
PHYSICAL REVIEW B, VOLUME 65, 184408
From the square lattice to the checkerboard lattice: Spin-wave and large-n limit analysis
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~Received 20 November 2001; published 16 April 2002!

Within a spin wave analysis and a fermionic large-n limit, it is shown that the antiferromagnetic Heisenberg
model on the checkerboard lattice may have different ground states, depending on the spin sizeS. Through an
additional exchange interaction that corresponds to an intertetrahedra coupling, the stability of the Ne´el state
has been explored for all cases from the square lattice to the isotropic checkerboard lattice. Away from the
isotropic limit and within the linear spin-wave approximation, it is shown that there exists a critical coupling
for which the local magnetization of the Ne´el state vanishes for any value of the spinS. One the other hand,
using the Dyson-Maleev approximation, this result is valid only in the caseS5

1
2 and the limit between a stable

and an unstable Ne´el state is atS51. ForS5
1
2 , the fermionic large-n limit suggests that the ground state is a

valence-bond solid build with disconnected four-spin singlets. This analysis indicates that for low spin and
in the isotropic limit, the checkerboard antiferromagnet may be close to an instability between an ordered
S50 ground state and a magnetized ground state.

DOI: 10.1103/PhysRevB.65.184408 PACS number~s!: 75.10.Jm, 75.30.Ds, 75.50.Ee
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I. INTRODUCTION

In one dimension~1D! the ground state of the Heisenbe
antiferromagnet may be quasiordered or disordered, dep
ing on the spin parityS.1 When S is an integer and, in pa
ticular, whenS51, the ground state corresponds to a ma
netically disordered state where spin-spin correlat
functions~CF’s! exponentially decay with distance and wi
total spinSt50. This state is called a quantum spin liqu
~QSL! as the spin-spin CF’s are equivalent to the dens
density CF’s in conventional liquids and because it has t
spin S50 and no broken symmetry. This concept can
generalized to classical systems if the spins are considere
O(3) vectors. The constraintS50 is then removed and th
state is termed a classical spin-liquid~CSL!. Another notion
for spin-liquid ground states emerged from earlier studies
Wannier2 and Houtappel3 and is related to geometrical frus
tration. In that case, it is the geometry of the underlyi
lattice that leads to magnetic disorder and not its dimens
ality. Naturally, frustrated structures may exist not only f
D51 and for over 50 years frustrated lattices have b
examined in the search for disordered ground states in hi
dimensions (D52,3). One goal of this research into peculi
structures is the study of unconventional spectra, not cove
by the Lieb-Mattis theorem.4

To date, two particular lattices have been considered
good candidates for spin-liquid ground states: thekagome´
lattice and the pyrochlore lattice. The first one is a tw
dimensional arrangement of corner sharing triangles, w
the latter is a three-dimensional structure of corner sha
tetrahedra. Both lattices have been theoretically investiga
and it has been suggested that in the classical case, as w
in the quantum case, they possess spin-liquid-like gro
states.5–8 Experimentally, all systems that can be well d
scribed by the antiferromagnetic Heisenberg model on th
lattices have been found to possess this spin-liquid beha
or unconvential behaviors that can be ascribed in part to
underlying ‘‘theoretical’’ spin-liquid ground state.9 This sug-
gests that both the elementary cells~triangle or tetrahedron!
0163-1829/2002/65~18!/184408~8!/$20.00 65 1844
d-

-
n

-
al
e
as

y

n-

n
er

ed

as

-
le
g

ed
l as
d

-
se
or
e

and the connectivity~corner sharing! are major ingredients
for magnetic disorder. In this paper, we study such a latt
where the elementary cell is a tetrahedron and where con
tivity is corner sharing: the checkerboard lattice~see Fig. 1!.

FIG. 1. The checkerboard lattice. It can be pictured as a squ
lattice of tetraheda~top!. Locally, it reproduces the same environ
ment as the three-dimensional pyrochlore lattice. In order to s
plify our calculations, it has been described by a square lattice w
a two-spin unit cell~bottom!.
©2002 The American Physical Society08-1
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FIG. 2. ~left! Lattice of coupling constantsJ
andJ8. Bold lines design constantJ while dotted
lines describe constantJ8. ~right! Local environ-

ment of a unit cell.dW andgW are related toJ-like

coupling whileeW andhW correspond toJ8.
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This system is two dimensional and can be described as
two-dimensional analog of the pyrochlore lattice: each at
possesses locally the same environment. It has recently
proved that its quantum ground states are singlets10 for finite
systems. The aim of this work is to test whether this conc
sion is valid for an infinite lattice. To do so we start aw
from the isotropic checkerboard limit, when diagonal bon
are weakened~see Fig. 2!, and we test whether this syste
undergoes a Nee´l ordering transition when reaching the is
tropic limit. This approach is very close in spirit to the on
previously done by Chandra and Douc¸ot11 on the J1-J2
square lattice model. This is done within the frame of line
spin-wave theory and the Dyson-Maleev approximation12

Whereas for the linear spin wave approach there always
ists a critical coupling for which the local magnetization
unstable, whatever the value of the spin, in the case of
Dyson-Maleev approach there is a critical coupling only
the caseS5 1

2 . The peculiar caseS5 1
2 is explored within a

fermionic large-n limit of the SU~2! Hamiltonian. It is found
that the system should order in a valence-bond solid of
connected four-spin singlets. The notation, the Hamiltoni
and the linear spin-wave analysis are introduced in Sec
The Dyson-Maleev formalism is shortly described in Sec.
as it can be seen as an extension of Sec. II. Results o
linear spin-wave theory and the Dyson-Maleev approach
presented and discussed in Sec. IV. The caseS5 1

2 is detailed
in Sec. V.

II. LATTICE, HAMILTONIAN, AND SPIN-WAVE
ANALYSIS

A. Notation and lattice description

The checkerboard lattice can be described as a sq
lattice with a unit cell containing two spins~see Fig. 1!. Each
cell of the lattice can be obtained from the others by apply
the translationsa5(1,0) andb5(0,1). This means that eac
site of the lattice can be defined by two indices (i ,n). The
first corresponds to the unit cell (i 51, . . . ,N) whereN is
the total number of cells in the lattice and the other to
type of the site (n51,2). We introduce two kinds of interac
tionsJ andJ8. HereJ corresponds to a coupling constant
a square lattice.J8 can be seen as a coupling constant with
one square over two of the square lattice~see Fig. 2!. Using
this notation, the Brillouin zone of the underlying Brava
lattice is BZ(kx ,ky)5@2p,p#3@2p,p# and the structure
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coefficients can be defined asd5cos(kW•dW)5cos@(kx1ky)/2#,
g5cos(kW•gW)5cos@(kx1ky)/2#, e5cos(kW•eW)5cos(kx), and h
5cos(kW•hW )5cos(ky) where dW , gW , eW , and hW are depicted in
Fig. 2.

B. Spin-wave Hamiltonian

The Heisenberg Hamiltonian for this system is

H52(
i j

Ji j Si•Sj , ~1!

whereJi j are coupling constants (Ji j ,0 for an antiferromag-
net! andSi is the spin located at sitei. This spin Hamiltonian
may be transformed into a boson Hamiltonian through
Holstein-Primakoff transformation, provided that we kno
its mean-field~MF! ground states from the square lattic
limit to the checkerboard lattice limit, i.e., for all values o
r 5J8/J. One way to know the MF ground state~s! is to
compute the Fourier transform of the interactions on
lattice:13

H52(
i , j

Ji j Si•Sj5(
qW

J~qW !SqW•S2qW . ~2!

As we here deal with a two-spin unit cell, its Fourier tran
form J(qW ) is a 232 matrix and must be diagonalized to fin
the normal modeslm51,2(qW ). The ground state~if unique!
then corresponds to the lowest eigenvaluel1(qW 0) and is de-
scribed by the propagation vectorqW 0 and the associated e
genvectorV1(qW 0) which fixes the inner structure of the un
cell. In the range 0<r ,1, qW 0 always equals 0 and the e
genvector is always equal to (1,21) which means that the
ground state is nondegenerate and corresponds to the an
romagnetic Ne´el state~see Fig. 3, top and middle!. At the
peculiar pointr 51, we obtain a flat branch, signaling that
the MF level, the system is continuously degenerate~see Fig.
3, bottom!, as previously noted in Ref. 13. That behavior c
be explained in terms of local degrees of freedom. In
limit J85J, we note that the Hamiltonian may be decom
posed as a sum of squares over ‘‘tetrahedra,’’ as has b
done in thekagome´ as well as in the pyrochlore lattice:
8-2
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H52J(
i j

Si•Sj52
J

2 (
tet

S (
i 51

4

Si D 2

12NJS~S11!.

~3!

We see that the classical ground state is defined by the
straint ( i 51

4 Si50 on each tetrahedron. Furthermore, as
rahedra are corner sharing, this constraint is not sufficien
order the system and there are an infinite number of way
satisfy it, which results in a flat branch over the whole Br
louin zone. This is exactly the same phenomenon that
previously observed on thekagome´ as well as on the pyro
chlore lattice. Nevertheless, the Ne´el state belongs to this

FIG. 3. Fourier transform of the interactions for the square
tice limit (r 50, top!, an intermediate case (r 50.5, middle!, and the
checkerboard limit (r 51, bottom!. Each manifold corresponds t

an eigenvalue ofJ(qW ).
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infinite set of MF ground states, and as it is the correct o
for any r ,1, we will also consider this state by continuit
for the pointr 51. For the parameter ranger .1, the situa-
tion is quite different as MF ground states are continuou
degenerate along lines corresponding to the border of
square lattice Brillouin zone~see Fig. 4!. This precludes a
description via a spin-wave analysis in this range as no m
netic ground state can be choosen as a trial state. This is
same situation as the one encountered on thekagome´ or the
pyrochlore lattices where spin-wave calculations can o
compare the relative stability of Ne´el states without consid
ering the entire set of these states.14 So we will restrict our-
selves to the range 0<r<1 and consider the antiferromag
netic Néel state as the trial state. We therefore introduce t
species of bosons, each one related to a different sublat
and restrict the development of spin operators to the low
order in the spin-wave expansion. The resulting boso
Hamiltonian is then diagonalized through a Bogoliub
transformation. We are left with two branches of ‘‘magnon
whose dispertions areea5(1/2)@ f 2g1A( f 1g)224h2#
and eb5(1/2)@2( f 2g)1A( f 1g)224h2# where f k52
1r (e21), gk521r (h21), hk5d1g, andr 5J8/J (d, g,
e, andh are defined in Sec. II A!.

Restricting ourselves to the ground state, the energy
the local magnetization are obtained through

E5
1

2N
H52JS22J8S22JS(

kW
C~kW !, ~4!

M5^Si
1z&05S2^ci

†ci&05S2
1

N (
kW

va
2~kW !, ~5!

with Ck5 1
2 @ea1eb1( f 2g)(ua

22ub
2)2( f 1g)# and where

the coefficients of the Bogoliubov transformation areua

5h/Ah22(ea2 f )2, va5( f 2ea)/Ah22(ea1 f )2, ub5(eb

1 f )/A(eb1 f )22h2, andvb5h/A(eb1 f )22h2.

-

FIG. 4. Fourier transform of the interactions forr 52. Each

manifold corresponds to an eigenvalue ofJ(qW ). The mean-field
ground state is continuously degenerate along lines which un
the choice of a trial ground state for the spin-wave analysis.
8-3
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III. DYSON-MALEEV REPRESENTATION

We use the same Hamiltonian of Eq.~1! and introduce the
Dyson-Maleev transformation.12 Because of its algebra, th
Dyson-Maleev transformation rewrites the Hamiltonian
Eq. ~1! as a sum of two and four operators terms. The s
plest method to solve the problem is to decouple the f
operators term introducing ana priori decoupling scheme. In
the present case, we follow the mean-field decoupling of R
15. Three quantities are introduced that correspond each
two-boson-like excitation:

D5^ai
†ai&5^bj

†bj&,

O5^ai
†al&5^bj

†bm&, iÞ l , j Þm,

T5^ai
†bj

†&. ~6!

Other types of excitations are neglected and considere
higher-energy processes as previously proposed
Takahashi.16 Using these approximations, the Dyson-Male
Hamiltonian is then linearized and diagonalized through
other Bogoliubov transformation. The structure of the tra
formation is identical to the one of the linear spin-wave ca
but with new coefficients. These coefficients aref k852A
1rB(e21), gk852A1rB(h21), andhk85A(d1g) where
A512(D1O)/2S andB512(D2T )/2S. Finally the three
self-consistent coefficients at zero temperature are obta
through the three coupled relations

D5
1

N (
k

v
a

82
~k!,

O52
1

2N (
k

ua8 ~k!va8 ~k!~d1g!,

T5
1

2N (
k

v
a

82
~k!~e1h!, ~7!

and the local magnetization of the Ne´el state is simplyM
5^Si

1z&05S2D.

IV. RESULTS OF THE SPIN-WAVE APPROACH

In the following, we fixJ521 and take21<J8<0. We
first discuss the linear spin-wave~LSW! results and then the
Dyson-Maleev approach. In Figs. 5 and 6, the energy as
as the local magnetization is plotted as functions of the r
r 5J8/J. For the caser 50, well-known results for theS
51/2 sqaure lattice are recovered:E520.658 andM50.3.
The magnon spectrum is very simple; there is only one
persive branch, which is two times degenerate in our c
because of the two-spin unit cell description~Fig. 7, top!.
With increasingr, there are three zones to distinguish. Fir
in the range 0<r<r c , the magnon spectrum has two distin
manifolds, each of these being dispersive~Fig. 7, middle!.
This occurs now because the sites of the unit cell no lon
have the same symmetry.r c corresponds to a critical cou
pling below which the local magnetization is finite, eve
renormalized by quantum corrections. ForS51/2, r c'0.75,
18440
f
-
r

f.
a

as
y

-
-
,

ed

ll
io

-
se

,

er

which was already obtained in Ref. 17, and forS51, r c
'0.93. Critical values for higher spins are shown in t
phase diagram of Fig. 8. The second zone corresponds to
ranger c<r ,1. Because of quantum corrections, local ma
netization is renormalized to zero, which means that in t
approximation, the system does not show magnetic order
Even if quantum fluctuations drive the system to disord
one notes that magnons are still dispersive. This means
there is no peculiar contribution coming from their structu
This is no longer the case for the special pointr 51. At this
point, the lowest branch of spin waves is flat over the wh
Brillouin zone ~Fig. 7, bottom!. This has several conse
quences. First, this means that at the level of this approxi
tion, there will always be a critical coupling, whatever th
value of the spin. This comes directly from the nonanaly
behavior ofva(kW ) when r→1 along directionsky56kx.
Because of that, the local magnetization diverges
21/A(12r ), i.e., is renormalized to zero, whatever the val

FIG. 5. Energy per site as a function of the ratior 5J8/J, i.e.,
between the limits of the square lattice and the checkerboard lat
for S51/2. Beyond the critical ratior'0.75, the value of the en
ergy is meaningless as it describes the energy of an unstable s

FIG. 6. Local magnetization as a function of the ratior 5J8/J,
i.e., from the square lattice to the checkerboard lattice. Gray li
correspond to the calculations made forS51/2 and black lines for
S51.
8-4
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FROM THE SQUARE LATTICE TO THE CHECKERBOARD . . . PHYSICAL REVIEW B65 184408
FIG. 7. Magnons dispersionsea,b(k) over the Brillouin zone.
From top to bottom,r 50,0.5,1. Atr 51, the lowest branch is non
dispersive. This means that this point is remarkable and reveal~as
in the kagome´ and pyrochlore lattice cases! the presence of a sof
mode related to local degrees of freedom.
18440
of S. Consequently, we obtain a phase diagram (1/S,J8/J)
very similar to the one of theJ1-J2 square lattice mode
whereJ8/J plays the role ofJ2 /J1 ~see Fig. 8 and Fig. 2 o
Ref. 11!. This problem of a flat mode is often encountered
frustrated lattices and it rules out the possibility of studyi
the r 51 point without going to the next order of expansio
in our model, i.e., without including quartic terms. Wheth
such an inclusion of quartic terms is relevant is not clear a
corresponds to considering quartic modes as perturbation
zero quadratic modes. Nevertheless, it is the simplest n
step to be done in the frame of spin-wave~Holstein-
Primakoff! analysis.14 Second, it has a meaning very close
the MF conclusions. If the lowest branch of the magnons
flat, this means that the system has no spin stiffness. T
any local deformation will not propagate through the lattic
This is very close to the argument of continuous degener
obtained through the MF approach, i.e., the existence o
infinite number of local degrees of freedom@see Eq.~3!#.
These degrees of freedom are one of the signatures of
trated systems and may be counted, in the case of clas
spins, through the ‘‘Maxwellian counting’’ rule.7 At the level
of the LSW approximation, this means that quantum fluct
tions and geometrical frustration may destabilize the N´el
state for a finite range ofJ8. Wether a quantum spin-liquid
ground state in this range is stable is beyond this appro
even if the existence of critical couplings goes in the rig
direction.

We now turn to the Dyson-Maleev approach. As for t
preceding case, the local magnetization has been comp
for different value of the spin. The main result is that for a
S>1, there is no critical coupling; i.e., the local magnetiz
tion of the Néel state is always finite in the isotropic lim
r 51. This is illustratred in Fig. 9 where reduced local ma
netization^Si

z&0 /S is plotted versus the inverse spin valu
1/S at r→1. The only exception is forS5 1

2 for which it
seems that there is a critical coupling atr'0.98. To test
whether the stability of the Ne´el state for theS5 1

2 comes

FIG. 8. Stability of the Neel state. The straight line indicates
threshold below wich the Neel state is stable for a given ratir
5J8/J. Over this line, it is destabilized by geometry and quantu
fluctuations. Forr 51, it is always unstable, whatever the value
the spinS.
8-5
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BENJAMIN CANALS PHYSICAL REVIEW B 65 184408
from a flat mode or from quantum fluctuations, we ha
plotted the associated dispersions over the whole Brillo
zone ~see Fig. 10!. From the structure of the boson excit
tions, it is clear that including quantum fluctuations via t
Dyson-Maleev formalism destroys the pathological struct
of the flat mode. Therefore, destabilization of the Ne´el state
is only driven by quantum fluctuations within this approx

FIG. 9. Relative local magnetization of the Ne´el state vs the
inverse spin value 1/S at the isotropic point. For allS>1, the local
magnetization is finite, suggesting that the ground state could be
Néel state. ForS51/2, the local magnetization is renormalized
zero by quantum fluctuations.

FIG. 10. Energy dispersions corresponding to the boson ex
tions around the Ne´el state for theS51/2 case in the limitr→1.
The dispersions are no longer pathological as they are in the L
approximation and the flat mode is destroyed. This clearly indica
that destabilization of the Ne´el state is driven here only by quantu
fluctuations.
18440
n

e

mation and not by a zero spin stiffness as was the case in
LSW approximation in the limitr→1.

These results are quite surprising as they are qualitativ
different from the LSW approximation. This suggests th
the more accurately the quantum fluctuations are taken
account, the more the Ne´el state is stable, even in the isotro
pic limit. This is unexpected as the checkerboard antifer
magnet was expected to behave like thekagome´ antiferro-
magnet. In the latter case, the reduction of the lo
magnetization to zero by quantum fluctuations and geome
within a finite range of couplings, has been shown using t
distinct numerical methods.18 It was found that going from
the triangular limit to thekagome´ limit, there is a singular
point associated with a critical coupling (r c5Jc8/J'0.9),
where local magnetization vanishes. Here, we obtain
same conclusion within the LSW approximation but n
within the mean-field treatment of the Dyson-Maleev~DM!
approach. Whether this discrepency comes from the quan
fluctuations that are better incorporated into the latter form
ism or comes from the mean-field treatment of the DM re
resentation is not clear. Nevertheless, it is interesting to n
that a recent work19 shows the same tendency, i.e., a tran
tion from anS50 ground state to a stable Ne´el state with
increasing spin sizeS. If the present calculations treat co
rectly quantum fluctuations~which is not proved in this pa-
per!, the frontier between the expected valence-bond s
~VBS! and Néel ordering19 would then be atS51. Never-
theless, it should be stressed that the present work does
test whether other classical ground states could be stab
the isotropic point and have the same or a different ene
than the Ne´el ground state. Consequently, an intrinsic or a
cidental degeneracy of magnetic ground states forS>1 is
not ruled out by this approach.

V. SÄ1Õ2 CASE

As shown in the preceding sections, it seems that only
S51/2 can the ground state be nonmagnetic. To shed ligh
the behavior of theS51/2 checkerboard antiferromagnet,
is possible to use a ‘‘fermionic’’ SU(n) generalization of the
SU~2! group. @Note that n.2 does not correspond to
higher-spin representation of SU~2!. Therefore, a mean-field
solution of the SU(n) Hamiltonian is expected to be muc
closer to the SU~2! physics than the classical description
Sec. II B.# This formalism has been previously introduced
Marston and Affleck20 and applied to the square antiferro
magnet. The advantage of this description is that it works
all lattices, even frustrated21 or not bipartite, and that it is
well suited for the checkerboard antiferromagnet as spin
der never occurs in the exactly solvable large-n limit,20 as is
expected in the ranger c<r<1 for n52. At large n, the
Hamiltonian can be written as

H5(
( i , j )

H S n

JD ux i j u21 (
a51

n

~x i j cia
† cj a1H.c.!J , ~8!

where x i j 5(J/n)cia
† cj a are bond variables and where th

spin-spin interaction has been expressed by use of elec
operators through Si•Sj5(1/2)(a,bcia

† cj bcj b
† cj a1const.

he

a-
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FROM THE SQUARE LATTICE TO THE CHECKERBOARD . . . PHYSICAL REVIEW B65 184408
The x variables may be seen as valence-bond operators22 as
(n/J)x i j

† x i j is the number of valence bonds on the link (i j ).
Therefore, in this formalism, every ground state is descri
by a map of these complex scalar fields. Several authors h
concentrated on the mean-field solutions~‘‘1/ n50’’ !,20,23,24

and in particular, it is possible to apply here a theorem
tablished by Rokhsar.24 First, it is clear that the checkerboar
antiferromagnet is ‘‘dimerizable with respect toJ’’ as ‘‘it is
possible to partition the network into disjoint pairs of sit
such that~a! every site belongs to one and only one pair a
~b! for each pair (i , j ) we haveJi j 5J.’’ In the rangeJ>J8 it
is possible to apply his theorem which shows that mean-fi
ground states are~spin-Peierls or box! phases24 ~see Fig. 11!.
Keeping in mind that the case of interest is forn52, we look
for the proposed states that lower the energy of the reaS
51/2 case. It is straightforward to see that box phases lo
this energy with respect toJ, as soon as these phases a

FIG. 11. ~a! General box phase on theJ square lattice of the
anisotropic checkerboard antiferromagnet~as shown in Fig. 4 of
Ref. 24!. Bold lines without arrows correspond to nonzerox i j while
thin lines, plain or dashed, correspond tox i j 50. Bold lines with
arrows indicate thatx i j 5xeip/4 wherex is real. The product ofx i j

around each box is negative, indicating a flux ofp. These boxes are
the large-n equivalent of a four-spin singlet on a square.~b! Picture
of a general box phase for theS51/2 case. Bold squares correspo
to four-spin singlets and bold lines to two-spin singlets. IfJ8 inter-
actions are within a box, they must be taken into account and
also in bold as they enter the calculation of the energy. The diffe
energies for squares with crossings, squares without crossings
links are, respectively,E521.5, E522, andE520.75. ~c! Pic-
ture of the valence-bond solid for theS51/2 case, expected to b
the ground state. This state is two times degenerate and invo
only squares without crossings.
18440
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regular tilings of the underlying square lattice by disco
nectedJ squares~see Fig. 11!. Taking now into account the
J8 couplings, only one of these phases survives, whereJ8
links are not frustrated. At this point, it means thatif the
SU(n) description of the SU~2! case is relevant, it sugges
that for S51/2, in the ranger c<r<1, the ground state
should be two times degenerate~because there are tw
choices for the tiling!, consisting in a valence-bond solid o
disconnected squares without crossings~in the range 0<r
,r c it is clear that this formalism is not relevant as the loc
magnetization is finite!. The proposed ground state@see Fig.
11~c!# could be tested by comparing the VBS energy per s
E520.5, and the correlations functions with results of ex
diagonalizations, for example.25

VI. DISCUSSION AND CONCLUSION

To conclude, linear spin-wave analysis has shown t
away from the isotropic checkerboard lattice limit, there is
finite range of coupling for which the Ne´el state is unstable
whatever the value of the spin. Strikingly, when using a se
consistent decoupling within the Dyson-Maleev formalism
is shown that the Ne´el state is never destabilized, except f
the S5 1

2 case. The stability of the Ne´el state with respect to
other magnetized states has not been tested in this w
Recent work19 supports that this state should be the grou
state for largeS. It is compatible with the present result
although it is at variance with results obtained with t
infinite-component26 antiferromagnetic model on the chec
erboard lattice (d→`). A possible explanation for this27 is
that for largeS, there should be quantum order by disord
~as supported in Ref. 19! but this order by disorder come
with an energy scale ofJ/S rather thanJ. Therefore, in the
classical limit, the temperature at which the correlati
length grows exponentially goes to zero. In other words,
limits T→0 andS→` ~or d→`) should not commute. Fo
the specialS5 1

2 case, the fermionic large-n limit suggests
that the ground state is a valence-bond solid of disconne
four-spin singlets on squares without crossings. That con
sion is consitent with results of Refs. 19 and 25.

The present work shows that the isotropic checkerbo
antiferromagnet should display behaviors qualitatively diff
ent from the one of thekagome´ and the pyrochlore antifer
romagnet. Moreover, quantum fluctuations have to be trea
with care as they can drive the system from a purely qu
tum ground state to a Ne´el-like ground state. In this frame
the structure of the singlet and triplet towers of state sho
be extremallySdependent and exact diagonalization of fin
clusters with different spin size would be of high intere
especially to test whether the descrepency already app
between theS5 1

2 and theS51 cases.
Note added in proof. After submission of the present pa

per, we have learned about a related work by Breniget al.28
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