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Berry phase for a ferromagnet with fractional spin
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We study the double exchange model on two lattice sites with one conduction electron in the limit of an
infinite Hund’s interaction. While this simple problem is exactly solvable, we present an approximate solution
which is valid in the limit of large core spins. This solution is obtained by integrating out charge degrees of
freedom. The effective action of two core spins obtained in the result of such an integration resembles the
action of two fractional spins. We show that the action obtained via naive gradient expansion is inconsistent.
However, a “nonperturbative” treatment leads to an extra term in the effective action which fixes this incon-
sistency. This Berry phase term is geometric in nature arises from a geometric constraint on a target space
imposed by adiabatic approximation.
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I. INTRODUCTION It is tempting to average over the motion of conduction
electrons(to integrate conduction electrons p@and obtain
A double exchange model was introduced in Refs. 1,2 tan effective spin model describing the dynamics of core
describe the motion of conduction electrons in the backspins (and electron spinsinduced by charge degrees of
ground of magnetic ions. In its simplest form the Hamil- freedom® In an almost ferromagnetic state the average spin
tonian for the model can be written as per lattice site isS+ 3x corresponding to the sum of a core
spin and an average electron spin. Therefore, heuristically,
. one arrives to the model of ferromagnetically interacting
H=-2 (tc/c;+H.c)— X IusS, (1)  fractional spins. However, this immediately raises the ques-
{n ! tion of what one means by a fractional spin. Although aver-
) N N age spin per lattice site is fractional, the total spin operator
wherec; |s;the elegtron annihilation operator on the site#f may take only values (no electron at the siteor S+ 1/2
the lattice,s;= 3¢/ oc; is a spin 1/2 of an electrdrat sitei,  (there is an electron at the sitdloreover, a fractional value
S is a core spin. The first term of Eql) describes the of 2Sis incompatible with quantum mechanics of spins. Re-
hopping of conduction electrons between nearest neighbaolving this apparent controversy is a main goal of this paper.
sitesi andj of the lattice. The hopping amplitude isThe The paper is organized in the following way. The aim of
second term is a ferromagnetic Hund’s interaction betwee®ec. Il is mainly pedagogical. We establish notations and
the core spin and the spin of the conduction electron at theemind the reader how to write the path integral for a single
same lattice site. To specify the model completely we have t&pin. We show how the ambiguity of Berry phase for a single
fix the total number of conduction electrons in the samplespin requires 3 be an integer. For completeness we derive
We denote filling factorx=3c/c; /N, whereN is a total ~ the form of this Berry phase in Appendix A using a fermionic
number of sites of the lattice. In this paper we aredeterminant representation for the action. A reader familiar
interested~® in the limit of a very strong Hund’s interaction With the subject can start from Sec. Ill where we consider the
Jy /It— and of very large core spir8>1. In Eq.(1) we  double exchange modél) in the limit Jy /t—c andS>1.
did not include anybare core spin interactions, e.g., due to In Sec. IV we formulate a double exchange model on two
superexchange. The only interaction between core spins i#ore spins and obtain our main result—an effective action for
the model(1) occurs through the exchange by conductioncore spins induced by a single conduction electron. This ac-
electrons. tion (namely, its kinetic pajtanswers the question of how to
In the limit we consider one can use an adiabatic approxiwrite Berry phase for a system dfwo) fractional spins.
mation and think of core spins as of slow variables so thaf\Ppendix B contains more accurate calculation of the effec-
the conduction electrongfast variables are always in the tive action. We discuss the topology behind Berry phase for
ground state in the background of slowly moving core spinsfractional spins in Sec. V and conclude in Sec. VI.
Because of an infinitdy an electron spin is always aligned
with a core spin at any given site. Therefore, the effective Il. PATH INTEGRAL FOR SINGLE SPIN
hopping amplitude of an electron between two nearest neigh- ) ) ) )
bors is largest when corresponding core spins are parallel. In In this section we remind the reader how to write down
this case an electron can hop between sites without changirt§€ Path integral for a single quantum spin and discuss topo-
its spin orientation. One concludes that conduction electronkgical reasons for spin quantization. Quantum spiis de-
induce a ferromagnetic interaction between core spins. fined as a representation of dimensio8+21 of an SU2)
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Lie algebra with commutation relations (1 ,u=0)=(0,0,1)
[St,S =2%,
[$,S"]==S", (2

where as usud™=S*+iSY. An SU(2) Lie algebra has irre-
ducible finite dimensional representations of dimensi@& 2
+ 1 labeled by spirStaking integer or half-integer values so

that §2=S(S+ 1). We would like to construct the classical

action for the time dependent unit veclﬁ(t) which upon
qguantization by path integral reproduces E2). One could
start directly from Eq.(2) and construct the path integral
using coherent states corresponding to ar{2Zsdroup (see
e.g., Ref. 9. In Appendix A we give an alternative derivation
of this path integral using the fermionic determinant repre-
sentation.

The result is given by partition function

B - W] FIG. 1. The_ unit \_/ectoﬁ(r) drgws_a closgd Ii_ne_on the surf_ace

Z—f Dne™ "el™, ) of a sphere with unit radius during its motion in imaginary time.
Berry phase is proportional to the solid an¢tébaded regionswept

where by the vectom(r). One can calculate this solid angle by extending
n into the two-dimensional domaif§ as ﬁ(u,r) and calculating

1
n]=i b b Eq. (4).
WE[n]—I(ZS)Zﬂ-deZXg P} Cfﬂvnaﬁun 0,,nc. 4) q. (4
We see that the variation of E¢4) does not depend on the

Let us explain what Eq$3),(4) mean. First of all we used an choice of an extension af(7) in the unphysical domaiis.

Euclid_ean t_ime r(_aprese_ntation replacing real physical l_lime Using Eq.(5) one can show that the equatidQWE+WE)

by an imaginary timer=it. The change to an imaginary time h_ (B - )

changes quantum amplitu®" used in path integral into a =0, WheréWg=Jgd7Shis a coupling to an external mag-

“Boltzmann” factor e We. We impose periodic boundary netic field gives a classical equation of motion,n=[h

conditions(in imaginary time on ﬁ(T) S0 thatﬁ(lg):ﬁ(o) X n]. The latter is the equation of precession of spin in mag-

and B is a maximal span of an imaginary time. With thesenetic fieldh.

boundary conditions one can think of time as of a one- Partition function(3) with the action(4) solve the prob-

dimensional circle with identification of point=g with 7 lem of path integral representation for the algelea.

=0. Physical results will be obtained in the linfit— after ~ Namely, the commutation relatiorf) can be obtained as a

an analytical continuation back to the real titne—i7. The  result of quantizatiohof “classical action” (4).

imaginary time representation is slightly more convenient for

calculations and for a discussion of topological aspects of A. Berry phase and quantization of spin

spin quantization. P e
Secondly, the two-dimensional integration in Eé) is We have aIready checked that an infinitesimal variation of

performed over some closed domairof a two-dimensional ~ Berry phasesWg[n] does not depend on the extension of

plane such that the boundary of this domain is identified with%(r) into the auxiliary domair3. How aboutWE[ﬁ] itself?

an imaginary time. The values of field in the area3 are ~ One can easily shoisee Appendix Athat the actior(4) is

defined as an extension from the physical trajectify) so ~ €dual t0i(25)€2/2 where(} is a solid angle swept by a unit

that ﬁ(r,u) is a smooth function of-e[0,8] and auxiliary vegtor? ((jju;l.ngdlits motlon(slee Flg.dil(.j This zti)?glet IS not |

variableue[0,1] such thatn(7,u=0)=(0,0,1) andn(r,u . tauc CENNEE: ONe can aways acd or Subiract any angie

= ] which is a multiple of a full solid angle #.
=1)=n(7). We shall refer to the actiofd) as to a Berry

phasé® for a spin(see Appendix A Although the actior(4) Therefore,WE[r\] 's not unamblg}Joust deflngd and is a
is given in terms of two-dimensional integral over auxiliary multivalued functional ofn(7). Multivalued functionals of

space, the variation of the integrand is a full derivative.this type were studied in both mathematics and quantum field
Therefore, the variation of Berry phagé) is given by a theory (see, e.g., Ref. 1land are often referred to as the
one-dimensional integral over the “physicalimaginary ~ Vess-Zumino-Novikov-Witten (WZNW) - term. Although
time as WE(n) is a multiple-valued functional, in partition function
(3) one neede Vel which is a single-valued functional of

SW. :isfﬂdTeabcé«nanbo—, ne. (5) ﬁ(r) under the condition that the coefficien an integer.
F 0 ! Then e We=e 1(2927k=1 and the Boltzmann weights
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e~ We is defined unambiguously by physical configurations

n(7). One can think of this constraint on the value & &s

of the reasonfor spin to be an integer or a half-integer.

Having noninteger 3 in Eq. (4) amounts to havingncon-  Hereu is a chemical potential which is chosen to guarantee

sistenttheory. the correct filling factor of electrons arg=(z;,z,)" is a

complex vector corresponding to the core sBirat the site

of the lattice. We will make the following change of vari-

, _ __.ables in the Lagrangiam = ¢z, + i z; . Herey; ,4; are spin-
There is one more representation of Berry phase which IS s fermi . . iabl ~. . |

particularly convenient for the purposes of this paper. It is ess fermionsz; is a core spin variable, ar is a complex

- - : S — (7% _*\t ;
the so-calledC P! representation. We write=z"oz, where vec_totrhorthogonal tat' ’ fnamelly,zlt (732, thz'l)__‘“;m/ su:all_y,
z=(2,,2,)"! is a complex two-component vector satisfying % Is the component of an electron on the siwith a spin

the constraintz'z=|z,|?+|z,|?>=1. The latter reproduces parallel to the core spin at the same site ahds the one
n2=1 with a spin antiparallel to the core spin. Taking lindf,

In terms of thez variable we have for the Berry phase ~— > corresponds to neglecting thiecomponent of an elec-
tron. We substitutes; = 4;z; into Eq. (7) and omitting con-
stant terms obtain

LZZ [CiT(mt_M)CH‘ZS;Ti(?tZi]—H_ 7

B. CP! representation of Berry phase and topology

N 5
WE[n]=—|(ZS)L drzlio.z (6)

o , N L= (g w2 (9177 ¢+ Hee ]
which is apparently independent from the auxiliary coordi- i (5

nateu. This “simplification” is, however, deceptive because

the equatiom=z'¢z does not defing unambiguously. One +> (2S+yly)ziz . (8)
can always changg(7)— e *("z(7) with any functiona(7) '

satisfyinge'*(A)=¢'*()_ The latter is necessary to conserve
periodic boundary conditiong(B)=2z(0). This “gauge”
transformation obviously does not change the ventcFhe
change of WZNW action(6) under this transformation is
SWe=1(29)[ a(B) — a(0)]=i(2S)27k wherek is any inte-
ger. We arrive at the same result: the actlf itself is
multivalued whilee™ E is single-valued under the condition
that 2S is an integer number.

The first term of Eq.(8) is a kinetic term for projected
electrons. Let us take a close look at the second and the third
terms. We assume that the motion of spins is much slower
than the motion of electrons. This is justified in the limit of
large core spinss>1. Then one can think of electrons as
moving in the background of almost statits. The second
term in Eq.(8) describes the hopping of these electrons with
the effective hopping amplitud€"=tzz; . This amplitude

Let us now briefly discuss topological aspects of Berry:. .
phase(WZNW term) for a single spin4). The classical unit sh;:séﬂplex number and has both the magnitude and the

vectorn from Eq.(4) takes values on a unit two-dimensional = The magnitude of the effective hopping amplitude is
sphereS?>—the target space of the problem. There exists agiven by |t?ff ZEA2=t2(sz-)(sz-)=t2[(1+ﬁ-ﬁ-/Z] or A
nontrivial expressiofithe integrand of Eq4)] depending on —t cos(&--/ZiJ whered. is 'Ehje ar{glle between tlvvJo core spins
vectorn and its derivatives which i) local and(ii) being In this (I;eri\'/ation W'é used a relation =z ez and the '
integrated over two-dimensional sphere gives integer values i _ . oo a0
for all possible smooth configurations of defined onS?. kngwn& |denr:|ty bonl Paulll matfr'CﬁSUC#Uﬁ: 2h§“55.57 .
Mathematically we say that there exists a closed but nonex-_roag rt{gﬁa-lr tg t?qesg(;istﬁqg%ﬁhg htalfe oE; ti‘:'\;i Igpbpel?v%es’n
act two form onS? (target spaceor even more formally that proporti 2t mal and al f el 9 .

the second cohomology group 8F is H,(S?)=Z. This al- core spins. It is maximal and equai for parallel core spins

lows one to write down the topological ter(d), where an am_j”:/amihes fo][ ?ﬁt'p?a”?l Spins. litude" i t defined
integration of the mentioned two form is performed over a i.p asel 0 b € efiec |\f/eﬂ;’;\mp| u E 'fs ng € mtﬁ
domain B with physical time as the boundary of this disk. unambiguously because of the gauge freed(ee the

The special properties mentioned above guarantee that E lrewous sectlloh (dlotns_ldetr, ho_wev%r, akn eIec(;ror; movmgth
(4) unambiguously defines the path integfal. ong some closed trajectory in a background of a Smoo
configuration of core spins. Then along the path we can write

zi,1=2;+ 8z;, where 6z, is small andz/z,,=1+2 6z

lll. DOUBLE EXCHANGE MODEL IN THE LIMIT The product of all the effective amplitudes along the
OF INFINITE 3, path is TTitfT. , ~ expin 27, ~exp@iz 92)=expi%i(si
Let us now consider the double exchange mddgland +5i‘ﬁ$'”2‘91/2)1 i¢where we use parametrizationz;
take a limit of infinite Hund's constardt, /t—. We willdo = €'"1(cos6/2,e'?sin 6/2) of z; in terms of Euler angles, ,

it in the Lagrangian formulation. First we use the WZNw ¢i, and ¢;. Along the closed patfE;5y;=0, so only the
action(6) to write the Lagrangiafin this section we use real Second term contributes to the phase picked up by an elec-
time representationof the double exchange model corre- tron. It is easy to see that this second term is equal to the half
sponding to the Hamiltoniafi) of the solid angle enclosed by vectcfrsalong the trajectory
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of an electron. We see thdprojected electrons moving electron and show how to resolve the issue of fractional spin
along some closed trajectory acquire the phase equal to than this simple example.

half of solid angle formed by spins along this trajectory. One The projected Jy—) double exchange modéB) on

can say, therefore, that they “feel” the solid angle formed bytwo lattice sitegiin imaginary time

core spins as a flux of magnetic field. This flux(modulo

21) a gauge invariant and well defined quantity. _ + . + +
Finally, the last term in Eq(8) is a “modified” kinetic LE‘i;zWi (i) i+ (2S+ i)z 0:21]
term for core spins. One might expect that after the averag- oot
ing over electrons this term will describe the dynamics of —t[¢1(z125) Yo+ H.c], (10

effective spins of magnitud&+ (" )/2. However, having
noninteger coefficient in front of Berry phase results in an .
inconsistent theory. tial w myst be chosgn to guarantee_ that theTre is exactly one

To make this seeming paradox more precise we averagePnduction electron in the system, i.8—, 54 ;=1. One
over electrons accurately by integrating fermiGraut of Eq.  ¢an .repe?t the heuristic argument of the previous section re-
(8). We obtain an effective action for core spins in termg of Placing ¢4 in the second term of Eq10) by its average

WhereWE=fgdr Lg is a Euclidean action. Chemical poten-

variables value 1/2. One obtains two effective spins of magnit&le
+1/4 instead of bare core spins. Again, we have the problem
W= —i Indef 5ij(i3t—M+ZiTif9tZi)+tZiTZj] of having the fractional coefficient in the Berry phase term.

We rewrite the Lagrangiafil0) as

+J dt >, 2S7idz . ) A
i - Le= 3 [2870,2]+ W (0, +int AV, (1)

Here the expression in the determinant is both an operator in .
time andNXN matrix in lattice sites. The matrix element Here we defined "= (y1,y}) and the 2¢<2 matrix A
zisz is present only ifi,j are nearest neighbors. In the adia- + i

batic limit there are two main effects produced by an inte- a 219;z; —Ae

gration over fermionic degrees of freedom. First, the energy —Ae? Zhaz, |

of the filled (to the filling factorx) Fermi sea is added to the

action. This leads to an effective ferromagnetic interactiorwwhere we introduced explicitly the phase and the magnitude
between core spins. Second, the correction to the Berrgf an effective hopping amplitude

phase of core spins must reflect the fact that spins of con- . ,

duction electrons are effectively added to core spins. The tz;z,=Ae ' (13

latter correction is the matter of consideration of this paper . . .
" ¥ . . . The absolute value of an effective hopping amplitusle

The variation of Eq.9) over z/id;z; immediately gives _ =
(25+<¢wi>), Where<¢/rz,/xi) are some fractional numbers ftco§0/2, whered is an angle b.etween- core spiBg and-
which in general depend on the configuration of core spinssz- It is equal to zero only for strictly antiparallel core spins
(z's). This implies the presence of the term §2 6=. For fixed directions of core spins the matrx be-
+<¢i-r¢i>)ziTiatZi in the action(9) and confirms the result we comes constant matrix with eigenvalugs\ corresponding
expected from the heuristic “averaging” over electrons.to the two-level spectrum of an electron hopping between
However, the presence of this term alone renders the theoiyvo core sites in double exchange model with infintg.
inconsistent. Two-level spectrum is symmetric and one can choose the

In the next section we calculate the fermionic determinanthemical potentiau=0 so that there is only one filled en-
of the type(9) albeit for a simplified double exchange model ergy level at any given moment of time. Then the spinless
on two lattice sites. We show that there is an additional terniermion ¢ (electron with projected spjroccupies the lowest
present in the effective action for core spins. This additionagnergy levelE=—A which is minimal Eg,=—t) when
term will make the effective theory consistent as shown incore spins are parallel. Changing the angle between core
Sec. V. spins requires the energy of the ordertafhile we are in-
terested in low energy dynamics with typical values of en-
ergy ~t/S. Therefore, we assume thatdoes not vanish and
is of the order oft.

The Grassman variabtg 7) corresponding to the conduc-

The paradox of having fractional spin in the effective ac-tion electron must satisfy antiperiodic boundary conditions in
tion for a double exchange model is already present for amaginary time 7: c¢;(8)=—c(0). We representc;(7)
much simpler double exchange model on two lattice sites= ¢;(7)z;(7) as a product of spinless fermiah(7) and spin
with a single conduction electron. In addition the electronl1/2 bosonz;(7), which after projection)y—~ becomes &
spectrum in such model is discrete which makes integratiotboson corresponding to core spins. The boundary conditions
over fermions in adiabatic approximation a well-defined pro-for «;(8)=— ¢;(0) andz(B)=2z(0) are antiperiodic and
cedure. Therefore, in this section we consider the doubl@eriodic, respectively. Then we have ¥ 7) anda(r) [see
exchange model on two lattice sites with one conductiorEgs.(11),(13)]

(12)

IV. DOUBLE EXCHANGE MODEL
FOR TWO CORE SPINS
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V(B)=—-w(0), (149  Now we can solve Eq21) using the perturbation theory in
V. The boundary conditions of are given by Eqs(14) and
a(p)=a(0)+2wk, (15 (20 as

wherek is an integer—the winding number of the phase
imaginary time 2rk=4dd,a.
The effective action of core spins is given by where Berry phase

x(B)=—¢""x(0),

B )
ff__ + ind 118 .
V\/g—fOizlz[zs;aTzi]dT+w , (16) VZEJ (Ag+a)dr,
’ 0

where the effective action of core spins induced by fermions . ) )
and we used Sad7=2k [k is an integer, see E¢15)] and
W= —TrIn(9,+A). (17)  thatel ™’ =gk,

We are going to find the eigenvalues of Eg1) using the
perturbation theory ilV. This is justified in an adiabatic limit

explicit dependence on time through the X2 matrix A ~ . L
) . whenag proportional to the rate of change of core spins is

and we putu=0 corresponding to having only one conduc- . o .

. . : much smaller than the typical fermionic eneryyor in other

tion electron in the system. To calculate the functional trace

(17) we find the eigenvalues of this operator by solving dif-}Nor?js when the conduction (_alectron is the fast degree of
ferential equation reedom compared to core spins.

The solutions of the zero order equation

Here the operatoﬁTJrA is linear differential operator with

(9. +A)¥(7)=\¥(7) (18

with boundary condition$14),(15) and calculate the sum of _ _ _
logarithms of all eigenvalues. Matrix (12) can be rewritten ~are labeled by an integer numbeand by plus or minus sign
as

Loy ©@=1(0,(©

1 o 1
a_ ! 12208 n 1(i12)ac% . Ix(n°+’>=_e”°AdM”tT(+ )
A= EAo—e‘('/z)a" ActeliPar” g o3, (19 V2 *1

where with eigenvalues

(2n+ 1)+iﬁy, (23

5

iAO:ZI&.rzl—i-ZE&TZz, )\go):+—+_
sTEAT g

; 1 4 i

180=5 (210,21~ 239:2;). where
We would like to solve Eq(18) with the matrixA from Eq. ~
(19) in an adiabatic approximation, e.g., assuming that all Blo
time derivatives are much smaller than the energy sdale ) ) ) _
~t. First we “unwind” wave function¥ by a unitary trans-  There are no corrections to these eigenvalues in the first or-
formation der of perturbation theory iW. Therefore, up to the second

order of perturbation theory we obtain

i(r .
V=exp — = | dr(Ay+ac®)}x, (20 .
2)o — | Y
)\nr:_MiA—'—E 2n+1+; s (24)
wherea means the derivative af over 7. Then, instead of
Eq. (18) the functiony satisfies where we have restored the chemical potengialwhich
L should bex=0 for the problem with a single conduction
(Lot V)x=Ax, (21)  electron.
] - ) The effective action(17) is given by
where we defined “zero order” operatby and perturbation
V which is proportional to time derivatives of core spins as . te
A WE=— > [Nk +Ink,_]. (25
L():(;T_Ao'l, n=-=
S~ To calculate the obviously divergent sum in EQ5 we
V=iago”, regularize it by subtracting the effective action for the system
. without conduction electrons. That is we calculate the differ-
T .t ence between Ed25) calculated atu=0 and the one cal-
B0= 8™ 7a @2 Culated atu— —o:
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+ oo

Wi 2 . Ans (u=0) Ay (u=0) The first term of the dynamic part of an effective action
E - I

2 () N s )| W2 is just the time integral of the energy of the ground
e n+ U n-LA state of the conduction electron in a fixed instantaneous con-
(26) figuration of core spins. The dots denote the higher order

This sum is still logarithmically divergent but one can showcorrections to Eq(32). These corrections are small if the
that the divergent part is a constant not depending on physpkackground core spins are moving adiabatically and they are

cal parameterd andy. Calculating the sum in Ed26) we  diverging if derivativesi, ,fi, are bigger tham\. For such

obtain processes an adiabatic approximation fails. In particular, if
) core spins have opposite directiong=—n, we haveA
Wing= — “”jm =0 and an adiabatic approximation is not applicable at any
we rate of the change of core spins.
BA vy BA vy
cosh —-+Fi5jcosh ——15 V. BERRY PHASE FOR FRACTIONAL SPINS
XIn — — . .
’_(,B(A—,u) oy B(A+u) vy A. Consistency
cosh ————+i-|cosh ————i = . . .
2 2 2 2 The Berry phase terit81) is the main result of this paper.

@27) We see that the the correction to the Berry phase of bare core
spins induced by the conduction electron is twofold. First, as
In the limit u— —o° we obtain we expected averaging over fermions in Ef0) there is a
change of the coefficient in Berry phases of core spins from
_ BA  y Ay 2S to 2S+1/2. In addition, there is a correction
Wing=iy—Incosh —-—i5|—Incosh —-+iz|. (i/2)fBdra=imk, where the integer numbéris a winding
(28)  number(15) of the phase in imaginary time. The latter term
is a full time derivative and, therefore, does not change the
classical dynamics of spins. Classically, the effective “core”

This is the final result for the effective action calculated at

finite “temperature” 8. Notice that the only imaginary part spins behave as if they had the valueSof 1/4.

of a Euclidean effective action is the Berry phaseéVe have Let us show now that the full Berry phaé®l) is consis-
obtained this phase in the first order of perturbation theoryiant with quantum mechanics of spins and, therefore, an-
However, the same expression is also valid |n.aII orders ok ers the question of how to write down the Berry phase for
perturbation theory. It is easy to show for our simple modely g fractional spinsS+1/4. As we have seen at the end of
because the higher orders of perturbation theory can onlgec | the inconsistency occurs if the partition function is
give corrections to the real part of E@4) which does not 4t jnvariant under gauge transformationszafariables. We
cont(lbute to the imaginary part of an E_uclldean action. Weyarform the gauge transformatiag ,— e “2247z, , indepen-
consider the higher orders of perturbation theory using theyenqy for first and second core spins. In order not to change

regular gradient expansion in Appendix B. In fact, the imagi&he periodic boundary conditions af , we requireAa; ,
=ayB)—ay0)=2m7l,,, wherel,, are arbitrary integer

nary part of a Euclidean action has a topological nature an
':jherefor_e, c_angot be changed by small perturbatiese the , \iers. Under this transformation the three terms of Eq.
|sr:us;|op in Sec. ¥ " limitBAS 1 h (31) depending onz;, z,, and a change by 2zril,(2S
n the “zero temperature™ limig we have +1/2), 2mil ,(2S+1/2), andi(l,—1,), respectively. It is
ind_: — easy to see that neither of these three terms gives an invariant
We =iy—pA contribution to a partition function. For example, fgr=1
or explicitly the chqnge of the fir_st term ism@(2S+ 1/2) Which gi\_/es
—1 being exponentiated. However, the total kinetic term
oy 0 [8 ) B (31) is equal to the sum of all these terms and changes under
WE ZEJ (A0+a)dr—f Adr. (29 the gauge transformation bym2[(2S+ 1)I,+ 2Sl,] which
0 0 is a multiple of 27 and, therefore, does not change the
The latter result can of course be obtained just by replacing\/eighte*WE. This means that neither of three terms consid-
the discrete sum overin Eq.(26) by an integral. For the full  ered makes any sense separately from the offié@sly their

effective action(16) we obtain gauge invarianfmodulo 277) sum has a physical meaning of
i s the combined Berry phase of the system of two core spins
W= W2+ w2", (300 plus one conduction electron.
We- fﬁdT 2 (28+ %) 2192+ izé , 31) B. Topology and adiabatic approximation
o li=t2 We have seen in Sec. Il that the existence of WZNW term

for a single unit vectofsingle spin is due to the fact that the
W= _ A target spaces? has a nontrivial second cohomology group
E Adr+ ... . (32 5 " : )
0 H,(S)=Z. The addition of WZNW term to the action with
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ss 15N\ 2N N\2(] )@

FIG. 3. The contractiorS!x S\S'—S! is shown as a one-
dimensional illustration ofG~S?. (a) The torus spac&'x St is
represented as a square with the opposite sides identified according
to the direction of arrows. The diagonal shows the points given by

FIG. 2. Two degenerate states with antiparallel core spins. Afl1= _ﬁz_- (b) The SpaC§l><_Sl\51—> st is obtained by the removal
electron with spin aligned along the core spin cannot hop from on@f the diagonal.(c) One pair of opposite sides is glue@) The

lattice site to another and can be either on the right or on the lefsécond pair is glued making a cylindée) The cylinder is con-
lattice site. tracted onto the unit circle.

The existence of only one allowed topological term ex-
the coefficient & is consistent only if this coefficient is plains why only the full Berry phas@1) is well defined. The
quantized(is an integer numbgrFor two independent spins most general fornin CP* representationof the topological
the target space becom&xS? and one obviously can term for two spins is given by
write two independent WZNW terms corresponding to
HZ(SZX_SZ):ZXZ. This is apparently true for two indepen- WioP= J'BdT[mZIﬂTZﬁPzZ;&TZzﬂSé]- (33
dent spins. However, the result is different for the conduction 0

electron induced dynam_ics of core sp_in:_; in the doubl_e eXCoefficientSplz,g satisfy quantization condition®r gauge
change model. Let us discuss why this is so. To obtain the,,ariance Cohditior)s Namely, p;— & and p,+ & must be
induced dynamics of core spins we have excluded the charggiegers. We see that for the double exchange model of two

degree of freedom of conduction electron integrating it out incore spins and a single conduction electron we have(E.
an adiabatic approximation. This approximation, however, hich corresponds to particular integer valyss— £=2S

breaks when the the rate of the change of core spins becomggg p,+ E=25+1. If for some reason the conduction elec-
comparable to the energy scalé Ziven by the levels of on spends unequal time at two sitesg., the local mag-
conduction electron in the background of time mdependenﬁetic field acting on electron spin on one of sites is agdded

core spins. There is a special point though when core spinge have an asymmetric situatipn+ p,. However, the com-

are opposite_ to e_ach other. At this poikt=0 and an adia-_ binationp,— & and p,+ £ must stay integer to guarantee the
batic approximation breaks no matter how slow the mOt'O”consistency of the theory.

of core spins is.

Th?s is quitg obyious from the physi'cal point .of view. VI. CONCLUSION
Consider two time independent core spins opposite to each
other. The effective hopping amplitude of a conduction elec- In this paper we considered the double exchange model
tron is~cos#d/2=0 and one has two different configurations. with some concentratior of conduction electrons. The su-
The electron can be either on the left lattice site or on theperficial averaging over fast motion of electrons leads to an
right one(see Fig. 2 and the matrix element of the hopping inconsistent theory with fractional spin. Using the example
term is zero between those states. This means that the grountithe double exchange model on two lattice sites we showed
state of the system is doubly degenerate. The charge degréi&at in addition to the change of the value of the effective
of freedom(left or right position of the electroris essential core spin toS+x/2 a new topological term arises in the
for this particular configuration of core spins and cannot beeffective action. With this term the exponent of the effective
integrated out. In our derivation we used an adiabatic apaction becomes single valued and well defined. We showed
proximation and neglected such configurations. This is justithat the full Berry phasé3l) reflects the change of topology
fied in the limit S>1 for ferromagnetically interacting core of the system which occurs due to the adiabaticity condition
spins. However, this approximation drastically changes the— the condition justifying the averaging over the charge
topology of the system. Essentially, we prohibited the condegrees of freedom. The generalization of our results to the
figurationsn, = —n,. The relevant target space changes fromdouble exchange model for many spins is relatively straight-
xS for two independent spins tG=S?X S\ 2. The for'vvar.d. The only major dlffererjce with the case of two
latter expression denotes the direct prod@xS? with ~ SPIns is that the average occupation number of a given lattice
pointsﬁ —q (topologically equivalent to one morg?) site by (_:onduc_tlon electrons depe_nds on the conflguratlon_ of
removecli. The2 resulting target spacg is topologically core spins. Th|:_s makes the _magmtudg of a “fractional” spin
equivalent toS%. To prove it one can sho that it can be on the given site a fluctuating quantity with correspondent

contracted along itself ont8?. We illustrate the similar phe- modifications of Berry phase terms. The latter effect is not

. ; ; .expected to be strong in the ferromagnetically ordered state.
nomenon on the corresponding one-dimensional example in

Fig. 3. Therefore, the relevant target sp&@e S?. To check
for allowed WZNW terms we calculatél,(G)=H,(S?)

=Z. There is only one WZNW term allowed for the chosen We are grateful to Boris Spivak who stimulated us to
target space. think about fractional spins in ferromagnetic metals. The dis-
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APPENDIX A: PATH INTEGRAL FOR SINGLE SPIN The f . L . in EA(A3) i f d
AND FERMIONIC DETERMINANT e functional integration in Eq(A3) is performed over

Grassman variabl&s ¢, y'—classical analogs of fermionic

In this section for the sake of completeness we rederivannihilation (creatior) operators. Integrating over fermions
the well-known path integral representation for the quantunwe obtain
mechanics of a single spin. We reduce the problem to a cal-
culation of a simple fermionic determinant. The method we
use differs from the commonly used coherent state represen-
tation (see, e.g., Ref.)¥or the path integral. It is conceptu-
ally simpler but involves the gradient expansion calculation To generalize the result to an arbitrary sg#nwe can
of a fermionic determinant. It turns out that the similar de-consider the same fermionic theof#3) but with 2S inde-

terminant is needed for our analysis of a double exchanggendent species of fermions coupled to the same vector

Wef[n]=—i In Defig,+An]. (A4)

model for two core spins. this case all spins 1/2 of fermions will be aligned alango
_ _ _ that Eq.(A2) will correspond to quantum spi@ Integration
1. Path integral representation for spinS over all fermionic species is independent and we have for an

It is easy to check that the representatn .o,z effective action

with constraint(pra:l is a faithful representation of Eq. _ R

(2) with S=1/2. Herea= (o0, 5?) is a set of Pauli matri- We[n]=—i2SIn Defid+An]. (A5)
ces andzpa,zp}, with «,B8=1,2 are annihilation(creation o ) . )

Fermi operators, respectively, which satisfy temtjcom- The only prpblem wh.|ch is Ieft' is techm'cal. It is tq galculate
mutation relations{wa,lpﬁ}:{dfl,z/fg}=0 and {%’%} the fermionic determinanfA5) in the limit of an infiniteA.
=d,5. In fact, this representation reflects how spin opera-

tors appear in nature witth being an annihilation operator of 2. Shortcut

the physical electron. One can obtain the result witho@lmos} any calcula-

We consider the following HamiltonialH=—2AnS,  jons. Let us introduce the complex, two-component, normal-
whereS=3y"oy is a spin of a fermion and is a strength  ized vectorz'=(z;,2,), z'z=1 so that it is an eigenvector of
of the coupling of this spin with the unit vector The cor- @i with the eigenvalue 1fiz=z. For a time independerit
respondent action is this vector is a ground state of our Hamiltonigtz
= —Ahz= — Az with the ground state energyA. The other
eigenstate has an energhA and in the limit of an infiniteA
is never excited by a motion of the unit vectarTherefore,

) AP i in the limit of an infiniteA we can usey),=z,x with y the
where we introduced a notatiam=no. One can think of  spinjesg(projected fermion. Substituting this into the action
2An as of the magnetic field acting on the fermionic sBin (A1) we obtain

In the limit of an infinite couplingA — < (infinite magnetic

field) the fermionic spin§ will be “frozen” along the clas-

sical vectomn so thatn in the limit of infinite A becomes a SZJ dtlx'(ia+A) x+x"x(Z'i0:2)].

direction of quantization axis of a quantum spin of a fermion.

If now we change the direction of the classical vectiawith  The variabley does not have any dynamics in the limit of an
time, the fermionic spin will follow the direction of. There-  infinite A. We average ovey using x"y=1 and obtainw

s=f dt ¢ [ig,+An]y, (A1)

fore, we expect that in the limit of an infinits an effective ~ =/dt zTiatz_for SQrin 1/2. In case of Spiﬁgne has 3 spe-
dynamics of classical vectar induced by a fermion will be ~ cies of fermionsy’x=2S andW=2S/dt z'i 5;z. This is the
that of the quantum spin 1/2. desired result for the action for a single s@rHowever, the
The path integral representation for spin 1/2 is then giverf&in point of this paper is to show that the “naive” averag-
by ing over fermions instead of the careful determinant calcula-

tion can result in error. In this case one can show that due to
ot topological reasons the calculation we performed is a legiti-
Z:f Dne%in, (A2) " mate one. To add even more weight to this statement we
R R proceed with a formal calculation of the fermionic determi-
where W[n]=lim,_..W®Tn] is a classical action corre- nant(A5) and show that it gives the same result for a single
sponding to a quantum spin 1/2. This classical action is &pin action.
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3. Determinant calculation A. We can expand the logarithm in E@9) in powers ofA.

Before going to the calculation of fermionic determinantWe keep only the firsA dependent term as the other terms
(A5) we will perform Wick rotation of time and go to an will have additional powers oA in denominatorgone can
imaginary time representation. The imaginary time represensbtain those terms in the regular way explained in Appendix
tation is slightly more convenient for calculations for reasonss)
that will be clear later. The change to an imaginary time

changes quantum amplitué" into a “Boltzmann” factor - 9, +Ac® .  [do —w+ided.
e We, where subscript E” stands for “Euclidean.” In VVE[”FZSTFWAZI EtrTAZA(wZO)
imaginary timer=it we have instead of EqA5) T @
- “ 118 ~ B
WETn]=—-2SInDef,—An] (AB) = ZSEJ drtrodA=—i ZSf drz'ia,z (A10)
0 0

with the partition function for a single spin
It is instructive to rewrite Eq(A10) in terms of the origi-
7= f Dn e Welnl (A7) nal variables ﬁ We parametrize complex vectog!
’ =e'"[cos@2),e'sin(@/2)]. It is easy to see that the angles
6 and ¢ are the polar and azimuthal angles corresponding to

g o ff, g . . . _ N
whereWe[n]=lim,_.Wgn]. We impose periodic bound the direction of the unit vectar. The phase) can be chosen

ary conditions(in imaginary timg on n(7) so thatn(s) arbitrarily as it does not affect. Up to the full time deriva-

=n(0) andg is a maximal span of an imaginary time. With _. Byt 1B B .
these boundary conditions we can think of time as of thetlve of ¢ we .obtaln. Jedrzli0,z=7cd7 (1 (?ose)cé
one-dimensional circle with identification of points=g  —<¥/2, where() is a solid angle enclosed by the unit veator

with 7=0. Physical results will be obtained in the limgt during its time evolution. One can check that this solid angle

_.= after analytical continuation back to real tirhe —i . can be rewritten in the forrtd) which is explicitly rotation-

Using the method presented in Appendix B one can cal@!ly invariant.
culate the effective actiofA6) in adiabatic approximation
with an arbitrary accuracy. However, we are interested in the APPENDIX B: CALCULATION OF FERMIONIC
limit A—o. In this limit all terms of gradient expansion in ~ DETERMINANT FOR DOUBLE EXCHANGE MODEL
1/A except for the firs{topologica) one will vanish. Here
we show how to obtain the most importatibpologica)
A-independent part of the effective actioh6) which is the
exact result for the action for a single spin. wind
Determinant of an operator does not change if one applies E
a unitary transformation to it. This is, however, a potentiallywhere the differential operatd is defined as
dangerous procedure in the context of gradient expansion as
one has to make sure the boundary conditions for electrons D=g +A
do not change in the process of such transformation. It turns 7
out that this is not an issue for the single spin problemyyith matrix A given by Eqs(12),(19). We rewrite
However, e.g., for the double exchange problem the bound-
ary conditi_on of fermions do change in a nontrivial way un- AziA0/2+iaocr3+Alal+A2crz=iA0/2+55,
der the unitary rotatiorisee Sec. IV.
Let us use the transformatidd such that ~nU=¢3.  whereA;=—A cosa, A,=—Asina, andAz=ia,.

This transformationU is easily found using the so called

CP! representation. In this repregentation we in_tro?uce @xpansion in 1. The operatob contains the magnitude of

two-component cTo[anex vectar W'th the constraintz'z. e effective hoppingd which is slowly varying but it is not

=1 such than=2z'¢z. Then the matriXJ can be written as  small itself. To avoid this difficulty we calculate instead of
effective action its variation and then restore the result from

In this appendix we calculate the effective actiiv)
which can be written as

=—TrInD,

We use an adiabatic approximation using tigeadien}

. Zl Z* . L
0 :( 2*) ' (A8) this variation
Z; —Z
) ~ 1
We write Eq.(A6) in the form SWM= —Tr DD 1= —Tr 5Aa +A]' (BY)
WETn]=—-2STrin[9,+A—A0°], (A9 \where

whereA=0‘1ﬁTU and Tr means both functional trace and
the trace ovewrr matrices.

The matrix elements oA are proportional to the first time Let us now calculate the functional trace in the basis of plane
derivative of spin variables and are small in comparison tovaves

SA=i8Ay2+ SAc.
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_ do 1 (W'P)y=1. For the effective action we have, therefore,
SWINI= —tr f z—f dre '“TSA——e'“". (B2) 5\N',2d/5Ao=i/2. However, from Eg. (B7) we have
m I+ A 5L/ 8Ay=i/2 which gives S(WI—L,)/6A,=0 and all
Here the integral over time is the calculation of the diag- higher order termd.;, L,, etc., do not depend oAy. This
onal matrix eIemen(w|5DD*1|w> and integration ovew simplifies further calculations allowing one to use
is the calculation of the functional trace. The residual trace tr

is the trace in the space ofx2 matrices. “Pulling” e'®” i N
. 1 io+Ac
from right to the left we have G= ~|a—0= =
iw+A"° 2+ A2
ind do - 1
OWE'=—tr | o—| dr 5A—iw+a A (B3)  for all higher order terms.

As a result of calculations one obtains from EB6)
In the latter expression the partial derivatigis assumed to
act “to the right.” This means that when we expand

i Aa> AP AC
(B9)

. do . 5L1:§6abc( O0—|—=3d,—=.
5\N',[:‘d=—trfdth5A[G—GaTG+G&TGaTG+...] AITIAT 1A

This is identical in form to a Berry phase of a single spin 1/2
=f dtf SLo+ L+ Lo+ ---1], (B4)  given by Eq.(5) with identificationn=A/|A|. Thereforel ,
is given by formula analogous to the Berry phase for a single
all derivatives are assumed to act on all terms to the rightspin (4) and is to be interpreted as a half of solid angle swept
For exampleGd,Gd,G=G(GG+GG). We introduced by vectorA during its time evolution. Assume for a moment

. _— now thata,=0. Then the vector/|A|= (- cosa,—sina,0)

_ 1 _ —i(o+ A+ Ao (B5) moves along the equator of unit sphere and covers the solid
io+A  (0+Ag2)2+]|Al? angleQ=a(B) —a(0) during its motion. In this approxima-

tion we obtainL,=ia/2 which gives half of the solid angle

after time integratiot>!® Calculating corrections due to

nonzeroa, from Eq.(B9) we obtain

and

do .
5L0=—trJE5AG,
. L_i( iaoé)wi. apa 510
5L1=trf£5AGaTG, (B6) T2\ R ) T2 A (B10

do . where we expanded the latter expression up to the terms of
OL,=—tr f 2—5AGaTGaTG. the second order in time derivatives.
& The calculation ofL, in Eq. (B6) is straightforward and
We notice thajA|?=A2—a3~A? becausea,<A by adia- 9IVeS
batic approximation(it contains time derivative of core

sping. Therefore, the denominator of E@5) is never zero 1 A\? 32
and integrals(B6) are not singular. The expansi@B4) is Ly=—+|d,— ~8A (B11)
essentially the gradient expansion, i.e., the expansion in the 8lA[ | [A]
number of time derivatives. One can see thatcontains at
least one time derivative,, contains at least two, etc. Finally, combining termgB8),(B10),(B11) we obtain an
The calculation ofsL is straightforward and gives effective action up to the second order terms
SLo=d[iA/2—|A|] (B7) 2
i . 1 a
or removing variation LE=§(A0+ a)—A+ oA | d0~ E) . (B12)
Ao o Ao ag
I-o:|7—|A|%I - Aty (B8 It is interesting to notice that although neither of contribu-

tions (B8),(B10),(B11) is gauge invariant, the full action
To obtain the latter expression we expanded up to the secori@12) is gauge invariant. This means that the final result
order in time derivatives usingl|=A?2—a3~A—a2/2A.  (B12) can be rewritten in terms of two unit vectats andn,

Let us now prove that the whole dependence of the fullwhich represent physical degrees of freedom—core spins of
result (B4) on A, comes fromL,. Varying the action(11) double exchange modél). The method of gradient expan-
over A, we obtain (/2)(W W) =i/2. This statement is exact sion used in this appendix can of course also give higher
because the total number of electrons in the system is fixedrder corrections to EqB12).
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