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Dynamical properties of liquid Al near melting: An orbital-free molecular dynamics study
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The static and dynamic structure of liquid Al is studied using the orbital die@itio molecular dynamics
method. Two thermodynamic states along the coexistence line are considered, naBély and 1323 K, for
which x-ray and neutron scattering data are available. A kinetic-energy functional which fulfills a number of
physically relevant conditions is employed, along with a local first-principles pseudopotential. In addition to a
comparison with experiment, we also compare abrinitio results with those obtained from conventional
molecular-dynamics simulations using effective interionic pair potentials derived from second-order pseudo-
potential perturbation theory.
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[. INTRODUCTION Jacucciet al® calculated the static structure factor of liquid
aluminum by means of MD simulations; their results showed

Molecular dynamic§MD) methods have a long tradition fair agreement with experiment, with a main peak somewhat
as a useful technique to study the properties of liquid syshigher. Also, Hafner and Jattk studied the liquid static
tems, and the last 15 years have witnessed a large spreadstructure of aluminum by means of an effective interionic
the application ofab initio molecular-dynamics methods, pair potential derived from arab initio pseudopotential
based on density-functional theory. This theory allows theoriginally developed by Harrisoff, whereas the correspond-
calculation of the ground-state electronic energy of a collecing liquid static structure was derived by means of MD simu-
tion of atoms for given nuclear positioh$,and also yields lations. In their calculation of the pseudopotential, the au-
the forces on the nuclei via the Hellmann-Feynman theorenthors used the coefficient for the exchange-correlation
It enables one to perform molecular-dynamics simulationgpotential between the core and valence electrons as a fitting
where the nuclear positions evolve according to classical mgparameter in order to obtain agreement with the experimental
chanics, whereas the electronic subsystem follows adiabatstatic structure factor.
cally. Whereas the previous work dealt only with the static

In this paper we present the results of ab initio  properties of liquid Al near melting, the work of Ebbsjo
molecular-dynamics simulation of the static and dynamicet al.” also considered some dynamic properties. In fact,
properties of liquid Al at thermodynamic conditions aroundthese authors performed MD simulations for three different
the triple point. Liquid aluminum has usually been consid-interionic pair potentials, two of them based on nonlocal
ered as a simple metal in which the core electrons formingseudopotentials and the other one based on the local Ash-
the ion can be clearly distinguished from the valence eleceroft's pseudopotentidf which showed a rather different
trons; moreover, the core electrons do not significantly overshape, especially outside the repulsive core. Despite these
lap with those of neighboring ions. Therefore, the systendifferences, all approaches gave fairly similar results for the
consists of a binary mixture of ions and valence electronsliquid static structure which agreed well with the experimen-
where the former may be treated classically whereas thel data, whereas the main discrepancies appeared in the dy-
electrons must be treated quantum mechanically. namic structure.

However, in wide regions of the density-temperature A rather different approach was followed by Chihara and
plane, simple metals have usually been treated as an effectiv®-workerst**® Their quantum-hypernetted-chai®HNC)
one-component fluid of ions interacting by means of densitymethod treats ions and electrons on a basically equal footing
dependent effective interionic pair potentials, derived fromby combining liquid-state integral equations with the
ionic pseudopotentials by applying second-order perturbatiodensity-functional formalism. Moreover, it does not rely on
theory. This approach, which will be referred to as the linearthe pseudopotential ideas, gives rise to a self-consistent
response theoryLRT), has often been used as the startingscheme to determine the liquid static structure, and yields an
point for the study of the static and dynamic properties of theeffective interionic pair potential which depends on the par-
simple metal$=® It has also been the approach followed in ticular liquid static structure.
most studies on the static structure of liquid alumintrt. Although the LRT approach has produced reasonable re-
Among them, we mention the work of Dageasal® who  sults for liquid alkali metals, when the valence of the system
obtained an effective interionic pair potential, derived from ais increased, its validity becomes more questionable. In ad-
nonlocal pseudopotential which was constructed from the vadition, even for alkali metals the LRT is less justifiable for
lence charge density induced by an*Alion placed in an thermodynamic states approaching the critical point, and it is
electron gas at the metallic density. From this potentialcertainly wrong near the critical point. This limitation of the
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“standard” theory estimulated the use of first-principlesthe available experimental data. Finally some conclusions
molecular-dynamics techniqué®;?® where the electronic are drawn and possible ideas for further improvements are
density, total energy and forces are obtained by using theuggested.

Kohn-Sham (KS) formulation of the density functional

theory (DFT).? However, the computational demands of Il. THEORY

theseab initio methods, where KS orbitals are used to de- ) .

scribe the electronic density and to compute the electronic The tOI‘_"‘l potential energy .Of a system Ir_bfclassmal lons
kinetic energy exactly, grow very rapidly with the system enclosed in a volum&, and interacting _W'tme:NZ va-
size, and their memory requirement is also quite large. Thes§"Nce electrons through a local electron-ion potent(a), is
considerations have restricted the sizes of the systems stufffitten, within the Born-Oppenheimer approximation, as the
ied so far to about 60 atoms, and have limited simulatiorptUM Of the direct ion-ion Coulombic interaction energy, and
times to around 2—5 ps in the cases of Rb, Cs, and®H, the ground-state energy of the electronic systenj sybject to
and 64—128 atoms, with simulation times of 0.15—0.85 ps irthe external potential created by the ionge{r.{R})

the case of N&° These limitations can be at least partly =SN v (|r—Ri|),

overcome if the exact calculation of the electronic kinetic

energy is given up in favor of an approximate kinetic energy . 72 . ..

functional of the electronic density. Within this schéfhthe EGR} =2 == +Eglpg(N,Ved T, {RD], (D)
number of variables describing the electronic state are enor- <R~ RJ|
mously reduced, especially for large systems, enabling the

study of larger systems for longer simulation times. This ap_vvherepg(r) is the ground-state electronic density @®dare

proach was already used for several studies on s%ﬁids,the i_onic po_siti_ons_. Accqrding_ to LRT, the ground-state elec-
clusters?® and some liquid metald.i, Na, Mg, and A) near tronic density is given, in reciprocal space, by
melting?*?° We recently presentéfian application of this B
method to study the static structure and some dynamic prop- p'éRT(a) = ( 2 eiqu) nRT(q)=F(q)n"*R"(q) 2)
erties of expanded liquid Cs, for which experimental data is i
available?® In that study 125 particles were used, and the
simulation time was 17—35 ps after an equilibration time of n"RT(q)=x(a,po)v(q), ®)
11-25 ps. Also, another stuthwith 205 particles for liquid _ _ _
Al gave results for the static structure in good agreement'n€rex(d,po) is the response function of a uniform electron
with experiment. Recently, Antat al2® also applied the 9as Of densitypo=NZ/V. Accordingly, the ground-state
same scheme to study the ionic and electronic static structul€ctronic density is a superposition of spherically symmetric
of liquid Al near melting, leading to results for the static PSe€udoatomic densities around each ion, i.e.,
structure factor in excellent agreement with experiment.

The static structure factor of liquid Al has been measured LRT, > _ LRT/ |7 _B.
by both neutroff*°and x-ray'*diffraction. The dynamical Pg (1) 2 n(r=RD @
structure of liquid Al near the triple point was also investi- ) ]
gated recently by Scopigret al3? using inelastic x-ray scat- and the electronic ground-state energy is
tering (IXS). Note that the high value of the adiabatic sound
speed for liquid Al &4800 m/s) prevents the use of the LRT _ _ -
inelastic neutron-scattering technique for investigating the Eg E”[p°]+2’j Pinc Ri) ©
collective excitations for smalf values (roughly, for g
<q,, with g,~2.70 A~* being the main peak position of Gina(@) = x(d,po)v2(q), (6)
the static structure factbrThose IXS experiments investi-
gated the wave-vector region Of)5<q=<0.5,, obtaining where E [po] is a s'_[ructure-independent_ term. Within the
several dynamical features previously observed in the liquid-RT, the total potential energy can be written as a sum of a
alkali metals, such as the existence of collective excitationstructure-independent term and a sum over pairs of an effec-
up to q values larger that Ocfy, which exhibit a positive tive interionic pair potentialpes(R) =Z%/R+ ¢ing(R).
dispersion in the sound velocity with respect to the hydrody- Alternatively, DFT shows that the ground-state electronic
namic value. density can be obtained by minimizing the energy functional

The layout of the paper is as follows. In Sec. Il we briefly E[p], and the minimum value of the functional gives the
describe the theory used in the orbital-fred initio  ground-state energy of the electronic system. The energy
molecular-dynamic§OF-AIMD) simulations, giving some functional can be written
technical details, and focusing on the two problematic issues,
namely, the kinetic-energy functional and the local pseudo- Eg[p(F)]=TS[p]+Eex{p]+EH[p]+EXC[p] (7)
potentials needed to characterize the ion-electron interaction.
In Sec. Ill we present and discuss the results ofahenitio where the terms represent, respectively, the electronic kinetic
simulations; moreover, they are compared with further clasenergyT[ p] of a nhon-interacting system of dens}iyf), the
sical molecular dynamic6CMD) simulations that we have energy of interaction with the external potential due to the
performed based on LRT and the QHNC potentials, and withons,
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TABLE I. Thermodynamic states studied in this work, along OF . L
with some simulation details. o =2f dr w(r)g(r)—2uVcy=0,
0 Vv
TK) N p(A™%  EcuRyd)
J N N S ==
OF-AIMD 943 500 0.05290 30.25 _f:4J dr w(r)g(r)eC —4uVcg=0 (14
OF-AIMD 1323 500 0.05071 29.25 JCq v
LRT-CMD 943 600 0.05290 . S
LRT-CMD 1323 500 0.05071 for the ground-state density. The minimization of the func-

tional is performed every time step of the simulation, using a

QHNC-CMD 933 800 0.05331 simple quenching method: a fictitious “coefficients’ kinetic
energy” 7=1iM 3s|cg|? is introduced, whereM, is the
o ) “coefficients’ mass,” and the dot denotes the derivative with
Eod pl= f dr p(r)Veyr), (8) respect to the fictitious “coefficients’ timet,,. This kinetic
energy, rewritten in terms of the sfts}, together with the
the classical electrostatic enerfytartree term “potential energy” F, leads to the following “equation of
motion” (Vcge{cg}):
1 . _p(Np(s
EH[p]=—derdsM, C)] . e e -
2 [r—s Mccg,=—2f drw(r)g(r)e®"+2uVeg. (15
\%

and the exchange-correlation energy p], for which we

will adopt the local density approximation. These equations are solved numerically using the Verlet
leapfrog algorithm* with an electronic time stept.. The
A. Technical details velocities are quenched at every step until the minimum is

. - . reached within preset tolerances dmand the gradient of.
Given an explicit functionall{[p], we can proceed 10 e chemical potential is not known in advance of the
minimize Eg with respect t(r); however, in order to main- - minimization, but replacing in Eq. (15) by its stationary
tain p(r)=0 everywhere, as our system variable we havealue fdru(r)n(r)/fdrn(r), at each time step, gives a good
used an effective orbital(r) defined asp(r)=(r)?, with  convergence to the ground state. For the present simulations,
real (r). We expand/(r) in plane waves compatible with We have usedl.=1.85<10" Hartreex(a.u.)’ and aAt,
the simple cubic periodic boundary conditions of the simu-=1X10"* ps.
lation: The interatomic forces are obtained from the electronic
ground state via the Hellman-Feynman theoreﬁ]
W)= cgeie 10 = ~V&Eglp(r) {R}], (i=1,...N), and Newton's equa-
G tions d?R, /dt?=F; /M, are solved numerically for the mo-
1 o t?on of the ions using thg Verlet leapfrog algorithm with a
cG‘zvadr ()T, (11) time step ofAt=1.5X10""° ps.

B. Kinetic-energy functional

. 27 L . . o .
G=—(ny,ny,N3), (12 The kinetic-energy functiondl; is a critical ingredient of
L the energy functional. It is generally considetethat the
whereL stands for the side of the cube. This expansion i&/0n Weizsaker term
truncated at wave vectors corresponding to a given cutoff 1
er?ergy,ECut, who*se vglue is given in Table I. A redl im- TW[p(F)]= §f dF|Vp(F)|2/p(F) (16)
plies thatc_g=cg, with a realcy; consequently only the

half-set{cg}’s need be treated as variables. is essential for a good description of the kinetic energy. It
The energy functional must be minimized with the nor-gpplies in the case of rapidly varying densities, and it is exact
malization constraing[ p(r)]= [ydrp(r)=Ng which is im-  for one- or two-electron systems. Further terms are usually
posed via the Lagrange multipligt, leading to the Euler- added to the functional in order to reproduce correctly some
Lagrange equation exactly known limits. In the uniform density limit, the exact
kinetic energy is given by the Thomas-Fermi functional
6F SE—unG] OE

p(r)  dp(r)  Sp(r)
for the ground-state density. The minimization is performed

with respect to thdcg}'s, instead of the electronic density, wherekg(r)=(372)¥3p(r)*? is the local Fermi wave vec-
leading to the equations tor. In the limit of almost uniform density, the LRT is correct,

—u=p(—p=0 @13

< B .
TTF[p(r)]:Ef dr p(r)ke(r)=, (17
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with a response function corresponding to a noninteracting Those two last properties will be important in the case of
uniform electron gas, given by the Lindhard function expanded liquid metals because of the appearance of large
x.(d,p0)- inhomogeneities in the atomic distribution, and therefore in
Stimulated by the advantages of the orbital-fedeinitio  the electron density, with regions where it becomes very
simulations, there has been a renewed interest in the devedmall. Indeed, this situation has already been observed in the
opment of accurate kinetic-energy functionals. With Perrot'sab initio simulations of expanded liquid N&.In systems for
work as the basi®& Madden and co-workets® developed ~ which the appearance of isolated atoms or clusters is likely,
functionals which correctly recover the Thomas-Fermi andthe von Weizseker term would be appropriate, and a func-
linear-response limit¥) and also included the quadratic tional with a value ofg as close as possible to 4/9 would be
responsé® Later, Wanget al2® investigated these function- recommended.
als and proposed a linear combination of them as a suitable In the present simulations we have usgd 0.51, which
form for T; more recently they also derived another expres-in the limit po—0 givesC=0.046 and guarantees, at least

sion which includes density-dependent kernels. Unfortufor the thermodynamic states considered, thét) ¢(r) re-

nately, an undesirable feature of these functionals is that theyains finite and not too large everywhere so that the energy
are not positive definite, so that a minimization of the energyminimization can be achieved.

functional can lead to an unphysical negative kinetic energy.
Chacm, Alvarellos, and Tarazoffdeveloped a different _
type of kinetic-energy functional, which employs an “aver- C. Pseudopotentials

aged density” and recovers the uniform and LRT limits.  Ap initio simulations using the full Kohn-Sham approach
Their functional was investigated and generalized byks-AIMD) usually employ nonlocal pseudopotentials ob-
Garce-Gonzéez et al*! These functionals have the merit of tained by fitting to some properties of the free atSnmn an
being positive definite, but they are somewhat complicated t@pjtal-free approach where the electronic density is the vari-
apply and require ordeN more fast Fourier transforms apjle, such nonlocal pseudopotentials, which act differently
(FFT’s) than simpler functionals, and this diminishes the ad-g, different angular momentum components of the orbitals,
vantage of the orbital-free approach over the full Kohn-Shanyannot be used. Instead, local pseudopotentials must be de-

methoq. o veloped which include an accurate description of the elec-
_In this paper we use a simplification of the averaged denronic structure in the physical circumstances of interest.

sity approact;" with the kinetic energy given by When constructing a pseudopotential to be used for a lig-
uid metal, it seems more appropriate to use a reference state

Ts=Tulpl+Tglpl, 18 \which closely resembles the environment of an atom in the

3 metal, which is quite different from free space. The pseudo-

_ 2| 47 A (F\53-28T (72 potential used in this simulation has been obtained using the

Telp] 10f drp(r) k()™ (19 neutral pseudoatom metHtdn which the reference state is

an atom at the center of a spherical cavity in the positive

~ o 0.3 . o> = background of a uniform electron gas. The density of the gas

k(r)=(2kg)* | dsk(s)wg(2kg|r—s]), (200 s taken to be the mean valence electron density of the sys-
tem of interest, in our case the liquid metal in a specific

K(F)= (3772)1/313(;)3, 1) thermodynamic state. The radius of the cavity is such that the

total positive charge removed from the hole is equal to the
wherek? is the Fermi wave vector corresponding to a mearvalence of the atom. First, a full Kohn-Sham density func-
electron density,, andw,(x) is a weighting function, de- tional (KS-DFT) calculation is performed to obtain the dis-
termined by requiring the correct recovery of the LRT andPlaced valence electron density(r), i.e., the change in the
uniform density limits. Note thaTt(F) appears as a convolu- electron density induced by the atom and the cavity. After

tion which can be performed rapidly by the usual FFT techPSeudizingn,{r) by eliminating the core-orthogonality os-
niques. This functional is a generalization of one wjgh cillations, an effective local pseudopotential is constructed

=1/3, used earlier by us in a study of expanded liquicfCs. W.hiCh’ when_ inserted into the uniform electron gas along
The details of the functional are given in Appendix A, and with the cavity, reproduces the displaced valence electron

its main characteristics are as follows: 8 is a real positive density previously obtained.

number whose maximum value leading to a mathematically, 1P APRICASTE BN PURE BT BEREE R T
well behaved weight function is=0.6. (ii) The functional P P y

recovers the uniform and LRT limits, and is positive definite.Ob'{&“nmj by the KS-DFT calculation, leading to a LRT-based

(iii) When k2—>0, because the mean electron density van—locaI pseudopotential RT-PS from which an effective in-

. ) . . teratomic pair potential is derivddee Eq(6)] to be used in
ishes; e.g..for a finite system, the von Wedlear terr_n S cmD simulations; for further details we refer to Ref. 43. The
recovered if8=4/9, whereas for other values gf the limit

: . o second approach uses the orbital-free density funtional
IS -[W’LE:TTF'_('V)_ For valygs off>0.5 it is expectgd tha.t theory (OF-DFT) to reproduce the displaced electron density
u(r)i(r), which is the driving force for the dynamic mini- optained by the KS-DFT calculation, and it is suited for OF-
mization of the energjsee Eq(15)], remains finite even for  A|MD simulations. The development proceeds as follows

very small electronic densitiqs(F). (further details are given in Appendix)CWhen the func-
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tional derivatives of the energy functional are performed, the
Euler equation[Eq. (13)], for our pseudopotential in the
jellium-vacancy system becomes
Hs(T) F Ver(r) +Vp(r) +Vy(r) — u=0, (22) =
N
where each of the terms is the derivative of the correspond- 1
ing term in Eq.(7), namely, +
o
Y
(1) = pw(r) + pg(r), (23
with the expressions for the von Weizkar term and thes
term given in Appendix B,
Vel 1) =0 pd 1)+ 0 cad 1)+ 0jen(r), (24) q(au’)

FIG. 1. Non-Coulombic part of the pseudopotential for AlTat
Viy(r)= f dsp(s)/|r—s|, (25) =943 K. The continuous line is the OFDFT-PS used in the OF-
AIMD simulations, while the dashed line stands for the LRT-PS

with p(r)=po+n,s(r), and V,(r) is the exchange- used for the CMD simulations.

correlation potential, obtained from the functional derivative )

of E,d p] evaluated ap(r). tions Ia'sted.for X 10* steps, which correspond to 30 ps of
Due to the spherical symmetry of the system all the mag_5|mulat|on time. On the cher hand, the CMD simulations

nitudes depend just an Givenp(r), v,{r) can be obtained Un for 1 steps, amounting to 200 ps.

from Eq. (22), and the constant is just an energy origin

which is set so as to obtain a pseudopotential that decays to A. Pseudopotentials

zero for large distances. The pseudopotential constructed in The |ocal pseudopotentials described in Sec. Il C were

this way, will be referred to as the OF-DFT-based pseudopoconstructed using a reference system mimicking the complex

tential (OFDFT-PS. Note that the pseudopotential is calcu- system to be studied. The pseudopotentials change with the

lated for arbitraryr, and therefore, upon Fourier transforma- thermodynamic state considered and therefore are not trans-

tion, for arbitrary g. A similar procedure was already ferable to other states. Figure 1 shows the Fourier transforms

suggested’ although using a crystal as the reference stategf the non-Coulombic part of the pseudopotentials obtained

This choice has the disadvantage that the pseudopotential igom the LRT and OF-DFT approaches outlined above. The

obtained only at the Bragg vectors of the reciprocal latticeqyo schemes lead to similar pseudopotentials, with the main

and not for arbitraryj values. differences being at low-values and in the amplitude of the
oscillations at large]. Note that in both approaches the same
Ill. RESULTS AND DISCUSSION pseudized displaced valence electronic density of an atom in

a jellium-vacancy model is reproduced, although OF-DFT
was used in one case and LRT in the other. Consequently the
'differences in the two pseudopotentials should reflect the im-

tron-diffraction dat 1aB%22 Table | ai ¢ portance of nonlinear effects which, according to the present
neutron-difiraction data are avarabie.”” 1able { gIves Ul yaq 1t seem to be more important at sneglThe appear-

ther details on the thermodynamic states and several SImUI%'nce of the oscillations can be traced back to the calculation

tion parameters. In addition, we have also carried out CIaSSBf the pseudized displaced valence electronic density which

cal _MD simulations, using effective interionic pair pqtentials has a discontinuous second derivative at a matching radius.
derived from standard second order pseudopotential IoertuHowever, these oscillations do not influence the final OF-

bation theory, with the LRT-PS’s constructed as previoustA”VID results because thev appear fovalues larger than
describedalso see Ref. 43and with pair potentials derived those corresponding g, y app o g
ut-

from the QHNC method.

In the OF-AIMD simulations 500 particles were treated in
a cubic cell of the size appropriate to the density, whereas
more particles were used for the CMD simulatigese Table The static structure factoiS(q) obtained from the simu-
I). In both sets of simulations, liquid static properties werelations are shown in Fig. 2, which also shows the corre-
evaluatedpair distribution functions and static structure fac- sponding experimental data measured by neutRef. 30
tors) as well as several dynamic properties, both single-and x-ray-diffractiof’*2experiments. The experimental data
particle onegvelocity autocorrelation function, mean square show small differences in the region 2 A<q<5 A1,
displacement and collective onegintermediate scattering with the neutron values being slightly bigger that the x-ray
functions, dynamic structure factors, longitudinal and transones, whereas the OF-AIMD results stand remarkably well
verse currenys The calculation of the collective dynamic between both sets, although somewhat closer to the x-ray
properties required long simulation runs in order to accumudata. The insets of the figures show that the OF-AIMD re-
late reasonable statistics; for example the OF-AIMD simulasults in the smally region are also in good agreement with

We have performed OF-AIMD simulations for liquid Al
at two different thermodynamic states along the liquid-vapo
coexistence ling943 and 1323 K for which x-ray- and

B. Static properties
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FIG. 3. Self-intermediate scattering functiokgq,t) at several
FIG. 2. Static structure factors of liquid Al &) 943 K and(b) g values, for liquid aluminum. Continuous, dashed, and dotted

1323 K. Full circles: experimental x-ray-diffraction dat@ef. 31  lines: OF-AIMD, LRT-CMD, and QHNC-CMD simulations, re-

and 32. Open circles: experimental neutron-diffraction déRef. spectively, afT=943 K. Dash-dotted line: OF-AIMD simulations

30). Continuous line: OF-AIMD simulations. Dashed lines: LRT- atT=1323 K.

CMD simulations. Dotted lines: CMD simulations with the QHNC

potential. The insets show the logvhbehavior. N

FS(qat):% 2 efidéi(tﬂo)eidéj(to) (26)

the experimental x-ray results. The figures also incl8fty), =1

obtained from the CMD simulations performed with the in- anqg in Fig. 3 we show the results obtained for several

teratomic pair potential derived from the LRT-PS and QHNC,,5jues aff = 943 and 1343 K. This shows the eical memo-
4,15 , : : | . o

methods" Althoug_h these calculate®(q)’s reaso_nably tonic decrease with time; moreover, the results are very simi-

reproduce the experimental data, the agreement with expefjar to those of the LRT-CMD and QHNC-CMD simulations,

ment is much better for OF-AIMD results. although the latter show a slightly slower decay with time.
Extrapolation ofS(q) to —0 allows the isothermal com-  An increase in temperature leads to increased rate of decay.
pressibility x; to be estimated from the relatio(0) Closely related to th€&(q,t) is the velocity autocorrela-

=pkgTkr. Aleast-squares fit oﬂ‘S(q)=slo+_szq2 tothe cal-  tjon function (VACF) of a tagged ion in the fluidZ(t),
culated S(q) for q values up to 1 Kilylel'ds the result  \hich can be obtained as tp—0 limit of the first-order
k7,0F-Amp =2.37 (i 10" m"Nw™" units) for T memory function of theF((q,t). However, in the present

=943 K, which is close to the experimental vaitiecr  simulations it is more easily obtained from its definition
=2.43. In contrast, both the LRT-PS and QHNC interionic

pair potentials lead to much higher values, namely, D 2

KT,LRT—CMDZG'S andKT’QHNC_CMD:7.4, reSpeCtiVely. Z(t) <vl(t)vl(0)>/<vl>, (27)
The ionic and electronic static structure of liquid Al near which stands for the normalized VACF. The results are

melting was also calculated by Antt al® using the OF-  shown in Fig. 4 along with those derived from the LRT-CMD

AIMD method with a kinetic-energy functional which de- and QHNC-CMD simulations. The results display the typical

scribes the correct linear and quadratic response of the elec-

tron gas® and a local ionic pseudopotential constructed from 1.0

a nonlocal ionic pseudopotent®*® Their results for the

static structure factor closely followed the experimental one.

C. Dynamic properties

1. Single-particle dynamics 0.2 7 j

The most complete information about the single-particle
. . . . . - t (ps)
properties is provided by the self-intermediate scattering
function F(q,t), which probes the single-particle dynamics  FIG. 4. Normalized velocity autocorrelation functions. Continu-
over different length scales, ranging from the hydrodynamicus, dashed, and dotted lines: OF-AIMD, LRT-CMD, and QHNC-
limit (q—0) to the free-particle limit§—<). In the present CMD simulations, respectively, af =943 K. Dash-dotted line:
simulations, this magnitude has been obtained by OF-AIMD results forT=1323 K.
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TABLE II. Isothermal compressibilitycr (in 10711 m? N~ 1),

PHYSICAL REVIEW B 65 184201

1.4

self-diffusion coefficientD (in A?/ps), and shear viscosity coeffi-
cientz (in GPa p$ of liquid Al at the thermodynamic states studied 1ol
in this work. T
=

T (K) KT D U] = 1+
OF-AIMD 943 2.37 0.49 1.38
OF-AIMD 1323 2.38 1.05 0.85 0.8 . . ~ L
LRT-CMD 943 6.57 0.58 1.24 1.4 /
LRT-CMD 1323 6.32 1.14 - ® |
QHNC-CMD 933 7.45 0.55 1.36 =127 e /
Experiment 933 2.43 1.26° [rg P Z

1L ’ 7
%Reference 44. 7/
PReference 70. Y
o 2 4 _6 8 10

backscattering behavior, which is more marked for the OF- a@")

AIMD tf]'m“'.a“.‘lj”s'TE”t the rfeSL:'ts of :chtf] thrste .;‘m“'a“o”s FIG. 5. (2) Normalized half-width ofSy(q,), relative to its
are rather simifar. The main features ot the obtal € are value at the hydrodynamic limit, for liquid aluminum ak
comparable to those obtained for other simple metals near 9,5 « (continuous ling and 1323 K (dash-dotted ling The

i 46-49 . . .
melting, namely (i) a first minimum about 0.20 deep, dashed line stands for the free-particle linfif) Same as before, but

and(ii) a rather weak following maximum peaking close t0 for the normalized peak valugy(q,=0), relative to its value at
zero. The self-diffusion coefficienD is readily obtained the hydrodynamic limit.

from either the time integral oZ(t) or from the slope of the
mean-square displacemesiR?(t)=(|R;(t)— R;(0)|?) of a

tagged ion in the fluid, as simulations of Ebbsjeet al,” using several pair potentials,

gave values within the range 0.41-0.45/ps.

By Fourier transformingF¢(qg,t) we obtain the self-
dynamic structure factoB,(q,w), which, for all q values,
exhibits a monotonic decay with frequency, from a peak

) ] value atw=0. S4(q,w) can be characterized by the peak
and the results foD are given in Table II. The two routes for 5, e S(q,w=0), and the half-width at half-maximum

D lead to practically the same value, namelyor.amvp
=0.49 A?/ps; which is somewhat smaller than the mean
value of 0.55 &/ps obtained in a previous OF-AIMD cal- by introducing the dimensionless quantitie€(q)

culation with 205 particle$> Unfortunately, to our knowl- 7 5 ~ ~ >
edge, no experimental results are yet available for the diffu= ™9 D/SS(q’w_bO)' tand tAd(q)_w;/Z(gf)/?i D, W:gfit
sion coefficients of liquid Al at any thermodynamic state.“’l’Z(q) g° can be interpreted as an effectigedepende

However, we can compare with the results of a KS_DF-I-dif'fus,ion coefficieml_)(q). For_a liquid near t.he triple pomt,
calculatiori® performed for liquid Al near the tripe point, A(Q) usually exhibits an oscﬂlato_ry behavior V\_/hereas in a
using 64 particles and a nonlocal Bachelet-Hamann-Schiutéfense gas it decreases monotonically from unitga0 to
type pseudopotentidl >3 this calculation lead to a value the 14 behavior at largey. Figure 5 shows the OF-AIMD
Dys.orr=0.60 A2/ps derived from the slope of the corre- results forA(q) and2(q); the corresponding results from
sponding mean square displacement. Recently, another K§1e LRT-CMD and QHNC-CMD simulations are rather simi-
DFT calculatiori* for liquid Al at 1000 K, using 64 particles lar and are not shown. The results fApeamp(d), show
and ultrasoft Vanderbilt pseudopotentials galevalues that, for both temperatures, the hydrodynamic limit is
within the range 0.52—0.68 Zps, derived from the slope of reached from below, with a minimum at arouqe gy, fol-

the mean-square displacement. Our OF-AIMD simulationslowed by a maximum and by a gradual transition, for greater
with a small number of particles and/or a small number ofg values, to the free-particle limit. Note that, for the higher
configurations, suggest that the self-diffusion coefficients obtemperature, the oscillations are heavily damped and the free
tained from theSR?(t) tend to be greater than those obtainedparticle limit is approached quickly. This oscillating behavior
by integration of theZ(t), and, as the number of particles of Agramp(Q) for small and intermediatg values was re-
and/or configurations is increased, the value for the selfported by several authors, and attributed to the coupling of
diffusion coefficient is decreased. More extensive KS-DFTthe single-particle motion to other modes in the
simulations would probably lead to a smaller valuef systent'®>5=>°0n the other hand, the results (k) reflect
closer to that obtained in the present OF-AIMD simulations.greater sensitivity to changes in temperature, with the diffu-
The values obtained from LRT-CMD (0.58%%s) and sive limit reached from below foF =943 K and from above
QHNC-CMD (0.55 A/ps) simulations are also rather simi- for T=1323 K. We note that similar features to those ob-
lar, and slightly larger than the OF-AIMD result. The CMD tained in this paper were obtained earlier by Tor@hal %°

D= ﬁmeowZ(t)dt, D=lim sR*(t)/6t,  (28)

w12(q). These parameters are usually reported normalized
with respect to the values of the hydrodynante+0) limit,
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FIG. 6. Normalized intermediate scattering functidi(y,t) at FIG. 7. Same as the previous figure.

severalq values, for liquid aluminum af=943 K. Continuous

line: OF-AIMD simulations. Dashed line: LRT-CMD results. Dot- factor shows well-defined side peaks, indicative of collective

ted line: QHNC-CMD results. density excitations, up tg~1.6 A1 which amounts to
~3(,/5. The results qualitatively reproduce the shape of the

in their CMD study of liquid lithium near melting using the experimental IXS dat& although with some discrepancies

interatomic pair potential proposed by Prieeal.%! in the heights and positions of the peaks. Similar results, but
with a better description of the central peak at the lovegpst
2. Collective dynamics values, were also obtained in the CMD simulations of Ebbsjo

7 . P )

The intermediate scattering functiét{q,t) embodies the €t &' However, it must be stressed that theifg,t)'s were
information concerning the collective dynamics of densityPréviously fitted to an analytical expression interpolating
fluctuations over both the length and time scales. It is define@MONnd the ideal gas, viscoelastic and hydrodynamic models,
as

0.2 1 0.10
1/(S - N \i |
Fla.n=x{| 2, e || 2, eiqR'(t°)> 29 T K
N =1 =1 EZ/ 1 0
S
' 3 0.05
In Figs. 6 and 7 we show the results from the present OF- b

S(q,

AIMD simulations for severah values.F(q,t) exhibits an
oscillatory behavior which persists up ¢e=3q,/5, with the
amplitude of the oscillations being stronger for the smailer
values. This is typical behavior found for other simple liquid
metals near melting, by either computer simulat?8i$%3or
theory®* A different behavior is seen for the results in the
sameq range obtained from the LRT-CMD and QHNC-
CMD simulations, withF(q,t)’s whose contact values, given L
by F(q,t=0)=5(q), are more than double and, more im- g5 |~ 94=144A
portant, with a diffusive component playing a dominant role. %
The corresponding MD results of Ebbjset al” for the
F(q,t)’s have better contact values but also display an im-

0.00

0.2

portant diffusive component. 0.00 — "20 =20
Closely connected to thEé(q,t) is the dynamic structure 2
factorS(qg, w), which is obtained by a time Fourier transform @ s )

of the F(q,t) (with an appropriate window to smooth out G, 8. Dynamic structure factdd(q,w) for severalq values,
truncation effects Its importance lies in its direct connection for liquid aluminum atT=943 K. Continuous line: OF-AIMD

to the inelastic neutron scattering or the IXS data. The resultsimulations. Dashed line: LRT-CMD results. Dotted line: QHNC-

obtained for theS(q,w) are shown in Figs. 8 and 9 for a CMD results. Full circles: experimental da@ef. 33 for q=0.42,
range of wave vectors up te2.5q,. The dynamic structure 1.02, and 1.38 A%
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FIG. 9. Same as the previous figure.

and thus the correspondir§(q,»)’s were derived. On the
other hand, the strongly diffusive character of theg,t)’s
obtained from both the LRT-CMD and QHNC-CMD simula-
tions, give rise tdS(q,w) which decay rather quickly, with

PHYSICAL REVIEW B 65 184201

1.0

=0)

05 §

Ji(q, 1)/ Jy(a, t

0.0 H

FIG. 11. OF-AIMF transverse current correlation function
Ji(q,t) at severah values(in A1) for liquid Al at T=943 K. (a)
g=0.29 (full curve), q=0.42 (dashed curye q=0.98 (dotted
curve, and q=1.45 (dash-dotted curye (b) g=2.70 (full curve),
g=3.80(dashed curve q=5.54 (dotted curvg andq=9.02 (dot-
dashed curve

adiabatic sound velocitycs(q) =vnVy/S(q), with vy,
=(Bm) 2 being the thermal velocity ang the ratio of the
specific heats. In the limig— 0, c,(q) reduces to the bulk
adiabatic sound velocity and determines the slope of the dis-
persion atg— 0. By extrapolating the OF-AIMD results for
S(q) and using the experimental vafief y~1.25, we ob-
tain a value of~4850 m/s for the bulk adiabatic sound
velocity which compares reasonably well with the experi-
mental valu&* of ~4700 m/s, near the triple point. Figure

hardly discernable side peaks. This is because the side peakd shows apositive dispersioni.e., an increase oé;(q)

are located at smaller positions, given hg(q), where
cs(q) is the generalized adiabatic sound velodigee be-
low), which is too small because of the large valueS@d)
at thoseg-values.

From the positions of the sidepeaks,,(q), the disper-

sion relation of the density fluctuations has been obtainecand Na

and this is shown in Fig. 10 for the stateTat 943 K, along

with respect to the values predicted by the hydrodynamic
adiabatic speed of sound, with a maximum located around
0.4 A~ Asimilar behavior was also obtained by Scopigno
et al*3 from their experimental IXS results for liquid Al at
T=1000 K, and observed in other liquid metals: Rb, Cs, Li
a33,66,67

Another interesting dynamical magnitude is the transverse

with w,(q), which is the dispersion relation obtained from current time correlation functiod;(q,t), which is not asso-

the maxima of the longitudinal current correlation function,

J(9,0) = w?S(q,w). Note that in the hydrodynamic region

ciated with any measurable quantity and can only be deter-
mined by means of MD simulations. It provides information

(small g), the slope of the dispersion relation curve is theOn the shear modes, and is defined as

80
Tw O
& ..2 @] OO
40 - A o ©
) o ©
= o o?
=2
0¢ :
0 2 4
A
q (A7)

FIG. 10. Dispersion relation for liquid Al af=943 K. Open
triangles: peak positions,,(q) from the OF-AIMD S(q,). Open
circles: peak positions;(q) from the maxima of the OF-AIMD
longitudinal current)|(q, ). Full circles: experimentab,(q) data
from Scopignoet al. (Ref. 33. Full line: linear dispersion with the
hydrodynamic sound velocity,=4700 m/s.

1 .
Jia,) = (1% (a.05(a,1), (30)
wherej,(q,t) ==L lv}‘(t)e*“if‘i(t) is the transverse current.
The shape 08,(q,t) evolves from a Gaussian, in bogfand
t, for the free-particlegq—co limit, toward a Gaussian im
and exponential in for the hydrodynamic limit §—0), i.e.,

J 0t)= 1 —a?p|t|/mp 31
t(q_) ’ )_ B_me ’ ( )
where 7 is the shear viscosity. For intermediagevalues,
Ji(g,t) exhibits a more complicated behavior, as shown in
Fig. 11 where OF-AIMD results for liquid Al near melting
are shown. Note that for the smallestalue reached by the
simulation, q=0.29 A~1 the corresponding,(q,t) takes
on negative values, which by E¢31) means that it is al-
ready beyond the hydrodynamic regime. The associated
spectruml(q, ), plotted in Fig. 12, shows an inelastic peak
which already exists aj=0.29 A‘lmo.llqp; as q in-
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03 free-density functionals. While the ultimate goal of the
method would be to use the atomic number of the atoms as
the only input data, this has not yet been achieved, as the
present calculations also require the experimental number
density of the system for calculating the local pseudopoten-
tial and for performing the simulations. However, we stress
: y that starting from very basic information, the present scheme
P— % 0 80 120  allows the determination of the static and dynamic properties
®(ps ) of the system.
Finally, we emphasize that in the present scheme, the cal-
FIG. 12. OF-AIMF transverse current correlation spectrumcyation of the pseudopotential is coupled to the particular
Ji(0,0) at severabj values(in A™%) for liquid Alat T=943 K.(8  fynctional adopted for the total potential energy of the sys-
2;3529;:32—Cfrgg){dg;oaléie(gisuﬁgg(&u;\l)—ezq;;o('fzﬁ éﬂ‘r’\ttee)d tem. This means that different kinetic-energy functionals
' o ) e ' would lead to different pseudopotentials. Consequently, this
g:si':g g?\s;ﬁg”z%%zf'ﬁigoned curvg, andq=7.03(dot-  fie14 is open to further improvements in the description of
q==2<p ' the kinetic energy and, therefore, also in the corresponding

. . . local pseudopotential.
creases the peak becomes better defined and it persigts to P P

values around @,, although it has already disappeared for
the largesty value considered. Note that the associated peak

frequency increases with) up a maximum value aj~qp, This work was supported by the Junta de Castilla yriLeo
and then flattens at larger as J,(q,) evolves toward a (Project No. VA70/99, NATO (CRG971173and the DGES
Gaussian shape. This behavior closely parallels that observg#B98-0641-C02-01 D.J.G. acknowledges the UVA for the
for the alkali metals, where the inelastic peak appearsifor provision of financial support to visit the the Physics Dept. of
=0.07,.%° Queen’s University where part of this work was carried out.

Similar results are also obtained by the LRT-CMD ap-M.J.S. acknowledges the support of the NSERC of Canada.
proach, butl,(q,t) decays more slowly and the minima are

0.2 &1/

0.1
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less marked. This leads to a spectrupig,») where the APPENDIX A: KINETIC-ENERGY FUNCTIONAL
peaks are less marked and, in fact, there is no peak at
=029 AL We consider the kinetic-energy functional
From the results ford;(q,t) we can readily obtain the B
shear viscosity coefficieny as follows?*¢%8¢9The memory Tdpl=Tuwlpl+T4lpl, (A1)
function representation af(q,t), where
2 -1
T2 = | 2+ (q,2) 32 Tolp1= g5 o p(P)24K(1)? (A2)
S em T pm A 10 ’

where the tilde denotes the Laplace transform, introduces a_ _ O o= = . o
generalized shear viscosity coefficieptq,z). The area un-  K(r)=(2kg) f dsk(s)wg(2ke|r —s|) =k(r)* ws(2ker),

der the normalizedJ,(q,t), gives Bm J(q,z=0), from (A3)
which values fory(q,z=0) can be obtained which, when R T
extrapolated tay=0, give the usual shear viscosity coeffi- k(r)=(37%)"p(r)~. (A4)

cient . Results forn presented in Table Il compare favor- . . .
ably with the available experimental ddfaFor comparison, In the limit of small deviations from a uniform system, we

we note that the KS-DFT simulations of Alfe and GilfAn Wish to recover the LRT result. Equating the Fourier trans-
gave values in the range 1.4-2.2 GPaps. form (FT) of the secclnd functional derivative ®t[ p] with
respect tq)(F) for p(r)=po, to the inverse of the Lindhard
IV. CONCLUSIONS response function, gives, for the weight function,

Several dynamic properties of liquid aluminum have been
calculated at two thermodynamic states close to the triple
point. Simulations have been performed using the orbital free
ab initio molecular-dynamics method, showing the feasibil- =E)[1/7r (7)—37%] (A5)
ity of this technique to calculate several time correlation 9 L7 7
functions, allowing a comprehensive study of the dynamical —
properties. Furthermore, agreement with the available extheren=a/2kg, wg is the FT ofwg, and
perimental data is reasonable.

We have also presented a method for producing, from first
principles, local pseudopotentials for use with the orbital

+48

67— g = > 28wy + 2% 4 m)?

1—7]2

27

1+

In 1=y

1+

m(m=5 ) (A6)
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is the noninteracting homogeneous electron-gas response . 3 . R
function. Taking in Eq(A5) the solution which satisfies the pp(r) = 75L(5/3- 2B)p(r)?* 2Pk(r)?
normalization conditionwg(7=0)=1, and with 8 within
the range 8 8<5/6, so that the power gf(r) in Eq.(A2) is +2B(3m3) 3 (1) h(r)], (B4)
positive, the weight function is given by .
with
— 5
wp(m=2-735 3ﬁ,J(S 3B)%+5[m ()~ 1-377]. h(r)=f(F)* 4(2k2r), (B5)

(A7) S TN 2\53-23 NP i
wheref(r)=k(r) p(r) . The productu(r) ¢(r), is the
Requiring o, wg to be real places a stricter limit of: 8 “driving force” for the dynamical minimization of the en-
<0.5991. With this choice of weight function, the functional €rgy functional; see Eq19). If the various powers of the
recovers the LRT limit, and in the limit of uniform density it density appearing |mﬁ(r)1//(r) are to remain positive, so
reduces to the Thomas-Fermi functional. In the limit> that this driving force is not to diverge in regions where the

we have density vanishes, then ¥28<7/12. In practice we have
_ found that for $=0.51 the minimization always proves
wg(7)—Cy+AIp*+ -, (A8)  possible.

where

APPENDIX C: CONSTRUCTING THE LOCAL
1 5 PSEUDOPOTENTIAL FROM AN INFINITE SYSTEM
3B 3,3\/17 30B8+9p°. (A9) - _ _

In an infinite system most of the previous expressions
diverge, because the integrals extend to all space, and the
integrands do not vanish for large distances. Moreover, the
normalization constraint must be redefined, because the total
number of electrons is infinite.
wa(n)=ws(n)—C (A10) ~ To avoid these problems, one has to take into account the

B B b similar divergencies which appear in the “jonic” part of the
so that every convolution involving;, such as in EqA3),  total energy. This amounts to using “difference” functions,

C1:2

The constan€C, gives rise to a Dirac delta function in the
real space; therefore, it is convenient to define a “modified”
weight function

becomes which are obtained by subtracting from the total functions
. _ o their corresponding limits for large distances, and redefining
G(r)* wﬁ(Zkgr)zcle(rHG(r)*wB(ZkEr). the chemical potential as the Lagrange multiplier associated

(A1l)  with the normalization of the “displaced” density(r)

An important limit is when the mean electron density, and™ p(r)— po- In this way we define the following functions
thereforek? , vanishes as for instance in a finite system. Now (i) A,(r)=p(r)*—p§=(po+n(r))*—p§.
the convolutions involving the “modified” weight function In particular, fora=1, A,(r)=n(r), the displaced den-

vanish because;=q/2k?— and w(7) vanishes. Conse- Sity. A )
quently, K(r)=C, k(r), and the kinetic-energy functional (i) x(r)=Kk(r)—(37?)"%f .

becomesT p]=Twlp]+C2Tre[p], and wheng=4/9, C, (i) x(r)=Kk(r)— (32 Y35
-0 (iv) ¢(r)="1(r)— (377 ¥pg* ~.
V) 75(r)=h(r)—(1—Cy)(372)Y3p3* ~.
APPENDIX B: POSITION-DEPENDENT V) 72(r) _( ) *(_; ké’ﬁ ™)k
CHEMICAL POTENTIAL (Vi) pup(r) = pp(r) =2 (ke)". L
_ o _ (Vi) Vexl(1) =Vexdr) —vjen(r), wherevg(r) is the poten-
The functional derivative of E¢(7) gives tial created by a uniform background of positive charge with
R R R R R R densitypg.
= + + + + > >
p(r) = pw(r) + pp(r) +Vex(r) +Vi(r) ch[P(f)]&Bl) Wil ) 0o(F) =V, po+ (1) ]=Vid pol-

In terms of these functions, the Euler equation now be-
where comes

. 1|Vp(N? 1V3p(r) .
mu(r)=g NG (B2) vext(r)+fdsn(s)/lr—s|+vxc(r)

1 |Vn(n)?
8 [po+n(N]?

o =
ap(s) 1 Von(r) ~ . )
= | ds—= (B3 —— ————+ug(r)—u' =0, (Cy
(= J r—s|’ ) 4 potn(r) " °
and, in terms of the modified weight function, with
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~ - 3 L L . .~
()= 7ol malr) + me(r) + uc(r)+ up(r)],  (C2)

where

alr)= (§—25) 53 2P12(3 1) Y3 X (1) + X (1)?],
(3

- - 5 - -
pg(r)= (g_2,3)Az/s—zg(r)[(3772)1/3Pg+)((f)]2,
(CH

wc(r)=2BC(372) Y pZR Py () + (372 YV3phA 35 4(r)

+ g p(Nx(N], (CH
and
1p(1)=2B(1—Cy)(31%)%3pg% 2PA 5_ (1)
+2B(37A) " po+n(r) 1P Lay(r).  (CH)
In the last equationy,(r) = #(r)* »z(2k2r) and
B(r)=pg> 2x (1) +(37°) V¥pfAgiz_ ()
+ Az 25N X(1). 7

PHYSICAL REVIEW B65 184201

Summarizing, to evaluatﬁB(F) from the displaced density
n(r) we take the following steps:

(1) Compute A(r) for a=5/3—283,2/13—28,2/3— 8,
andgB—1.

2) Compute)((F) and FT to obtairp(((i)

(3) Compute x(q)= ClX(q)+X(q)wB(q/2kF) and by
an inverse FT obtan)((r).

(4) Computed(r) according to Eq(C7), and FT to ob-
tain ¢(q).

(5) Computen,(q)= ¢(q)w5(q/2k ) and inverse FT to
obtain 7,(r).

(6) Apply Egs.(C2)—(C6) to obtainz(r).

When our system is one atom in a jellium vacancy, the
external potential is given by

Vexd 1) =0 pd 1) Fvcalr),

i.e., the sum of the potential created by the cavity and the
ionic pseudopotential. Substituting into EG.1), we directly
obtainv,{r) once we compute all the other terms, which are
calculated frorm(r). Note that all the functions have spheri-
cal symmetry, which leads to simple expressions for the gra-
dient, the Laplacian, and also the Fourier tranforms.
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