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From the square lattice to the checkerboard lattice: Spin-wave and larger limit analysis
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Within a spin wave analysis and a fermionic lamyéimit, it is shown that the antiferromagnetic Heisenberg
model on the checkerboard lattice may have different ground states, depending on the sfifflsinegh an
additional exchange interaction that corresponds to an intertetrahedra coupling, the stability oltiseatde
has been explored for all cases from the square lattice to the isotropic checkerboard lattice. Away from the
isotropic limit and within the linear spin-wave approximation, it is shown that there exists a critical coupling
for which the local magnetization of the Blestate vanishes for any value of the s@inrOne the other hand,
using the Dyson-Maleev approximation, this result is valid only in the 8asg and the limit between a stable
and an unstable ¢ state is aB=1. ForS= % the fermionic large? limit suggests that the ground state is a
valence-bond solid build with disconnected four-spin singlets. This analysis indicates that for low spin and
in the isotropic limit, the checkerboard antiferromagnet may be close to an instability between an ordered
S=0 ground state and a magnetized ground state.
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[. INTRODUCTION and the connectivityfcorner sharingare major ingredients
for magnetic disorder. In this paper, we study such a lattice,

In one dimensior{1D) the ground state of the Heisenberg where the elementary cell is a tetrahedron and where connec-
antiferromagnet may be quasiordered or disordered, depentlvity is corner sharing: the checkerboard lattisee Fig. 1
ing on the spin paritys! When S is an integer and, in par-
ticular, whenS=1, the ground state corresponds to a mag-
netically disordered state where spin-spin correlation
functions(CF’s) exponentially decay with distance and with
total spinS;=0. This state is called a quantum spin liquid
(QSL) as the spin-spin CF's are equivalent to the density-
density CF’s in conventional liquids and because it has total
spin S=0 and no broken symmetry. This concept can be
generalized to classical systems if the spins are considered ¢
O(3) vectors. The constrair8=0 is then removed and the

state is termed a classical spin-liqidSL). Another notion
for spin-liquid ground states emerged from earlier studies by
Wannief and Houtappéland is related to geometrical frus-

tration. In that case, it is the geometry of the underlying

lattice that leads to magnetic disorder and not its dimension-
ality. Naturally, frustrated structures may exist not only for

D=1 and for over 50 years frustrated lattices have been 2 2 2
examined in the search for disordered ground states in highe /

dimensions D =2,3). One goal of this research into peculiar

structures is the study of unconventional spectra, not covereu/
by the Lieb-Mattis theorerfh.

To date, two particular lattices have been considered a: 2 2 2
good candidates for spin-liquid ground states: kagome / .
lattice and the pyrochlore lattice. The first one is a two- /
dimensional arrangement of corner sharing triangles, while! 1 1
the latter is a three-dimensional structure of corner sharing , ) ) -

tetrahedra. Both lattices have been theoretically investigatec

and it has been suggested that in the classical case, as well . /
in the quantum case, they possess spin-liquid-like grounc /
state$~® Experimentally, all systems that can be well de- '
scribed by the antiferromagnetic Heisenberg model on these FiG. 1. The checkerboard lattice. It can be pictured as a square
lattices have been found to possess this spin-liquid behavigattice of tetrahedatop). Locally, it reproduces the same environ-
or unconvential behaviors that can be ascribed in part to thgent as the three-dimensional pyrochlore lattice. In order to sim-
underlying “theoretical” spin-liquid ground stateThis sug- plify our calculations, it has been described by a square lattice with
gests that both the elementary cdlisangle or tetrahedrgn  a two-spin unit cellbottom).
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FIG. 2. (left) Lattice of coupling constant3
andJ’. Bold lines design constadtwhile dotted
lines describe constadt . (right) Local environ-

ment of a unit cell.5 and y are related ta)-like
coupling whilee and 7 correspond td)’ .

This system is two dimensional and can be described as the,etficients can be defined @s= cosk- )=cog(k, + k,)/2]
two-dimensional analog of the pyrochlore lattice: each atom i 7)=cod(k +k)/2], e=cosk-&=cos § a):nd ’
possesses locally the same environment. It has recently been- co§(<- N=cod(kctky)/2], €= cosk-€)=cosky), 7

proved that its quantum ground states are sinfléts finite ~ = COSk-7)=cosky) where s, vy, €, and  are depicted in
systems. The aim of this work is to test whether this conclufig. 2.

sion is valid for an infinite lattice. To do so we start away

from the isotropic checkerboard limit, when diagonal bonds B. Spin-wave Hamiltonian

are weakenedsee Fig. 2, and we test whether this system
undergoes a Né®rdering transition when reaching the iso-
tropic limit. This approach is very close in spirit to the one
previously done by Chandra and Dot on the J;-J,
square lattice model. This is done within the frame of linear
spin-wave theory and the Dyson-Maleev approximatfon.

Whereas for the linear spin wave approach there always exynere J;j are coupling constants <0 for an antiferromag-
ists a critical coupling for which the local magnetization is neb andS is the spin located at siie This spin Hamiltonian
unstable, whatever the value of the spin, in the case of thﬁ1ay be transformed into a boson Hamiltonian through an
Dyson-Maleev approach there is alcritical coupling only forpo|stein-Primakoff transformation, provided that we know
the caseS=3. The peculiar cas€=3 is explored within a  jts mean-field(MF) ground states from the square lattice
fermionic largen limit of the SU2) Hamiltonian. Itis found jimit to the checkerboard lattice limit, i.e., for all values of
that the system should order in a valence-bond solid of disf = 3//3. One way to know the MF ground stégg is to
connected four-spin singlets. The notation, the Hamiltoniangompute the Fourier transform of the interactions on the
and the linear spin-wave analysis are introduced in Sec. llgttice3

The Dyson-Maleev formalism is shortly described in Sec. IlI

as it can be seen as an extension of Sec. Il. Results of the

The Heisenberg Hamiltonian for this system is

Hz—é‘, JiS-S, (1)

linear spin—wave_ theory ar_wd the Dyson-MaIee\{ apprqach are H=— 2 JiS-S= 2 ‘](a)Sa. S 2)
presented and discussed in Sec. IV. The Gxsé is detailed ] q
in Sec. V.
As we here deal with a two-spin unit cell, its Fourier trans-
IIl. LATTICE, HAMILTONIAN, AND SPIN-WAVE form J(ﬁ) is a 2X 2 matrix and must be diagonalized to find
ANALYSIS the normal modes.#~%q). The ground statgif unique)
A. Notation and lattice description then corresponds to the lowest eigenvaldéq,) and is de-

The checkerboard lattice can be described as a squaf€fiPed by the propagation vectqg and the associated ei-
lattice with a unit cell containing two spirsee Fig. 1. Each  genvectoV,(q,) which fixes the inner structure of the unit
cell of the lattice can be obtained from the others by applyingeell. In the range &r<1, ﬁo always equals 0 and the ei-
the translationsi=(1,0) andb=(0,1). This means that each genvector is always equal to (11) which means that the
site of the lattice can be defined by two indicesnj. The  ground state is nondegenerate and corresponds to the antifer-
first corresponds to the unit celi£€1, ... N) whereN is  romagnetic Nel state(see Fig. 3, top and middleAt the
the total number of cells in the lattice and the other to thepeculiar pointr =1, we obtain a flat branch, signaling that at
type of the site (= 1,2). We introduce two kinds of interac- the MF level, the system is continuously degene(sé® Fig.
tionsJ andJ’. HereJ corresponds to a coupling constant on 3, bottom, as previously noted in Ref. 13. That behavior can
a square latticel’ can be seen as a coupling constant withinbe explained in terms of local degrees of freedom. In the
one square over two of the square lattisee Fig. 2 Using  limit J’=J, we note that the Hamiltonian may be decom-
this notation, the Brillouin zone of the underlying Bravais posed as a sum of squares over “tetrahedra,” as has been
lattice is BZ(ky,k,)=[ —,7]X[—m, 7] and the structure done in thekagomeas well as in the pyrochlore lattice:
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FIG. 4. Fourier transform of the interactions for2. Each
manifold corresponds to an eigenvalue Jﬁﬁ). The mean-field
ground state is continuously degenerate along lines which unable
the choice of a trial ground state for the spin-wave analysis.

infinite set of MF ground states, and as it is the correct one
for any r<1, we will also consider this state by continuity
for the pointr=1. For the parameter range-1, the situa-
tion is quite different as MF ground states are continuously
degenerate along lines corresponding to the border of the
square lattice Brillouin zonésee Fig. 4. This precludes a
description via a spin-wave analysis in this range as no mag-
netic ground state can be choosen as a trial state. This is the
same situation as the one encountered orkt#igomeor the
pyrochlore lattices where spin-wave calculations can only
compare the relative stability of Te&states without consid-
ering the entire set of these statésSo we will restrict our-
selves to the range9r<1 and consider the antiferromag-
netic Neel state as the trial state. We therefore introduce two
species of bosons, each one related to a different sublattice,
and restrict the development of spin operators to the lowest
order in the spin-wave expansion. The resulting bosonic
Hamiltonian is then diagonalized through a Bogoliubov
transformation. We are left with two branches of “magnons”
whose dispertions aree, = (1/2)[ f — g+ \/(f +g)%—4h?]
and ez=(1/2)—(f-g)+ \/(f+g)2—4h2] where f, =2
+r(e—1),gx=2+r(n—1), hy=56+y,andr=3"13 (6, v,
€, and n are defined in Sec. Il A

Restricting ourselves to the ground state, the energy and
the local magnetization are obtained through

FIG. 3. Fourier transform of the interactions for the square lat-
tice limit (r =0, top), an intermediate case € 0.5, middlg, and the
checkerboard limit (=1, bottom. Each manifold corresponds to

an eigenvalue o8(q).

J 4 2 1 (o R
H=—33 §-§=-33 | X §| +2NIgS+1). E=oqH=208-0's-ISX C(k), @
i tet \i=1 K
()
We see that the classical ground state is defined by the con- an by 1 9,0
straint=?_,S,=0 on each tetrahedron. Furthermore, as tet- M=(S")o=S—(ciCipo=5S— > ik, B

. . . . .. k
rahedra are corner sharing, this constraint is not sufficient to

order the system and there are an infinite number of ways to

satisfy it, which results in a flat branch over the whole Bril- With =3[ €.+ ez+(f—g)(u5—uZ)—(f+g)] and where
louin zone. This is exactly the same phenomenon that wae coefficients of the Bogoliubov_transformation arg

previously observed on theagomeas well as on the pyro- =h/\Vh?=(e,—)?, v,=(f—€,)/\h?= (e, + )%, Ug=(€g

chlore lattice. Nevertheless, the ®lestate belongs to this +f)/\/(eﬁ+f)2—h2, andvﬁ:h/\/(eﬁ+f)2—h2.
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Ill. DYSON-MALEEV REPRESENTATION r ' T ' ' ' ]

We use the same Hamiltonian of E@) and introduce the
Dyson-Maleev transformatiolf. Because of its algebra, the -0.55
Dyson-Maleev transformation rewrites the Hamiltonian of magnetic phase
Eq. (1) as a sum of two and four operators terms. The sim-Qo
plest method to solve the problem is to decouple the four™
operators term introducing anpriori decoupling scheme. In
the present case, we follow the mean-field decoupling of Ref.
15. Three quantities are introduced that correspond each to
two-boson-like excitation:

spin liquid
phase

D=(ala;)=(b/by), -0.65

L L | L | L
0 0.25 0.5 0.75 1
rn
T=(a/b]). (6)
FIG. 5. Energy per site as a function of the ratie J'/J, i.e.,
Other types of excitations are neglected and considered awtween the limits of the square lattice and the checkerboard lattice,
higher-energy processes as previously proposed byr S=1/2. Beyond the critical ratio~0.75, the value of the en-
Takahasht® Using these approximations, the Dyson-Maleevergy is meaningless as it describes the energy of an unstable state.
Hamiltonian is then linearized and diagonalized through an-
other Bogoliubov transformation. The structure of the transwhich was already obtained in Ref. 17, and &1, r,
formation is identical to the one of the linear spin-wave case~0.93. Critical values for higher spins are shown in the
but with new coefficients. These coefficients dig=2A phase diagram of Fig. 8. The second zone corresponds to the
+rB(e—1), gy=2A+rB(n—1), andh,=A(5+7y) where ranger.<r<1. Because of quantum corrections, local mag-
A=1—(D+0)/2SandB=1—(D—T)/2S. Finally the three  netization is renormalized to zero, which means that in this
self-consistent coefficients at zero temperature are obtaine&kPproximation, the system does not show magnetic ordering.

O=(ala)=(b/by), i#l, j#m,

through the three coupled relations Even if quantum fluctuations drive the system to disorder,
one notes that magnons are still dispersive. This means that
1 '2 there is no peculiar contribution coming from their structure.
b= N ; Ua(k)' This is no longer the case for the special paintl. At this

point, the lowest branch of spin waves is flat over the whole
Brillouin zone (Fig. 7, bottom. This has several conse-
O=— =2, u(kv.(k)(5+7y), quences. First, this means that at the level of this approxima-

2N % tion, there will always be a critical coupling, whatever the
1 . value of the spip. This comes directly from the nonanalytic
T= N Ek v (K)(et7), (7)  behavior ofv,(k) whenr—1 along dirgctignsky_=th.
Because of that, the local magnetization diverges as
and the local magnetization of the &lestate is simplyM —1/\J(1—r), i.e., is renormalized to zero, whatever the value
=(S"%)o=S-D.
0.8 i

IV. RESULTS OF THE SPIN-WAVE APPROACH

In the following, we fixJ=—1 and take-1<J'<0. We
first discuss the linear spin-waveSW) results and then the  ,o 0.6
Dyson-Maleev approach. In Figs. 5 and 6, the energy as welx
as the local magnetization is plotted as functions of the ratio §/ B
r=J'/J. For the case =0, well-known results for theS ’
=1/2 sqaure lattice are recoverdtl= —0.658 andVl =0.3.
The magnon spectrum is very simple; there is only one dis- 02
persive branch, which is two times degenerate in our case
because of the two-spin unit cell descriptidfig. 7, top. _
With increasingr, there are three zones to distinguish. First, 0 : ' : ' : : : ' -
. L 0.2 0.4 0.6 0.8 1
in the range &r=<r., the magnon spectrum has two distinct ,
manifolds, each of these being dispersi¥eg. 7, middle. rn
This occurs now because the sites of the unit cell no longer FiG. 6. Local magnetization as a function of the ratieJ’/J,
have the same symmetry, corresponds to a critical cou- j.e., from the square lattice to the checkerboard lattice. Gray lines
pling below which the local magnetization is finite, even correspond to the calculations made & 1/2 and black lines for
renormalized by quantum corrections. F&¢ 1/2, r,~0.75, S=1.

(=)
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FIG. 8. Stability of the Neel state. The straight line indicates the
threshold below wich the Neel state is stable for a given ratio
=J'/J. Over this line, it is destabilized by geometry and quantum
fluctuations. For =1, it is always unstable, whatever the value of
the spinS.

of S Consequently, we obtain a phase diagransd//J)

very similar to the one of thd;-J, square lattice model
whereJ’/J plays the role ofl,/J; (see Fig. 8 and Fig. 2 of
Ref. 11). This problem of a flat mode is often encountered in
frustrated lattices and it rules out the possibility of studying
ther=1 point without going to the next order of expansion
in our model, i.e., without including quartic terms. Whether
such an inclusion of quartic terms is relevant is not clear as it
corresponds to considering quartic modes as perturbations of
zero quadratic modes. Nevertheless, it is the simplest next
step to be done in the frame of spin-wavElolstein-
Primakoff) analysis'* Second, it has a meaning very close to
the MF conclusions. If the lowest branch of the magnons is
flat, this means that the system has no spin stiffness. Thus,
any local deformation will not propagate through the lattice.
This is very close to the argument of continuous degeneracy
obtained through the MF approach, i.e., the existence of an
infinite number of local degrees of freeddmee Eq.(3)].
These degrees of freedom are one of the signatures of frus-
trated systems and may be counted, in the case of classical
spins, through the “Maxwellian counting” ruleAt the level

of the LSW approximation, this means that quantum fluctua-
tions and geometrical frustration may destabilize thesINe
state for a finite range aof’. Wether a quantum spin-liquid
ground state in this range is stable is beyond this approach
even if the existence of critical couplings goes in the right
direction.

We now turn to the Dyson-Maleev approach. As for the
preceding case, the local magnetization has been computed
for different value of the spin. The main result is that for all
S=1, there is no critical coupling; i.e., the local magnetiza-
tion of the Neel state is always finite in the isotropic limit

FIG. 7. Magnons dispersions, 4(k) over the Brillouin zone. r=_1. This isZiIIustr_atred in Fig. 9 where reduced Io<_:a| mag-
From top to bottomr =0,0.5,1. Atr =1, the lowest branch is non- netization(S)o/S is plotted versus the inverse spin value
dispersive. This means that this point is remarkable and retasls 1/S at r—1. The only exception is fo6=3 for which it
in the kagomeand pyrochlore lattice casethe presence of a soft seems that there is a critical coupling rat0.98. To test

mode related to local degrees of freedom. whether the stability of the Mg state for theS=3 comes
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! - | - - - mation and not by a zero spin stiffness as was the case in the
LSW approximation in the limit —1.

sk \ | These results are quite surprising as they are qualitatively
. different from the LSW approximation. This suggests that
%e i the more accurately the quantum fluctuations are taken into

0.6 . . account, the more the estate is stable, even in the isotro-

pic limit. This is unexpected as the checkerboard antiferro-
magnet was expected to behave like #agomeantiferro-
magnet. In the latter case, the reduction of the local
magnetization to zero by quantum fluctuations and geometry,
02| - within a finite range of couplings, has been shown using two
distinct numerical method$. It was found that going from
the triangular limit to thekagomelimit, there is a singular
0 ' 03 ' I ' 15 ' ? point associated with a critical coupling (&J./J~0.9),
s where local magnetization vanishes. Here, we obtain the
same conclusion within the LSW approximation but not
FIG. 9. Relative local magnetization of the' &lestate vs the  within the mean-field treatment of the Dyson-Male@®M)
inverse spin value & at the isotropic point. For ab=1, the local  approach. Whether this discrepency comes from the quantum
magnetization is finite, suggesting that the ground state could be thguctuations that are better incorporated into the latter formal-
Neel state. ForS= 1/2, the local magnetlzatlon is renormalized to ism or comes from the mean-field treatment of the DM rep-
zero by quantum fluctuations. resentation is not clear. Nevertheless, it is interesting to note
that a recent work shows the same tendency, i.e., a transi-
from a flat mode or from quantum fluctuations, we havetion from anS=0 ground state to a stable” blestate with
plotted the associated dispersions over the whole Brillouirincreasing spin siz& If the present calculations treat cor-
zone(see Fig. 10 From the structure of the boson excita- rectly quantum fluctuation&vhich is not proved in this pa-
tions, it is clear that including quantum fluctuations via thepen, the frontier between the expected valence-bond solid
Dyson-Maleev formalism destroys the pathological structur€VBS) and Nel orderind® would then be aS=1. Never-
of the flat mode. Therefore, destabilization of theeNstate  theless, it should be stressed that the present work does not
is only driven by quantum fluctuations within this approxi- test whether other classical ground states could be stable at
the isotropic point and have the same or a different energy
than the Nel ground state. Consequently, an intrinsic or ac-
cidental degeneracy of magnetic ground statesSerl is
not ruled out by this approach.

<M">, /S

0.4 -

V. S=1/2 CASE

As shown in the preceding sections, it seems that only for
S=1/2 can the ground state be nonmagnetic. To shed light on
the behavior of thes=1/2 checkerboard antiferromagnet, it
is possible to use a “fermionic” SW() generalization of the
SU(2) group. [Note thatn>2 does not correspond to a
higher-spin representation of $). Therefore, a mean-field
solution of the SUG) Hamiltonian is expected to be much
closer to the SI(2) physics than the classical description of
Sec. Il B] This formalism has been previously introduced by
Marston and Affleck® and applied to the square antiferro-
magnet. The advantage of this description is that it works on
all lattices, even frustratét or not bipartite, and that it is
well suited for the checkerboard antiferromagnet as spin or-
der never occurs in the exactly solvable largémit,?° as is
expected in the range.<r<1 for n=2. At large n, the
Hamiltonian can be written as

n
FIG. 10. Energy dispersions corresponding to the boson excita- = E) 2 eof e
tions around the Nl state for theS=1/2 case in the limir —1. : (|§1:) {(J il Jra§=:1 (XiCiaCiat HE) [, (B)

The dispersions are no longer pathological as they are in the LSW

approximation and the flat mode is destroyed. This clearly indicate¥/here Xij= (J/n)cmcm are bond variables and where the
that destabilization of the N state is driven here only by quantum Spin-spin interaction has been expressed by use of electron
fluctuations. operators through S;- §;=(1/2)% ﬁclac]BcJBcJa+ const.
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regular tilings of the underlying square lattice by discon-
nectedJ squaregsee Fig. 11 Taking now into account the
J’ couplings, only one of these phases survives, wilére
links are not frustrated. At this point, it means thhthe
SU(n) description of the S(2) case is relevant, it suggests
that for S=1/2, in the ranger.<r=<1, the ground state
should be two times degeneratbecause there are two
choices for the tiling consisting in a valence-bond solid of
disconnected squares without crossirigs the range &<r
<r. it is clear that this formalism is not relevant as the local
magnetization is finite The proposed ground stdieee Fig.
11(c)] could be tested by comparing the VBS energy per site,
E=—0.5, and the correlations functions with results of exact
diagonalizations, for exampfé.

VI. DISCUSSION AND CONCLUSION

To conclude, linear spin-wave analysis has shown that
away from the isotropic checkerboard lattice limit, there is a
finite range of coupling for which the Néstate is unstable,
whatever the value of the spin. Strikingly, when using a self-
consistent decoupling within the Dyson-Maleev formalism, it
is shown that the Na state is never destabilized, except for
the S=3 case. The stability of the & state with respect to
other magnetized states has not been tested in this work.
Recent work® supports that this state should be the ground

FIG. 11. (a) General box phase on thksquare lattice of the state for largeS. It is compatible with the present results,
aniSOII’OpiC Checkerboard antiferromagmes ShOWn in Flg 4 Of although |t |S at Varlance W|th results Obtalned Wlth the
Ref. 24. Bold lines without arrows correspond to nonzgrpwhile infinite—componer@? antiferromagnetic model on the check-
thin lines, plain or dashed, correspondxg=0. Bold lines with  gry54rq |attice — ). A possible explanation for tHi&is
arrows indicate tha;; = xe'™"* wherey is real. The product oy that for largeS, there should be quantum order by disorder
around each box is negative, indicating a fluxmofThese boxes are (as supported in Ref. 1%ut this order by disorder comes
the largen equivalent of a four-spin singlet on a squat®. Picture with an energy scale ol/S rather thanJ. Therefore, in the
of a general box phase for tl&=1/2 case. Bold squares correspond - . L ! .

classical limit, the temperature at which the correlation

to four-spin singlets and bold lines to two-spin singlets]’lfinter- th tall ¢ In oth ds. th
actions are within a box, they must be taken into account and arbeng grows exponentially goes 1o zero. In other words, the

also in bold as they enter the calculation of the energy. The differentMitS T—0 angS—wo (or d—c<) should not commute. For
energies for squares with crossings, squares without crossings, aHd€ SPecialS=3; case, the fermionic large-limit suggests

links are, respectivelfE=—1.5, E=—2, andE=—0.75.(c) Pic-  that the ground state is a valence-bond solid of disconnected
ture of the valence-bond solid for ti&=1/2 case, expected to be four-spin singlets on squares without crossings. That conclu-
the ground state. This state is two times degenerate and involvedOn is consitent with results of Refs. 19 and 25.
only squares without crossings. The present work shows that the isotropic checkerboard
antiferromagnet should display behaviors qualitatively differ-
The y variables may be seen as valence-bond opefdtass ent from the one of th&kagomeand the pyrochlore antifer-
(n/J)XiTj Xij is the number of valence bonds on the link)( ~ romagnet. Moreover, quantum fluctuations have to be treated
Therefore, in this formalism, every ground state is describeavith care as they can drive the system from a purely quan-
by a map of these complex scalar fields. Several authors hatem ground state to a N&like ground state. In this frame,
concentrated on the mean-field solutidti$/n=0"),2%2324  the structure of the singlet and triplet towers of state should
and in particular, it is possible to apply here a theorem esbe extremallyS dependent and exact diagonalization of finite
tablished by Rokhsaf: First, it is clear that the checkerboard clusters with different spin size would be of high interest,
antiferromagnet is “dimerizable with respect 6 as “it is especially to test whether the descrepency already appears
possible to partition the network into disjoint pairs of sitesbetween theS=3 and theS=1 cases.
such that(a) every site belongs to one and only one pair and Note added in proofAfter submission of the present pa-
(b) for each pair {,j) we havel;;=J."In the rangeJ=J" it  per, we have learned about a related work by Brastigl 2
is possible to apply his theorem which shows that mean-field
ground states arespin-Peierls or boxphase¥' (see Fig. 11
Keeping in mind that the case of interest is for 2, we look
for the proposed states that lower the energy of the $eal  The author would like to thank Maged Elhajal, Peter
=1/2 case. It is straightforward to see that box phases lowdroldsworth, Claudine Lacroix, and Roderich Moessner for
this energy with respect td, as soon as these phases areinteresting and stimulating discussions.
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