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Probability-changing cluster algorithm for two-dimensional XY and clock models
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We extend the newly proposed probability-changing clug®eCQ Monte Carlo algorithm to the study of
systems with the vector order parameter. Wolff's idea of the embedded cluster formalism is used for assigning
clusters. The Kosterlitz-Thoule$KT) transitions for the two-dimension&D) XY andg-state clock models
are studied by using the PCC algorithm. Combined with the finite-size scaling analysis based on the KT form
of the correlation lengthé<exp/\T/Txt—1), we determine the KT transition temperature and the decay
exponenty asTyx;=0.8933(6) andy=0.243(4) for the 2DXY model. We investigate two transitions of the
KT type for the 2Dg-state clock models witly=6,8,12 and confirm the prediction of=4/g? at T, the
low-temperature critical point between the ordered Xnilike phases, systematically.
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[. INTRODUCTION nents for the second-order phase transition precisely with
less numerical effort. The PCC algorithm was also applied to
The two-dimensional2D) XY model shows a unique the 2D site-diluted Ising model, where the crossover and the
phase transition, the Kosterlitz-Thoulg#eT) transition®? It self-averaging properties were studidThe advantage of
does not have true long-range order, but the correlation funaising the PCC algorithm in the study of random systems is
tion decays as a power of the distance at all the temperaturess follows: The sample-dependefg(L) for the finite sys-
below the KT transition point. Joset al® studied the effect tem with linear sizelL is important for taking the sample
of the g-fold symmetry-breaking fields on the 20Y model;  average, and the PCC algorithm is suitable for getting the
this is essentially the same as treating tipstate clock sample-dependerit,(L).
model, where only discrete values are allowed for the angle There are a lot of interesting questions about the exten-
0, of the XY spins such that sion of the PCC algorithm(i) Can the PCC algorithm be
used for the problem of the vector order parameter, such as
6,=2mp;/q with p;=012...,9g-1. (1) the XY model?(ii) Can it be applied to an analysis of a
transition of the KT typeTiii) Can it work even if the system
In the limit g— we get theXY model. It was shown that shows two or more phase transitions?
the 2D g-state clock model has two phase transitions of the The purpose of the present paper is to answer these ques-
KT type atT, andT, (T,<T,) for g>4. There is an inter- tions. We extend the PCC algorithm so as to treat systems
mediateXY-like phase between a low-temperature orderedvith the vector order parameter. The rest of the paper is
phase T<T,) and a high-temperature disordered phage ( organized as follows. In Sec. I, we formulate the extension
>T,). It was predicted that the decay critical exponent of the PCC algorithm for the vector order parameter. In Sec.
varies fromyp=1/4 atT, to »=4/9? at T;. [1l, the KT transition of the 2DXY model is studied with the
Most of the above theoretical analyses relied on the renoifinite-size scaling(FSS analysis based on the KT form of
malization group argument, and they are not exact. Theréhe correlation length. In Sec. IV, we study the KT transitions
have been extensive numerical studies of the 2D classicaif the 2D clock models. We investigate both phase transi-
XY model?~1%In contrast, only a limited number of numeri- tions atT; andT, for theq=6,8,12 clock models. The sum-
cal works have been reported on tpstate clock model*'?  mary and discussions are given in Sec. V.
and the accuracy was not good enough especially for the
low-temperature phase transition. There have been no sys-
tematic studies to check the prediction »fT,) =4/q°.
In numerical studies, efficient algorithms are important
for getting the necessary information. The cluster update al- Our Hamiltonian is given by
gorithms of the Monte Carlo simulatibh'*are examples of
such efforts, and they are useful for overcoming the prob-
lems of slow dynamics. Recently we proposed an effective H=— JE S-S, 2)
cluster algorithm, which is called the probability-changing {0
cluster (PCQ algorithm, of tuning the critical point
automatically®® It is an extension of the Swendsen-Wangwhere S is a planar unit vector (ca%,siné) at sitei; 6,
algorithm?®® but we change the probability of a cluster updatetakes the value of0,27) for the XY model and the value
(essentially, the temperatyrdepending on the observation given in Eq.(1) for the g-state clock model. The summation
whether clusters are percolating or not percolating. Wes taken over the nearest-neighbor pdirg).
showed the effectiveness of the PCC algorithm for the Potts In order to extend the PCC algorithm to systems with the
models® determining the critical point and critical expo- vector order parameter, we use Wolff's idea of the embedded

II. PCC ALGORITHM FOR VECTOR ORDER
PARAMETER
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cluster formalismt* We project the vectolS, onto a ran- 12
domly chosen unit vectog, and another unit vectas,, per- - -
pendicular toe;, as 1/
a

S=e.cosp; +esing;, 3 Wz '
where ¢; is the angle measured from the axis of the vector 0.8y
e,. Then, the Hamiltonian, Ed2), is rewritten as

0.6f
E (J(l) (1) (1)+J(2) (2) (2)) (4) . . . , . .
an) 0 0.02 0.04 0.06

. r
with positive effective couplings
FIG. 1. Plot of Tyr(L) of the 2D XY model forL=8, 16, 32,

JP=J|cosepl|cose;|, IP=Jlsinglsing;| (5) 64, 128, 256, and 512, whete-In bL.

for two sets of Ising variablege!"} and{e{?)}. Formally, we
can restrict ourselves to the regipd,=/2) for {¢;}, and we
write the partition function as

(i) Choose a unit vectag;, randomly.(iii ) Construct the KF
clusters fore™ and €? using the probability, Eq(7), and
check whether the system is percolating or not. Flip all the

spins on any KF cluster te-1 or —1 for bothe® ande(®
Z= {d¢} E exp B2, ‘]i(jl)fi(l)fj(l)) Ising spins(iv) If the system is percolatingot percolating,
{eM=z1} LD decreasgincreasg 8 by A3 (>0). (v) Go back to the pro-
cess(ii).
X > ex ,32 J(Z) (2) (2)) (6) As A B becomes small, the distribution ¢f becomes a
{eP==x1 (o sharp Gaussian distribution around the mean va@pg.),

which depends on the system sizeWe approach the ca-

with 5=1KkgT. Then, we can use the Kasteleyn-Fortuin nonical ensemble in this limit, and the existence probability
(KF) cluster representation for the Ising sptid.o make the , the probability that the system percolates, becomes 1/2
KF cluster, we connect the bonds of parallel Ising spins with at,B (L).

C

probability

p(12=1— exp — 28I12). 7) lll. XY MODEL

We have made simulations for the classigd model on
a square lattice with system sizZes- 8, 16, 32, 64, 128, 256,
and 512. After 20000 Monte Carlo sweeps of determining
Bc(L) with gradually reducingA 8, we have made 10000
Monte Carlo sweeps to take the thermal average; we have
ade 100 runs for each size to get better statistics and to
evaluate the statistical errors. As for the criterion to deter-
mine percolating, we have employed the topological’fui
in the present study. The topological rule is that some cluster
winds around the system in at least one of Ehdirections in
D-dimensional systems.

In the PCC algorithnt® the cluster representation of the
Ising model is used in two ways. First, we flip all the spins
on any KF cluster to one of two states, thatis] or —1, as
in the Swendsen-Wang algoritht Second, we change the
KF probability, Eq. (7), depending on the observation
whether clusters are percolating or not. It is based on the fa
that the spin-spin correlation functio@(r;—r;) becomes
nonzero for|r,—r | - at the same point as the percolation .
threshold. For the(Y model in the embedded cluster formal-
ism, the spin-spin correlation function is written as

G(ri—1))=(S-S;)=(|cose;| |cosg;| Gi(l)fj(l)> Let us start with the size dependence of the transition
temperature. We use the FSS analysis based on the KT form
+(|sing;| |sin ;| €?el®) of the correlation length,
=(A;0D(r;, 1))+ (B 0P(r,r)), (8 gocexp(c/t), (9)

where (- - -) represents the thermal average. The functiorwith t=(T—Ty7)/Tkr. Using the PCC algorithm, we locate
O(ri,rj) is equal to 1(0) if the sitesi andj belong to the the temperatur@y+(L)=1/kgB.(L), the existence probabil-
same(dlfferent) cluster, andA;; andB;; are some constants. ity E, of which is 1/2. Then, using the FSS formf, that

Thus, the system is regarded as percolatlng”rf or e s, E,=E,(£/L), we have the relation

Ising spins are percolating. When treating the cluster spin

update, one may consider Ising spins of a single type pro- c?Tyr

jected onto a randomly chosen axis, as in the original Wolff's Tir(L)=Tyrt m (10)

proposaf:* However, we should consider Ising spins of both

types perpendicular to each other for checking the percolawe plot Tr(L) as a function ofl ~2 with |=InbL for the

tion. best-fitted parameters in Fig. 1. We represent the temperature
The procedure of Monte Carlo spin update is as follows:in units of J/kg. The error bars are smaller than the size of

(i) Start from some spin configuration and some valugof the marks. Our estimate df; is 0.89336); the number in
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0.1
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FIG. 2. Logarithmic plot ofm?(L)) at Tyr(L) of the 2DXY
model forL=8, 16, 32, 64, 128, 256, and 512.

the parentheses denotes the uncertainty in the last digits.
have estimated the uncertainty by th®test of the data for
100 samples. This value is consistent with the estimates
recent studies: 0.892 (1) by Monte Carlo simulatichand
0.894 by short-time dynamicsThe constant, in Eq.(10), is
estimated ag=1.732).

Let us consider the magnetizatiom?(L)) at Ty(L) to
discuss the critical exponent In Fig. 2, we plot{m?(L)) as
a function ofL in a logarithmic scale. We expect a FSS of the
form (m?(L))o<L "7, but there are small corrections. The im-
portance of the multiplicative logarithmic corrections were
pointed out*® Using the form

(m?(L))=AL""(Inb’L)" %, (11

we obtain=0.243(4) andr =0.03§5). We show the fit-
ting curve obtained by using E¢L1) in Fig. 2. This value of
7 is a little bit smaller than the theoretical prediction,
1/4 (=0.25. Our logarithmic-correction exponent is
compatible with Janke’s result=0.0560(17) for thermody-
namic datzalL,9 but different from the theoretical prediction
r=-—1/16:

IV. CLOCK MODEL

Next turn to theg-state clock model. Because of the re-
flection symmetry, we confine ourselves to the case of eve
g. Then, the same procedure can be used axXtienodel.

One thing we should have in mind is that the axis of the

vectore; should be chosen from one gfdirections in Eq.
(1) or the middle of two of them. We plot the high-
temperature transition temperatuig(L) of the six-state
clock model as a function df 2 in Fig. 3. The estimate of
T, is 0.90086), which is more precise than the previous
estimates: 0.92) (Ref. 11 and 0.90(Ref. 12. The plot of
(m?(L)) at T,(L) as a function ofL for the six-state clock
model is given in Fig. 4. The estimate gfis 0.2434) by the
analysis of the multiplicative logarithmic corrections, Eq.
(11), and the exponentis estimated as 0.089).

For the second-order transition, the curves of the exis-

tence probabilityE, of different sizes cross dt; as far as the
corrections to FSS are negligible; this is the same as th
behavior of the Binder rati®® For the KT transition, how-
ever, Tkt is not the crossing point but the spray-out point.
Therefore, T, can be searched only from the high-
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FIG. 3. Plots of T4(L) and T,(L) of the 2D six-state clock
model forL=8, 16, 32, 64, 128, 256, and 512, whéreln bL.

W@mperature side ant; only from the low-temperature side.

The value ofg, at T, is close to 1. In principle, we can use

%he same procedure as the studyTef we may change the

setting value ofg,, 1/2, to a higher one by introducing a
biased random walk. However, it is difficult to resolve the
size dependence for lower temperatures. Therefore, we em-
ploy a slightly different approach for an analysis of the phase
transition atT,. When judging whether clusters are percolat-
ing or not, we consider another type of clusters. Instead of
choosing the vectoe; randomly in Eq.(3), we choose the
vectore; as

M=|M|e,, (12

with M=X;S, or more generally we may choosg such
that

M=|M|(e,cos¢+e,sing), (13

with some fixed anglep. With this choice, the existence
probability for the percolation of onlg® (or €?) Ising
spins holds the same FSS property as the thial As a
result, we can control the value &" at T, so as to apply
the FSS analysis easily with an approprigie

The low-temperature transition temperattrgL) of the
six-state clock model obtained by the above modified ap-
Rroach is plotted as a function bf? also in Fig. 3. As the
angle¢ in Eq.(13), we have usedr/3. Our estimate of ; is
0.701411), which is more precise again than the previous
estimates: 0.62) (Ref. 11) and 0.75(Ref. 12. The plot of
(m?(L)) atT,(L) for the six-state clock model is also given

1_

at T,(L)

0.6r

<mA(L)>

0.2f

0.1

e s
FIG. 4. Logarithmic plots ofm?(L)) at T,(L) andT,(L) of the

2D six-state clock model for =8, 16, 32, 64, 128, 256, and 512.
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TABLE |. Transition temperatures and exponemtdor the 2D [ los
g-state clock model. L - '
1 -— T2 ,//’ E
T, 7(T2) T: 7(T1) el = 10.4
= I
q==6 0.90086) 0.2434) 0.701411) 0.1133) 3 n(To) — 1 =
q=8 0.89367) 0.2434) 0.42594)  0.06572) o - A
q=12 0.89377) 0.245  0.19785)  0.027G5) i =~
XY(q=«)  0.89336) 0.2434) i 4/"/
% 0.02 0.04 006 °

in Fig. 4. The estimate of is 0.1133) by the analysis of the
multiplicative logarithmic corrections, Eq11), and the ex- FIG. 5. Transition temperatures and critical exponents as a func-
ponentr is estimated as 0.014). The previous estimates of tion of 1/ig* for the 2Dg-state clock model.
7 are 0.100(Ref. 11 and 0.15(Ref. 12.

We have also made simulations fp=8 andq=12. The present precise numerical results may stimulate the refined
estimates of the transition temperatues T, and those of renormalization-group study of the KT transitions.
7(T,) and5(T,) for g=6, 8, 12, and~ (the XY mode) are In the previous numerical studies of the KT transitions,
tabulated in Table I. The 4f dependence of the transition one might resort to a big scale calculation using an extensive
temperatures and exponents are shown in Fig. 5. There, te@mputer resourceor one might use some special boundary
exact results fog=4 are also given: that is, the Ising singu- conditions? It is due to the subtlety of the KT phase transi-
larity at TC:[|n(\/§+ 1)]~1=1.1346 with»=1/4. The tran- tions; that is,Txr is not the crossing point but the spray-out
sition temperatur@; becomes smoothly lower with larggr point of the existence probability or the Binder parameter.
in the lowest order we find that; = 1/q?, which is consistent Moreover, the low-temperature transitidn for the clock
with the theoretical predictioAThe critical exponenty at T, ~ model is difficult to study because the system is nearly or-
is a universal constant and compatible with the theoreticaflered; it is more difficult for largeq. We should stress that
prediction = 1/4. The estimates of the critical exponent using the present efficient method of numerical simulation,
at T, remarkably coincide with the theoretical predictign ~We have successfully made a systematic study oktifeand

=4/g% 1/9=0.111 forq=6, 1/16=0.0625 forq=8, and  clock modeIS'With much less effort. ' '
1/36=0.0278 forq=12. Our formalism of the vector order parameter is easily ex-

tended to the gener@(n) model, where percolation af
types of Ising spins will be considered. Then, more problems
of interest can be studied by the PCC algorithm. The PCC
To summarize, we have extended the PCC algorititm  algorithm can be also applied to the quantum Monte Carlo
the study of theXY and clock models. Wolff’s idea of the simulation with the cluster algoritht:?*It will be interest-
embedded cluster formalisfhis used for treating the system ing to compare the present result with the quantd
with the vector order parameter. The KT transitions of the 2Dmodel.
XY and clock models are studied by using a FSS analysis
based on the KT form of the correlation length. For dealing
with the low-temperature transition temperatiire we have
employed a slightly modified algorithm. Investigating the We thank N. Kawashima, H. Otsuka, M. Itakura, and Y.
=6,8,12 clock models, we have systematically confirmed thezeki for valuable discussions. Thanks are also due to M.
prediction of »(T,)=4/g%. We have shown that small loga- Creutz for bringing our attention to the clock model having
rithmic corrections are present in the KT transitions. Thetwo phase transitions. The computation in this work has been
sign of the logarithmic-correction exponents positive for  done using the facilities of the Supercomputer Center, Insti-
all cases of theXY model and the clock models at bothh ~ tute for Solid State Physics, University of Tokyo. This work
andT,, which is compatible with Janke’s restiftbut differ-  was supported by a Grant-in-Aid for Scientific Research
ent from the theoretical prediction thatis negativé The  from the Japan Society for the Promotion of Science.

V. SUMMARY AND DISCUSSIONS
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