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Probability-changing cluster algorithm for two-dimensional XY and clock models

Yusuke Tomita* and Yutaka Okabe†

Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
~Received 12 November 2001; published 12 April 2002!

We extend the newly proposed probability-changing cluster~PCC! Monte Carlo algorithm to the study of
systems with the vector order parameter. Wolff’s idea of the embedded cluster formalism is used for assigning
clusters. The Kosterlitz-Thouless~KT! transitions for the two-dimensional~2D! XY andq-state clock models
are studied by using the PCC algorithm. Combined with the finite-size scaling analysis based on the KT form
of the correlation length,j}exp(c/AT/TKT21), we determine the KT transition temperature and the decay
exponenth asTKT50.8933(6) andh50.243(4) for the 2DXY model. We investigate two transitions of the
KT type for the 2Dq-state clock models withq56,8,12 and confirm the prediction ofh54/q2 at T1, the
low-temperature critical point between the ordered andXY-like phases, systematically.
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I. INTRODUCTION

The two-dimensional~2D! XY model shows a unique
phase transition, the Kosterlitz-Thouless~KT! transition.1,2 It
does not have true long-range order, but the correlation fu
tion decays as a power of the distance at all the temperat
below the KT transition point. Jose´ et al.3 studied the effect
of theq-fold symmetry-breaking fields on the 2DXY model;
this is essentially the same as treating theq-state clock
model, where only discrete values are allowed for the an
u i of the XY spins such that

u i52ppi /q with pi50,1,2, . . . ,q21. ~1!

In the limit q→` we get theXY model. It was shown tha
the 2Dq-state clock model has two phase transitions of
KT type atT1 andT2 (T1,T2) for q.4. There is an inter-
mediateXY-like phase between a low-temperature orde
phase (T,T1) and a high-temperature disordered phaseT
.T2). It was predicted that the decay critical exponenth
varies fromh51/4 atT2 to h54/q2 at T1.

Most of the above theoretical analyses relied on the ren
malization group argument, and they are not exact. Th
have been extensive numerical studies of the 2D class
XY model.4–10 In contrast, only a limited number of numer
cal works have been reported on theq-state clock model,11,12

and the accuracy was not good enough especially for
low-temperature phase transition. There have been no
tematic studies to check the prediction ofh(T1)54/q2.

In numerical studies, efficient algorithms are importa
for getting the necessary information. The cluster update
gorithms of the Monte Carlo simulation13,14 are examples of
such efforts, and they are useful for overcoming the pr
lems of slow dynamics. Recently we proposed an effec
cluster algorithm, which is called the probability-changi
cluster ~PCC! algorithm, of tuning the critical point
automatically.15 It is an extension of the Swendsen-Wa
algorithm,13 but we change the probability of a cluster upda
~essentially, the temperature! depending on the observatio
whether clusters are percolating or not percolating.
showed the effectiveness of the PCC algorithm for the P
models,15 determining the critical point and critical expo
0163-1829/2002/65~18!/184405~5!/$20.00 65 1844
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nents for the second-order phase transition precisely w
less numerical effort. The PCC algorithm was also applied
the 2D site-diluted Ising model, where the crossover and
self-averaging properties were studied.16 The advantage of
using the PCC algorithm in the study of random systems
as follows: The sample-dependentTc(L) for the finite sys-
tem with linear sizeL is important for taking the sample
average, and the PCC algorithm is suitable for getting
sample-dependentTc(L).

There are a lot of interesting questions about the ext
sion of the PCC algorithm.~i! Can the PCC algorithm be
used for the problem of the vector order parameter, such
the XY model? ~ii ! Can it be applied to an analysis of
transition of the KT type?~iii ! Can it work even if the system
shows two or more phase transitions?

The purpose of the present paper is to answer these q
tions. We extend the PCC algorithm so as to treat syste
with the vector order parameter. The rest of the pape
organized as follows. In Sec. II, we formulate the extens
of the PCC algorithm for the vector order parameter. In S
III, the KT transition of the 2DXY model is studied with the
finite-size scaling~FSS! analysis based on the KT form o
the correlation length. In Sec. IV, we study the KT transitio
of the 2D clock models. We investigate both phase tran
tions atT1 andT2 for theq56,8,12 clock models. The sum
mary and discussions are given in Sec. V.

II. PCC ALGORITHM FOR VECTOR ORDER
PARAMETER

Our Hamiltonian is given by

H52J(
^ i , j &

Si•Sj , ~2!

where Si is a planar unit vector (cosui ,sinui) at site i; u i
takes the value of@0,2p) for the XY model and the value
given in Eq.~1! for the q-state clock model. The summatio
is taken over the nearest-neighbor pairs^ i , j &.

In order to extend the PCC algorithm to systems with
vector order parameter, we use Wolff’s idea of the embed
©2002 The American Physical Society05-1
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cluster formalism.14 We project the vectorSi onto a ran-
domly chosen unit vectore1 and another unit vectore2, per-
pendicular toe1, as

Si5e1cosf i1e2sinf i , ~3!

wheref i is the angle measured from the axis of the vec
e1. Then, the Hamiltonian, Eq.~2!, is rewritten as

H52(
^ i , j &

~Ji j
(1)e i

(1)e j
(1)1Ji j

(2)e i
(2)e j

(2)!, ~4!

with positive effective couplings

Ji j
(1)5Jucosf i uucosf j u, Ji j

(2)5Jusinf i uusinf j u ~5!

for two sets of Ising variables$e i
(1)% and$e i

(2)%. Formally, we
can restrict ourselves to the region@0,p/2) for $f i%, and we
write the partition function as

Z5E
0

p/2

$df i% (
$e i

(1)
561%

expS b(
^ i , j &

Ji j
(1)e i

(1)e j
(1)D

3 (
$e i

(2)
561%

expS b(
^ i , j &

Ji j
(2)e i

(2)e j
(2)D , ~6!

with b51/kBT. Then, we can use the Kasteleyn-Fortu
~KF! cluster representation for the Ising spins.17 To make the
KF cluster, we connect the bonds of parallel Ising spins w
probability

pi j
(1,2)512exp~22bJi j

(1,2)!. ~7!

In the PCC algorithm,15 the cluster representation of th
Ising model is used in two ways. First, we flip all the spi
on any KF cluster to one of two states, that is,11 or 21, as
in the Swendsen-Wang algorithm.13 Second, we change th
KF probability, Eq. ~7!, depending on the observatio
whether clusters are percolating or not. It is based on the
that the spin-spin correlation functionG(r i2r j ) becomes
nonzero forur i2r j u→` at the same point as the percolatio
threshold. For theXY model in the embedded cluster forma
ism, the spin-spin correlation function is written as

G~r i2r j !5^Si•Sj&5^ucosf i u ucosf j u e i
(1)e j

(1)&

1^usinf i u usinf j u e i
(2)e j

(2)&

5^Ai j Q
(1)~r i ,r j !&1^Bi j Q

(2)~r i ,r j !&, ~8!

where ^•••& represents the thermal average. The funct
Q(r i ,r j ) is equal to 1~0! if the sitesi and j belong to the
same~different! cluster, andAi j andBi j are some constants
Thus, the system is regarded as percolating ife (1) or e (2)

Ising spins are percolating. When treating the cluster s
update, one may consider Ising spins of a single type p
jected onto a randomly chosen axis, as in the original Wol
proposal.14 However, we should consider Ising spins of bo
types perpendicular to each other for checking the perc
tion.

The procedure of Monte Carlo spin update is as follow
~i! Start from some spin configuration and some value ofb.
18440
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~ii ! Choose a unit vectore1 randomly.~iii ! Construct the KF
clusters fore (1) and e (2) using the probability, Eq.~7!, and
check whether the system is percolating or not. Flip all
spins on any KF cluster to11 or 21 for bothe (1) ande (2)

Ising spins.~iv! If the system is percolating~not percolating!,
decrease~increase! b by Db (.0). ~v! Go back to the pro-
cess~ii !.

As Db becomes small, the distribution ofb becomes a
sharp Gaussian distribution around the mean valuebc(L),
which depends on the system sizeL. We approach the ca
nonical ensemble in this limit, and the existence probabi
Ep , the probability that the system percolates, becomes
at bc(L).

III. XY MODEL

We have made simulations for the classicalXY model on
a square lattice with system sizesL58, 16, 32, 64, 128, 256
and 512. After 20 000 Monte Carlo sweeps of determin
bc(L) with gradually reducingDb, we have made 10 000
Monte Carlo sweeps to take the thermal average; we h
made 100 runs for each size to get better statistics an
evaluate the statistical errors. As for the criterion to det
mine percolating, we have employed the topological rule15,18

in the present study. The topological rule is that some clu
winds around the system in at least one of theD directions in
D-dimensional systems.

Let us start with the size dependence of the transit
temperature. We use the FSS analysis based on the KT
of the correlation length,

j}exp~c/At !, ~9!

with t5(T2TKT)/TKT . Using the PCC algorithm, we locat
the temperatureTKT(L)51/kBbc(L), the existence probabil
ity Ep of which is 1/2. Then, using the FSS form ofEp , that
is, Ep5Ep(j/L), we have the relation

TKT~L !5TKT1
c2TKT

~ ln bL!2
. ~10!

We plot TKT(L) as a function ofl 22 with l 5 ln bL for the
best-fitted parameters in Fig. 1. We represent the tempera
in units of J/kB . The error bars are smaller than the size
the marks. Our estimate ofTKT is 0.8933~6!; the number in

FIG. 1. Plot ofTKT(L) of the 2DXY model forL58, 16, 32,
64, 128, 256, and 512, wherel 5 ln bL.
5-2
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the parentheses denotes the uncertainty in the last digits
have estimated the uncertainty by thex2 test of the data for
100 samples. This value is consistent with the estimate
recent studies: 0.892 13~10! by Monte Carlo simulation8 and
0.894 by short-time dynamics.9 The constantc, in Eq.~10!, is
estimated asc51.73(2).

Let us consider the magnetization^m2(L)& at TKT(L) to
discuss the critical exponenth. In Fig. 2, we plot̂ m2(L)& as
a function ofL in a logarithmic scale. We expect a FSS of t
form ^m2(L)&}L2h, but there are small corrections. The im
portance of the multiplicative logarithmic corrections we
pointed out.2,19 Using the form

^m2~L !&5AL2h~ ln b8L !22r , ~11!

we obtainh50.243(4) andr 50.038(5). We show the fit-
ting curve obtained by using Eq.~11! in Fig. 2. This value of
h is a little bit smaller than the theoretical predictio
1/4 ~50.25!. Our logarithmic-correction exponentr is
compatible with Janke’s resultr 50.0560(17) for thermody-
namic data,19 but different from the theoretical predictio
r 521/16.2

IV. CLOCK MODEL

Next turn to theq-state clock model. Because of the r
flection symmetry, we confine ourselves to the case of e
q. Then, the same procedure can be used as theXY model.
One thing we should have in mind is that the axis of t
vector e1 should be chosen from one ofq directions in Eq.
~1! or the middle of two of them. We plot the high
temperature transition temperatureT2(L) of the six-state
clock model as a function ofl 22 in Fig. 3. The estimate o
T2 is 0.9008~6!, which is more precise than the previou
estimates: 0.92~1! ~Ref. 11! and 0.90~Ref. 12!. The plot of
^m2(L)& at T2(L) as a function ofL for the six-state clock
model is given in Fig. 4. The estimate ofh is 0.243~4! by the
analysis of the multiplicative logarithmic corrections, E
~11!, and the exponentr is estimated as 0.037~5!.

For the second-order transition, the curves of the e
tence probabilityEp of different sizes cross atTc as far as the
corrections to FSS are negligible; this is the same as
behavior of the Binder ratio.20 For the KT transition, how-
ever, TKT is not the crossing point but the spray-out poi
Therefore, T2 can be searched only from the hig

FIG. 2. Logarithmic plot of̂ m2(L)& at TKT(L) of the 2D XY
model forL58, 16, 32, 64, 128, 256, and 512.
18440
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temperature side andT1 only from the low-temperature side
The value ofEp at T1 is close to 1. In principle, we can us
the same procedure as the study ofT2; we may change the
setting value ofEp , 1/2, to a higher one by introducing
biased random walk. However, it is difficult to resolve th
size dependence for lower temperatures. Therefore, we
ploy a slightly different approach for an analysis of the pha
transition atT1. When judging whether clusters are percola
ing or not, we consider another type of clusters. Instead
choosing the vectore1 randomly in Eq.~3!, we choose the
vectore1 as

M5uMue1 , ~12!

with M5( iSi , or more generally we may choosee1 such
that

M5uMu~e1cosf1e2sinf!, ~13!

with some fixed anglef. With this choice, the existenc
probability for the percolation of onlye (1) ~or e (2)) Ising
spins holds the same FSS property as the totalEp . As a
result, we can control the value ofEp

(1) at T1 so as to apply
the FSS analysis easily with an appropriatef.

The low-temperature transition temperatureT1(L) of the
six-state clock model obtained by the above modified
proach is plotted as a function ofl 22 also in Fig. 3. As the
anglef in Eq. ~13!, we have usedp/3. Our estimate ofT1 is
0.7014~11!, which is more precise again than the previo
estimates: 0.68~2! ~Ref. 11! and 0.75~Ref. 12!. The plot of
^m2(L)& at T1(L) for the six-state clock model is also give

FIG. 3. Plots ofT1(L) and T2(L) of the 2D six-state clock
model forL58, 16, 32, 64, 128, 256, and 512, wherel 5 ln bL.

FIG. 4. Logarithmic plots of̂m2(L)& at T1(L) andT2(L) of the
2D six-state clock model forL58, 16, 32, 64, 128, 256, and 512
5-3
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in Fig. 4. The estimate ofh is 0.113~3! by the analysis of the
multiplicative logarithmic corrections, Eq.~11!, and the ex-
ponentr is estimated as 0.017~4!. The previous estimates o
h are 0.100~Ref. 11! and 0.15~Ref. 12!.

We have also made simulations forq58 andq512. The
estimates of the transition temperaturesT1 ,T2 and those of
h(T1) andh(T2) for q56, 8, 12, and̀ ~theXY model! are
tabulated in Table I. The 1/q2 dependence of the transitio
temperatures and exponents are shown in Fig. 5. There
exact results forq54 are also given: that is, the Ising singu
larity at Tc5@ ln(A211)#2151.1346 withh51/4. The tran-
sition temperatureT1 becomes smoothly lower with largerq;
in the lowest order we find thatT1}1/q2, which is consistent
with the theoretical prediction.3 The critical exponenth at T2
is a universal constant and compatible with the theoret
predictionh51/4. The estimates of the critical exponenth
at T1 remarkably coincide with the theoretical predictionh
54/q2: 1/950.111 for q56, 1/1650.0625 for q58, and
1/3650.0278 forq512.

V. SUMMARY AND DISCUSSIONS

To summarize, we have extended the PCC algorithm15 to
the study of theXY and clock models. Wolff’s idea of the
embedded cluster formalism14 is used for treating the system
with the vector order parameter. The KT transitions of the
XY and clock models are studied by using a FSS anal
based on the KT form of the correlation length. For deali
with the low-temperature transition temperatureT1, we have
employed a slightly modified algorithm. Investigating theq
56,8,12 clock models, we have systematically confirmed
prediction ofh(T1)54/q2. We have shown that small loga
rithmic corrections are present in the KT transitions. T
sign of the logarithmic-correction exponentr is positive for
all cases of theXY model and the clock models at bothT1
andT2, which is compatible with Janke’s result,19 but differ-
ent from the theoretical prediction thatr is negative.2 The

TABLE I. Transition temperatures and exponentsh for the 2D
q-state clock model.

T2 h(T2) T1 h(T1)

q56 0.9008~6! 0.243~4! 0.7014~11! 0.113~3!

q58 0.8936~7! 0.243~4! 0.4259~4! 0.0657~2!

q512 0.8937~7! 0.246~5! 0.1978~5! 0.0270~5!

XY(q5`) 0.8933~6! 0.243~4! ——— ———
s.

18440
he

al

is
g

e

e

present precise numerical results may stimulate the refi
renormalization-group study of the KT transitions.

In the previous numerical studies of the KT transition
one might resort to a big scale calculation using an exten
computer resource,5 or one might use some special bounda
conditions.8 It is due to the subtlety of the KT phase trans
tions; that is,TKT is not the crossing point but the spray-o
point of the existence probability or the Binder parame
Moreover, the low-temperature transitionT1 for the clock
model is difficult to study because the system is nearly
dered; it is more difficult for largerq. We should stress tha
using the present efficient method of numerical simulati
we have successfully made a systematic study of theXY and
clock models with much less effort.

Our formalism of the vector order parameter is easily
tended to the generalO(n) model, where percolation ofn
types of Ising spins will be considered. Then, more proble
of interest can be studied by the PCC algorithm. The P
algorithm can be also applied to the quantum Monte Ca
simulation with the cluster algorithm.21,22 It will be interest-
ing to compare the present result with the quantumXY
model.
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FIG. 5. Transition temperatures and critical exponents as a fu
tion of 1/q2 for the 2Dq-state clock model.
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