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Berry phase for a ferromagnet with fractional spin

A. G. Abanov
Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800

Ar. Abanov
Los Alamos National Laboratory, Theoretical Division, MS262, Los Alamos, New Mexico 87545

~Received 30 November 2001; published 15 April 2002!

We study the double exchange model on two lattice sites with one conduction electron in the limit of an
infinite Hund’s interaction. While this simple problem is exactly solvable, we present an approximate solution
which is valid in the limit of large core spins. This solution is obtained by integrating out charge degrees of
freedom. The effective action of two core spins obtained in the result of such an integration resembles the
action of two fractional spins. We show that the action obtained via naive gradient expansion is inconsistent.
However, a ‘‘nonperturbative’’ treatment leads to an extra term in the effective action which fixes this incon-
sistency. This Berry phase term is geometric in nature arises from a geometric constraint on a target space
imposed by adiabatic approximation.
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I. INTRODUCTION

A double exchange model was introduced in Refs. 1,2
describe the motion of conduction electrons in the ba
ground of magnetic ions. In its simplest form the Ham
tonian for the model can be written as

H52(̂
i j &

~ tci
†cj1H.c.!2(

i
JHsW iSW i , ~1!

whereci is the electron annihilation operator on the sitei of
the lattice,sW i5

1
2 ci

†sW ci is a spin 1/2 of an electron3 at sitei,

SW i is a core spin. The first term of Eq.~1! describes the
hopping of conduction electrons between nearest neigh
sites i and j of the lattice. The hopping amplitude ist. The
second term is a ferromagnetic Hund’s interaction betw
the core spin and the spin of the conduction electron at
same lattice site. To specify the model completely we hav
fix the total number of conduction electrons in the samp
We denote filling factorx5( ici

†ci /N, where N is a total
number of sites of the lattice. In this paper we a
interested4–6 in the limit of a very strong Hund’s interactio
JH /t→` and of very large core spinsS@1. In Eq. ~1! we
did not include any~bare! core spin interactions, e.g., due
superexchange. The only interaction between core spin
the model~1! occurs through the exchange by conducti
electrons.

In the limit we consider one can use an adiabatic appro
mation and think of core spins as of slow variables so t
the conduction electrons~fast variables! are always in the
ground state in the background of slowly moving core spi
Because of an infiniteJH an electron spin is always aligne
with a core spin at any given site. Therefore, the effect
hopping amplitude of an electron between two nearest ne
bors is largest when corresponding core spins are paralle
this case an electron can hop between sites without chan
its spin orientation. One concludes that conduction electr
induce a ferromagnetic interaction between core spins.2,7
0163-1829/2002/65~18!/184407~11!/$20.00 65 1844
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It is tempting to average over the motion of conducti
electrons~to integrate conduction electrons out! and obtain
an effective spin model describing the dynamics of co
spins ~and electron spins! induced by charge degrees o
freedom.8 In an almost ferromagnetic state the average s
per lattice site isS1 1

2 x corresponding to the sum of a cor
spin and an average electron spin. Therefore, heuristic
one arrives to the model of ferromagnetically interacti
fractional spins. However, this immediately raises the qu
tion of what one means by a fractional spin. Although av
age spin per lattice site is fractional, the total spin opera
may take only valuesS ~no electron at the site! or S11/2
~there is an electron at the site!. Moreover, a fractional value
of 2S is incompatible with quantum mechanics of spins. R
solving this apparent controversy is a main goal of this pap

The paper is organized in the following way. The aim
Sec. II is mainly pedagogical. We establish notations a
remind the reader how to write the path integral for a sin
spin. We show how the ambiguity of Berry phase for a sin
spin requires 2S be an integer. For completeness we der
the form of this Berry phase in Appendix A using a fermion
determinant representation for the action. A reader fami
with the subject can start from Sec. III where we consider
double exchange model~1! in the limit JH /t→` andS@1.
In Sec. IV we formulate a double exchange model on t
core spins and obtain our main result—an effective action
core spins induced by a single conduction electron. This
tion ~namely, its kinetic part! answers the question of how t
write Berry phase for a system of~two! fractional spins.
Appendix B contains more accurate calculation of the eff
tive action. We discuss the topology behind Berry phase
fractional spins in Sec. V and conclude in Sec. VI.

II. PATH INTEGRAL FOR SINGLE SPIN

In this section we remind the reader how to write dow
the path integral for a single quantum spin and discuss to
logical reasons for spin quantization. Quantum spinSW is de-
fined as a representation of dimension 2S11 of an SU~2!
©2002 The American Physical Society07-1
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Lie algebra with commutation relations

@S1,S252Sz,

@Sz,S6#56S6, ~2!

where as usualS65Sx6 iSy. An SU~2! Lie algebra has irre-
ducible finite dimensional representations of dimensionS
11 labeled by spinS taking integer or half-integer values s
that SW 25S(S11). We would like to construct the classic
action for the time dependent unit vectornW (t) which upon
quantization by path integral reproduces Eq.~2!. One could
start directly from Eq.~2! and construct the path integra
using coherent states corresponding to an SU~2! group ~see
e.g., Ref. 9!. In Appendix A we give an alternative derivatio
of this path integral using the fermionic determinant rep
sentation.

The result is given by partition function

Z5E DnW e2WE[nW ] , ~3!

where

WE@nW #5 i ~2S!2pE
B
d2x

1

8p
eabcemnna]mnb]nnc. ~4!

Let us explain what Eqs.~3!,~4! mean. First of all we used a
Euclidean time representation replacing real physical timt
by an imaginary timet5 i t . The change to an imaginary tim
changes quantum amplitudeeiW used in path integral into a
‘‘Boltzmann’’ factor e2WE. We impose periodic boundar
conditions~in imaginary time! on nW (t) so thatnW (b)5nW (0)
and b is a maximal span of an imaginary time. With the
boundary conditions one can think of time as of a on
dimensional circle with identification of pointt5b with t
50. Physical results will be obtained in the limitb→` after
an analytical continuation back to the real timet52 i t. The
imaginary time representation is slightly more convenient
calculations and for a discussion of topological aspects
spin quantization.

Secondly, the two-dimensional integration in Eq.~4! is
performed over some closed domainB of a two-dimensional
plane such that the boundary of this domain is identified w
an imaginary time. The values ofnW field in the areaB are
defined as an extension from the physical trajectorynW (t) so
that nW (t,u) is a smooth function oftP@0,b# and auxiliary
variableuP@0,1# such thatnW (t,u50)5(0,0,1) andnW (t,u
51)5nW (t). We shall refer to the action~4! as to a Berry
phase10 for a spin~see Appendix A!. Although the action~4!
is given in terms of two-dimensional integral over auxilia
space, the variation of the integrand is a full derivativ
Therefore, the variation of Berry phase~4! is given by a
one-dimensional integral over the ‘‘physical’’~imaginary!
time as

dWE5 iSE
0

b

dt eabcdnanb]tn
c. ~5!
18440
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We see that the variation of Eq.~4! does not depend on th
choice of an extension ofnW (t) in the unphysical domainB.
Using Eq.~5! one can show that the equationd(WE1WE

h)

50, whereWE
h5*0

bdt ShW nW is a coupling to an external mag

netic field gives a classical equation of motioni ]tnW 5@hW

3nW #. The latter is the equation of precession of spin in ma
netic fieldhW .

Partition function~3! with the action~4! solve the prob-
lem of path integral representation for the algebra~2!.
Namely, the commutation relations~2! can be obtained as
result of quantization9 of ‘‘classical action’’~4!.

A. Berry phase and quantization of spin

We have already checked that an infinitesimal variation
Berry phasedWE@nW # does not depend on the extension
nW (t) into the auxiliary domainB. How aboutWE@nW # itself?
One can easily show~see Appendix A! that the action~4! is
equal toi (2S)V/2 whereV is a solid angle swept by a un
vector nW during its motion~see Fig. 1!. This angle is not
uniquely defined: one can always add or subtract any an
which is a multiple of a full solid angle 4p.

Therefore,WE@nW # is not unambiguously defined and is
multivalued functional ofnW (t). Multivalued functionals of
this type were studied in both mathematics and quantum fi
theory ~see, e.g., Ref. 11! and are often referred to as th
Wess-Zumino-Novikov-Witten ~WZNW! term. Although
WE(nW ) is a multiple-valued functional, in partition functio
~3! one needse2WE[nW ] which is a single-valued functional o
nW (t) under the condition that the coefficient 2S is an integer.
Then e2dWE5e2 i (2S)2pk51 and the Boltzmann weight

FIG. 1. The unit vectornW (t) draws a closed line on the surfac
of a sphere with unit radius during its motion in imaginary tim
Berry phase is proportional to the solid angle~shaded region! swept

by the vectornW (t). One can calculate this solid angle by extendi

nW into the two-dimensional domainB as nW (u,t) and calculating
Eq. ~4!.
7-2
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e2WE(nW ) is defined unambiguously by physical configuratio
nW (t). One can think of this constraint on the value of 2S as
of the reason for spin to be an integer or a half-intege
Having noninteger 2S in Eq. ~4! amounts to havingincon-
sistenttheory.

B. CP1 representation of Berry phase and topology

There is one more representation of Berry phase whic
particularly convenient for the purposes of this paper. It
the so-calledCP1 representation. We writenW 5z†sW z, where
z5(z1 ,z2) t is a complex two-component vector satisfyin
the constraintz†z5uz1u21uz2u251. The latter reproduce
nW 251.

In terms of thez variable we have for the Berry phase

WE@nW #52 i ~2S!E
0

b

dt z†i ]tz ~6!

which is apparently independent from the auxiliary coor
nateu. This ‘‘simplification’’ is, however, deceptive becaus
the equationnW 5z†sW z does not definez unambiguously. One
can always changez(t)→eia(t)z(t) with any functiona(t)
satisfyingeia(b)5eia(0). The latter is necessary to conser
periodic boundary conditionsz(b)5z(0). This ‘‘gauge’’
transformation obviously does not change the vectornW . The
change of WZNW action~6! under this transformation is
dWE5 i (2S)@a(b)2a(0)#5 i (2S)2pk wherek is any inte-
ger. We arrive at the same result: the actionWE itself is
multivalued whilee2WE is single-valued under the conditio
that 2S is an integer number.

Let us now briefly discuss topological aspects of Be
phase~WZNW term! for a single spin~4!. The classical unit
vectornW from Eq.~4! takes values on a unit two-dimension
sphereS2—the target space of the problem. There exist
nontrivial expression@the integrand of Eq.~4!# depending on
vectornW and its derivatives which is~i! local and~ii ! being
integrated over two-dimensional sphere gives integer va
for all possible smooth configurations ofnW defined onS2.
Mathematically we say that there exists a closed but non
act two form onS2 ~target space! or even more formally tha
the second cohomology group ofS2 is H2(S2)5Z. This al-
lows one to write down the topological term~4!, where an
integration of the mentioned two form is performed ove
domainB with physical time as the boundary of this dis
The special properties mentioned above guarantee that
~4! unambiguously defines the path integral~3!.

III. DOUBLE EXCHANGE MODEL IN THE LIMIT
OF INFINITE JH

Let us now consider the double exchange model~1! and
take a limit of infinite Hund’s constantJH /t→`. We will do
it in the Lagrangian formulation. First we use the WZN
action~6! to write the Lagrangian~in this section we use rea
time representation! of the double exchange model corr
sponding to the Hamiltonian~1!
18440
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L5(
i

@ci
†~ i ] t2m!ci12Szi

†i ] tzi #2H. ~7!

Herem is a chemical potential which is chosen to guaran
the correct filling factor of electrons andzi5(zi1 ,zi2) t is a
complex vector corresponding to the core spinSi at the sitei
of the lattice. We will make the following change of var
ables in the Lagrangianci5c izi1c̃ i z̃i . Herec i ,c̃ i are spin-
less fermions,zi is a core spin variable, andz̃i is a complex
vector orthogonal tozi , namely,z̃i5(zi2* ,2zi1* ) t. Physically,
c i is the component of an electron on the sitei with a spin
parallel to the core spin at the same site andc̃ i is the one
with a spin antiparallel to the core spin. Taking limitJH

→` corresponds to neglecting thec̃ component of an elec
tron. We substituteci5c izi into Eq. ~7! and omitting con-
stant terms obtain

L5(
i

c i
†~ i ] t2m!c i1(̂

i j &
@c i

†~ tzi
†zj !c j1H.c.#

1(
i

~2S1c i
†c i !zi

†i ] tzi . ~8!

The first term of Eq.~8! is a kinetic term for projected
electrons. Let us take a close look at the second and the
terms. We assume that the motion of spins is much slo
than the motion of electrons. This is justified in the limit
large core spinsS@1. Then one can think of electrons a
moving in the background of almost staticz’s. The second
term in Eq.~8! describes the hopping of these electrons w
the effective hopping amplitudet i j

eff5tzi
†zj . This amplitude

is complex number and has both the magnitude and
phase.

The magnitude of the effective hopping amplitude
given by ut i j

effu2[D25t2(zi
†zj )(zj

†zi)5t2@(11nW inW j /2# or D
5t cos(uij /2), whereu i j is the angle between two core spin
In this derivation we used a relationnW i5zi

†sW zi and the

known identity on Pauli matricessW absW gd52daddbg
2dabdgd . The absolute value of the effective hopping
proportional to the cosine of the half of the angle betwe
core spins.2 It is maximal and equalt for parallel core spins
and vanishes for antiparallel spins.

The phase of the effective amplitudet i j
eff is not defined

unambiguously because of the gauge freedom~see the
previous section!. Consider, however, an electron movin
along some closed trajectory in a background of a smo
configuration of core spins. Then along the path we can w
zi 115zi1dzi , where dzi is small andzi

†zi 11511zi
†dzi .

The product of all the effective amplitudes along t
path is ) i t i ,i 11

eff ;exp((iln zi
†zi11)'exp((izi

†dzi)5expi(i(dci

1dfisin2ui/2), where we use parametrizationzi
t

5eic i(cosui/2,eif isinui/2) of zi in terms of Euler anglesu i ,
f i , and c i . Along the closed path( idc i50, so only the
second term contributes to the phase picked up by an e
tron. It is easy to see that this second term is equal to the
of the solid angle enclosed by vectorsnW along the trajectory
7-3
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A. G. ABANOV AND AR. ABANOV PHYSICAL REVIEW B 65 184407
of an electron. We see that~projected! electrons moving
along some closed trajectory acquire the phase equal to
half of solid angle formed by spins along this trajectory. O
can say, therefore, that they ‘‘feel’’ the solid angle formed
core spins as a flux of magnetic field. This flux is~modulo
2p) a gauge invariant and well defined quantity.

Finally, the last term in Eq.~8! is a ‘‘modified’’ kinetic
term for core spins. One might expect that after the aver
ing over electrons this term will describe the dynamics
effective spins of magnitudeS1^c†c&/2. However, having
noninteger coefficient in front of Berry phase results in
inconsistent theory.

To make this seeming paradox more precise we ave
over electrons accurately by integrating fermions12 out of Eq.
~8!. We obtain an effective action for core spins in terms oz
variables

W52 i ln det@d i j ~ i ] t2m1zi
†i ] tzi !1tzi

†zj #

1E dt (
i

2Szi
†i ] tzi . ~9!

Here the expression in the determinant is both an operato
time andN3N matrix in lattice sites. The matrix elemen
zi

†zj is present only ifi , j are nearest neighbors. In the adi
batic limit there are two main effects produced by an in
gration over fermionic degrees of freedom. First, the ene
of the filled ~to the filling factorx) Fermi sea is added to th
action. This leads to an effective ferromagnetic interact
between core spins. Second, the correction to the B
phase of core spins must reflect the fact that spins of c
duction electrons are effectively added to core spins. T
latter correction is the matter of consideration of this pap

The variation of Eq.~9! over zi
†i ] tzi immediately gives

(2S1^c i
†c i&), where ^c i

†c i& are some fractional number
which in general depend on the configuration of core sp
(zi ’s!. This implies the presence of the term (2S
1^c i

†c i&)zi
†i ] tzi in the action~9! and confirms the result we

expected from the heuristic ‘‘averaging’’ over electron
However, the presence of this term alone renders the th
inconsistent.

In the next section we calculate the fermionic determin
of the type~9! albeit for a simplified double exchange mod
on two lattice sites. We show that there is an additional te
present in the effective action for core spins. This additio
term will make the effective theory consistent as shown
Sec. V.

IV. DOUBLE EXCHANGE MODEL
FOR TWO CORE SPINS

The paradox of having fractional spin in the effective a
tion for a double exchange model is already present fo
much simpler double exchange model on two lattice s
with a single conduction electron. In addition the electr
spectrum in such model is discrete which makes integra
over fermions in adiabatic approximation a well-defined p
cedure. Therefore, in this section we consider the dou
exchange model on two lattice sites with one conduct
18440
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electron and show how to resolve the issue of fractional s
on this simple example.

The projected (JH→`) double exchange model~8! on
two lattice sites~in imaginary time!

LE5 (
i 51,2

@c i
†~]t1 im!c i1~2S1c i

†c i !zi
†]tzi #

2t@c1
†~z1

†z2!c21H.c.#, ~10!

whereWE5*0
bdt LE is a Euclidean action. Chemical poten

tial m must be chosen to guarantee that there is exactly
conduction electron in the system, i.e.,( i 51,2c i

†c i51. One
can repeat the heuristic argument of the previous section
placing c i

†c i in the second term of Eq.~10! by its average
value 1/2. One obtains two effective spins of magnitudeS
11/4 instead of bare core spins. Again, we have the prob
of having the fractional coefficient in the Berry phase ter

We rewrite the Lagrangian~10! as

LE5 (
i 51,2

@2Szi
†]tzi #1C†~]t1 im1Â!C. ~11!

Here we definedC†5(c1
† ,c2

†) and the 232 matrix Â

Â5S z1
†]tz1 2De2 ia

2Deia z2
†]tz2

D , ~12!

where we introduced explicitly the phase and the magnit
of an effective hopping amplitude

tz1
†z25De2 ia. ~13!

The absolute value of an effective hopping amplitudeD

5t cosu/2, whereu is an angle between core spinsSW 1 and
SW 2. It is equal to zero only for strictly antiparallel core spin
u5p. For fixed directions of core spins the matrixÂ be-
comes constant matrix with eigenvalues6D corresponding
to the two-level spectrum of an electron hopping betwe
two core sites in double exchange model with infiniteJH .
Two-level spectrum is symmetric and one can choose
chemical potentialm50 so that there is only one filled en
ergy level at any given moment of time. Then the spinle
fermionc ~electron with projected spin! occupies the lowes
energy levelE52D which is minimal (Emin52t) when
core spins are parallel. Changing the angle between c
spins requires the energy of the order oft while we are in-
terested in low energy dynamics with typical values of e
ergy;t/S. Therefore, we assume thatD does not vanish and
is of the order oft.

The Grassman variablec(t) corresponding to the conduc
tion electron must satisfy antiperiodic boundary conditions
imaginary time t: ci(b)52c(0). We represent ci(t)
5c i(t)zi(t) as a product of spinless fermionc i(t) and spin
1/2 bosonzi(t), which after projectionJH→` becomes az
boson corresponding to core spins. The boundary condit
for c i(b)52c i(0) and zi(b)5zi(0) are antiperiodic and
periodic, respectively. Then we have forC(t) anda(t) @see
Eqs.~11!,~13!#
7-4
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C~b!52C~0!, ~14!

a~b!5a~0!12pk, ~15!

wherek is an integer—the winding number of the phasea in
imaginary time 2pk5*0

bdt ]ta.
The effective action of core spins is given by

WE
eff5E

0

b

(
i 51,2

@2Szi
†]tzi #dt1WE

ind , ~16!

where the effective action of core spins induced by fermio

WE
ind52Tr ln~]t1Â!. ~17!

Here the operator]t1Â is linear differential operator with
explicit dependence on timet through the 232 matrix Â
and we putm50 corresponding to having only one condu
tion electron in the system. To calculate the functional tra
~17! we find the eigenvalues of this operator by solving d
ferential equation

~]t1Â!C~t!5lC~t! ~18!

with boundary conditions~14!,~15! and calculate the sum o
logarithms of all eigenvaluesl. Matrix ~12! can be rewritten
as

Â5
i

2
A02e2( i /2)as3

Ds1e( i /2)as3
1 ia0s3, ~19!

where

iA05z1
†]tz11z2

†]tz2 ,

ia05
1

2
~z1

†]tz12z2
†]tz2!.

We would like to solve Eq.~18! with the matrixÂ from Eq.
~19! in an adiabatic approximation, e.g., assuming that
time derivatives are much smaller than the energy scalD
;t. First we ‘‘unwind’’ wave functionC by a unitary trans-
formation

C5expH 2
i

2E0

t

dt~A01ȧs3!J x, ~20!

whereȧ means the derivative ofa over t. Then, instead of
Eq. ~18! the functionx satisfies

~ L̂01V̂!x5lx, ~21!

where we defined ‘‘zero order’’ operatorL̂0 and perturbation
V̂ which is proportional to time derivatives of core spins

L̂05]t2Ds1,

V̂5 i ã0s3,

ã05a02
1

2
ȧ. ~22!
18440
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Now we can solve Eq.~21! using the perturbation theory in
V̂. The boundary conditions ofx are given by Eqs.~14! and
~20! as

x~b!52eigx~0!,

where Berry phase

g5
1

2E0

b

~A01ȧ!dt,

and we used*0
bȧdt52pk @k is an integer, see Eq.~15!# and

that eipks3
5eipk.

We are going to find the eigenvalues of Eq.~21! using the
perturbation theory inV̂. This is justified in an adiabatic limit
when ã0 proportional to the rate of change of core spins
much smaller than the typical fermionic energyD or in other
words when the conduction electron is the fast degree
freedom compared to core spins.

The solutions of the zero order equation

L̂0x (0)5l (0)x (0)

are labeled by an integer numbern and by plus or minus sign

uxn6
(0)&5

1

A2b
e7*0

tD dt1ln6
(0)tS 1

61D
with eigenvalues

ln6
(0)56D̄1

ip

b
~2n11!1

i

b
g, ~23!

where

D̄5
1

bE0

b

D dt.

There are no corrections to these eigenvalues in the firs
der of perturbation theory inV̂. Therefore, up to the secon
order of perturbation theory we obtain

ln652m6D̄1
ip

b S 2n111
g

p D , ~24!

where we have restored the chemical potentialm which
should bem50 for the problem with a single conductio
electron.

The effective action~17! is given by

WE
ind52 (

n52`

1`

@ ln ln11 ln ln2#. ~25!

To calculate the obviously divergent sum in Eq.~25! we
regularize it by subtracting the effective action for the syst
without conduction electrons. That is we calculate the diff
ence between Eq.~25! calculated atm50 and the one cal-
culated atm→2`:
7-5



w
ys

a
t

or
o

de
n

W
th
gi
n

in

n
d
on-
der
e
are

, if

ny

.
core
as

om
n

the
e’’

an-
for
of
is

nge

Eq.

riant

rm
der

he

id-

f
ins

rm

p

A. G. ABANOV AND AR. ABANOV PHYSICAL REVIEW B 65 184407
WE
ind52 (

n52`

1` F ln
ln1~m50!

ln1~m→2`!
1 ln

ln2~m50!

ln2~m→2`!G .
~26!

This sum is still logarithmically divergent but one can sho
that the divergent part is a constant not depending on ph
cal parametersD andg. Calculating the sum in Eq.~26! we
obtain

Wind52 lim
m→2`

3 ln

coshS bD̄

2
1 i

g

2
D coshS bD̄

2
2 i

g

2
D

coshS b~D̄2m!

2
1 i

g

2
D coshS b~D̄1m!

2
2 i

g

2
D .

~27!

In the limit m→2` we obtain

Wind5 ig2 ln coshS bD̄

2
2 i

g

2
D 2 ln coshS bD̄

2
1 i

g

2
D .

~28!

This is the final result for the effective action calculated
finite ‘‘temperature’’b. Notice that the only imaginary par
of a Euclidean effective action is the Berry phaseg. We have
obtained this phase in the first order of perturbation the
However, the same expression is also valid in all orders
perturbation theory. It is easy to show for our simple mo
because the higher orders of perturbation theory can o
give corrections to the real part of Eq.~24! which does not
contribute to the imaginary part of an Euclidean action.
consider the higher orders of perturbation theory using
regular gradient expansion in Appendix B. In fact, the ima
nary part of a Euclidean action has a topological nature a
therefore, cannot be changed by small perturbations~see the
discussion in Sec. V!.

In the ‘‘zero temperature’’ limitbD@1 we have

WE
ind5 ig2bD̄

or explicitly

WE
ind5

i

2E0

b

~A01ȧ!dt2E
0

b

D dt. ~29!

The latter result can of course be obtained just by replac
the discrete sum overn in Eq. ~26! by an integral. For the full
effective action~16! we obtain

WE
eff5WE

B1WE
dyn, ~30!

WE
B5E

0

b

dtF (
i 51,2

S 2S1
1

2D zi
†]tzi1

i

2
ȧG , ~31!

WE
dyn52E

0

b

D dt1 . . . . ~32!
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The first term of the dynamic part of an effective actio
WE

dyn is just the time integral of the energy of the groun
state of the conduction electron in a fixed instantaneous c
figuration of core spins. The dots denote the higher or
corrections to Eq.~32!. These corrections are small if th
background core spins are moving adiabatically and they

diverging if derivativesnẆ 1 ,nẆ 2 are bigger thanD. For such
processes an adiabatic approximation fails. In particular
core spins have opposite directionsnW 152nW 2 we haveD
50 and an adiabatic approximation is not applicable at a
rate of the change of core spins.

V. BERRY PHASE FOR FRACTIONAL SPINS

A. Consistency

The Berry phase term~31! is the main result of this paper
We see that the the correction to the Berry phase of bare
spins induced by the conduction electron is twofold. First,
we expected averaging over fermions in Eq.~10! there is a
change of the coefficient in Berry phases of core spins fr
2S to 2S11/2. In addition, there is a correctio
( i /2)*0

bdt ȧ5 ipk, where the integer numberk is a winding
number~15! of the phasea in imaginary time. The latter term
is a full time derivative and, therefore, does not change
classical dynamics of spins. Classically, the effective ‘‘cor
spins behave as if they had the value ofS11/4.

Let us show now that the full Berry phase~31! is consis-
tent with quantum mechanics of spins and, therefore,
swers the question of how to write down the Berry phase
two fractional spinsS11/4. As we have seen at the end
Sec. II the inconsistency occurs if the partition function
not invariant under gauge transformations ofz variables. We
perform the gauge transformationz1,2→eia1,2(t)z1,2 indepen-
dently for first and second core spins. In order not to cha
the periodic boundary conditions ofz1,2 we requireDa1,2
5a1,2(b)2a1,2(0)52p l 1,2, wherel 1,2 are arbitrary integer
numbers. Under this transformation the three terms of
~31! depending onz1 , z2, and a change by 2p i l 1(2S
11/2), 2p i l 2(2S11/2), andp i ( l 12 l 2), respectively. It is
easy to see that neither of these three terms gives an inva
contribution to a partition function. For example, forl 151
the change of the first term is 2p i (2S11/2) which gives
21 being exponentiated. However, the total kinetic te
~31! is equal to the sum of all these terms and changes un
the gauge transformation by 2p i @(2S11)l 112Sl2# which
is a multiple of 2p and, therefore, does not change t

weight e2WE
B
. This means that neither of three terms cons

ered makes any sense separately from the others.13 Only their
gauge invariant~modulo 2p) sum has a physical meaning o
the combined Berry phase of the system of two core sp
plus one conduction electron.

B. Topology and adiabatic approximation

We have seen in Sec. II that the existence of WZNW te
for a single unit vector~single spin! is due to the fact that the
target spaceS2 has a nontrivial second cohomology grou
H2(S2)5Z. The addition of WZNW term to the action with
7-6
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the coefficient 2S is consistent only if this coefficient is
quantized~is an integer number!. For two independent spin
the target space becomesS23S2 and one obviously can
write two independent WZNW terms corresponding
H2(S23S2)5Z3Z. This is apparently true for two indepen
dent spins. However, the result is different for the conduct
electron induced dynamics of core spins in the double
change model. Let us discuss why this is so. To obtain
induced dynamics of core spins we have excluded the ch
degree of freedom of conduction electron integrating it ou
an adiabatic approximation. This approximation, howev
breaks when the the rate of the change of core spins beco
comparable to the energy scale 2D given by the levels of
conduction electron in the background of time independ
core spins. There is a special point though when core s
are opposite to each other. At this pointD50 and an adia-
batic approximation breaks no matter how slow the mot
of core spins is.

This is quite obvious from the physical point of view
Consider two time independent core spins opposite to e
other. The effective hopping amplitude of a conduction el
tron is;cosu/250 and one has two different configuration
The electron can be either on the left lattice site or on
right one~see Fig. 2! and the matrix element of the hoppin
term is zero between those states. This means that the gr
state of the system is doubly degenerate. The charge de
of freedom~left or right position of the electron! is essential
for this particular configuration of core spins and cannot
integrated out. In our derivation we used an adiabatic
proximation and neglected such configurations. This is ju
fied in the limit S@1 for ferromagnetically interacting cor
spins. However, this approximation drastically changes
topology of the system. Essentially, we prohibited the c
figurationsnW 152nW 2. The relevant target space changes fro
S23S2 for two independent spins toG5S23S2\S2. The
latter expression denotes the direct productS23S2 with
points nW 152nW 2 ~topologically equivalent to one moreS2)
removed. The resulting target spaceG is topologically
equivalent toS2. To prove it one can show14 that it can be
contracted along itself ontoS2. We illustrate the similar phe
nomenon on the corresponding one-dimensional examp
Fig. 3. Therefore, the relevant target spaceG;S2. To check
for allowed WZNW terms we calculateH2(G)5H2(S2)
5Z. There is only one WZNW term allowed for the chos
target space.

FIG. 2. Two degenerate states with antiparallel core spins.
electron with spin aligned along the core spin cannot hop from
lattice site to another and can be either on the right or on the
lattice site.
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The existence of only one allowed topological term e
plains why only the full Berry phase~31! is well defined. The
most general form~in CP1 representation! of the topological
term for two spins is given by

WE
top5E

0

b

dt@r1z1
†]tz11r2z2

†]tz21 i jȧ#. ~33!

Coefficientsr1,2,j satisfy quantization conditions~or gauge
invariance conditions!. Namely, r12j and r21j must be
integers. We see that for the double exchange model of
core spins and a single conduction electron we have Eq.~31!
which corresponds to particular integer valuesr12j52S
andr21j52S11. If for some reason the conduction ele
tron spends unequal time at two sites~e.g., the local mag-
netic field acting on electron spin on one of sites is add!
we have an asymmetric situationr1Þr2. However, the com-
binationr12j andr21j must stay integer to guarantee th
consistency of the theory.

VI. CONCLUSION

In this paper we considered the double exchange mo
with some concentrationx of conduction electrons. The su
perficial averaging over fast motion of electrons leads to
inconsistent theory with fractional spin. Using the examp
of the double exchange model on two lattice sites we show
that in addition to the change of the value of the effect
core spin toS1x/2 a new topological term arises in th
effective action. With this term the exponent of the effecti
action becomes single valued and well defined. We show
that the full Berry phase~31! reflects the change of topolog
of the system which occurs due to the adiabaticity condit
— the condition justifying the averaging over the char
degrees of freedom. The generalization of our results to
double exchange model for many spins is relatively straig
forward. The only major difference with the case of tw
spins is that the average occupation number of a given la
site by conduction electrons depends on the configuratio
core spins. This makes the magnitude of a ‘‘fractional’’ sp
on the given site a fluctuating quantity with correspond
modifications of Berry phase terms. The latter effect is n
expected to be strong in the ferromagnetically ordered st
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FIG. 3. The contractionS13S1\S1→S1 is shown as a one-
dimensional illustration ofG;S2. ~a! The torus spaceS13S1 is
represented as a square with the opposite sides identified acco
to the direction of arrows. The diagonal shows the points given

nW 152nW 2. ~b! The spaceS13S1\S1→S1 is obtained by the remova
of the diagonal.~c! One pair of opposite sides is glued.~d! The
second pair is glued making a cylinder.~e! The cylinder is con-
tracted onto the unit circle.
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APPENDIX A: PATH INTEGRAL FOR SINGLE SPIN
AND FERMIONIC DETERMINANT

In this section for the sake of completeness we rede
the well-known path integral representation for the quant
mechanics of a single spin. We reduce the problem to a
culation of a simple fermionic determinant. The method
use differs from the commonly used coherent state repre
tation ~see, e.g., Ref. 9! for the path integral. It is conceptu
ally simpler but involves the gradient expansion calculat
of a fermionic determinant. It turns out that the similar d
terminant is needed for our analysis of a double excha
model for two core spins.

1. Path integral representation for spinS

It is easy to check that the representationSW 5 1
2 ca

†sW abcb

with constraintca
†ca51 is a faithful representation of Eq

~2! with S51/2. HeresW 5(sx,sy,sz) is a set of Pauli matri-
ces andca ,cb

† with a,b51,2 are annihilation~creation!
Fermi operators, respectively, which satisfy the~anti!com-
mutation relations$ca ,cb%5$ca

† ,cb
†%50 and $ca ,cb

†%
5dab . In fact, this representation reflects how spin ope
tors appear in nature withc being an annihilation operator o
the physical electron.

We consider the following HamiltonianH522DnW SW ,
whereSW 5 1

2 c†sW c is a spin of a fermion andD is a strength
of the coupling of this spin with the unit vectornW . The cor-
respondent action is

S5E dt c†@ i ] t1Dn̂#c, ~A1!

where we introduced a notationn̂5nW sW . One can think of
2DnW as of the magnetic field acting on the fermionic spinSW .
In the limit of an infinite couplingD→` ~infinite magnetic
field! the fermionic spinSW will be ‘‘frozen’’ along the clas-
sical vectornW so thatnW in the limit of infinite D becomes a
direction of quantization axis of a quantum spin of a fermio
If now we change the direction of the classical vectornW with
time, the fermionic spin will follow the direction ofnW . There-
fore, we expect that in the limit of an infiniteD an effective
dynamics of classical vectornW induced by a fermion will be
that of the quantum spin 1/2.

The path integral representation for spin 1/2 is then giv
by

Z5E DnW eiW[nW ] , ~A2!

where W@nW #5 limD→`Weff@nW # is a classical action corre
sponding to a quantum spin 1/2. This classical action i
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functional of the trajectory of the time dependent unit vec
nW (t). The effective actionWeff@nW # is defined as

eiWeff[nW ]5E DcDc†ei *dt c†[ i ] t1Dn̂]c. ~A3!

The functional integration in Eq.~A3! is performed over
Grassman variables12 c,c†—classical analogs of fermionic
annihilation ~creation! operators. Integrating over fermion
we obtain

Weff@nW #52 i ln Det@ i ] t1Dn̂#. ~A4!

To generalize the result to an arbitrary spinS we can
consider the same fermionic theory~A3! but with 2S inde-
pendent species of fermions coupled to the same vectornW . In
this case all spins 1/2 of fermions will be aligned alongnW so
that Eq.~A2! will correspond to quantum spinS. Integration
over all fermionic species is independent and we have fo
effective action

Weff@nW #52 i2S ln Det@ i ] t1Dn̂#. ~A5!

The only problem which is left is technical. It is to calcula
the fermionic determinant~A5! in the limit of an infiniteD.

2. Shortcut

One can obtain the result without~almost! any calcula-
tions. Let us introduce the complex, two-component, norm
ized vectorzt5(z1 ,z2), z†z51 so that it is an eigenvector o
n̂ with the eigenvalue 1:n̂z5z. For a time independentn̂
this vector is a ground state of our HamiltonianHz
52Dn̂z52Dz with the ground state energy2D. The other
eigenstate has an energy1D and in the limit of an infiniteD
is never excited by a motion of the unit vectornW . Therefore,
in the limit of an infiniteD we can useca5zax with x the
spinless~projected! fermion. Substituting this into the actio
~A1! we obtain

S5E dt@x†~ i ] t1D!x1x†x~z†i ] tz!#.

The variablex does not have any dynamics in the limit of a
infinite D. We average overx using x†x51 and obtainW
5*dt z†i ] tz for spin 1/2. In case of spinS one has 2S spe-
cies of fermions,x†x52S andW52S*dt z†i ] tz. This is the
desired result for the action for a single spinS. However, the
main point of this paper is to show that the ‘‘naive’’ avera
ing over fermions instead of the careful determinant calcu
tion can result in error. In this case one can show that du
topological reasons the calculation we performed is a leg
mate one. To add even more weight to this statement
proceed with a formal calculation of the fermionic determ
nant~A5! and show that it gives the same result for a sin
spin action.
7-8
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3. Determinant calculation

Before going to the calculation of fermionic determina
~A5! we will perform Wick rotation of time and go to a
imaginary time representation. The imaginary time repres
tation is slightly more convenient for calculations for reaso
that will be clear later. The change to an imaginary tim
changes quantum amplitudeeiW into a ‘‘Boltzmann’’ factor
e2WE, where subscript ‘‘E’’ stands for ‘‘Euclidean.’’ In
imaginary timet5 i t we have instead of Eq.~A5!

WE
eff@nW #522S ln Det@]t2Dn̂# ~A6!

with the partition function for a single spin

Z5E DnW e2WE[nW ] , ~A7!

whereWE@nW #5 limD→`WE
eff@nW #. We impose periodic bound

ary conditions~in imaginary time! on nW (t) so that nW (b)
5nW (0) andb is a maximal span of an imaginary time. Wit
these boundary conditions we can think of time as of
one-dimensional circle with identification of pointst5b
with t50. Physical results will be obtained in the limitb
→` after analytical continuation back to real timet52 i t.

Using the method presented in Appendix B one can c
culate the effective action~A6! in adiabatic approximation
with an arbitrary accuracy. However, we are interested in
limit D→`. In this limit all terms of gradient expansion i
1/D except for the first~topological! one will vanish. Here
we show how to obtain the most important~topological!
D-independent part of the effective action~A6! which is the
exact result for the action for a single spin.

Determinant of an operator does not change if one app
a unitary transformation to it. This is, however, a potentia
dangerous procedure in the context of gradient expansio
one has to make sure the boundary conditions for elect
do not change in the process of such transformation. It tu
out that this is not an issue for the single spin proble
However, e.g., for the double exchange problem the bou
ary condition of fermions do change in a nontrivial way u
der the unitary rotation~see Sec. IV!.

Let us use the transformationÛ such thatÛ21n̂Û5s3.
This transformationÛ is easily found using the so calle
CP1 representation. In this representation we introduc
two-component complex vectorz with the constraintz†z

51 such thatnW 5z†sW z. Then the matrixÛ can be written as

Û5S z1 z2*

z2 2z1*
D . ~A8!

We write Eq.~A6! in the form

WE
eff@nW #522STr ln@]t1Â2Ds3#, ~A9!

whereÂ5Û21]tÛ and Tr means both functional trace an
the trace overs matrices.

The matrix elements ofÂ are proportional to the first time
derivative of spin variables and are small in comparison
18440
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D. We can expand the logarithm in Eq.~A9! in powers ofÂ.
We keep only the firstÂ dependent term as the other term
will have additional powers ofD in denominators~one can
obtain those terms in the regular way explained in Appen
B!

WE
eff@nW #52STr

]t1Ds3

2]t
21D2

Â5 i E dv

2p
tr

2v1 iDs3

v21D2
Â~v50!

52S
1

2E0

b

dt tr s3Â52 i2SE
0

b

dt z†i ]tz. ~A10!

It is instructive to rewrite Eq.~A10! in terms of the origi-
nal variables nW . We parametrize complex vectorzt

5eic@cos(u/2),eifsin(u/2)#. It is easy to see that the angle
u andf are the polar and azimuthal angles corresponding
the direction of the unit vectornW . The phasec can be chosen
arbitrarily as it does not affectnW . Up to the full time deriva-
tive of c we obtain 2*0

bdt z†i ]tz5 1
2 *0

bdt (12cosu)ḟ

5V/2, whereV is a solid angle enclosed by the unit vectornW
during its time evolution. One can check that this solid an
can be rewritten in the form~4! which is explicitly rotation-
ally invariant.

APPENDIX B: CALCULATION OF FERMIONIC
DETERMINANT FOR DOUBLE EXCHANGE MODEL

In this appendix we calculate the effective action~17!
which can be written as

WE
ind52Tr ln D,

where the differential operatorD is defined as

D5]t1Â

with matrix Â given by Eqs.~12!,~19!. We rewrite

Â5 iA0/21 ia0s31D1s11D2s25 iA0/21DW sW ,

whereD152D cosa, D252D sina, andD35 ia0.

We use an adiabatic approximation using the~gradient!
expansion in 1/D. The operatorD contains the magnitude o
the effective hoppingD which is slowly varying but it is not
small itself. To avoid this difficulty we calculate instead
effective action its variation and then restore the result fr
this variation

dWE
ind52Tr dDD2152TrFdÂ

1

]t1Â
G , ~B1!

where

dÂ5 idA0/21dDW sW .

Let us now calculate the functional trace in the basis of pla
waves
7-9
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dWE
ind52tr E dv

2p E dt e2 ivtdÂ
1

]t1Â
eivt. ~B2!

Here the integral over timet is the calculation of the diag
onal matrix element̂vudDD21uv& and integration overv
is the calculation of the functional trace. The residual trace
is the trace in the space of 232 matrices. ‘‘Pulling’’ eivt

from right to the left we have

dWE
ind52tr E dv

2pE dt dÂ
1

iv1]t1Â
. ~B3!

In the latter expression the partial derivative]t is assumed to
act ‘‘to the right.’’ This means that when we expand

dWE
ind52tr E dtE dv

2p
dÂ@G2G]tG1G]tG]tG1 . . . #

5E dt@dL01dL11dL21•••#, ~B4!

all derivatives are assumed to act on all terms to the rig
For example,G]tG]tG5G(GG̈1ĠĠ). We introduced

G5
1

iv1Â
5

2 i ~v1A0/2!1DW sW

~v1A0/2!21uDW u2
~B5!

and

dL052tr E dv

2p
dÂG,

dL15tr E dv

2p
dÂG]tG, ~B6!

dL252tr E dv

2p
dÂG]tG]tG.

We notice thatuDW u25D22a0
2'D2 becausea0!D by adia-

batic approximation~it contains time derivative of core
spins!. Therefore, the denominator of Eq.~B5! is never zero
and integrals~B6! are not singular. The expansion~B4! is
essentially the gradient expansion, i.e., the expansion in
number of time derivatives. One can see thatL1 contains at
least one time derivative,L2 contains at least two, etc.

The calculation ofdL0 is straightforward and gives

dL05d@ iA0/22uDW u# ~B7!

or removing variation

L05 i
A0

2
2uDW u' i

A0

2
2D1

a0
2

2D
. ~B8!

To obtain the latter expression we expanded up to the sec
order in time derivatives usinguDW u5AD22a0

2'D2a0
2/2D.

Let us now prove that the whole dependence of the
result ~B4! on A0 comes fromL0. Varying the action~11!
overA0 we obtain (i /2)^C†C&5 i /2. This statement is exac
because the total number of electrons in the system is fi
18440
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^C†C&51. For the effective action we have, therefor
dWE

ind/dA05 i /2. However, from Eq. ~B7! we have
dL0 /dA05 i /2 which gives d(WE

ind2L0)/dA050 and all
higher order termsL1 , L2, etc., do not depend onA0. This
simplifies further calculations allowing one to use

G5
1

iv1Â
uA0505

2 iv1DW sW

v21uDW u2

for all higher order terms.
As a result of calculations one obtains from Eq.~B6!

dL15
i

2
eabcS d

Da

uDW u
D Db

uDW u
]t

Dc

uDW u
. ~B9!

This is identical in form to a Berry phase of a single spin 1
given by Eq.~5! with identificationnW 5DW /uDW u. Therefore,L1
is given by formula analogous to the Berry phase for a sin
spin ~4! and is to be interpreted as a half of solid angle sw
by vectorDW during its time evolution. Assume for a mome
now thata050. Then the vectorDW /uDW u5(2cosa,2sina,0)
moves along the equator of unit sphere and covers the s
angleV5a(b)2a(0) during its motion. In this approxima
tion we obtainL15 i ȧ/2 which gives half of the solid angle
after time integration.15,16 Calculating corrections due to
nonzeroa0 from Eq. ~B9! we obtain

L15
i

2 S ȧ2
ia0ȧ

uDW u
D '

i

2
ȧ2

a0ȧ

2D
, ~B10!

where we expanded the latter expression up to the term
the second order in time derivatives.

The calculation ofL2 in Eq. ~B6! is straightforward and
gives

L25
1

8uDW u
S ]t

DW

uDW u
D 2

'
ȧ2

8D
. ~B11!

Finally, combining terms~B8!,~B10!,~B11! we obtain an
effective action up to the second order terms

LE5
i

2
~A01ȧ!2D1

1

2D
S a02

ȧ

2
D 2

. ~B12!

It is interesting to notice that although neither of contrib
tions ~B8!,~B10!,~B11! is gauge invariant, the full action
~B12! is gauge invariant. This means that the final res
~B12! can be rewritten in terms of two unit vectorsnW 1 andnW 2
which represent physical degrees of freedom—core spin
double exchange model~1!. The method of gradient expan
sion used in this appendix can of course also give hig
order corrections to Eq.~B12!.
7-10
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