it is aT =0, he resums an infinite proper

From the RPA formalism for the dynamical susceptibility, set of cumulants. On the contrary, we are at finite tempera-
one can deduce estimates for nonuniversal quantities, such age and we will use the temperature as an additional energy
the Neel temperaturé,or the possible incommensurate order scale in the disordered phase. Because of this energy scale,
developing below the transiton in a frustrated we need not resum all of the higher cumulants to get a sen-
antiferromagnet This is made possible by recent progress insible result. But we do have to resum temperature-dependent
the (exac) determination of spin chain two-point correlation diagrams at the level of any cumulaffdur-point correlation
functions in the low-energy regime. The RPA formalism to-function for the examples given in this workbecause we
gether with those exact results are able to cope with exintend to use our expansion down to the critical temperature,
change anisotropy, and/or Dzyaloshinskii-Moriya interactionwhere those diagrams contribute.

This approach has been successful in the sense that it In Sec. Il of this paper, we expose the formal steps lead-
yields satisfactory results when compared to experimentahg to an extended perturbative expression of the dynamical
measuremer(in some cases even though the interchain raticsusceptibility, in terms of a self-energy of the two-spin cor-
J, 1J) is not small whereJ; is the exchange coupling along relation function. In Sec. Ill, we discuss some of the results
the easy axis This owes to the fact that on one hand theand peculiarities of this expansion. In particular we show
ratio T./J; is small enough so that the collective one-that the expansion can be organized in terms of the number
dimensional excitations have a significant influence on thef RPA-dressed propagators indirectly related to the small
physics at the transition temperature, and on the other harmarameted, /T. This propagator must be regularized and we
(for instance, in the case of a cubic lathicd./J, is big  hint at how it can be done. An integral representation of the
enough. However, the RPA is an uncontrolled approximationfirst correction is given. In Sec. IV, we calculate the correc-

Irkhin and Katanin have calculated corrections to RPA fortion due to the leading diagram & /T and discuss its effect
spin-1/2 quasi-one-dimensional cubic lattiéeBheir calcu-  on the physics of cubic lattices and in particular on KGuF
lations owe to Moriya’s empirical improvement to the RPA In Sec. V, we investigate the effect of the same correction in
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a much more involved case, a quasi-one-dimensidoBl s 7, j+ ¢] corresponds to a generating functional of the

quasi-two-dimensional depending on the point of view sinc&, o qimensional theory with current sourger é. Then

the interchain coupling is largefrustrated antiferromagnet - e N
—InZ[4+¢] is the free energy of the sum of the individual

with a Dzyaloshinskii-Moriya interaction: G&uCl,. ) . IO o9 )
spin chains Ig[ ¢+ ¢]=W ¢+ ¢]. The summation over the

Il. GENERAL PERTURBATION THEORY spin chains is included in the function&¥, which has a
FOR QUASI-ONE-DIMENSIONAL MAGNETS Ginzburg-Landau expansion
We consider the general quasi-one-dimensional magnetic 1 )
Hamiltonian®H="H+H, , where W[¢]=§f d(1)d(2)CP(1,2 ¢y iy + W[ S1, (7)
H”:Z'j Heoh DS where ¢, stands for¢*(w; k). W[ $] is the interaction
functional
HfiEj 3 i8S (1)

4
- 1 )
_ _ o WiL]= 77 f T d()C) 1 (12,343 bioybisy bl
The summation over the spin components is implied whereas o=l

the latin indices stand for the sites of the spins. The quasi- 16
one-dimensional magnetic crystal can be viewed as a set of +0([9[%), ®
spin chains along which the exchange couplings are sup- ) 8 B ) ] ]
posed to be dominant{ is then defined as the part 8¢ ~ WhereJd(i)=fod7 [ ~..dxZ, with m the index of the spin
which connects spins on the same spin chain, whetgas chain. CP(1,... p) is the time-ordered imaginary-time
connects by definition spins belonging to different spinP-point correlation function of an isolated spin chain.
chains. We now work in momentum space and Fourier transform

We aim at giving a systematic perturbative expansion ofhe functional integrals. We therefore adopt the new conven-
the finite-temperature generating functional tion [d(i)= B/~ ..(dkd2m) [§7(dk,/2m) [§7(dk,/27) in

the case of a three-dimensional magnet. The summation in-

P s o ; :
TTex;( _f dTH—f dTE WS”, @ dexed byn is performed over the Matsubara frequencies
0 0 i

Z[y]=Tr wp,=2mn/B. Finally let us define the field theory

where B=1/kgT. Now we define the isolated spin chain
finite-temperature generating functional <@>|:f p(g[exp(p[d,])@]/ fp(zequ[d,]) 9)

- B B - s
Z[y]=Tr Tfexl{ - fo dr'H— fo dTEi lﬁi'sﬂ”- () with the weight
If we denoteZH=Z”[5], then the average of the observable 1
O with respect to this functional is Flol= EJ d(D[[23, ] M) +CE(D)], ,df1yb(-1)
1 - +W,[]. 10
<(9[5|“]>\|:Z—H(9 50 Z|[4]. (4) 4] (10
I
i i Rewriting Eq.(6) in terms of the theory defined by E(),
With those notations, we have we obtain
- B B S s
Z[lﬂ']:Z” ex _jo dTHl_fo dT2| lMS . (5) Z[lZ] 1 .
I ﬁZGXI{EJ’ d(1)[2 ‘JL];L,V(l)l//léLl)‘pE/l))

In a very similar fashion as was done in Ref. 8 for coupled

Luttinger liquids, we now introduce a vector fiel}(7) in _J’ _1 v
order to perform a Hubbard-Stratonovitch transformton: x| eX d(DI2J, ], (D) -1y I'

. - 108 I , (11
Z[¢]=z\|f D ex Zf A7 [30 i) ¢ o)
o 1 Interpreting the averaged exponential in Etfl) as a gener-

B . ating functional and introducing the self—ener@yl,y(w,IZ)
x{exg — | dei (hi+d)-S|) - ®  for the two-point correlation function, we deduce that to

| second order inZ, one hagassuming for simplicity SU(2)
The functional integration orb corresponds to an inverse invariance so thathf:)VZC(z)ﬁﬂ,y, J'=3,6,,, and
Laplace transform. The second part of the integrand, whickk , ,=% 6, ,]
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- - - 1
IN(Z[¢1/Z[0])=O(|¢|) + Ef d(1)

" Cc@(1)+3(1)
1+2J, (1)[CP(1)+3(1)]

12(1)' IZ(—l)- (12

This form of the two-point correlation function has been sug-

gested by Schulz in Ref. 2 in a different context. _ . )
FIG. 1. Diagram(@) does not depend dn_ whereas diagrartb)

containing RPA internal lines depending on the inﬁytdoes.

Ill. CALCULATION OF THE FIRST CORRECTIONS
TO THE RPA DYNAMICAL SUSCEPTIBILITY diagrams in the expansion of the self-ene¥gy»,k, K, ) are
expected to depend dq . Yet, only those with internal RPA-
o dressed propagator lines which are true functions of the input
To the lowest order of approximation, one can set

- . . : transverse momentuﬂi are to depend on it.
2 (w,k)=0 in Eqg. (12). We can then continue analytically The first K. -d dent di h RPA
(on the frequencigsthe one-dimensional two-point correla- e nrst k, -dependent dlagram possesses (hree -

tion function and therefore recover the dynamical magneticgrestc’ed propagators and two four-point vertices as d_epicte_d
susceptibility on Fig. 1. What happens for the transverse momenta is remi-

niscent of what occurs to many-body field theories of elec-
tron gas, where the dependence on the space momenta ap-
X1p(@,Ky) : . -
= = . (13)  pears only to the order of this diagram, whereas the first
1-23, (k) x1p(@,ky) diagrams(Hartree-Fock depend only on frequencies.
As a consequence, the RPA approximation for quantum spin For diagrams which do not depend on the transverse mo-

systems appears as the leading order of a more general exenta, and which are therefore merely one-dimensional, one
pansion scheme. can resort to the simplified one-dimensional RPA-dressed

propagator

A. RPA formula for the dynamical susceptibility

X3D(w,|2)

B. Higher-order corrections to the RPA formula

This clearly shows that a systematic expansion can be
used. The fre€Euclidian propagator of the effective theory
is an RPA-dressed propagat@imply calledG thereaftey.
Its inverse can be read off from E€LO):

G(7,X)=G(7,x,r, =0). (16)

It is the propagator which has been used in ReﬂSdenote

[G] 1=Cc@+[2J, ]~ (14) the transverse part of the position vector.
. , ) L What is the small parameter of this expansion ? In the
In real space and imaginary time, it is given by simplest case of the cubic lattice, it is likely to e /T.
1 = dk 2ndk. dk. - - More precisely it isAJ, /T whereA is a prefactor, poss_ibly
G(r,N ==, J _Xf J Y~ Zaikrtionr weakly dependent on the temperature. The prefagterill
B J-=2m o 2m 2m be given latef{Eq. (17)] in the case ofS=1/2 Heisenberg

_ spin chains. Indeed, each RPA line contributes by an obvious
v 23, (k) (15) factor of (AJ, /T)? in any diagram. Yet in each RPA-line
1+2JL(IZ)C(2)(i wn,K) expression remains a nonpolynomial dependencA&n/'T
corresponding to the usual RPA resummation of transverse
In the following, multiple integrals will be omitted and sym- paths. Undoing this RPA summation, the propagator can be
bolised by a single one. Depending on the value of the temexpanded in contributions with an exact dependence in
perature, the integration in EGL5) might be improper and it (AJ, /T)2, (AJ, /T)3, etc. For a diagram with RPA lines in
is then meant that the principal value of the integral is to bet, it is rather AJ, IT)?P, (AJ, IT)?P*1 etc.
taken. We postpone the discussion on this issue to Sec. Ill D. gg whatever the subtle dependence of the RPA-dressed
The vertices of the perturbation theory are given by thepropagator on the temperature, this expansion can genuinely
multiple 2n—point correlation functions of the spin chains. In be seen as a high-temperature expansion in the parameter
the case of the SpiS: 1/2 those are known exaCtly in the (A‘JL /T)2 More forma”y, it is also an expansion in the

asymptotic limit. o _ number of RPA-dressed propagator lines although their de-
The vertices of the effective field theorfl0) involve  pendence in the small parameter is more intricate.
separated space-time points,X) and therefore always de-  As a consequence, the conditions of applicability of this

pend on (,k,) when written in momentum space. On the perturbation theory are that\(, /T)?<1 but alsoT/Jj<1
other hand, they are pointlike vertices as far as the transversg order for the field-theoretic tools to be valioh particular
space coordinates are concerned or, stated differently, do npf the calculations of the spin correlation functions at finite
depend onk, in momentum space. As a consequence, altemperaturg For the compounds studied here those condi-
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A
T (S Sy Sty Sig) =A% 7 Stz 22,29,

0=

A
T {S0)S(2) Sz Stzp)) = Az( ?) CE(‘)l()y)K 21,2,,23), (18

FIG. 2. Hartee-Fock diagrams with symmetry factors which arewhereC{),, as well ascﬁi{/y are given by
the first nontrivial terms of the self-ener@y(w,k). C>(<A>1<)x>&21122 2= (— 14+
tions (which have to be modified in the case of a frustrated 10(21)Q(2,-23)]
magnet turn out to be satisfied. [ e

The expansion also depends on the dimensionality of the 2(25) Q(25) (21~ 25) (2, 25)|
lattice. This dependence is obvious at the order of RPA, 2
where the small parameter is there proportional to the trans- —
verse coordination numbésee Ref. 5 The dependence is [ Q(20) (22~ 25)|
far less clear at higher order, where the dimensionality is |Q(2,)Q(z,— 25)|
encrypted in multidimensional integrals. It is nevertheless + 002020 (2= 2,02y~ 23]
possible to take thd—ce limit in these integrals in order to 1 8 12 2 -8
study this dependence. But this is beyond the scope of this 2

work. 1020z~ 25)]
C. Details for the first correction 1Q(23)Q (2, 2))|
Let us take into account the very first correction to the [Q(21)Q(22) (21— 25) (2.~ Z5)|

dynamical susceptibility. So we consider the first nontrivial 2
term in the perturbative expansion of the self-energy. It in- -

volves the four-point correlation functions of the sp 12(23) (21~ 2,))|
=1/2 Heisenberg spin chain. We decide to truncate th%nd

Landau-Ginzburg expansion W,[g?)] to the quartic term in

¥ (six- and higher-point correlation function do not contrib-  C{) (z1,2,,23)
ute at this order anyway The field theory expansion for-

(19

mally resembles a three-compone}rﬁ theory. In particular =(—1)xtxetxs !

the very first correction to the self-energy is given by |Q(21) (2~ 25)|

Hartree-Fock diagramgéFig. 2). The “free” propagator of 2O O —200

this ¢* field theory Eq.(15) is built on the usual imaginary- e( \/ (12) (2)(2,-2,) (il 13)_1) ,
time two-spin correlation function of the Heisenberg chain O (z2,)0(23) (21— 25) (21— 23)

but dressed by the RPA corrections. It is therefore a signifi-

cantly enhanced propagator and the first correction to RPA in 20
this scheme is expected not to be negligible. where we have denoted
The only vertices of this truncated field theory are given
by the four-point spin correlation functions. The staggered ) u (7@ )
four-point correlation functions at the isotropic point can be Q(z=x+ir)= ﬁs'”"(_(X“UT))- (21)

computed thanks to bosonization in addition to a renormal-
ization group analysis that gives the logarithmic correction.Only the staggered part of the correlation functions, which
The finiteT result can be deduced from tie=0 conformal  dominates, has been taken into account.
result by a conformal mapping from the plane to the cylinder  The nonuniversal constant is taken to be\ =24.27 as
of radius 1/@T). calculated in Ref. 11. Although the values of the prefactor in
We will denote byA(A/T) the product of the Lukyanov- A(A/T), that is 2/(27)%? and of A are somehow different
Zamolodchikov prefactor with the logarithmic correction in- from those extracted from numertésand used in Ref. 5,
duced by the marginally irrelevant current-currentthere is no contradiction emerging here with the numerical
correctior't° estimates of the correlation functions themseffel par-
ticular, the Nel temperature estimated through RPA for
A 2 \/ A KCuR; is very close. Discrepancies might nevertheless ap-
A T/~ (27)3/2 In T : (17 pear for a different range of temperature and when the self-
energy corrections are taken into account. Finally
For clarity, we decompose the imaginary-time four-point cor-= (7/2)J; is the spin-1/2 Heisenberg chain velocity given by
relation function intoA(A/T) and the purely conformal part the Bethe ansatz.
of the correlation function€{) andC{) : The first contribution to the self-energy is then

T
2T
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Wy 1 (A (B o
pX ((x),k):EA ? o dTldedTg - XmdXZdX3
Xe haTlenG(z;—z,) 8C>(<A>1<)xx+ zcii{/y} Q '

X(21,25,23), (22 FIG. 3. Bubbles diagrams that add up to foBf".

where the integrals are performed in real space as was do'?’—‘?nally let us mention the fact that as claimed before

in Ref. 5. We are mainly interested in the knowledge of S (K c ) d ¢ actually d d dq We al )
,k,) does not actually depen . We also note

3 (o, k) aroundk, = 7 because the isotropic correlation func- . .
1)
tions are most significant at this point. More precisely, mos rom the above result that the obvious prefactod oE ™ is

3
of the spectral weight remains at this point. It turns out that€XPected to beAJ, /T)".
for our purpose, the numerics are much more efficient when

done in momentum space L
D. Prescription for the RPA-dressed propagator

SOk, )_ ( )E dqx{ @ 4 _C)((i)yy}(k The RPA-dressed propagatqr in moInentum spdek
may, for some values of the variables{,k) and parameter
R (T), exhibits a singularity. In the explicit formula for the
2T dql diagrams, this propagator is always integrated over and the
K,Gn, Qn)f (2 )2 G(n.d.), (23 principal values of the resulting integrals are finite. Still, the

presence of this singularity has to be understood and a cor-
rect prescription for it(here taking the principal value of
improper integralsto be justified. The difficulty arising from

its presence can be overcome as follows.

wherek=(w,k,) andg,=(wp,0y).
Now only C?(w, k), which enters inG(q,,q,)

:ir;rr]o?gr d Erqd(1|r5r)1 rier:n?”-]tsin:g bfr knigwn.rrltllsii t:ef snplg—snpln Let us assume that this field theory has a critical tempera-
c-oraere aginary Sotropig corretation function. .o T., which is the exact theoretical estimate of theeNe

The large distance behavior of the finite-temperature Corretemperature The perturbation theory is expected to be valid
lation function can be determined by combining results ob-

for high enough temperatures and only for temperatures
tained from the Bethe ansatz soluttoit? of the Heisenber
S=1/2 spin chain, with field theoretic techniqde%>-1’ 9 aboveT. in the disordered phase. The RPA approach pro-

vides an estimated critical temperatdrge presumably larger
(as will be verified laterthanT, . It corresponds to a pole in
. (24) the dynamical susceptibility. Faf=T/ no singularity is ex-
pected to appear in the RPA propagator and no problem oc-
‘ curs in the perturbation expansion. Whereas whesT
<T,, the denominator of the propagator is negative which is
This result can be extended to the anisotropic spin chain agntamount to realize that subdiagrams given by an RPA line
well, althoughA is known exactly only at the isotropic point. just add up to infinity. Nonetheless this is an unphysical sin-
The frequency and momentum dependence is obtained kyularity which can be cured by a proper prescription as we
Fourier transformation and analytic continuation of the time-are going to hint at.

A(AIT) 7T/u

2 | mT )
sin T(x+|m—)

CA(7,x)=(—-1)*

ordered imaginary-time staggered correlation functias) Let us show how it is done in the case of the calculation
(see Refs. 11,16,18,19 of T/, the critical temperature at the next-to-leading order as
was done above when calculatidg". We may expecT/, to
F(E—i w—ka) satisfy T_<T/ and hence to yield a problem. This statement
AAIT) 4 47T is based on the fact that including the effects of the four-spin
X1p(@, mHK) =~ AT 3 w—uk correlation functiongin addition to the two-spin correlation
(Z =i T X) functiong amounts to take into account quantum flyctuations
more precisely, as compared to merely restricting to the
1 w+uk, Gaussian fluctuations of the RPA approximation. As we have
(Z_I anT seen3 ) depends on a singular RPA-dressed propagator.
— 7 7 (25 Now, we will add toX™® (which sum will hence be denoted
F<§—i w+uk 3()) subdiagrams which would normally be appearing at
4 47T higher order in the expansion. The single RPA line drawn in

the diagram for> () appears now as a skeleton line in the
But we will mOStly use this result in its Euclidian for(be- diagram forz(l)_ In this case, it stands for an RPA line p|us

fore analytic continuation the self-energy correctio®(!) itself. 3V is therefore de-
fined as the sum of all irreducible bubble diagrams as drawn
C@(wp k) == x1p(i®n,ky). (26)  in Fig. 3.
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It satisfies a self-consistency Dyson equation given by théwhich is fully consistent with the Mermin-Wagner theorem
expression(23) but WhereG(Qn,CL) is now replaced by Hence subdiagrams have ultimately canceled the singularity

G(q fL) defined by an enhanced version of Et) encountered above. Yet our method is a systematic one
. and does not rely on a self-consistent approach. But we can
[G] t=C@®+[2J, ] 1+3D), (270 now extract from this construction the part Bf) which

i (1)
By construction, the singularity is now avoided, the poleporresponds to the regularizéf ' we have to calculate

of G being displaced to a boundary of the integrationIn ourz schiame. Inzorder “3 do so, w.e dt'acompose the.inte—
domain. At this boundary the singularity is genuinely inte-gral [57[dq, /(27)°]G(q,,q,) appearing in the expression
grable provided the lattice is at least three dimensionabf 3@

2m dgh - 2m dgh 2,
f ZG(anqL):f 2 (2) (1)
0o (2m) 0 (2m)* 1+2J, (C+3Wh)
_ f v dq, | 23, (23,)%30)
0 (2m)?|1+2J,C? [1+23,(CP+3M)](1+23,CP)

sz dq, 2J, fzw dq, (23,)%x® 28

_P .
0o (2m)?1+2J3,c® 0o (2m)?[1+2J, (CP+3M](1+23,C?)

The first term of the last right-hand side is the regularisedapproximation, but within the self-energy correction ap-
expression for the RPA-dressed propagator we usE{hn  proach on obtains the valie,=31.2 K (that is, at this or-
whereas the second teivhich also ought to be regularized der, resumming the reducible diagrgmshis correction of

is a correction to it at a higher order#J, /T. The prescrip- order 40% is significantly stronger.

tion scheme consists therefdia least in this cagen taking To determine the critical temperature with the method de-

the principal value of the integrasymbolized byP) which  veloped here is somewhat more complicated. Indeed, the
turns out to be finite. self-energy is alsd@ dependent in a nonsimple way. We have

therefore to solve the problem by iteration on the value of the

IV. APPLICATION TO CUBIC S=1/2 estimated critical temperature. The formal calculations de-

ANTIFERROMAGNETS tailed above can be applied with the transverse lattice struc-

ture factor
Corrections to RPA in the framework of cub=1/2 an-
tiferromagnets was the subject of Ref. 5. In particular, the JL(IZL)=JL[cos(ky)+cos(kz)] (29

authors have derived the integral expression for the diagrams

of Fig. 2. However, their correction does not correspond tc! three-dimensional cubic lattices. From Eg2) and after

the first self-energy correction but rather to a subset of dia@"@/ytic continuation, we obtain the three-dimensional dy-

grams. The self-energy correction derived here includes thB2mical magnetic susceptibility

resummation of the one-particle reducible diagrams made of -

chains of their contribution. XK, )= Xip(K) +3(k k) (30)
Let us apply our formalism, using tH&™) correction to X3ptR KL 1-23, (KO[XEK) + 2K,k )]

the self-energy to the compound KCyFThe experimental . - . ) o

value isT,=39 K2 The RPA Nel temperature is estimated The mstab!llty condition which can only be satisfied at zero

to be T,=52.3 K. Values for the RPA result were given in réquency is therefore

Refs. 2,5. Differently, the result obtained here makes use of _ .

the analytical value oA(A/T). 23, (k)X(0k)=1, (3D
Taking into account their correction, Irkhyn and Katanin nere X(K)=xT6(k)+ 2 (k). Because at this order

then deduced .=36.7 K, which correction is of order 30%. (K K ) does not depend ok and because it does nat

The singularity of the RPA-dressed propagator is removed b% A ﬁ th ¢ L K with t tok

using a semiempirical approximation due to Morfy&ut its riori change the monotony of;p(k) with respec X

nontrivial dependence on the temperature and the coupling¥€ can first maximize the left-hand side knlt leads to
constant), disappears as well. Neel order in the main directiok,= 7. If the couplings in

From their calculation, one can deduce the value of somé&he transverse directions are ferromagnetic as it is the case
intermediate integrals to be calculated. Making use of thdor KCuF; thenk,=k;=0. So that the instability condition
values of these integrals, and therefore resorting to Moriya'ss reduced to 4, X(0,0) +1=0, whereJ, =J,=J,.
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] prising since the functionnal dependence of the Hartree-Fock
58 | 7] corrections inT. being presumably meaningless whehJ,
' ——— RPA el <1 is unsatisfied.
—— NLO 7 ’ The graph Fig. 4 has been plotted in the safer range
----- IK 7 Ol J, /3;<0.3. It would be very interesting to have QMC simu-
04} e oidl 1 lations to determine the critical temperature in this range.
= //’ //” That would be a precise test of the perturbation theory for
~ o anisotropic cubicS=1/2 lattices.
- // ’,/
02 Ry i
gyl V. APPLICATION TO FRUSTRATED S=1/2
7 ANTIFERROMAGNETS
/
0 7 : . A. RPA approach for the dynamical susceptibility
0 0.1 7 0.2 0.3 in the disordered phase of CsCuCl,

I Cs,CuCl, is a spin-1/2 frustrated antiferromagnet. At a
FIG. 4. RPA, next-to-leading order and Irkhin and Katanin's temperature off ;= 0.62 K it ShQWS a transition to an or-
estimations of the critical temperatuFe of cubic lattices in units of ~dered phase. The order is cycloidal. Its parameter is incom-

J; as a function of the interchain exchangie J, =J,=1J, in units ~ Mensurate and measured to kg=0.186. Remarkably, in
of Jj. this phase as well as in the disordered phase, the excitations

spectrum is incohereft2°
Its magnetic Hamiltonian has been recently experimen-

For KCuky, the exchange values ap=406 K andJ, tally determined with great accurat3/lt can be decomposed

=—-19.1 K (5% of the main coupling* The small param-

eter close to the transition i8 J, /T=0.3. The numerical

result of this calculation i§.=40.3 K, fairly close to the

experimental value. Finally let us mention that not taking = (k) (k,k+1)

into account the log-log correction would have led usTto H zk: Hpians Hinierpans’ Tom

=37.7 K. So the subtle log-log correction would presum-

ably be more significant than the second order correction to

3 @k K HO =32 Sk Sy

the self-energy “)(k,k ). plane ¥[l& Si,j k" <Di+1j .k
On Fig. 4, we have drawn the general curve of the esti-

mated critical temperatur€; of cubic lattices as a function . . .

of the interchain exchange=J, =J,=J,. The upper curve +JLi2j Sk [Sijrakt Si-vj+auds

(RPA) corresponds to the RPA estimation of the critical tem- '

perature. The lower curvéK) is deduced from the estima-

tion of Irkhin and Katanin. It can be deduced from their main (kD) g 2 éi _ 3 _

resulf reformulated with our notations and from the use of interplan€ ™"z« kTS ke

the exact correlation function prefactor

HDM:”EK 5'[§i,j,k><§i+l,j,k]- (33

2
A”F(lM)} | @)

Te=k JLA(T_C T(3/4)

In particular a Dzyaloshinskii-Moriya interactioriy,) has
been proven to exist on the interchain exchange paths, re-
wherek=0.70. The intermediate cury&LO) corresponds vealed by its anisotropic nature. Experimental estimates for
to our next-to-leading order estimation of the critical tem-the exchange couplings in &3uCl, are Jj=4.34 K, J;
perature. It is significantly lower than the RPA one as ex-=1.48 K (about one third of the main couplingJ,
pected(about 25%). =0.20 K and finally|D|=0.23 K (about 5% of the main
The critical temperature of spatially isotrog=1/2 cu-  coupling.?>2®
bic lattices (0, =J)) has been computed with great accuracy So it appears that this compound is essentially two-
using quantum Monte CarléQMC) simulations® T/ dimensional. One of the two-dimensional spin lattices is rep-
=0.946+0.001. Unfortunately, the cask =J is a priori resented in Fig. 5. Although the interchain couplihg/ J; is
beyond the scope of our approach. Indeed the conditiomonsiderable, the smallness of the ratio of transition tempera-
T/J <1 is clearly violated, whereas\J, IT)2<1 still holds  ture to bandwidtfT ./ 7J;~0.05 indicates that the quasi-one-
close to the transition predicted by QMC simulations. Thedimensional approach we are advocating might be tried on
RPA value of T¢ is T;=1.96);. In the calculation of the Cs,CuCl,.
next-to-leading order, no fixed point can successfully be An RPA approach has been proven to reproduce qualita-
reached forT., the value of T, wandering between 1.1 tive features of the compoun@commensurability, asym-
<T./J;<1.5 with no satisfying convergence. This is not sur-metry of the dynamical structure factor aroukg=m, as

184415-7



MARC BOCQUET PHYSICAL REVIEW B 65 184415

L, (1) oLt 1, AN where
(OF -©; &
& " J(K)=J,[cog ky) +cog k,—k,)1,
o L, ),D
‘:" ©) ":' K(k)=D[sin(ky) +sin(k,—ky)],
I(K)=J,cogk,). (36)
.," S .," ._ The transverse RPA-dressed propagator of the effective field
s (1) 2 B & theory is related to the transverse RPA imaginary-time cor-

relation functionG;;P;(kx ,w) [itself related to the transverse

FIG. 5. Exchange paths within the planes: solid lines denote thg;pa dynamical susceptibility(;;(kx ,») by analytic con-
strong exchangg), dashed lines the weaker, frustrated eXChangetinuation] by

J, . Dzyaloshinskii-Moriya exchange of magnitu@ealso stands
on the interchain paths. Two types of sites among the four in an

.
elementary cell of the lattice are distinguished. G

+—
JL

+I7 " Crea=la. (37

well as by construction, the incoherent spextr also gives

ct- +— ;
very reasonable estimates for the critical temperature and tHote that from Eq.(34), G*~ and J"~ are commuting 4
incommensurability. X4 matrices. The transverse time-ordered imaginary-time

Given the latest experimental data, and also taking intdwo-point correlation function of spins is obtained by adding
account the subleading correction in the logarithmic depenthe contributions from the various sublattice correlators, i.e.,
dence of the spin correlation functiofwhich was intention-  PY taking, e.g.,
ally neglected in Ref. ¥} RPA gives ky=0.197 andT,
=0.85 K. Those numbers are off by less than 25% com- > (Sa)(w,lZ)S(])(—w,—lz)), (39)
pared to the experimental values, which is fairly good given i

the complexity of the physics displayed by,CaiCl,. It was where the summation is over the four types of sites. After

shown that some qualitative features o5 CaCl, were with- nalytic continuation on the frequencies, we obtain the fol-

out doubt reproduced by the approach advocated in Ref. 4, . ;
; . owing RPA expression for the transverse dynamical suscep-
Knowing the corrections to the RPA result would hopefully fibility:

decide whether such a perturbative approach can be used on
this compound for determining quantitative results.

+ — ) L+ —
We now briefly reproduce the calculation leading to an X+D_(k!kl): X _ (k)[l+N1(k))i (k)] ,
RPA formula for the dynamical susceptibility as the calcula- 3 {1-23(K)x "~ (K)+Ny(K) [ x " (k)]%}
tion of the subleading order makes use of it. The elementary (3

cell of the CsCuCl, crystal has four Copper ions. In addi-
tion, the vector of the Dzyaloshinskii-Moriy@M) interac-
tion which lies on the interchain bounds, points in the third
direction(denoted Oz hepe The orientation of the DM vec-
tor is staggered from one plane to anoti@r= +D e,. L
Hence the magnetic Hamiltonian is now spin anisotropic. Na(k)=J37(k) = K*(k) = 1°(k). (40
Those complications make the RPA-dressed propagator pognhe RPA critical temperature as well as the incommensura-

sess a matrix-form which can ultimateljn the complex pjjity are then determined through the instability condition
representation{ —) of the quantum spinse reducedto a4 pizined by annihilating the denominator of E89)

by 4 matrix. Eq.(14) is still valid under its matrix form
30 = VKK + (k) x "~ (0k)=1. (4]

_ _ ~_The relevant instability corresponds to the higher possible
The four components of the vectorial space in which it istemperature. In order to solve E@1) for it, one can maxi-

defined correspond to the component of the four distinCt ;e the left-hand side of E¢41) overk. Then one deduces
spins in an elementary cell on the righesp.+ component iyt the instability occurs along the chains directikp

of the spins on the lejt =k,/2 and thatk,= = (Néel order in the third direction

wherek=(w,k,) and

N1 (K)=1(K) = J(K),

[+ =@ +[JF ] L (34

We haveC{?) =C?)1, and Thenk, and T, have to be determined numerically.
We have assumed that the main instability is given by
0 J+tK | 0 transverse excitations. So we need not calculate the longitu-
J+K 0 0 I dinal RPA propagator to calculate the RPA instability condi-
J = | 0 0 J-kl (35  tion. However, it participates to the next-to-leading order
correction and we shall need it later. E44) is still valid
0 I J-K 0 under its matrix form

184415-8



FINITE-TEMPERATURE PERTURBATION THEORY FOR.. .. PHYSICAL REVIEW B5 184415

[CF 7=+ (42)

The four components of the vectorial space in which it is |
defined correspond to thecomponent of the four distinct 2
spins in an elementary cell. We haug&)=C!?1, and

0 J 1 0 FIG. 6. Hartee-Fock diagrams with symmetry factors which are
0 0 | the first non-trivial terms of the self-ener@/*’(w,lz). The full
J22= (43) line propagator is associated wid" ~, whereas the dashed-dotted
+ I 0 0 J line corresponds t&%% The full line box is associated witB{?},,
0 1 J 0 whereas the dashed-dotted line box correspond{}, .
2_w2_12ynt-
B. First correction to RPA Gt I+ (- K = PCe)

- + = 2_k2_2 +—q2’
In the complex spin representation which is more conve- 1+2JCp) +(=K=1[C) ]

nient in the case of GEuCl,, the (matrix) dynamical mag-
netic susceptibilities are after E¢L1): G 2(J+1)

D — (46)
1+2(3+DC

Xip (K +277(kk,)

xap (k,k)= where C{3=C(, /2 is the time-ordered imaginary-time

1-J7 (Kxip (K +3" " (kky)] spin-spin correlation function of the isolated Heisenberg
chains. When the temperature approaches the theoretical
) XiZD(k)+EZZ(k1EL) critical temperature, we expect the second contribution to the
Xan(kk )= — ———. (449  self-energy correction?(ﬁ)’ (which depends o1G*%) to be
1-2JF K[ x1p(k) + 27k k)] quantitatively much smaller than the first contribution de-

) pending onG* . Indeed the RPA propagat@? has an
Because of the staggering of the DM vector from one plangzpa critical temperaturéts pole inT) much higher than the
to another, there is no chirality on the three-dimensional spig)ne forG* . It is therefore much less singular that the latter

correlation functions angt35 (kK )= x3p (KK.). in the temperature range of interest. This has been checked
In the particular case of the first correctifiilartree-Fock-  numerically.
like correction), the matrian)’ appears to be diagonal. In- In the case of such a frustrated system, it is less clear what

deed, it is made up of a single four-point correlation functionthe small expansion parameter is. However, we can get a
which involves four spins belonging to one type of sitesrough idea on inspecting the next-to-leading order correc-
(among fouy. This does not hold at higher order. As a con-tion. First of all there is a prefactoA(T)?, given by each
sequence, we may s§q+1)‘ as a number which is given by RPA line. In addition there is a dimensionful contribution
coming from the transverse lattice structure factor which de-
) pends on the interchain exchange couplings. But contrary to
(k,

lew Lo

st 7 ooy cubic lattices, it cannot be meaningfully extracted from the

integral. The RPA-dressed propaga®f ~ appearing in the

o da integ'ral is more singglar aflt ,IZO) estimatgd thanks to RPA.
_kaQna_Qn)Xf —[2G* (g, ’(i)l The integral value will therefore be dominated by the value

(2m)? of the integrands whek=k,, whenT is close toT,. So, at

1 least wherT is close toT;, the expansion parameter is of the
—Cii{,y(k,—k,qn,—qn) order of [A JL(IZO)/T]Z. As a consequence, in the case of
4 frustrated quasi-one-dimensional magnet leading at the tran-
sition to an incommensurate orddy,J, /T does not neces-

) (45) sarily have to be small provided JL(IZO)/T is. Note that the

e A = dq
Ea)(k,ki)zgz LCZ—;

w0 27T

A2 = dg
+_ —_
5>

27 dq R
><f —G™(q,,q.)

o (2m)? small parameter in the RPA formula is genuinely
) AJ, (Ko)/T.
The three terms irﬁa)’(k,ki) are derived from the dia- After analytic continuation, we obtain the following ex-

grams in Fig. 6. The integrals ov&y andk, are performed pression for the transverse dynamical susceptibility:
over an extended Brillouin zon@rom (ky ,k,) e[0,7]? to

(ky,kz)_e[o,27r]2 ) and the _propagators exp_re_ssions beloyv - XID’(k)[j_-F Nl(IZ)X(k)]

take this extended scheme into account. A similar expression Xap (KK )= — = P
can be obtained fo ff) but is useless for our purpose. 11=23(k) X(k) + Na(K) [ X(k) ]}

The RPA-dressed propagatorsG* (d,,d,) and  with X(k)= x1p (K)+3 3y (k). The instability condition at
G*4q,,9,) can be derived from Eq$34) and (42): this order is therefore

(47)
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k)= /Kz K)+ 12(K) IX(0k,) = 1. 4 committed diffe_r by less than 1_0% fr.om the experimental
(k) (k) +17(k) IX(0k) “8) values at least in the two cases investigated above. Although

Because at this ord&(k,lzl) does not depend OEL ,itis those observables are nonuniversal, the calculation only de-
as easy as in the RPA case to maximize the left-hand side gends on the magnetic Hamiltonian, i.e., exclusively on the

EL- It leads again to a longitudinal instability and & élle knowledge of the exchange couplings. Even_incomr_nensurate
order from one plane to another. order parameter can be accurately determined this way. At

least this has be shown on the case of the frustrated com-
pound CgCuCl,.
The perturbation theory allows more generally to give a
The numerical computations performed to evaluate theerturbative estimation of the three-dimensional dynamical
critical temperaturd . as well as the incommensurability, are susceptibility. But it could as well be used to calculate cor-
more involved than in the cubic lattice case, where it is obrections to multispin three-dimensional correlation functions
vious that a Nel order prevails belowl.. The instability  starting from the one-dimensional functions.
condition has to be solved with respect Tg and ky. The A test of this perturbation theory could be provided by
self-energy correction itself, once the obvious dimensionfulguantum Monte Carlo simulations f&=1/2 cubic lattices
prefactor has been put aside, depends on the tempefBturefor a reasonably weak value of the ratlp 1J;. It is some-
through the RPA propagator and depends on the ki@  how hazardous to go beyond the next-to-leading order
through the four-point correlation function. An iterative al- mainly used in this work. Although the numerical calcula-
gorithm on (T ,kg) can nevertheless be used. The small pations for higher-order corrections are achievable, the result-
rameter of the expansion close to the transition +sJ(  ing corrections are likely to be within the field theory ap-
+VKZ+ 1) (m+ ko) X AIT=0.4. proximation error range. The spin two-point correlation
Our findings are the following. The critical temperature isfunctions are indeed only asymptotically exact. Being more
estimated to b ;=0.66 K to be compared to the experi- precise would require to go beyond the knowledge of the
mental resultT.;=0.62 K. The incommensurability is esti- (mathematical equivalent of the correlations at large dis-
mated to bek,=0.182 to be compared to the experimentaltances. For example, one could include the space-dependent
result ky=0.186. Therefore those values compare quite rerenormalization group correction$?’
markably with the experimental ones. Finally, the perturbation theory could be applied to deter-
This in return validates the rougher estimates from RPAmine other quantities of interest. For example, it might be
(Ref. 4 which were already quite satisfying. It makes it im- useful to determine the lifetime of the theoretically
probable for the success of RPA applied to quasi-onepredicted and experimentally obsernv&dongitudinal mode

C. Numerical results

dimensional magnets to be merely due to chance. in the ordered phase of KCyFIndeed the next-to-leading
order correction to RPA is expected to yield an imaginary
V1. SUMMARY AND CONCLUSIONS part in the self-energy and hence a damping of the mode.

We have shown that recent one-dimensional exact results
fr(_)m integrab}e modgls anq quantum field theory can be ap- ACKNOWLEDGMENTS
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