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Dynamical properties of liquid Al near melting: An orbital-free molecular dynamics study
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The static and dynamic structure of liquid Al is studied using the orbital freeab initio molecular dynamics
method. Two thermodynamic states along the coexistence line are considered, namely T5943 and 1323 K, for
which x-ray and neutron scattering data are available. A kinetic-energy functional which fulfills a number of
physically relevant conditions is employed, along with a local first-principles pseudopotential. In addition to a
comparison with experiment, we also compare ourab initio results with those obtained from conventional
molecular-dynamics simulations using effective interionic pair potentials derived from second-order pseudo-
potential perturbation theory.

DOI: 10.1103/PhysRevB.65.184201 PACS number~s!: 71.15.Pd, 61.20.Lc, 71.15.Mb, 61.25.Mv
n
ys
ad
,

th
ec

em
n

m
a

i
nd
id
in
lec
e
em
n
th

re
ct
ity
m

tio
a
ng
th
in

a
v

ia

id
ed
hat

ic

-
u-
u-

ion
tting
ntal

tic
o
ct,

ent
al

Ash-
t
ese

the
n-
dy-

nd

ting
e
n

tent
an

ar-

re-
em
ad-
or
it is
e

I. INTRODUCTION

Molecular dynamics~MD! methods have a long traditio
as a useful technique to study the properties of liquid s
tems, and the last 15 years have witnessed a large spre
the application ofab initio molecular-dynamics methods
based on density-functional theory. This theory allows
calculation of the ground-state electronic energy of a coll
tion of atoms for given nuclear positions,1,2 and also yields
the forces on the nuclei via the Hellmann-Feynman theor
It enables one to perform molecular-dynamics simulatio
where the nuclear positions evolve according to classical
chanics, whereas the electronic subsystem follows adiab
cally.

In this paper we present the results of anab initio
molecular-dynamics simulation of the static and dynam
properties of liquid Al at thermodynamic conditions arou
the triple point. Liquid aluminum has usually been cons
ered as a simple metal in which the core electrons form
the ion can be clearly distinguished from the valence e
trons; moreover, the core electrons do not significantly ov
lap with those of neighboring ions. Therefore, the syst
consists of a binary mixture of ions and valence electro
where the former may be treated classically whereas
electrons must be treated quantum mechanically.

However, in wide regions of the density-temperatu
plane, simple metals have usually been treated as an effe
one-component fluid of ions interacting by means of dens
dependent effective interionic pair potentials, derived fro
ionic pseudopotentials by applying second-order perturba
theory. This approach, which will be referred to as the line
response theory~LRT!, has often been used as the starti
point for the study of the static and dynamic properties of
simple metals.3–6 It has also been the approach followed
most studies on the static structure of liquid aluminum.7–11

Among them, we mention the work of Dagenset al.8 who
obtained an effective interionic pair potential, derived from
nonlocal pseudopotential which was constructed from the
lence charge density induced by an Al13 ion placed in an
electron gas at the metallic density. From this potent
0163-1829/2002/65~18!/184201~13!/$20.00 65 1842
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Jacucciet al.9 calculated the static structure factor of liqu
aluminum by means of MD simulations; their results show
fair agreement with experiment, with a main peak somew
higher. Also, Hafner and Jank11 studied the liquid static
structure of aluminum by means of an effective interion
pair potential derived from anab initio pseudopotential
originally developed by Harrison,12 whereas the correspond
ing liquid static structure was derived by means of MD sim
lations. In their calculation of the pseudopotential, the a
thors used the coefficient for the exchange-correlat
potential between the core and valence electrons as a fi
parameter in order to obtain agreement with the experime
static structure factor.

Whereas the previous work dealt only with the sta
properties of liquid Al near melting, the work of Ebbsj
et al.7 also considered some dynamic properties. In fa
these authors performed MD simulations for three differ
interionic pair potentials, two of them based on nonloc
pseudopotentials and the other one based on the local
croft’s pseudopotential,13 which showed a rather differen
shape, especially outside the repulsive core. Despite th
differences, all approaches gave fairly similar results for
liquid static structure which agreed well with the experime
tal data, whereas the main discrepancies appeared in the
namic structure.

A rather different approach was followed by Chihara a
co-workers.14,15 Their quantum-hypernetted-chain~QHNC!
method treats ions and electrons on a basically equal foo
by combining liquid-state integral equations with th
density-functional formalism. Moreover, it does not rely o
the pseudopotential ideas, gives rise to a self-consis
scheme to determine the liquid static structure, and yields
effective interionic pair potential which depends on the p
ticular liquid static structure.

Although the LRT approach has produced reasonable
sults for liquid alkali metals, when the valence of the syst
is increased, its validity becomes more questionable. In
dition, even for alkali metals the LRT is less justifiable f
thermodynamic states approaching the critical point, and
certainly wrong near the critical point. This limitation of th
©2002 The American Physical Society01-1
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‘‘standard’’ theory estimulated the use of first-principl
molecular-dynamics techniques,16–20 where the electronic
density, total energy and forces are obtained by using
Kohn-Sham ~KS! formulation of the density functiona
theory ~DFT!.2 However, the computational demands
theseab initio methods, where KS orbitals are used to d
scribe the electronic density and to compute the electro
kinetic energy exactly, grow very rapidly with the syste
size, and their memory requirement is also quite large. Th
considerations have restricted the sizes of the systems
ied so far to about 60 atoms, and have limited simulat
times to around 2–5 ps in the cases of Rb, Cs, and Hg,16–19

and 64–128 atoms, with simulation times of 0.15–0.85 ps
the case of Na.20 These limitations can be at least part
overcome if the exact calculation of the electronic kine
energy is given up in favor of an approximate kinetic ene
functional of the electronic density. Within this scheme21 the
number of variables describing the electronic state are e
mously reduced, especially for large systems, enabling
study of larger systems for longer simulation times. This
proach was already used for several studies on solid22

clusters,23 and some liquid metals~Li, Na, Mg, and Al! near
melting.24,26 We recently presented27 an application of this
method to study the static structure and some dynamic p
erties of expanded liquid Cs, for which experimental data
available.28 In that study 125 particles were used, and t
simulation time was 17–35 ps after an equilibration time
11–25 ps. Also, another study25 with 205 particles for liquid
Al gave results for the static structure in good agreem
with experiment. Recently, Antaet al.26 also applied the
same scheme to study the ionic and electronic static struc
of liquid Al near melting, leading to results for the stat
structure factor in excellent agreement with experiment.

The static structure factor of liquid Al has been measu
by both neutron29,30and x-ray31,32diffraction. The dynamical
structure of liquid Al near the triple point was also inves
gated recently by Scopignoet al.33 using inelastic x-ray scat
tering ~IXS!. Note that the high value of the adiabatic sou
speed for liquid Al ('4800 m/s) prevents the use of th
inelastic neutron-scattering technique for investigating
collective excitations for small-q values ~roughly, for q
<qp , with qp'2.70 Å21 being the main peak position o
the static structure factor!. Those IXS experiments invest
gated the wave-vector region 0.05qp<q<0.5qp , obtaining
several dynamical features previously observed in the liq
alkali metals, such as the existence of collective excitati
up to q values larger that 0.5qp , which exhibit a positive
dispersion in the sound velocity with respect to the hydro
namic value.

The layout of the paper is as follows. In Sec. II we brie
describe the theory used in the orbital-freeab initio
molecular-dynamics~OF-AIMD! simulations, giving some
technical details, and focusing on the two problematic issu
namely, the kinetic-energy functional and the local pseu
potentials needed to characterize the ion-electron interac
In Sec. III we present and discuss the results of theab initio
simulations; moreover, they are compared with further cl
sical molecular dynamics~CMD! simulations that we have
performed based on LRT and the QHNC potentials, and w
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the available experimental data. Finally some conclusi
are drawn and possible ideas for further improvements
suggested.

II. THEORY

The total potential energy of a system ofN classical ions
enclosed in a volumeV, and interacting withNe5NZ va-
lence electrons through a local electron-ion potentialv(r ), is
written, within the Born-Oppenheimer approximation, as t
sum of the direct ion-ion Coulombic interaction energy, a
the ground-state energy of the electronic system subjec
the external potential created by the ions,Vext(rW,$RW l%)
5( i 51

N v(urW2RW i u),

E~$RW l%!5(
i , j

Z2

uRW i2RW j u
1Eg@rg~rW !,Vext~rW,$RW l%!#, ~1!

whererg(rW) is the ground-state electronic density andRW l are
the ionic positions. According to LRT, the ground-state ele
tronic density is given, in reciprocal space, by

rg
LRT~qW !5S (

j
eiqW RW j DnLRT~q![F~qW !nLRT~q! ~2!

nLRT~q!5x~q,r0!v~q!, ~3!

wherex(q,r0) is the response function of a uniform electro
gas of densityr05NZ/V. Accordingly, the ground-state
electronic density is a superposition of spherically symme
pseudoatomic densities around each ion, i.e.,

rg
LRT~rW !5(

j
nLRT~ urW2RW j u! ~4!

and the electronic ground-state energy is

Eg
LRT5Ev@r0#1(

i , j
f ind~Ri j ! ~5!

f ind~q!5x~q,r0!v2~q!, ~6!

where Ev@r0# is a structure-independent term. Within th
LRT, the total potential energy can be written as a sum o
structure-independent term and a sum over pairs of an ef
tive interionic pair potentialfeff(R)5Z2/R1f ind(R).

Alternatively, DFT shows that the ground-state electro
density can be obtained by minimizing the energy functio
E@r#, and the minimum value of the functional gives th
ground-state energy of the electronic system. The ene
functional can be written

Eg@r~rW !#5Ts@r#1Eext@r#1EH@r#1Exc@r# ~7!

where the terms represent, respectively, the electronic kin
energyTs@r# of a non-interacting system of densityr(rW), the
energy of interaction with the external potential due to t
ions,
1-2
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DYNAMICAL PROPERTIES OF LIQUID Al NEAR . . . PHYSICAL REVIEW B 65 184201
Eext@r#5E drW r~rW !Vext~rW !, ~8!

the classical electrostatic energy~Hartree term!

EH@r#5
1

2E E drW dsW
r~rW !r~sW !

urW2sWu
, ~9!

and the exchange-correlation energyExc@r#, for which we
will adopt the local density approximation.

A. Technical details

Given an explicit functionalTs@r#, we can proceed to
minimizeEg with respect tor(rW); however, in order to main-
tain r(rW)>0 everywhere, as our system variable we ha
used an effective orbitalc(rW) defined asr(rW)5c(rW)2, with
real c(rW). We expandc(rW) in plane waves compatible with
the simple cubic periodic boundary conditions of the sim
lation:

c~rW !5(
GW

cGW e2 iGW •rW, ~10!

cGW 5
1

VEV
drW c~rW !eiGW •rW, ~11!

GW 5
2p

L
~n1 ,n2 ,n3!, ~12!

whereL stands for the side of the cube. This expansion
truncated at wave vectors corresponding to a given cu
energy,ECut, whose value is given in Table I. A realc im-
plies thatc2GW 5cGW

* , with a realc0; consequently only the
half-set$cGW %8s need be treated as variables.

The energy functional must be minimized with the no
malization constraintG@r(rW)#5*VdrWr(rW)5Ne which is im-
posed via the Lagrange multiplierm, leading to the Euler-
Lagrange equation

dF
dr~rW !

[
d@E2mG#

dr~rW !
5

dE

dr~rW !
2m[m~rW !2m50 ~13!

for the ground-state density. The minimization is perform
with respect to the$cGW %8s, instead of the electronic densit
leading to the equations

TABLE I. Thermodynamic states studied in this work, alo
with some simulation details.

T ~K! N r (Å 23) ECut(Ryd)

OF-AIMD 943 500 0.05290 30.25
OF-AIMD 1323 500 0.05071 29.25
LRT-CMD 943 600 0.05290
LRT-CMD 1323 500 0.05071
QHNC-CMD 933 800 0.05331
18420
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]F
]c0

52E
V
drW m~rW !c~rW !22mVc050,

]F
]cGW

54E
V
drW m~rW !c~rW !eiGW •rW24mVcGW 50 ~14!

for the ground-state density. The minimization of the fun
tional is performed every time step of the simulation, usin
simple quenching method: a fictitious ‘‘coefficients’ kinet
energy’’ T5 1

2 Mc(GW uċGW u2 is introduced, whereMc is the
‘‘coefficients’ mass,’’ and the dot denotes the derivative w
respect to the fictitious ‘‘coefficients’ time’’tc . This kinetic
energy, rewritten in terms of the set$cGW %, together with the
‘‘potential energy’’ F, leads to the following ‘‘equation of
motion’’ ( ;cGW P$cGW %):

Mcc̈GW 522E
V
drW m~rW !c~rW !eiGW •rW12mVcGW . ~15!

These equations are solved numerically using the Ve
leapfrog algorithm34 with an electronic time stepDtc . The
velocities are quenched at every step until the minimum
reached within preset tolerances onT and the gradient ofF.
The chemical potentialm is not known in advance of the
minimization, but replacingm in Eq. ~15! by its stationary
value*drWm(rW)n(rW)/*drWn(rW), at each time step, gives a goo
convergence to the ground state. For the present simulat
we have usedMc51.853107 Hartree3(a.u.)3 and a Dtc
5131024 ps.

The interatomic forces are obtained from the electro
ground state via the Hellman-Feynman theoremFW i

52¹WRW i
Eg@r(rW),$RW l%#, (i 51, . . . ,N), and Newton’s equa-

tions d2RW i /dt25FW i /Mi are solved numerically for the mo
tion of the ions using the Verlet leapfrog algorithm with
time step ofDt51.531023 ps.

B. Kinetic-energy functional

The kinetic-energy functionalTs is a critical ingredient of
the energy functional. It is generally considered35 that the
von Weizsa¨cker term

TW@r~rW !#5
1

8E drWu¹r~rW !u2/r~rW ! ~16!

is essential for a good description of the kinetic energy
applies in the case of rapidly varying densities, and it is ex
for one- or two-electron systems. Further terms are usu
added to the functional in order to reproduce correctly so
exactly known limits. In the uniform density limit, the exa
kinetic energy is given by the Thomas-Fermi functional

TTF@r~rW !#5
3

10E drW r~rW !kF~rW !2, ~17!

wherekF(rW)5(3p2)1/3r(rW)1/3 is the local Fermi wave vec
tor. In the limit of almost uniform density, the LRT is correc
1-3
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with a response function corresponding to a noninterac
uniform electron gas, given by the Lindhard functio
xL(q,r0).

Stimulated by the advantages of the orbital-freeab initio
simulations, there has been a renewed interest in the de
opment of accurate kinetic-energy functionals. With Perro
work as the basis,36 Madden and co-workers37,38 developed
functionals which correctly recover the Thomas-Fermi a
linear-response limits,37 and also included the quadrat
response.38 Later, Wanget al.39 investigated these function
als and proposed a linear combination of them as a suit
form for Ts ; more recently they also derived another expr
sion which includes density-dependent kernels. Unfor
nately, an undesirable feature of these functionals is that
are not positive definite, so that a minimization of the ene
functional can lead to an unphysical negative kinetic ene

Chacón, Alvarellos, and Tarazona40 developed a differen
type of kinetic-energy functional, which employs an ‘‘ave
aged density’’ and recovers the uniform and LRT limi
Their functional was investigated and generalized
Garcı́a-Gonza´lez et al.41 These functionals have the merit o
being positive definite, but they are somewhat complicate
apply and require orderN more fast Fourier transform
~FFT’s! than simpler functionals, and this diminishes the a
vantage of the orbital-free approach over the full Kohn-Sh
method.

In this paper we use a simplification of the averaged d
sity approach,41 with the kinetic energy given by

Ts5TW@r#1Tb@r#, ~18!

Tb@r#5
3

10E drW r~rW !5/322bk̃~rW !2, ~19!

k̃~rW !5~2kF
0 !3E dsW k~sW !wb~2kF

0 urW2sWu!, ~20!

k~rW !5~3p2!1/3r~rW !b, ~21!

wherekF
0 is the Fermi wave vector corresponding to a me

electron densityr0, andwb(x) is a weighting function, de-
termined by requiring the correct recovery of the LRT a
uniform density limits. Note thatk̃(rW) appears as a convolu
tion which can be performed rapidly by the usual FFT te
niques. This functional is a generalization of one withb
51/3, used earlier by us in a study of expanded liquid C27

The details of the functional are given in Appendix A, a
its main characteristics are as follows:~i! b is a real positive
number whose maximum value leading to a mathematic
well behaved weight function is'0.6. ~ii ! The functional
recovers the uniform and LRT limits, and is positive defini
~iii ! When kF

0→0, because the mean electron density v
ishes; e.g. for a finite system, the von Weizsa¨cker term is
recovered ifb54/9, whereas for other values ofb, the limit
is TW1CTTF . ~iv! For values ofb.0.5 it is expected tha
m(rW)c(rW), which is the driving force for the dynamic mini
mization of the energy@see Eq.~15!#, remains finite even for
very small electronic densitiesr(rW).
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Those two last properties will be important in the case
expanded liquid metals because of the appearance of l
inhomogeneities in the atomic distribution, and therefore
the electron density, with regions where it becomes v
small. Indeed, this situation has already been observed in
ab initio simulations of expanded liquid Na.20 In systems for
which the appearance of isolated atoms or clusters is lik
the von Weizsa¨cker term would be appropriate, and a fun
tional with a value ofb as close as possible to 4/9 would b
recommended.

In the present simulations we have usedb50.51, which
in the limit r0→0 givesC50.046 and guarantees, at lea
for the thermodynamic states considered, thatm(rW)c(rW) re-
mains finite and not too large everywhere so that the ene
minimization can be achieved.

C. Pseudopotentials

Ab initio simulations using the full Kohn-Sham approa
~KS-AIMD ! usually employ nonlocal pseudopotentials o
tained by fitting to some properties of the free atom.42 In an
orbital-free approach where the electronic density is the v
able, such nonlocal pseudopotentials, which act differen
on different angular momentum components of the orbita
cannot be used. Instead, local pseudopotentials must be
veloped which include an accurate description of the el
tronic structure in the physical circumstances of interest.

When constructing a pseudopotential to be used for a
uid metal, it seems more appropriate to use a reference
which closely resembles the environment of an atom in
metal, which is quite different from free space. The pseu
potential used in this simulation has been obtained using
neutral pseudoatom method43 in which the reference state i
an atom at the center of a spherical cavity in the posit
background of a uniform electron gas. The density of the
is taken to be the mean valence electron density of the
tem of interest, in our case the liquid metal in a spec
thermodynamic state. The radius of the cavity is such that
total positive charge removed from the hole is equal to
valence of the atom. First, a full Kohn-Sham density fun
tional ~KS-DFT! calculation is performed to obtain the dis
placed valence electron densitynps(r ), i.e., the change in the
electron density induced by the atom and the cavity. Af
pseudizingnps(r ) by eliminating the core-orthogonality os
cillations, an effective local pseudopotential is construc
which, when inserted into the uniform electron gas alo
with the cavity, reproduces the displaced valence elect
density previously obtained.

Two approaches will be followed in this paper. The fir
uses LRT to reproduce the displaced valence electron den
obtained by the KS-DFT calculation, leading to a LRT-bas
local pseudopotential~LRT-PS! from which an effective in-
teratomic pair potential is derived@see Eq.~6!# to be used in
CMD simulations; for further details we refer to Ref. 43. Th
second approach uses the orbital-free density funtio
theory~OF-DFT! to reproduce the displaced electron dens
obtained by the KS-DFT calculation, and it is suited for O
AIMD simulations. The development proceeds as follo
~further details are given in Appendix C!. When the func-
1-4
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DYNAMICAL PROPERTIES OF LIQUID Al NEAR . . . PHYSICAL REVIEW B 65 184201
tional derivatives of the energy functional are performed,
Euler equation@Eq. ~13!#, for our pseudopotential in the
jellium-vacancy system becomes

ms~r !1Vext~r !1VH~r !1Vxc~r !2m50, ~22!

where each of the terms is the derivative of the correspo
ing term in Eq.~7!, namely,

ms~r !5mW~r !1mb~r !, ~23!

with the expressions for the von Weizsa¨cker term and theb
term given in Appendix B,

Vext~r !5vps~r !1vcav~r !1v jell~r !, ~24!

VH~r !5E dsWr~s!/urW2sWu, ~25!

with r(r )5r01nps(r ), and Vxc(r ) is the exchange-
correlation potential, obtained from the functional derivati
of Exc@r# evaluated atr(r ).

Due to the spherical symmetry of the system all the m
nitudes depend just onr. Givenr(r ), vps(r ) can be obtained
from Eq. ~22!, and the constantm is just an energy origin
which is set so as to obtain a pseudopotential that decay
zero for large distances. The pseudopotential constructe
this way, will be referred to as the OF-DFT-based pseudo
tential ~OFDFT-PS!. Note that the pseudopotential is calc
lated for arbitraryr, and therefore, upon Fourier transform
tion, for arbitrary q. A similar procedure was alread
suggested,45 although using a crystal as the reference sta
This choice has the disadvantage that the pseudopotent
obtained only at the Bragg vectors of the reciprocal latti
and not for arbitraryq values.

III. RESULTS AND DISCUSSION

We have performed OF-AIMD simulations for liquid A
at two different thermodynamic states along the liquid-va
coexistence line~943 and 1323 K!, for which x-ray- and
neutron-diffraction data are available.29–32Table I gives fur-
ther details on the thermodynamic states and several sim
tion parameters. In addition, we have also carried out cla
cal MD simulations, using effective interionic pair potentia
derived from standard second order pseudopotential pe
bation theory, with the LRT-PS’s constructed as previou
described~also see Ref. 43! and with pair potentials derived
from the QHNC method.

In the OF-AIMD simulations 500 particles were treated
a cubic cell of the size appropriate to the density, wher
more particles were used for the CMD simulations~see Table
I!. In both sets of simulations, liquid static properties we
evaluated~pair distribution functions and static structure fa
tors! as well as several dynamic properties, both sing
particle ones~velocity autocorrelation function, mean squa
displacement! and collective ones~intermediate scattering
functions, dynamic structure factors, longitudinal and tra
verse currents!. The calculation of the collective dynami
properties required long simulation runs in order to accum
late reasonable statistics; for example the OF-AIMD simu
18420
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tions lasted for 23104 steps, which correspond to 30 ps
simulation time. On the other hand, the CMD simulatio
run for 105 steps, amounting to 200 ps.

A. Pseudopotentials

The local pseudopotentials described in Sec. II C w
constructed using a reference system mimicking the comp
system to be studied. The pseudopotentials change with
thermodynamic state considered and therefore are not tr
ferable to other states. Figure 1 shows the Fourier transfo
of the non-Coulombic part of the pseudopotentials obtain
from the LRT and OF-DFT approaches outlined above. T
two schemes lead to similar pseudopotentials, with the m
differences being at low-q values and in the amplitude of th
oscillations at largeq. Note that in both approaches the sam
pseudized displaced valence electronic density of an atom
a jellium-vacancy model is reproduced, although OF-D
was used in one case and LRT in the other. Consequently
differences in the two pseudopotentials should reflect the
portance of nonlinear effects which, according to the pres
results, seem to be more important at smallq. The appear-
ance of the oscillations can be traced back to the calcula
of the pseudized displaced valence electronic density wh
has a discontinuous second derivative at a matching rad
However, these oscillations do not influence the final O
AIMD results because they appear forq values larger than
those corresponding toECut.

B. Static properties

The static structure factorsS(q) obtained from the simu-
lations are shown in Fig. 2, which also shows the cor
sponding experimental data measured by neutron~Ref. 30!
and x-ray-diffraction31,32experiments. The experimental da
show small differences in the region 2 Å21<q<5 Å21,
with the neutron values being slightly bigger that the x-r
ones, whereas the OF-AIMD results stand remarkably w
between both sets, although somewhat closer to the x
data. The insets of the figures show that the OF-AIMD
sults in the small-q region are also in good agreement wi

FIG. 1. Non-Coulombic part of the pseudopotential for Al atT
5943 K. The continuous line is the OFDFT-PS used in the O
AIMD simulations, while the dashed line stands for the LRT-P
used for the CMD simulations.
1-5
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the experimental x-ray results. The figures also includeS(q),
obtained from the CMD simulations performed with the i
teratomic pair potential derived from the LRT-PS and QHN
methods.14,15 Although these calculatedS(q)’s reasonably
reproduce the experimental data, the agreement with exp
ment is much better for OF-AIMD results.

Extrapolation ofS(q) to q→0 allows the isothermal com
pressibility kT to be estimated from the relationS(0)
5rkBTkT . A least-squares fit ofS(q)5s01s2q2 to the cal-
culated S(q) for q values up to 1 Å21 yields the result
kT,OF2AIMD 52.37 ~in 10211 m2 Nw21 units) for T
5943 K, which is close to the experimental value44 kT
52.43. In contrast, both the LRT-PS and QHNC interion
pair potentials lead to much higher values, name
kT,LRT2CMD56.5 andkT,QHNC2CMD57.4, respectively.

The ionic and electronic static structure of liquid Al ne
melting was also calculated by Antaet al.26 using the OF-
AIMD method with a kinetic-energy functional which de
scribes the correct linear and quadratic response of the e
tron gas38 and a local ionic pseudopotential constructed fro
a nonlocal ionic pseudopotential.26,45 Their results for the
static structure factor closely followed the experimental o

C. Dynamic properties

1. Single-particle dynamics

The most complete information about the single-parti
properties is provided by the self-intermediate scatter
function Fs(q,t), which probes the single-particle dynami
over different length scales, ranging from the hydrodynam
limit ( q→0) to the free-particle limit (q→`). In the present
simulations, this magnitude has been obtained by

FIG. 2. Static structure factors of liquid Al at~a! 943 K and~b!
1323 K. Full circles: experimental x-ray-diffraction data~Ref. 31
and 32!. Open circles: experimental neutron-diffraction data~Ref.
30!. Continuous line: OF-AIMD simulations. Dashed lines: LR
CMD simulations. Dotted lines: CMD simulations with the QHN
potential. The insets show the low-q behavior.
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Fs~q,t !5
1

N K (
j 51

N

e2 iqW RW j (t1t0)eiqW RW j (t0)L ~26!

and in Fig. 3 we show the results obtained for severaq
values atT5943 and 1343 K. This shows the typical mon
tonic decrease with time; moreover, the results are very s
lar to those of the LRT-CMD and QHNC-CMD simulation
although the latter show a slightly slower decay with tim
An increase in temperature leads to increased rate of de

Closely related to theFs(q,t) is the velocity autocorrela-
tion function ~VACF! of a tagged ion in the fluid,Z(t),
which can be obtained as theq→0 limit of the first-order
memory function of theFs(q,t). However, in the presen
simulations it is more easily obtained from its definition

Z~ t !5^vW 1~ t !vW 1~0!&/^v1
2&, ~27!

which stands for the normalized VACF. The results a
shown in Fig. 4 along with those derived from the LRT-CM
and QHNC-CMD simulations. The results display the typic

FIG. 3. Self-intermediate scattering functionsFs(q,t) at several
q values, for liquid aluminum. Continuous, dashed, and dot
lines: OF-AIMD, LRT-CMD, and QHNC-CMD simulations, re
spectively, atT5943 K. Dash-dotted line: OF-AIMD simulations
at T51323 K.

FIG. 4. Normalized velocity autocorrelation functions. Contin
ous, dashed, and dotted lines: OF-AIMD, LRT-CMD, and QHN
CMD simulations, respectively, atT5943 K. Dash-dotted line:
OF-AIMD results forT51323 K.
1-6
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DYNAMICAL PROPERTIES OF LIQUID Al NEAR . . . PHYSICAL REVIEW B 65 184201
backscattering behavior, which is more marked for the O
AIMD simulations, but the results of the three simulatio
are rather similar. The main features of the obtainedZ(t) are
comparable to those obtained for other simple metals n
melting,46–49 namely ~i! a first minimum about 0.20 deep
and ~ii ! a rather weak following maximum peaking close
zero. The self-diffusion coefficientD is readily obtained
from either the time integral ofZ(t) or from the slope of the
mean-square displacementdR2(t)[^uRW 1(t)2RW 1(0)u2& of a
tagged ion in the fluid, as

D5 1
bmE

0

`

Z~ t !dt, D5 lim
t→`

dR2~ t !/6t, ~28!

and the results forD are given in Table II. The two routes fo
D lead to practically the same value, namely,DOF-AIMD
50.49 Å2/ps; which is somewhat smaller than the me
value of 0.55 Å2/ps obtained in a previous OF-AIMD ca
culation with 205 particles.25 Unfortunately, to our knowl-
edge, no experimental results are yet available for the di
sion coefficients of liquid Al at any thermodynamic sta
However, we can compare with the results of a KS-D
calculation50 performed for liquid Al near the tripe point
using 64 particles and a nonlocal Bachelet-Hamann-Schl
type pseudopotential;51–53 this calculation lead to a valu
DKS-DFT50.60 Å2/ps derived from the slope of the corre
sponding mean square displacement. Recently, another
DFT calculation54 for liquid Al at 1000 K, using 64 particles
and ultrasoft Vanderbilt pseudopotentials gaveD values
within the range 0.52–0.68 Å2/ps, derived from the slope o
the mean-square displacement. Our OF-AIMD simulatio
with a small number of particles and/or a small number
configurations, suggest that the self-diffusion coefficients
tained from thedR2(t) tend to be greater than those obtain
by integration of theZ(t), and, as the number of particle
and/or configurations is increased, the value for the s
diffusion coefficient is decreased. More extensive KS-D
simulations would probably lead to a smaller value ofD
closer to that obtained in the present OF-AIMD simulatio
The values obtained from LRT-CMD (0.58 Å2/ps) and
QHNC-CMD (0.55 Å2/ps) simulations are also rather sim
lar, and slightly larger than the OF-AIMD result. The CM

TABLE II. Isothermal compressibilitykT ~in 10211 m2 N21),
self-diffusion coefficientD ~in Å 2/ps), and shear viscosity coeffi
cienth ~in GPa ps! of liquid Al at the thermodynamic states studie
in this work.

T ~K! kT D h

OF-AIMD 943 2.37 0.49 1.38
OF-AIMD 1323 2.38 1.05 0.85
LRT-CMD 943 6.57 0.58 1.24
LRT-CMD 1323 6.32 1.14 -
QHNC-CMD 933 7.45 0.55 1.36
Experiment 933 2.43a 1.26b

aReference 44.
bReference 70.
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simulations of Ebbsjoet al.,7 using several pair potentials
gave values within the range 0.41–0.45 Å2/ps.

By Fourier transformingFs(q,t) we obtain the self-
dynamic structure factorSs(q,v), which, for all q values,
exhibits a monotonic decay with frequency, from a pe
value atv50. Ss(q,v) can be characterized by the pea
value Ss(q,v50), and the half-width at half-maximum
v1/2(q). These parameters are usually reported normali
with respect to the values of the hydrodynamic (q→0) limit,
by introducing the dimensionless quantitiesS(q)
5pq2DSs(q,v50) and D(q)5v1/2(q)/q2D, where
v1/2(q)/q2 can be interpreted as an effectiveq-dependent
diffusion coefficientD(q). For a liquid near the triple point
D(q) usually exhibits an oscillatory behavior whereas in
dense gas it decreases monotonically from unity atq50 to
the 1/q behavior at largeq. Figure 5 shows the OF-AIMD
results forD(q) and S(q); the corresponding results from
the LRT-CMD and QHNC-CMD simulations are rather sim
lar and are not shown. The results forDOF-AIMD(q), show
that, for both temperatures, the hydrodynamic limit
reached from below, with a minimum at aroundq'qp , fol-
lowed by a maximum and by a gradual transition, for grea
q values, to the free-particle limit. Note that, for the high
temperature, the oscillations are heavily damped and the
particle limit is approached quickly. This oscillating behavi
of DOF-AIMD(q) for small and intermediateq values was re-
ported by several authors, and attributed to the coupling
the single-particle motion to other modes in th
system.46,55–59On the other hand, the results forS(k) reflect
greater sensitivity to changes in temperature, with the di
sive limit reached from below forT5943 K and from above
for T51323 K. We note that similar features to those o
tained in this paper were obtained earlier by Torciniet al.60

FIG. 5. ~a! Normalized half-width ofSs(q,v), relative to its
value at the hydrodynamic limit, for liquid aluminum atT
5943 K ~continuous line! and 1323 K ~dash-dotted line!. The
dashed line stands for the free-particle limit.~b! Same as before, bu
for the normalized peak valueSs(q,v50), relative to its value at
the hydrodynamic limit.
1-7
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in their CMD study of liquid lithium near melting using th
interatomic pair potential proposed by Priceet al.61

2. Collective dynamics

The intermediate scattering functionF(q,t) embodies the
information concerning the collective dynamics of dens
fluctuations over both the length and time scales. It is defi
as

F~q,t !5
1

N K S (
j 51

N

e2 iqW RW j (t1t0)D S (
l 51

N

eiqW RW l (t0)D L . ~29!

In Figs. 6 and 7 we show the results from the present O
AIMD simulations for severalq values.F(q,t) exhibits an
oscillatory behavior which persists up toq'3qp/5, with the
amplitude of the oscillations being stronger for the smalleq
values. This is typical behavior found for other simple liqu
metals near melting, by either computer simulations60,62,63or
theory.64 A different behavior is seen for the results in th
same q range obtained from the LRT-CMD and QHNC
CMD simulations, withF(q,t)’s whose contact values, give
by F(q,t50)5S(q), are more than double and, more im
portant, with a diffusive component playing a dominant ro
The corresponding MD results of Ebbjsoet al.7 for the
F(q,t)’s have better contact values but also display an
portant diffusive component.

Closely connected to theF(q,t) is the dynamic structure
factorS(q,v), which is obtained by a time Fourier transfor
of the F(q,t) ~with an appropriate window to smooth ou
truncation effects!. Its importance lies in its direct connectio
to the inelastic neutron scattering or the IXS data. The res
obtained for theS(q,v) are shown in Figs. 8 and 9 for
range of wave vectors up to'2.5qp . The dynamic structure

FIG. 6. Normalized intermediate scattering functionsF(q,t) at
severalq values, for liquid aluminum atT5943 K. Continuous
line: OF-AIMD simulations. Dashed line: LRT-CMD results. Do
ted line: QHNC-CMD results.
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factor shows well-defined side peaks, indicative of collect
density excitations, up toq'1.6 Å21 which amounts to
'3qp/5. The results qualitatively reproduce the shape of
experimental IXS data,33 although with some discrepancie
in the heights and positions of the peaks. Similar results,
with a better description of the central peak at the lowesq
values, were also obtained in the CMD simulations of Ebb
et al.7 However, it must be stressed that theirF(q,t)’s were
previously fitted to an analytical expression interpolati
among the ideal gas, viscoelastic and hydrodynamic mod

FIG. 7. Same as the previous figure.

FIG. 8. Dynamic structure factorS(q,v) for severalq values,
for liquid aluminum at T5943 K. Continuous line: OF-AIMD
simulations. Dashed line: LRT-CMD results. Dotted line: QHN
CMD results. Full circles: experimental data~Ref. 33! for q50.42,
1.02, and 1.38 Å21.
1-8
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and thus the correspondingS(q,v)’s were derived. On the
other hand, the strongly diffusive character of theF(q,t)’s
obtained from both the LRT-CMD and QHNC-CMD simula
tions, give rise toS(q,v) which decay rather quickly, with
hardly discernable side peaks. This is because the side p
are located at smaller positions, given byqcs(q), where
cs(q) is the generalized adiabatic sound velocity~see be-
low!, which is too small because of the large values ofS(q)
at thoseq-values.

From the positions of the sidepeaks,vm(q), the disper-
sion relation of the density fluctuations has been obtain
and this is shown in Fig. 10 for the state atT5943 K, along
with v l(q), which is the dispersion relation obtained fro
the maxima of the longitudinal current correlation functio
Jl(q,v)5v2S(q,v). Note that in the hydrodynamic regio
~small q), the slope of the dispersion relation curve is t

FIG. 9. Same as the previous figure.

FIG. 10. Dispersion relation for liquid Al atT5943 K. Open
triangles: peak positionsvm(q) from the OF-AIMD S(q,v). Open
circles: peak positionsv l(q) from the maxima of the OF-AIMD
longitudinal currentJl(q,v). Full circles: experimentalv l(q) data
from Scopignoet al. ~Ref. 33!. Full line: linear dispersion with the
hydrodynamic sound velocity,v54700 m/s.
18420
aks
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adiabatic sound velocitycs(q)5v thAg/S(q), with v th
5(bm)21/2 being the thermal velocity andg the ratio of the
specific heats. In the limitq→0, cs(q) reduces to the bulk
adiabatic sound velocity and determines the slope of the
persion atq→0. By extrapolating the OF-AIMD results fo
S(q) and using the experimental value65 of g'1.25, we ob-
tain a value of'4850 m/s for the bulk adiabatic soun
velocity which compares reasonably well with the expe
mental value44 of '4700 m/s, near the triple point. Figur
10 shows apositive dispersion, i.e., an increase ofv l(q)
with respect to the values predicted by the hydrodynam
adiabatic speed of sound, with a maximum located aro
0.4 Å21. A similar behavior was also obtained by Scopig
et al.33 from their experimental IXS results for liquid Al a
T51000 K, and observed in other liquid metals: Rb, Cs,
and Na.33,66,67

Another interesting dynamical magnitude is the transve
current time correlation functionJt(q,t), which is not asso-
ciated with any measurable quantity and can only be de
mined by means of MD simulations. It provides informatio
on the shear modes, and is defined as

Jt~q,t !5
1

N
^ j x* ~q,0! j x~q,t !&, ~30!

where j x(q,t)5( j 51
N v j

x(t)e2 iqW RW j (t) is the transverse curren
The shape ofJt(q,t) evolves from a Gaussian, in bothq and
t, for the free-particleq→` limit, toward a Gaussian inq
and exponential int for the hydrodynamic limit (q→0), i.e.,

Jt~q→0,t !5
1

bm
e2q2hutu/mr, ~31!

where h is the shear viscosity. For intermediateq-values,
Jt(q,t) exhibits a more complicated behavior, as shown
Fig. 11 where OF-AIMD results for liquid Al near melting
are shown. Note that for the smallestq value reached by the
simulation, q50.29 Å21, the correspondingJt(q,t) takes
on negative values, which by Eq.~31! means that it is al-
ready beyond the hydrodynamic regime. The associa
spectrumJt(q,v), plotted in Fig. 12, shows an inelastic pea
which already exists atq50.29 Å21'0.11qp ; as q in-

FIG. 11. OF-AIMF transverse current correlation functio
Jt(q,t) at severalq values~in Å 21) for liquid Al at T5943 K. ~a!
q50.29 ~full curve!, q50.42 ~dashed curve!, q50.98 ~dotted
curve!, andq51.45 ~dash-dotted curve!. ~b! q52.70 ~full curve!,
q53.80 ~dashed curve!, q55.54 ~dotted curve!, andq59.02 ~dot-
dashed curve!.
1-9
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creases the peak becomes better defined and it persistsq
values around 3qp , although it has already disappeared f
the largestq value considered. Note that the associated p
frequency increases withq up a maximum value atq'qp ,
and then flattens at largerq as Jt(q,v) evolves toward a
Gaussian shape. This behavior closely parallels that obse
for the alkali metals, where the inelastic peak appears foq
>0.07qp .46

Similar results are also obtained by the LRT-CMD a
proach, butJt(q,t) decays more slowly and the minima a
less marked. This leads to a spectrumJt(q,v) where the
peaks are less marked and, in fact, there is no peakq
50.29 Å21.

From the results forJt(q,t) we can readily obtain the
shear viscosity coefficienth as follows.46,68,69The memory
function representation ofJt(q,t),

Jt̃~q,z!5
1

bm Fz1
q2

rm
h̃~q,z!G21

~32!

where the tilde denotes the Laplace transform, introduce
generalized shear viscosity coefficienth̃(q,z). The area un-
der the normalizedJt(q,t), gives bm Jt̃(q,z50), from
which values forh̃(q,z50) can be obtained which, whe
extrapolated toq50, give the usual shear viscosity coef
cient h. Results forh presented in Table II compare favo
ably with the available experimental data.70 For comparison,
we note that the KS-DFT simulations of Alfe and Gillan54

gave values in the range 1.4–2.2 GPa ps.

IV. CONCLUSIONS

Several dynamic properties of liquid aluminum have be
calculated at two thermodynamic states close to the tr
point. Simulations have been performed using the orbital f
ab initio molecular-dynamics method, showing the feasib
ity of this technique to calculate several time correlati
functions, allowing a comprehensive study of the dynami
properties. Furthermore, agreement with the available
perimental data is reasonable.

We have also presented a method for producing, from
principles, local pseudopotentials for use with the orb

FIG. 12. OF-AIMF transverse current correlation spectru
Jt(q,v) at severalq values~in Å 21) for liquid Al at T5943 K. ~a!
q50.29 ~full curve!, q50.42 ~dashed curve!, q50.98 ~dotted
curve!, andq51.99 ~dash-dotted curve!. ~b! q52.70 ~full curve!,
q53.80 ~dashed curve!, q55.54 ~dotted curve!, andq57.03 ~dot-
dashed curve!, andq59.02 ~pulses!.
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free-density functionals. While the ultimate goal of th
method would be to use the atomic number of the atoms
the only input data, this has not yet been achieved, as
present calculations also require the experimental num
density of the system for calculating the local pseudopot
tial and for performing the simulations. However, we stre
that starting from very basic information, the present sche
allows the determination of the static and dynamic proper
of the system.

Finally, we emphasize that in the present scheme, the
culation of the pseudopotential is coupled to the particu
functional adopted for the total potential energy of the s
tem. This means that different kinetic-energy function
would lead to different pseudopotentials. Consequently,
field is open to further improvements in the description
the kinetic energy and, therefore, also in the correspond
local pseudopotential.
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APPENDIX A: KINETIC-ENERGY FUNCTIONAL

We consider the kinetic-energy functional

Ts@r#5TW@r#1Tb@r#, ~A1!

where

Tb@r#5
3

10E drW r~rW !5/322bk̃~rW !2, ~A2!

k̃~rW !5~2kF
0 !3E dsW k~sW !vb~2kF

0 urW2sWu![k~rW !* vb~2kF
0r !,

~A3!

k~rW !5~3p2!1/3r~rW !b. ~A4!

In the limit of small deviations from a uniform system, w
wish to recover the LRT result. Equating the Fourier tran
form ~FT! of the second functional derivative ofTs@r# with
respect tor(rW) for r(rW)5r0, to the inverse of the Lindhard
response function, gives, for the weight function,

S 6b22
20

3
b1

10

9 D14bS 5

3
22b D v̄b~h!12b2v̄b~h!2

5
10

9
@1/pL~h!23h2#, ~A5!

whereh5q/2kF
0 , v̄b is the FT ofvb , and

pL~h!5
1

2 S 11
12h2

2h
lnU11h

12hU D ~A6!
1-10
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is the noninteracting homogeneous electron-gas resp
function. Taking in Eq.~A5! the solution which satisfies th
normalization conditionv̄b(h50)51, and with b within
the range 0<b<5/6, so that the power ofr(rW) in Eq. ~A2! is
positive, the weight function is given by

v̄b~h!522
5

3b
1

1

3b
A~523b!215@pL

21~h!2123h2#.

~A7!

Requiring v̄b to be real places a stricter limit onb: b
<0.5991. With this choice of weight function, the function
recovers the LRT limit, and in the limit of uniform density
reduces to the Thomas-Fermi functional. In the limith→`
we have

v̄b~h!→C11A/h21•••, ~A8!

where

C1522
5

3b
1

1

3b
A17230b19b2. ~A9!

The constantC1 gives rise to a Dirac delta function in th
real space; therefore, it is convenient to define a ‘‘modifie
weight function

ṽb~h!5v̄b~h!2C1 , ~A10!

so that every convolution involvingvb , such as in Eq.~A3!,
becomes

G~rW !* vb~2kF
0r !5C1G~rW !1G~rW !* ṽb~2kF

0r !.
~A11!

An important limit is when the mean electron density, a
thereforekF

0 , vanishes as for instance in a finite system. N
the convolutions involving the ‘‘modified’’ weight function
vanish becauseh5q/2kF

0→` and ṽ(h) vanishes. Conse

quently, k̃(rW)5C1 k(rW), and the kinetic-energy functiona
becomesTs@r#5TW@r#1C1

2TTF@r#, and whenb54/9, C1

50.

APPENDIX B: POSITION-DEPENDENT
CHEMICAL POTENTIAL

The functional derivative of Eq.~7! gives

m~rW !5mW~rW !1mb~rW !1Vext~rW !1VH~rW !1Vxc@r~rW !#,
~B1!

where

mW~rW !5
1

8

u¹W r~rW !u2

r~rW !2
2

1

4

¹2r~rW !

r~rW !
, ~B2!

VH~rW !5E dsW
r~sW !

urW2sWu
, ~B3!

and, in terms of the modified weight function,
18420
se

’’

mb~rW !5
3

10
@~5/322b!r~rW !2/322bk̃~rW !2

12b~3p2!1/3r~rW !b21h~rW !#, ~B4!

with

h~rW !5 f ~rW !* ṽb~2kF
0r !, ~B5!

where f (rW)5 k̃(rW) r(rW)5/322b. The productm(rW)c(rW), is the
‘‘driving force’’ for the dynamical minimization of the en-
ergy functional; see Eq.~15!. If the various powers of the
density appearing inmb(rW)c(rW) are to remain positive, so
that this driving force is not to diverge in regions where t
density vanishes, then 1/2<b<7/12. In practice we have
found that for b50.51 the minimization always prove
possible.

APPENDIX C: CONSTRUCTING THE LOCAL
PSEUDOPOTENTIAL FROM AN INFINITE SYSTEM

In an infinite system most of the previous expressio
diverge, because the integrals extend to all space, and
integrands do not vanish for large distances. Moreover,
normalization constraint must be redefined, because the
number of electrons is infinite.

To avoid these problems, one has to take into account
similar divergencies which appear in the ‘‘ionic’’ part of th
total energy. This amounts to using ‘‘difference’’ function
which are obtained by subtracting from the total functio
their corresponding limits for large distances, and redefin
the chemical potential as the Lagrange multiplier associa
with the normalization of the ‘‘displaced’’ densityn(rW)
5r(rW)2r0. In this way we define the following functions

~i! Da(rW)5r(rW)a2r0
a5(r01n(rW))a2r0

a .

In particular, fora51, D1(rW)5n(rW), the displaced den-
sity.

~ii ! x(rW)5k(rW)2(3p2)1/3r0
b .

~iii ! x̃(rW)5 k̃(rW)2(3p2)1/3r0
b .

~iv! f(rW)5 f (rW)2(3p2)1/3r0
5/32b .

~v! h2(rW)5h(rW)2(12C1)(3p2)1/3r0
5/32b .

~vi! m̃b(rW)5mb(rW)2 1
2 (kF

0)2.

~vii ! vext(rW)5Vext(rW)2v jell(rW), wherev jell(rW) is the poten-
tial created by a uniform background of positive charge w
densityr0.

~viii ! vxc(rW)5Vxc@r01n(rW)#2Vxc@r0#.
In terms of these functions, the Euler equation now b

comes

vext~rW !1E dsW n~sW !/urW2sWu1vxc~rW !1
1

8

u¹W n~rW !u2

@r01n~rW !#2

2
1

4

¹2n~rW !

r01n~rW !
1m̃b~rW !2m850, ~C1!

with
1-11
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GONZÁLEZ, GONZÁLEZ, LÓPEZ, AND STOTT PHYSICAL REVIEW B65 184201
m̃b~rW !5
3

10
@m̃A~rW !1m̃B~rW !1m̃C~rW !1m̃D~rW !#, ~C2!

where

m̃A~rW !5S 5

3
22b D r0

2/322b@2~3p2!1/3r0
bx̃~rW !1x̃~rW !2#,

~C3!

m̃B~rW !5S 5

3
22b DD2/322b~rW !@~3p2!1/3r0

b1x̃~rW !#2,

~C4!

m̃C~rW !52bC1~3p2!1/3@r0
2/32bx̃~rW !1~3p2!1/3r0

bD2/32b~rW !

1D2/32b~rW !x̃~rW !#, ~C5!

and

m̃D~rW !52b~12C1!~3p2!2/3r0
5/322bDb21~rW !

12b~3p2!1/3@r01n~rW !#b21h2~rW !. ~C6!

In the last equation,h2(rW)5f(rW)* ṽb(2kF
0r ) and

f~rW !5r0
5/322bx̃~rW !1~3p2!1/3r0

bD5/322b~rW !

1D5/322b~r !x̃~rW !. ~C7!
s

y
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Summarizing, to evaluatem̃b(rW) from the displaced densit
n(rW) we take the following steps:

~1! Compute Da(rW) for a55/322b,2/322b,2/32b,
andb21.

~2! Computex(rW) and FT to obtainx(qW ).
~3! Compute x̃(qW )5C1x(qW )1x(qW )ṽb(q/2kF

0), and by

an inverse FT obtainx̃(rW).
~4! Computef(rW) according to Eq.~C7!, and FT to ob-

tain f(qW ).
~5! Computeh2(qW )5f(qW )ṽb(q/2kF

0) and inverse FT to

obtainh2(rW).
~6! Apply Eqs.~C2!–~C6! to obtainm̃b(rW).

When our system is one atom in a jellium vacancy,
external potential is given by

vext~rW !5vps~r !1vcav~r !,

i.e., the sum of the potential created by the cavity and
ionic pseudopotential. Substituting into Eq.~C1!, we directly
obtainvps(r ) once we compute all the other terms, which a
calculated fromn(r ). Note that all the functions have sphe
cal symmetry, which leads to simple expressions for the
dient, the Laplacian, and also the Fourier tranforms.
ens.
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Chem. Phys.115, 2373~2001!.

26J.A. Anta, B.J. Jesson, and P.A. Madden, Phys. Rev. B58, 6124
~1998!.
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56G. Wahnstro¨m and L. Sjögren, J. Phys. C15, 401 ~1982!.
57P. Verkerk, J.H. Builtjes, and I.M. de Schepper, Phys. Rev. A31,

1731 ~1985!.
58P. Verkerk, J. Westerweel, U. Bafile, and I. M. de Schepper

Static and Dynamic Properties of Liquidsedited by M. Davi-
dovic and A.K. Soper~Springer, Heidelberg, 1989!.

59W. Montfrooy, I. de Schepper, J. Bosse, W. Glaser, and C. M
kel, Phys. Rev. A33, 1405~1986!.

60A. Torcini, U. Balucani, P.H.K. de Jong, and P. Verkerk, Phy
Rev. E51, 3126~1995!.

61D.L. Price, K.S. Singwi, and M.P. Tosi, Phys. Rev. B2, 2983
~1970!.

62F. Shimojo, K. Hoshino, and M. Watabe, J. Phys. Soc. Jpn.63,
141 ~1994!.

63S. Kambayashi and G. Kahl, Phys. Rev. A46, 3255~1992!.
64J. Casas, D.J. Gonza´lez, L.E. Gonza´lez, M.M.G. Alemany, and

L.J. Gallego, Phys. Rev. B62, 12 095~2000!.
65G. M. B. Webber and R. W. B Stephens, inPhysical Acoustics,

edited by W.P. Mason~Academic Press, New York, 1968!, Vol.
IVB.

66H. Sinn and E. Burkel, J. Phys.: Condens. Matter8, 9369~1996!;
H. Sinn, F. Sette, U. Bergmann, Ch. Halcoussis, M. Krisch,
Verbeni, and E. Burkel, Phys. Rev. Lett.78, 1715~1997!.

67C. Pilgrim, S. Hosokawa, H. Saggau, H. Sinn, and E. Burkel
Non-Cryst. Solids250-252, 96 ~1999!.

68B.J. Palmer, Phys. Rev. E49, 359 ~1994!.
69U. Balucani, J.P. Brodholt, P. Jedlovszky, and R. Vallauri, Ph

Rev. E62, 2971~2000!.
70M. Shimoji and T. Itami,Atomic Transport in Liquid Metals,

~Trans. Tech, Aedermannsdorf, 1986!.
1-13


