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Finite-temperature perturbation theory for quasi-one-dimensional spin-12
Heisenberg antiferromagnets
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We develop a finite-temperature perturbation theory for quasi-one-dimensional quantum spin systems, in the
manner suggested by Schulz in Phys. Rev. Lett.77, 2790 ~1996! and use this formalism to study their
dynamical response. The corrections to the random-phase approximation formula for the dynamical magnetic
susceptibility obtained with this method involve multipoint correlation functions of the one-dimensional theory
on which the random-phase approximation expansion is built. This ‘‘anisotropic’’ perturbation theory takes the
form of a systematic high-temperature expansion. This formalism is first applied to the estimation of the Ne´el
temperature ofS51/2 anisotropic cubic lattice Heisenberg antiferromagnets. It is then applied to the compound
Cs2CuCl4, a frustratedS51/2 antiferromagnet with a Dzyaloshinskii-Moriya spin anisotropy. Using the next
leading order to the random-phase approximation, we determine the improved values for the critical tempera-
ture and incommensurability. Despite the nonuniversal character of these quantities, the calculated values
compare remarkably well with the experimental values for both compounds.

DOI: 10.1103/PhysRevB.65.184415 PACS number~s!: 75.10.2b, 75.25.1z, 75.40.2s
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I. INTRODUCTION

Quasi-one-dimensional magnets are notoriously diffic
to tackle. The backbones of those compounds, namely,
spin chains, are by now very well understood, in some ca
even by analytical methods. But until now no natural a
efficient framework has been developed to describe their
havior when they are coupled by a weak interchain excha
J' .

Useful results have nonetheless been obtained by com
ing one-dimensional exact results with a random-phase
proximation ~RPA! approach to cope with interchai
couplings.1–3 Recently such a method has even been app
to frustrated quasi-one-dimensional systems,4 yielding sen-
sible predictions.

From the RPA formalism for the dynamical susceptibili
one can deduce estimates for nonuniversal quantities, su
the Néel temperature,2 or the possible incommensurate ord
developing below the transition in a frustrate
antiferromagnet.4 This is made possible by recent progress
the ~exact! determination of spin chain two-point correlatio
functions in the low-energy regime. The RPA formalism t
gether with those exact results are able to cope with
change anisotropy, and/or Dzyaloshinskii-Moriya interacti

This approach has been successful in the sense th
yields satisfactory results when compared to experime
measurement~in some cases even though the interchain ra
J' /Ji is not small whereJi is the exchange coupling alon
the easy axis!. This owes to the fact that on one hand t
ratio Tc /Ji is small enough so that the collective on
dimensional excitations have a significant influence on
physics at the transition temperature, and on the other h
~for instance, in the case of a cubic lattice!, Tc /J' is big
enough. However, the RPA is an uncontrolled approximati

Irkhin and Katanin have calculated corrections to RPA
spin-1/2 quasi-one-dimensional cubic lattices.5 Their calcu-
lations owe to Moriya’s empirical improvement to the RP
0163-1829/2002/65~18!/184415~11!/$20.00 65 1844
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formula for the dynamical susceptibility6 and it differs nota-
bly from what follows. Their work has found applications
the estimation of the Ne´el temperature of cubic lattice quas
one-dimensional antiferromagnets KCuF3 , Sr2CuO3, and
Ca2CuO3. Their estimation deviates from the RPA result b
25%.

In the following, we will develop a systematic expansio
and will embed the RPA formula for the dynamical susce
tibility in it as a natural leading order approximation. We w
be mainly concerned with lattices made ofS51/2 Heisen-
berg spin chains. Yet the formalism equally applies to s
chains with anisotropy in spin space.4 Such an expansion ha
been developed by Arrigoni7 for the physics of Luttinger
liquids. The main differences with our approach are the f
lowing. Because it is atT50, he resums an infinite prope
set of cumulants. On the contrary, we are at finite tempe
ture and we will use the temperature as an additional ene
scale in the disordered phase. Because of this energy s
we need not resum all of the higher cumulants to get a s
sible result. But we do have to resum temperature-depen
diagrams at the level of any cumulant~four-point correlation
function for the examples given in this work!, because we
intend to use our expansion down to the critical temperatu
where those diagrams contribute.

In Sec. II of this paper, we expose the formal steps le
ing to an extended perturbative expression of the dynam
susceptibility, in terms of a self-energy of the two-spin co
relation function. In Sec. III, we discuss some of the resu
and peculiarities of this expansion. In particular we sh
that the expansion can be organized in terms of the num
of RPA-dressed propagators indirectly related to the sm
parameterJ' /T. This propagator must be regularized and w
hint at how it can be done. An integral representation of
first correction is given. In Sec. IV, we calculate the corre
tion due to the leading diagram inJ' /T and discuss its effec
on the physics of cubic lattices and in particular on KCuF3.
In Sec. V, we investigate the effect of the same correction
©2002 The American Physical Society15-1
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MARC BOCQUET PHYSICAL REVIEW B 65 184415
a much more involved case, a quasi-one-dimensional~or
quasi-two-dimensional depending on the point of view sin
the interchain coupling is large! frustrated antiferromagne
with a Dzyaloshinskii-Moriya interaction: Cs2CuCl4.

II. GENERAL PERTURBATION THEORY
FOR QUASI-ONE-DIMENSIONAL MAGNETS

We consider the general quasi-one-dimensional magn
HamiltonianH5Hi1H' , where

Hi5(
i , j

Jim,n~ i , j !Si
mSj

n ,

H'5(
i , j

J'm,n~ i , j !Si
mSj

n . ~1!

The summation over the spin components is implied wher
the latin indices stand for the sites of the spins. The qu
one-dimensional magnetic crystal can be viewed as a se
spin chains along which the exchange couplings are s
posed to be dominant.Hi is then defined as the part ofH
which connects spins on the same spin chain, whereasH'

connects by definition spins belonging to different sp
chains.

We aim at giving a systematic perturbative expansion
the finite-temperature generating functional

Z@cW #5TrFTtexpS 2E
0

b

dt H2E
0

b

dt(
i

cW i•SW i D G , ~2!

where b51/kBT. Now we define the isolated spin cha
finite-temperature generating functional

Zi@cW #5TrFTtexpS 2E
0

b

dt Hi2E
0

b

dt(
i

cW i•SW i D G . ~3!

If we denoteZi5Zi@0W #, then the average of the observab
O with respect to this functional is

^O@Si
m#& i5

1

Zi
OF d

d c i
mGZi@cW #. ~4!

With those notations, we have

Z@cW #5Zi K expS 2E
0

b

dt H'2E
0

b

dt(
i

cW i•SW i D L
i

. ~5!

In a very similar fashion as was done in Ref. 8 for coup
Luttinger liquids, we now introduce a vector fieldfW i(t) in
order to perform a Hubbard-Stratonovitch transform onH' :

Z@cW #5Zi E DfW expS 1

4E0

b

dt(
i , j

@J'
21#m,n~ i , j !f i

mf j
nD

3K expS 2E
0

b

dt(
i

~cW i1fW i !•SW i D L
i

. ~6!

The functional integration onfW corresponds to an invers
Laplace transform. The second part of the integrand, wh
18441
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is Zi@cW 1fW # corresponds to a generating functional of t
one-dimensional theory with current sourcecW 1fW . Then
2 ln Zi@cW1fW # is the free energy of the sum of the individu
spin chains lnZi@cW1fW #5W@fW 1cW #. The summation over the
spin chains is included in the functionalW, which has a
Ginzburg-Landau expansion

W@fW #5
1

2E d~1!d~2!Cm,n
(2) ~1,2!f (1)

m f (2)
n 1WI@fW #, ~7!

wheref ( i )
a stands forfa(v i ,kW i). WI@fW # is the interaction

functional

WI@fW #5
1

4 !E )
i 51

4

d~ i !Cm,n,l,k
(4) ~1,2,3,4!f (1)

m f (2)
n f (3)

l f (4)
k

1O~ ufW u6!, ~8!

where*d( i )5*0
bdt i*2`

` dx(m with m the index of the spin
chain. C(p)(1, . . . ,p) is the time-ordered imaginary-tim
p-point correlation function of an isolated spin chain.

We now work in momentum space and Fourier transfo
the functional integrals. We therefore adopt the new conv
tion *d( i )5b(n*2`

` (dkx/2p)*0
2p(dky/2p)*0

2p(dkz/2p) in
the case of a three-dimensional magnet. The summation
dexed byn is performed over the Matsubara frequenc
vn52pn/b. Finally let us define the field theory

^O& I5E DfW @exp~F@f#!O#Y E DfW exp~F@f#! ~9!

with the weight

F@f#5
1

2E d~1!@@2 J'#21~1!1C(2)~1!#m,nf (1)
m f (21)

n

1WI@fW #. ~10!

Rewriting Eq.~6! in terms of the theory defined by Eq.~9!,
we obtain

Z@cW #

Z@0W #
5expS 1

2E d~1!@2 J'#m,n
21 ~1!c (1)

m c (21)
n D

3 K expS 2E d~1!@2 J'#m,n
21 ~1!c (1)

m f (21)
n D L

I

.

~11!

Interpreting the averaged exponential in Eq.~11! as a gener-
ating functional and introducing the self-energySm,n(v,kW )
for the two-point correlation function, we deduce that
second order incW , one has@assuming for simplicity SU(2)
invariance so thatCm,n

(2) 5C(2)dm,n , J'
m,n5J'dm,n , and

Sm,n5S dm,n#
5-2
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FINITE-TEMPERATURE PERTURBATION THEORY FOR . . . PHYSICAL REVIEW B65 184415
ln~Z@cW #/Z@0W # !5O~ ucW u4!1
1

2E d~1!

3
C(2)~1!1S~1!

112J'~1!@C(2)~1!1S~1!#
cW (1)•cW (21) . ~12!

This form of the two-point correlation function has been su
gested by Schulz in Ref. 2 in a different context.

III. CALCULATION OF THE FIRST CORRECTIONS
TO THE RPA DYNAMICAL SUSCEPTIBILITY

A. RPA formula for the dynamical susceptibility

To the lowest order of approximation, one can s
S(v,kW )50 in Eq. ~12!. We can then continue analyticall
~on the frequencies! the one-dimensional two-point correla
tion function and therefore recover the dynamical magn
susceptibility

x3D~v,kW !5
x1D~v,kx!

122 J'~kW ! x1D~v,kx!
. ~13!

As a consequence, the RPA approximation for quantum s
systems appears as the leading order of a more genera
pansion scheme.

B. Higher-order corrections to the RPA formula

This clearly shows that a systematic expansion can
used. The free~Euclidian! propagator of the effective theor
is an RPA-dressed propagator~simply calledG thereafter!.
Its inverse can be read off from Eq.~10!:

@G#215C(2)1@2 J'#21. ~14!

In real space and imaginary time, it is given by

G~t,rW !5
1

b (
n
E

2`

` dkx

2p E E
0

2pdky

2p

dkz

2p
eikW•rW1 ivnt

3
2J'~kW !

112J'~kW !C(2)~ ivn ,kW !
. ~15!

In the following, multiple integrals will be omitted and sym
bolised by a single one. Depending on the value of the te
perature, the integration in Eq.~15! might be improper and it
is then meant that the principal value of the integral is to
taken. We postpone the discussion on this issue to Sec. I

The vertices of the perturbation theory are given by
multiple 2n-point correlation functions of the spin chains.
the case of the spinS51/2 those are known exactly in th
asymptotic limit.

The vertices of the effective field theory~10! involve
separated space-time points (t,x) and therefore always de
pend on (v,kx) when written in momentum space. On th
other hand, they are pointlike vertices as far as the transv
space coordinates are concerned or, stated differently, do
depend onkW' in momentum space. As a consequence,
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diagrams in the expansion of the self-energyS(v,kx ,kW') are
expected to depend onkx . Yet, only those with internal RPA-
dressed propagator lines which are true functions of the in

transverse momentumkW' are to depend on it.

The first kW'-dependent diagram possesses three R
dressed propagators and two four-point vertices as depi
on Fig. 1. What happens for the transverse momenta is re
niscent of what occurs to many-body field theories of el
tron gas, where the dependence on the space moment
pears only to the order of this diagram, whereas the fi
diagrams~Hartree-Fock! depend only on frequencies.

For diagrams which do not depend on the transverse
menta, and which are therefore merely one-dimensional,
can resort to the simplified one-dimensional RPA-dres
propagator

G~t,x!5G~t,x,rW'50W !. ~16!

It is the propagator which has been used in Ref. 5.rW' denote
the transverse part of the position vector.

What is the small parameter of this expansion ? In
simplest case of the cubic lattice, it is likely to beJ' /T.
More precisely it isAJ' /T whereA is a prefactor, possibly
weakly dependent on the temperature. The prefactorA will
be given later@Eq. ~17!# in the case ofS51/2 Heisenberg
spin chains. Indeed, each RPA line contributes by an obvi
factor of (AJ' /T)2 in any diagram. Yet in each RPA-line
expression remains a nonpolynomial dependence onAJ' /T
corresponding to the usual RPA resummation of transve
paths. Undoing this RPA summation, the propagator can
expanded in contributions with an exact dependence
(AJ' /T)2, (AJ' /T)3, etc. For a diagram withp RPA lines in
it, it is rather (AJ' /T)2p, (AJ' /T)2p11, etc.

So whatever the subtle dependence of the RPA-dres
propagator on the temperature, this expansion can genui
be seen as a high-temperature expansion in the param
(AJ' /T)2. More formally, it is also an expansion in th
number of RPA-dressed propagator lines although their
pendence in the small parameter is more intricate.

As a consequence, the conditions of applicability of th
perturbation theory are that (AJ' /T)2!1 but alsoT/Ji!1
in order for the field-theoretic tools to be valid~in particular
in the calculations of the spin correlation functions at fin
temperature!. For the compounds studied here those con

FIG. 1. Diagram~a! does not depend onkW' whereas diagram~b!

containing RPA internal lines depending on the inputkW' does.
5-3
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MARC BOCQUET PHYSICAL REVIEW B 65 184415
tions ~which have to be modified in the case of a frustra
magnet! turn out to be satisfied.

The expansion also depends on the dimensionality of
lattice. This dependence is obvious at the order of R
where the small parameter is there proportional to the tra
verse coordination number~see Ref. 5!. The dependence i
far less clear at higher order, where the dimensionality
encrypted in multidimensional integrals. It is neverthele
possible to take thed→` limit in these integrals in order to
study this dependence. But this is beyond the scope of
work.

C. Details for the first correction

Let us take into account the very first correction to t
dynamical susceptibility. So we consider the first nontriv
term in the perturbative expansion of the self-energy. It
volves the four-point correlation functions of the spinS
51/2 Heisenberg spin chain. We decide to truncate
Landau-Ginzburg expansion ofWI@fW # to the quartic term in
cW ~six- and higher-point correlation function do not contri
ute at this order anyway!. The field theory expansion for
mally resembles a three-componentfW 4 theory. In particular
the very first correction to the self-energy is given
Hartree-Fock diagrams~Fig. 2!. The ‘‘free’’ propagator of
this fW 4 field theory Eq.~15! is built on the usual imaginary
time two-spin correlation function of the Heisenberg cha
but dressed by the RPA corrections. It is therefore a sign
cantly enhanced propagator and the first correction to RP
this scheme is expected not to be negligible.

The only vertices of this truncated field theory are giv
by the four-point spin correlation functions. The stagge
four-point correlation functions at the isotropic point can
computed thanks to bosonization in addition to a renorm
ization group analysis that gives the logarithmic correcti
The finite-T result can be deduced from theT50 conformal
result by a conformal mapping from the plane to the cylind
of radius 1/(pT).

We will denote byA(L/T) the product of the Lukyanov
Zamolodchikov prefactor with the logarithmic correction i
duced by the marginally irrelevant current-curre
correction9,10

AS L

T D5
2

~2p!3/2
AlnS L

T D1
1

2
ln lnS L

T D . ~17!

For clarity, we decompose the imaginary-time four-point c
relation function intoA(L/T) and the purely conformal par
of the correlation functionsCxxxx

(4) andCxxyy
(4) :

FIG. 2. Hartee-Fock diagrams with symmetry factors which

the first nontrivial terms of the self-energyS(v,kW ).
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Tt^S(0)
x S(z1)

x S(z2)
x S(z3)

x &5A2S L

T DCxxxx
(4) ~z1 ,z2 ,z3!,

Tt^S(0)
x S(z1)

x S(z2)
y S(z3)

y &5A2S L

T DCxxyy
(4) ~z1 ,z2 ,z3!, ~18!

whereCxxxx
(4) as well asCxxyy

(4) are given by

Cxxxx
(4) ~z1 ,z2 ,z3!5~21!x11x21x3

3F uV~z1!V~z22z3!u
uV~z2!V~z3!V~z12z2!V~z12z3!u

2
2

uV~z1!V~z22z3!u

1
uV~z2!V~z12z3!u

uV~z1!V~z3!V~z12z2!V~z22z3!u

2
2

uV~z2!V~z12z3!u

1
uV~z3!V~z12z2!u

uV~z1!V~z2!V~z12z3!V~z22z3!u

2
2

uV~z3!V~z12z2!uG ~19!

and

Cxxyy
(4) ~z1 ,z2 ,z3!

5~21!x11x21x3
1

uV~z1!V~z22z3!u

3ReSAV~z2!V~ z̄3!V~ z̄12 z̄2!V~z12z3!

V~ z̄2!V~z3!V~z12z2!V~ z̄12 z̄3!
21D ,

~20!

where we have denoted

V~z5x1 i t!5
u

pT
sinhS pT

u
~x1 iut! D . ~21!

Only the staggered part of the correlation functions, wh
dominates, has been taken into account.

The nonuniversal constantL is taken to beL524.27Ji as
calculated in Ref. 11. Although the values of the prefactor
A(L/T), that is 2/(2p)3/2, and ofL are somehow differen
from those extracted from numerics12 and used in Ref. 5,
there is no contradiction emerging here with the numeri
estimates of the correlation functions themselves.11 In par-
ticular, the Ne´el temperature estimated through RPA f
KCuF3 is very close. Discrepancies might nevertheless
pear for a different range of temperature and when the s
energy corrections are taken into account. Finallyu
5(p/2)Ji is the spin-1/2 Heisenberg chain velocity given
the Bethe ansatz.

The first contribution to the self-energy is then

e

5-4
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FINITE-TEMPERATURE PERTURBATION THEORY FOR . . . PHYSICAL REVIEW B65 184415
S (1)~v,kW !5
1

2
A2S L

T D E
0

b

dt1dt2dt3E
2`

`

dx1dx2dx3

3e2 ikxx12 ivt1G~z32z2!F1

8
Cxxxx

(4) 1
1

2
Cxxyy

(4) G
3~z1 ,z2 ,z3!, ~22!

where the integrals are performed in real space as was
in Ref. 5. We are mainly interested in the knowledge
S(v,kW ) aroundkx5p because the isotropic correlation fun
tions are most significant at this point. More precisely, m
of the spectral weight remains at this point. It turns out th
for our purpose, the numerics are much more efficient w
done in momentum space

S (1)~k,kW'!5
1

2b
A2S L

T D(
n
E

2`

` dqx

2p F1

8
Cxxxx

(4) 1
1

2
Cxxyy

(4) G~k,

2k,qn ,2qn!E
0

2p dqW'

~2p!2
G~qn ,qW'!, ~23!

wherek5(v,kx) andqn5(vn ,qx).
Now only C(2)(vn ,kx), which enters in G(qn ,qW')

through Eq.~15!, remains to be known. It is the spin-sp
time-ordered imaginary-time~isotropic! correlation function.
The large distance behavior of the finite-temperature co
lation function can be determined by combining results
tained from the Bethe ansatz solution13,14 of the Heisenberg
S51/2 spin chain, with field theoretic techniques9,10,15–17

C(2)~t,x!5~21!x
A~L/T!

2

pT/u

UsinhFpT

u
~x1 iut!GU . ~24!

This result can be extended to the anisotropic spin chain
well, althoughL is known exactly only at the isotropic poin
The frequency and momentum dependence is obtained
Fourier transformation and analytic continuation of the tim
ordered imaginary-time staggered correlation function~24!
~see Refs. 11,16,18,19!:

x1D~v,p1kx!52
A~L/T!

4 T

GS 1

4
2 i

v2ukx

4pT D
GS 3

4
2 i

v2ukx

4pT D

3

GS 1

4
2 i

v1ukx

4pT D
GS 3

4
2 i

v1ukx

4pT D . ~25!

But we will mostly use this result in its Euclidian form~be-
fore analytic continuation!:

C(2)~vn ,kx!52x1D~ ivn ,kx!. ~26!
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Finally let us mention the fact that as claimed befo

S (1)(k,kW') does not actually depend onkW' . We also note
from the above result that the obvious prefactor ofJ'S (1) is
expected to be (AJ' /T)3.

D. Prescription for the RPA-dressed propagator

The RPA-dressed propagator in momentum space~14!

may, for some values of the variables (vn ,kW ) and parameter
(T), exhibits a singularity. In the explicit formula for th
diagrams, this propagator is always integrated over and
principal values of the resulting integrals are finite. Still, t
presence of this singularity has to be understood and a
rect prescription for it~here taking the principal value o
improper integrals! to be justified. The difficulty arising from
its presence can be overcome as follows.

Let us assume that this field theory has a critical tempe
ture Tc , which is the exact theoretical estimate of the Ne´el
temperature. The perturbation theory is expected to be v
for high enough temperatures and only for temperatu
aboveTc in the disordered phase. The RPA approach p
vides an estimated critical temperatureTc8 presumably larger
~as will be verified later! thanTc . It corresponds to a pole in
the dynamical susceptibility. ForT>Tc8 no singularity is ex-
pected to appear in the RPA propagator and no problem
curs in the perturbation expansion. Whereas whenTc<T
<Tc8 , the denominator of the propagator is negative which
tantamount to realize that subdiagrams given by an RPA
just add up to infinity. Nonetheless this is an unphysical s
gularity which can be cured by a proper prescription as
are going to hint at.

Let us show how it is done in the case of the calculat
of Tc9 , the critical temperature at the next-to-leading order
was done above when calculatingS (1). We may expectTc9 to
satisfyTc9<Tc8 and hence to yield a problem. This stateme
is based on the fact that including the effects of the four-s
correlation functions~in addition to the two-spin correlation
functions! amounts to take into account quantum fluctuatio
more precisely, as compared to merely restricting to
Gaussian fluctuations of the RPA approximation. As we ha
seenS (1) depends on a singular RPA-dressed propaga
Now, we will add toS (1) ~which sum will hence be denote
S(1)) subdiagrams which would normally be appearing
higher order in the expansion. The single RPA line drawn
the diagram forS (1) appears now as a skeleton line in th
diagram forS(1). In this case, it stands for an RPA line plu
the self-energy correctionS(1) itself. S(1) is therefore de-
fined as the sum of all irreducible bubble diagrams as dra
in Fig. 3.

FIG. 3. Bubbles diagrams that add up to formS(1).
5-5
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It satisfies a self-consistency Dyson equation given by
expression~23! but whereG(qn ,qW') is now replaced by
G(qn ,qW') defined by an enhanced version of Eq.~14!

@G#215C(2)1@2 J'#211S(1). ~27!

By construction, the singularity is now avoided, the po
of G being displaced to a boundary of the integrati
domain. At this boundary the singularity is genuinely int
grable provided the lattice is at least three dimensio
e
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~which is fully consistent with the Mermin-Wagner theorem!.
Hence subdiagrams have ultimately canceled the singula
encountered above. Yet our method is a systematic
and does not rely on a self-consistent approach. But we
now extract from this construction the part ofS(1) which
corresponds to the regularizedS (1) we have to calculate
in our scheme. In order to do so, we decompose the i

gral *0
2p@dqW' /(2p)2#G(qn ,qW') appearing in the expressio

of S(1)
E
0

2p dqW'

~2p!2
G~qn ,qW'!5E

0

2p dqW'

~2p!2

2J'

112J'~C(2)1S(1)!

5E
0

2p dqW'

~2p!2 F 2J'

112J'C(2)
2

~2J'!2S(1)

@112J'~C(2)1S(1)!#~112J'C(2)!
G

5PE
0

2p dqW'

~2p!2

2J'

112J'C(2)
2PE

0

2p dqW'

~2p!2

~2J'!2S(1)

@112J'~C(2)1S(1)!#~112J'C(2)!
. ~28!
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The first term of the last right-hand side is the regularis
expression for the RPA-dressed propagator we use inS (1)

whereas the second term~which also ought to be regularized!
is a correction to it at a higher order inA J' /T. The prescrip-
tion scheme consists therefore~at least in this case! in taking
the principal value of the integral~symbolized byP) which
turns out to be finite.

IV. APPLICATION TO CUBIC SÄ1Õ2
ANTIFERROMAGNETS

Corrections to RPA in the framework of cubicS51/2 an-
tiferromagnets was the subject of Ref. 5. In particular,
authors have derived the integral expression for the diagr
of Fig. 2. However, their correction does not correspond
the first self-energy correction but rather to a subset of d
grams. The self-energy correction derived here includes
resummation of the one-particle reducible diagrams mad
chains of their contribution.

Let us apply our formalism, using theS (1) correction to
the self-energy to the compound KCuF3. The experimental
value isTc539 K.21 The RPA Néel temperature is estimate
to be Tc552.3 K. Values for the RPA result were given
Refs. 2,5. Differently, the result obtained here makes us
the analytical value ofA(L/T).

Taking into account their correction, Irkhyn and Katan
then deducedTc536.7 K, which correction is of order 30%
The singularity of the RPA-dressed propagator is removed
using a semiempirical approximation due to Moriya.6 But its
nontrivial dependence on the temperature and the coupl
constantJ' disappears as well.

From their calculation, one can deduce the value of so
intermediate integrals to be calculated. Making use of
values of these integrals, and therefore resorting to Moriy
d

e
s

o
-
e

of

of

y

gs

e
e
’s

approximation, but within the self-energy correction a
proach on obtains the valueTc531.2 K ~that is, at this or-
der, resumming the reducible diagrams!. This correction of
order 40% is significantly stronger.

To determine the critical temperature with the method
veloped here is somewhat more complicated. Indeed,
self-energy is alsoT dependent in a nonsimple way. We ha
therefore to solve the problem by iteration on the value of
estimated critical temperature. The formal calculations
tailed above can be applied with the transverse lattice st
ture factor

J'~kW'!5J'@cos~ky!1cos~kz!# ~29!

of three-dimensional cubic lattices. From Eq.~12! and after
analytic continuation, we obtain the three-dimensional d
namical magnetic susceptibility

x3D
xx ~k,kW'!5

x1D
xx ~k!1Sxx~k,kW'!

122 J'~kW'!@x1D
xx ~k!1Sxx~k,kW'!#

. ~30!

The instability condition which can only be satisfied at ze
frequency is therefore

2 J'~kW !X~0,kW !51, ~31!

where X(k)5x1D
xx (k)1S (1)

xx (k). Because at this orde

Sxx(k,kW') does not depend onkW' and because it does nota
priori change the monotony ofx1D

xx (k) with respect tokx ,

one can first maximize the left-hand side onkW . It leads to
Néel order in the main directionkx5p. If the couplings in
the transverse directions are ferromagnetic as it is the c
for KCuF3 thenky5kz50. So that the instability condition
is reduced to 4J'X(0,0W )1150, whereJ'5Jy5Jz .
5-6
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For KCuF3, the exchange values areJi5406 K andJ'

5219.1 K (5% of the main coupling!.21 The small param-
eter close to the transition isA J' /T.0.3. The numerical
result of this calculation isTc540.3 K, fairly close to the
experimental value. Finally let us mention that not taki
into account the log-log correction would have led us toTc
537.7 K. So the subtle log-log correction would presu
ably be more significant than the second order correctio
the self-energyS (2)(k,kW').

On Fig. 4, we have drawn the general curve of the e
mated critical temperatureTc of cubic lattices as a function
of the interchain exchangeJ5J'5Jy5Jz . The upper curve
~RPA! corresponds to the RPA estimation of the critical te
perature. The lower curve~IK ! is deduced from the estima
tion of Irkhin and Katanin. It can be deduced from their ma
result5 reformulated with our notations and from the use
the exact correlation function prefactor

Tc5k J'AS L

Tc
D FG~1/4!

G~3/4!G
2

, ~32!

wherek.0.70. The intermediate curve~NLO! corresponds
to our next-to-leading order estimation of the critical te
perature. It is significantly lower than the RPA one as e
pected~about 25%).

The critical temperature of spatially isotropicS51/2 cu-
bic lattices (J'5Ji) has been computed with great accura
using quantum Monte Carlo~QMC! simulations:20 Tc /Ji
50.94660.001. Unfortunately, the caseJ'5Ji is a priori
beyond the scope of our approach. Indeed the condi
T/Ji!1 is clearly violated, whereas (AJ' /T)2!1 still holds
close to the transition predicted by QMC simulations. T
RPA value ofTc is Tc51.96Ji . In the calculation of the
next-to-leading order, no fixed point can successfully
reached forTc , the value ofTc wandering between 1.1
,Tc /Ji,1.5 with no satisfying convergence. This is not su

FIG. 4. RPA, next-to-leading order and Irkhin and Katanin
estimations of the critical temperatureTc of cubic lattices in units of
Ji as a function of the interchain exchangeJ5J'5Jy5Jz in units
of Ji .
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prising since the functionnal dependence of the Hartree-F
corrections inTc being presumably meaningless whenT/Ji
!1 is unsatisfied.

The graph Fig. 4 has been plotted in the safer ran
J' /Ji,0.3. It would be very interesting to have QMC sim
lations to determine the critical temperature in this ran
That would be a precise test of the perturbation theory
anisotropic cubicS51/2 lattices.

V. APPLICATION TO FRUSTRATED SÄ1Õ2
ANTIFERROMAGNETS

A. RPA approach for the dynamical susceptibility
in the disordered phase of Cs2CuCl4

Cs2CuCl4 is a spin-1/2 frustrated antiferromagnet. At
temperature ofTc50.62 K, it shows a transition to an or
dered phase. The order is cycloidal. Its parameter is inc
mensurate and measured to bek050.186. Remarkably, in
this phase as well as in the disordered phase, the excita
spectrum is incoherent.22–25

Its magnetic Hamiltonian has been recently experim
tally determined with great accuracy.26 It can be decomposed
as

H5(
k

Hplane
(k) 1H interplane

(k,k11) 1HDM ,

Hplane
(k) 5Ji(

i , j
SW i , j ,k•SW i 11,j ,k

1J'(
i , j

SW i , j ,k•@SW i , j 11,k1SW i 21,j 11,k#,

H interplane
(k,k11) 5Jz(

i , j
SW i , j ,k•SW i , j ,k11 ,

HDM5(
i , j ,k

DW •@SW i , j ,k3SW i 11,j ,k#. ~33!

In particular a Dzyaloshinskii-Moriya interaction (HDM) has
been proven to exist on the interchain exchange paths
vealed by its anisotropic nature. Experimental estimates
the exchange couplings in Cs2CuCl4 are Ji54.34 K, J'

51.48 K ~about one third of the main coupling!, Jz

50.20 K and finallyuDW u50.23 K ~about 5% of the main
coupling!.22,26

So it appears that this compound is essentially tw
dimensional. One of the two-dimensional spin lattices is r
resented in Fig. 5. Although the interchain couplingJ' /Ji is
considerable, the smallness of the ratio of transition temp
ture to bandwidthTc /pJi'0.05 indicates that the quasi-one
dimensional approach we are advocating might be tried
Cs2CuCl4.

An RPA approach has been proven to reproduce qua
tive features of the compound~incommensurability, asym-
metry of the dynamical structure factor aroundkx5p, as
5-7
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well as by construction, the incoherent spectra!.4 It also gives
very reasonable estimates for the critical temperature and
incommensurability.

Given the latest experimental data, and also taking i
account the subleading correction in the logarithmic dep
dence of the spin correlation functions~which was intention-
ally neglected in Ref. 4!, RPA gives k050.197 andTc
50.85 K. Those numbers are off by less than 25% co
pared to the experimental values, which is fairly good giv
the complexity of the physics displayed by Cs2CuCl4. It was
shown that some qualitative features of Cs2CuCl4 were with-
out doubt reproduced by the approach advocated in Re
Knowing the corrections to the RPA result would hopefu
decide whether such a perturbative approach can be use
this compound for determining quantitative results.

We now briefly reproduce the calculation leading to
RPA formula for the dynamical susceptibility as the calcu
tion of the subleading order makes use of it. The elemen
cell of the Cs2CuCl4 crystal has four Copper ions. In add
tion, the vector of the Dzyaloshinskii-Moriya~DM! interac-
tion which lies on the interchain bounds, points in the th
direction~denoted Oz here!. The orientation of the DM vec-
tor is staggered from one plane to another:DW 56D eW z .

Hence the magnetic Hamiltonian is now spin anisotrop
Those complications make the RPA-dressed propagator
sess a matrix-form which can ultimately~in the complex
representation (12) of the quantum spins! be reduced to a 4
by 4 matrix. Eq.~14! is still valid under its matrix form

@G12#215C12
(2) 1@J'

12#21. ~34!

The four components of the vectorial space in which it
defined correspond to the2 component of the four distinc
spins in an elementary cell on the right~resp.1 component
of the spins on the left!.

We haveC12
(2) 5C12

(2) I4 and

J'
125F 0 J1K I 0

J1K 0 0 I

I 0 0 J2K

0 I J2K 0

G , ~35!

FIG. 5. Exchange paths within the planes: solid lines denote
strong exchangeJi , dashed lines the weaker, frustrated exchan
J' . Dzyaloshinskii-Moriya exchange of magnitudeD also stands
on the interchain paths. Two types of sites among the four in
elementary cell of the lattice are distinguished.
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where

J~kW !5J'@cos~ky!1cos~kx2ky!#,

K~kW !5D@sin~ky!1sin~kx2ky!#,

I~kW !5Jzcos~kz!. ~36!

The transverse RPA-dressed propagator of the effective
theory is related to the transverse RPA imaginary-time c
relation functionGRPA

12(kx ,v) @itself related to the transvers
RPA dynamical susceptibilityx3D

12(kx ,v) by analytic con-
tinuation# by

G12

J'
12

1J'
12GRPA

125I4 . ~37!

Note that from Eq.~34!, G12 and J12 are commuting 4
34 matrices. The transverse time-ordered imaginary-ti
two-point correlation function of spins is obtained by addi
the contributions from the various sublattice correlators, i
by taking, e.g.,

(
i , j

^S( i )
1 ~v,kW !S( j )

2 ~2v,2kW !&, ~38!

where the summation is over the four types of sites. Af
analytic continuation on the frequencies, we obtain the f
lowing RPA expression for the transverse dynamical susc
tibility:

x3D
12~k,kW'!5

x12~k!@11N1~kW !x12~k!#

$122J~kW !x12~k!1N2~kW !@x12~k!#2%
,

~39!

wherek5(v,kx) and

N1~kW !5I~kW !2J~kW !,

N2~kW !5J2~kW !2K2~kW !2I2~kW !. ~40!

The RPA critical temperature as well as the incommensu
bility are then determined through the instability conditio
obtained by annihilating the denominator of Eq.~39!

@J~kW !6AK2~kW !1I2~kW !#x12~0,kx!51. ~41!

The relevant instability corresponds to the higher poss
temperature. In order to solve Eq.~41! for it, one can maxi-
mize the left-hand side of Eq.~41! overkW . Then one deduces
that the instability occurs along the chains directionky
5kx/2 and thatkz5p ~Néel order in the third direction!.
Thenkx andTc have to be determined numerically.

We have assumed that the main instability is given
transverse excitations. So we need not calculate the long
dinal RPA propagator to calculate the RPA instability con
tion. However, it participates to the next-to-leading ord
correction and we shall need it later. Eq.~14! is still valid
under its matrix form

e
e

n
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@Gzz#215Czz
(2)1@2 J'

zz#21. ~42!

The four components of the vectorial space in which it
defined correspond to thez component of the four distinc
spins in an elementary cell. We haveCzz

(2)5Czz
(2)I4 and

J'
zz5F 0 J I 0

J 0 0 I

I 0 0 J

0 I J 0

G . ~43!

B. First correction to RPA

In the complex spin representation which is more con
nient in the case of Cs2CuCl4, the ~matrix! dynamical mag-
netic susceptibilities are after Eq.~11!:

x3D
12~k,kW'!5

x1D
12~k!1S12~k,kW'!

12J'
12~kW !@x1D

12~k!1S12~k,kW'!#
,

x3D
zz ~k,kW'!5

x1D
zz ~k!1Szz~k,kW'!

122 J'
zz~kW !@x1D

zz ~k!1Szz~k,kW'!#
. ~44!

Because of the staggering of the DM vector from one pla
to another, there is no chirality on the three-dimensional s
correlation functions andx3D

12(k,kW')5x3D
21(k,kW').

In the particular case of the first correction~Hartree-Fock-
like correction!, the matrixS (1)

12 appears to be diagonal. In
deed, it is made up of a single four-point correlation functi
which involves four spins belonging to one type of sit
~among four!. This does not hold at higher order. As a co
sequence, we may seeS (1)

12 as a number which is given by

S (1)
12~k,kW'!5

A2

b (
n
E

2`

` dqx

2p F S 1

8
Cxxxx

(4) 1
1

4
Cxxyy

(4) D ~k,

2k,qn ,2qn!3E
0

2p dqW'

~2p!2
@2 G12#~qn ,qW'!G

1
A2

b (
n
E

2`

` dqx

2p F1

4
Cxxyy

(4) ~k,2k,qn ,2qn!

3E
0

2p dqW'

~2p!2
Gzz~qn ,qW'!G . ~45!

The three terms inS (1)
12(k,kW') are derived from the dia

grams in Fig. 6. The integrals overky andkz are performed
over an extended Brillouin zone„from (ky ,kz)P@0,p#2 to
(ky ,kz)P@0,2p#2

… and the propagators expressions bel
take this extended scheme into account. A similar expres
can be obtained forS (1)

zz but is useless for our purpose.

The RPA-dressed propagatorsG12(qn ,qW') and
Gzz(qn ,qW') can be derived from Eqs.~34! and ~42!:
18441
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G125
J1~J22K22I2!C(2)

12

112 J C(2)
121~J22K22I2!@C(2)

12#2
,

Gzz5
2~J1I!

112~J1I!C(2)
zz

, ~46!

where C(2)
zz 5C(2)

12/2 is the time-ordered imaginary-tim
spin-spin correlation function of the isolated Heisenbe
chains. When the temperature approaches the theore
critical temperature, we expect the second contribution to
self-energy correctionS (1)

12 ~which depends onGzz) to be
quantitatively much smaller than the first contribution d
pending onG12. Indeed the RPA propagatorGzz has an
RPA critical temperature~its pole inT) much higher than the
one forG12. It is therefore much less singular that the latt
in the temperature range of interest. This has been chec
numerically.

In the case of such a frustrated system, it is less clear w
the small expansion parameter is. However, we can g
rough idea on inspecting the next-to-leading order corr
tion. First of all there is a prefactor (A/T)2, given by each
RPA line. In addition there is a dimensionful contributio
coming from the transverse lattice structure factor which
pends on the interchain exchange couplings. But contrar
cubic lattices, it cannot be meaningfully extracted from t
integral. The RPA-dressed propagatorG12 appearing in the
integral is more singular at (Tc ,kW0) estimated thanks to RPA
The integral value will therefore be dominated by the va
of the integrands whenkW.kW0, whenT is close toTc . So, at
least whenT is close toTc , the expansion parameter is of th
order of @A J'(kW0)/T#2. As a consequence, in the case
frustrated quasi-one-dimensional magnet leading at the t
sition to an incommensurate order,A J' /T does not neces
sarily have to be small providedA J'(kW0)/T is. Note that the
small parameter in the RPA formula is genuine
A J'(kW0)/T.

After analytic continuation, we obtain the following ex
pression for the transverse dynamical susceptibility:

x3D
12~k,kW'!5

x1D
12~k!@11N1~kW !X~k!#

$122J~kW !X~k!1N2~kW !@X~k!#2%
, ~47!

with X(k)5x1D
12(k)1S (1)

12(k). The instability condition at
this order is therefore

FIG. 6. Hartee-Fock diagrams with symmetry factors which

the first non-trivial terms of the self-energyS12(v,kW ). The full
line propagator is associated withG12, whereas the dashed-dotte
line corresponds toGzz. The full line box is associated withCxxxx

(4)

whereas the dashed-dotted line box corresponds toCxxyy
(4) .
5-9
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@J~kW !6AK2~kW !1I2~kW !#X~0,kx!51. ~48!

Because at this orderS(k,kW') does not depend onkW' , it is
as easy as in the RPA case to maximize the left-hand sid
kW' . It leads again to a longitudinal instability and a Ne´el
order from one plane to another.

C. Numerical results

The numerical computations performed to evaluate
critical temperatureTc as well as the incommensurability, a
more involved than in the cubic lattice case, where it is o
vious that a Ne´el order prevails belowTc . The instability
condition has to be solved with respect toTc and k0. The
self-energy correction itself, once the obvious dimension
prefactor has been put aside, depends on the temperatT
through the RPA propagator and depends on the ratiok0 /T
through the four-point correlation function. An iterative a
gorithm on (Tc ,k0) can nevertheless be used. The small
rameter of the expansion close to the transition is (2J
1AK21I2)(p1k0)3A/T.0.4.

Our findings are the following. The critical temperature
estimated to beTc50.66 K to be compared to the exper
mental resultTc50.62 K. The incommensurability is est
mated to bek050.182 to be compared to the experimen
result k050.186. Therefore those values compare quite
markably with the experimental ones.

This in return validates the rougher estimates from R
~Ref. 4! which were already quite satisfying. It makes it im
probable for the success of RPA applied to quasi-o
dimensional magnets to be merely due to chance.

VI. SUMMARY AND CONCLUSIONS

We have shown that recent one-dimensional exact res
from integrable models and quantum field theory can be
plied to quasi-one-dimensional spin-1/2 antiferromagnets
compute quantities such as critical Ne´el temperatures. Thei
computation can be made systematic in perturbation the
On rough grounds, it can be seen as a high-temperature
pansion inJ' /T. To the next-to-leading order, the leadin
order being the random-phase approximation, the er
s.

ev
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committed differ by less than 10% from the experimen
values at least in the two cases investigated above. Altho
those observables are nonuniversal, the calculation only
pends on the magnetic Hamiltonian, i.e., exclusively on
knowledge of the exchange couplings. Even incommensu
order parameter can be accurately determined this way
least this has be shown on the case of the frustrated c
pound Cs2CuCl4.

The perturbation theory allows more generally to give
perturbative estimation of the three-dimensional dynam
susceptibility. But it could as well be used to calculate c
rections to multispin three-dimensional correlation functio
starting from the one-dimensional functions.

A test of this perturbation theory could be provided
quantum Monte Carlo simulations forS51/2 cubic lattices
for a reasonably weak value of the ratioJ' /Ji . It is some-
how hazardous to go beyond the next-to-leading or
mainly used in this work. Although the numerical calcul
tions for higher-order corrections are achievable, the res
ing corrections are likely to be within the field theory a
proximation error range. The spin two-point correlatio
functions are indeed only asymptotically exact. Being mo
precise would require to go beyond the knowledge of
~mathematical! equivalent of the correlations at large di
tances. For example, one could include the space-depen
renormalization group corrections.10,27

Finally, the perturbation theory could be applied to det
mine other quantities of interest. For example, it might
useful to determine the lifetime of the theoretical
predicted3 and experimentally observed28 longitudinal mode
in the ordered phase of KCuF3. Indeed the next-to-leading
order correction to RPA is expected to yield an imagina
part in the self-energy and hence a damping of the mode
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