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Ab initio quasiharmonic equations of state for dynamically stabilized soft-mode materials
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We introduce a method for treating soft modes within the analytical framework of the quasiharmonic
equation of state. The corresponding double-well energy-displacement relation is fitted to a functional form
that is harmonic in both the low- and high-energy limits. Using density-functional calculations and statistical
physics, we apply the quasiharmonic methodology to solid peridisigg)). We predict the existence of a
B1-B2 phase transition at high pressures and temperatures.
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. INTRODUCTION silicate perovskite (MgSi.6=*° Equilibrium structures,
thermodynamic properties, and compositions depend on the
The quasiharmonic approximatioprovides a means of free energy. Here we present a calculation of the free energy
extracting finite-temperature properties of materials fromof periclase as a function of density and temperature. We use
static calculations. It assumes that the vibrational propertiethe pseudopotential-plane-wave approach to evaluate total
can be understood in terms of excitations of noninteractingnergies and the method of finite displacements to evaluate
harmonic normal modeghonons Lattice dynamicscan be  pressure-dependent force constahtsncluding effective
used to calculate phonon energies by evaluating the eigercharges and dielectric constaitor the longitudinal optic
values of the dynamical matrix, which involves second deimodes. Based on calculated phonon frequencies and the
rivatives of the crystal energy with respect to atomic dis-quasiharmonic approximation, we present a first-principles
placements. calculation of the phase diagram and thermodynamic equa-
The frequencies of these modes depend on the crystaltioon of state of solid periclase: the relationship between pres-
density. Hence they have a temperature dependence thaire, density, and temperature.
arises simply because of thermal expansion in the material.
Recent developments &b initio energy calculations have
enabled full phonon dispersion curves to be obtained, leading Il. QUASIHARMONIC METHOD
to a resurgence of interest in the quasiharmonic approach. p ap initio calculation of specific Helmholtz free energies
Difficulties arise, however, when the dynamical matrix has } o , »
negative eigenvalues, indicating that the crystallographic _The first stage of the calculation is to obtain the specific
structure is not a local minimum of energy. Such crystalsWith respect to magsHelmholtz free energy of each phase

may be dynamically stabilizedbecause of their large en- 25 @ function of density and temperature. We write the free
tropy, they may represent a minimum of free energy at higtENeray as the sum of the_froze_zn-m_n interaction energy and
temperature. Within the conventional assumption of harihe free energy due to lattice vibrations.

monic phonons, the quasiharmonic framework leads to diver-

gent free energies in these cases. Such systems have been 1. Frozen-ion energy

treated numerically from first principles using Monte Carlo

methods  with effective - Hamiltonians or golecular- crystal with the ions fixed in their equilibrium positions—is,
dynamics simulations of a reduced set of modétere we ' yefinition, temperature independent. Hence the free en-

relax the quasiharmonic assumption of harmonic modegqy is simply equal to the internal energy. In order to deter-
while retaining the approximation of noninteracting phonons,mine the dependence on density, total-energy density-

and show how the intrinsic anharmonicity of such modes caf,nctional calculations are carried out for each phase at a

be included in analytic free-energy calculations. range of different lattice parameters
The mineralpericlase(MgO) is of some geological sig- '

nificance as one of the supposed constituents of the Earth’s
lower mantle. It is generally believed that along the
geotherm—the conditions of pressure and temperature actu- We calculate the lattice thermal Helmholtz free energy of
ally occurring in the mantle—periclase remains in a singleeach phase as a function of density and temperature within
phase. Under other conditions, however, previous calculathe framework of the harmonic approximatith.
tions have suggested that periclase has two phases in its solid For a range of lattice parameters, we evaluate the matrix
state: a sodium chloride-like face-centered-cubic phB84e (  of force constants for a supercéfieveral unit cellsof the
and a cesium chloride-like simple cubic pha®&2] that is  phase under consideration, subject to periodic boundary con-
favored at extremely high pressures. ditions. We evaluate the forces on the ions in a crystal when
Imaginary phonon frequencies are found in B phase one ion is displaced slightly from its equilibrium position:
of periclase, and have attracted enormous attention in thigom such calculations the matrix of force constants may be
other principal constituent of the lower mantle, magnesiunconstructed!

The frozen-ion energy—the interaction energy of the

2. Lattice thermal Helmholtz free energy
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We denote the matrix of force constants By where framework we have described so far because of the limited
®1n.a:mp,p IS the component of force in directianon ionn  size of the simulation supercell. At the zone center itself, the
in unit celll when ionp in unit cellmis displaced infinitesi- LO phonon sets up a uniform electric polarization that is
mally in direction 8, divided by the magnitude of the dis- incompatible with the periodic boundary conditions on the
placement. supercell.

Pairs of density-functional calculations are carried out Cochran and Cowley’s expression for the dynamical ma-
with an ion displaced from equilibrium along one of the trix is
Cartesian axes by a small amount in first a positive sense and
then a negative sense. By averaging the resulting Hellmann- ~ ~N 47re?

Feynman forces on the ions from the first simulation with the bn,aip,8(K) = bn, i, p(K) +Q|k|2—M\/—M
negative of the forces from the second, first-order anhar- e
monic contributions to the force constants are eliminated.

The set of rotations under which the crystal structure is X
invariant are identified and the rotation matrices, together
with the mappings between the ions under the symmetry 3
operations, are evaluated. For a given pair of idpe)(and X 2 kyZp,y,ﬁ(k)), 3)
(m,p), the matrix of force constan®, , ,.m p g transforms r=1

as a second-rank tensor. However, for a symmetry operatiof,herek is the wave vectore is the electronic charge) is
the transformed matrix must be the same as(theotated the volume of the unit cellM. is the mass of ionn
il n H

matrix of force constants between the pair of ions which are, 5(K) is the Born effective charge tensor for ion and
n,a,

mapped to (;n) and (m,p). Hence new elements of the _ (})'is the electroni¢frequency-dependentielectric func-

matrix of force constants can be obtained by an applicatiogion, “the first term on the right-hand side is the component
of these point symmetries. Translational symmetries can bgf the dynamical matrix that is analytic &s—0, while the

|den;t]|f|ed and efxfploned In-a S|m|Iak: falsdhlbon. dfiang  Second term is the nonanalytic part due to macroscopic po-
The matrix of force constants should be symmetiian larization effects. We use our matrix of force constants evalu-

Newton’s third law must be satisfied: if an ion is displaced ted using the Hellmann-Feynman theorem in a cubic super-
slightly then the restoring force on that ion must be equal an@

4 X ell to evaluate the analytic part as
opposite to the total force on all of the other ions. Hence we

3 *
> kyzn,y,cxk)) €5 1(k)
y=1

must have B 1 _
d’#a;p,ﬁ(k): T 2 ¢O,n,a;m,p,,8e7|k.(RoiRm)v (4)
¢I,n,a;m,p,ﬁ: ¢m,p,,8;|,n,a: (1) \/MnMp m
whereR,, is the position vector of unit ceth.
; el 12
Brinaing=— 2 Do i 2) Following _Parlmsklet.al., we assume that t_he second
e Y O E{ (R B term on the right-hand side of E() falls off from its value

_ ~at the Brillouin-zone center with a Gaussian profile. For
The force constants are obtained from separate numeric@lave vectors in the first Brillouin zone this term is

calculations; hence small violations of these requirements

may occur. These two conditions are therefore alternately 4me? i *
imposed on the matrix of force constants until further appli- 5 KyZn ,2(0)
cation leaves the matrix unchanggd. QK| VMM pé€o(0) | 7=1

The next stage of the calculation involves the construction 3
of _dynamical matr.ice’s?' for various wave vectors in the_first x| > KyZp..5(0) ><ef(|k|/pof<1’2)2, (5)
Brillouin zone. A diagonalization of the dynamical matrix for r=1

a given wave vector _gives the spectrum of correspondingvherekl/g is the distance from the center to the boundary of
eigenfrequencies. Strictly, these are only _exact_when thﬁqe Brillouin zone along thie,, k, , andk, directions, angh,
waveleng'ihs are commensurate with the dmenspns of thl% a parameter determining the rate at which the term falls off
supercellt! However, provided that the resulting dispersion

curves are smooth, it may be assumed that the interpolatiolax_‘}]S the e_dge of the Brlllo_um zone is approached. Following
7 arlinskiet al,, we setpy=1.2.
errors are negligible. The frequency density-of-states function is evaluated us-
Cochran and Cowléy} have shown that the elements of . 7 - : L .
. . T : ing the method of Swift? in which the Brillouin zone is
the dynamical matrix for an ionic crystal can be written as

the sum of a term that behaves analytically as the wave Vecs_ampled using Monte Carlo methods. For a single harmonic

tor tends to zero, and a term that is nonanalytic at the zon5nOde of frequencyy, the Helmholtz free energy is given by
ceqter. The Iqtter term vanishes as the boundgry of the Bril- Fi(w)=KkgT log(efhel2— g~ Bhol2), (6)
louin zone is approached. This term arises because

longitudinal-optic(LO) phonons cause an electric polariza- where?: is the Dirac constankg is Boltzmann’'s constant,

tion field to be set up within the crystal as the oppositelyis the temperature, an@=1/kgT. Hence, by numerically
charged ions are displaced in opposite directions. The resulintegrating the product of the specific density of states with
ing long-range interactions cannot be calculated within thehe mean free energy of a normal mode, the specific lattice
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thermal free energy can be calculated for a range of temperaouble well with a local maximum at the mean structure,

tures. The dependence on density is found by interpolatingorresponding to the high-symmetry phase.

between the results at different lattice parameters. We note Let x; be a coordinate describing the structural feature

that for high symmetry structures, once the phonon eigenvednvolved in the phase transition at a particular wave vector.
tors are determined at one volume, only a single calculatioThe corresponding normal mode can be modeled by consid-
of restoring forces with all atoms displaced in all directionsering the dynamics of the set ¢k;} moving in fixed local

is required at other volumes, since the displacement pattenpotential double well$® In the harmonic limit, normal

can be projected onto frozen phonons. modes are uncoupled. However, because we are considering
finite displacements there will in general be coupling be-
B. Gibbs free energy tween our double-well oscillators, this being most pro-

nounced around the phase transition and at high tempera-
tures. Coupling can be approximately treated by
renormalizatiort®

We have calculated the Helmholtz free enef@y,T) as a
function of temperaturd and specific volume (the recip-

rocal of the density However, the appropriate thermody-  \;,ch work has been concentrated on the Landau model,

namic potential for constructing thep(T)-phase diagram i, \yhich the double-well is dree energyin the form of a

and evaluating the polymorphic equation of state is the SP&juartic polynomial V(x)=Ax*—B(T)x?, where B(T)

cific Gibbs free energg(p,T), wherep is the pressure. The  changes sign with temperature through coupling to other

Glpbs free energy function for e_:ach phase can be evaluatefyges. Such a polynomial expansion of toal energyis

using the Legendre transformation also possible, perhaps incorporating still higher-order terms.
of However, analytic terms beyond second order imply phonon

g(p,T)=f+ pv=f—(—) v. 7) c_oupling. This is inconsistent with the harmonic approxima-

- tion used to describe nonsoft modes: even at a high phonon

number the normal modes are assumed to be harmonic and

therefore independent of each other.

We propose instead to describe the entire soft-phonon
Under conditions of fixed pressure and temperature, th@ranch via a double well of the form

system consists entirely of the available phase with the low-
est Gibbs free energy. Thus the phase diagranpjm) space V(x)= %mngz+ e(efxz/zaz_ 1), )
can be evaluated.

C. Phase diagram

where €, wg, and o are wave vector dependent. Provided
D. Combining phases that e>mw30?, there are minima at

For each pressure and temperature, we may evaluate the . 5 5
polymorphic Gibbs free energg,qy(p,T) as the lowest of X=X.= = \20%l0g(e/mwga?), (10
the Gibbs free energies for each phase. Given this, we MaYeparated by a barrier of height
carry out a Legendre transformation to the polymorphic

Helmholtz free energy: AV=V(0)—V(X.) = e~ Mwio?[ 1 +log(e/mwia?)].

11
agpoly) ( )
e T.

fpoly(U )= Gpoly™ PU = Qpoly— p( 8

This form of potential has the advantage of being approxi-
mately quadratic in both the low- and high-energy limits.
Differentiating this, we obtain the pressure as a functionSpecifically, for the low-energy casexatx. , we have
of specific volume and temperature: the desired polymorphic
equation of state. d2v

e 2mwjlog(e/mwio?), (12)

p

IIl. EXTENSION OF THE QUASIHARMONIC METHOD
TO UNSTABLE PHONONS which is equivalent to a harmonic oscillator of frequency

A. Analytic model of soft-mode phonons )= \/2wglog( e/mwécrz). (13)
In minerals such as perovskifeis is possible to describe

the transition from a high-temperature phase to a low-On the other hand, for the high-energy case, the potential

temperature phase of lesser symmetry as the “freezing in” ofipproximates that of an harmonic oscillator of frequeagy

a finite amplitude of an unstable phonon of the high- Soft modes do not usually show an abnormal dependence

symmetry phase, plus a finite strain on the unit cell. Weon temperature—except in the vicinity of the phase transi-

consider the application of quasiharmonic ideas to these mdion. Therefore, we expect our model to be more widely ap-

terials. plicable than models where soft modes are treated as quartic
The simple harmonic model gives a negative energy and and other modes as harmonic.

divergent free energy arising from the unstable modes. In The (imaginary harmonic frequencyw. about the(un-

reality, the soft-mode phonon is best described by a potentiadtable center of the well is given by
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Frequency / THz

— ¢£=0.1eV
£=02eV
- £=02972¢eV
€=04¢eV

FIG. 1. Classical frequency of
a double-well oscillator in thermal
contact with a heat bath plotted
against temperature for various
barrier heights e. The other
double-well parameters arma=1,
. 0o=0.0691 eVW2A~tamu?
and 0=1.866 amt?A. The fre-
quency falls to zero in a cusp at
the phase transition. At e
=0.2972 eV, the double-well pa-

0.5

rameters are appropriate for the
double-well describing the
. orthorhombic-tetragonal transition
in MgSiO; at zero pressuréRef.
7). Thus this model predicts a soft
mode transition temperature of
2609 K, if the coupling of the soft
phonon to strain is neglected.

1000

Temperature / K

2_ o2 €
We= Wo

s (14

B. Isolated double-well oscillators

We now consider the problem of motion in an isolated

potential double well.

1. Classical solution

If the mode has an enerdy= ¢, so that there is sufficient
energy to cross the barrier, each libration, we find that

20 (xu(E)o

_ 52
j V2mE-m2w2o?z22— 2mee "2z,

7 Jo
17
wherexy, is the positive solution o¥/(x)=E. On the other

hand, ifE<e, so that the motion is confined to one side of
the double well, we find that

To evaluate the mechanical energy, we assume that the

mode is in thermal contact with a heat bath at the appropriate

temperature. The mean energy is given by

j J H(p,x)e AH(PXdp dx

fw fm e PH(PXdp dx

f V(oz)e AV(eadz
_ kgT Jo

2

(E)=

; (15

fme—BV((rZ)dZ
0

whereH(p,x) = p?/2m+V(x) is the Hamiltonian of the iso-
lated mode as a function of and p, the canonical momen-
tum conjugate tx. 8= 1/kgT wherekg is Boltzmann’s con-
stant andT is the temperature.

For a given energ¥, the frequency of our isolated mode

o (xuEo ,
= —f \2mE-— m?w30?z?— 2mee % dz,
T Jx (E)l o

(18

wherexy, is the greater of the two positive solutions angl
is the lesser.

In either case, the corresponding frequeneymay be
evaluated using Eq19):

1 Jj 19
o JE° (19
Taken together, the results of Eq45), (17), (18), and
(19) allow us to calculate numerically the frequency of an
isolated oscillator moving with the mean thermal energy as a
function of temperature. Example results are shown in Fig. 1.
A typical “soft-mode” behavior is observed, with the fre-
quency dropping to zero in a cusp at the transition tempera-
ture. This simple approach was used in early studies of

; 17
can be evaluated using the action-angle method. The actigf9SiOs.

variable is

o1
J=E§pdx. (16

2. Quantum solution

The energy eigenfunctions of a particle moving in a sym-
metric potential must be either symmetric or antisymmetric.
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Furthermore, by considering building up the Gaussian barrier 2¢ o
adiabatically, it is clear that the symmetry of the eigenfunc-  (¢;|V,¢;)= Tf e
tions must be the same as for those of the harmonic oscilla- 20502 fitjrarJo
tor. (24)
The definite symmetry of the wavefunctions leads to a
“paradox” for wells of finite separation. If we know the

*KzzHi(z)Hj(z)dz.

The eigenvalues of the matrix of the Hamiltonian are the
allowed energy levels. For energies that are large compared
with the barrier height the particle will spend most of its time

the wave function is either symmetric or antisymmetric.
away from the center of the well; hence we expect that the

Hence the probability distribution is symmetric about the)ﬁ
center of the double well, and we cannot meaningfully sa

which side the oscillator is confined in, even if its energy isfrom Eq.(24) t_hat th_e_elements of the matr{xz')i|\_/1¢j_) fall
much less than the barrier height. Thus it is not conceptuall?f rapidly asi andj increase. Hence, for largeor j, the

clear that equating the mean thermal energy with the barrie‘?’'r‘;:’enSt""tesIOf thedHar(rj]_iItoniaq_ten?] to to tholse ﬁf ﬂ:je SHO.
height gives the correct transition temperature. We discusUS We only need to diagonalize the upper left-hand corner

this further in Sec. 1l D. say, the Q.+1)X(n.+1) submatri¥ in order to obta@n the
The Hamiltonian operator for a particle moving in the first nc+1 energy levelss, to E“c' Beyondn, the eigen-
quadratic potentiawithoutthe additional Gaussian potential States may be taken to be those of the SHO. The comparative
is ease with which the Hamiltonian matrix can be diagonalized
is one of the advantages of the quadratic-plus-Gaussian
52 2 1 double-well potential over the quartic double-well potential,
— —— —+ =mw3x? (20)  although there is no analytic form equivalent to Eg).
2m gx2 = 2 Assuming thain, is sufficiently large, the canonical par-
tition function can be written as
The well-known energy eigenvalues and eigenfunctions

o=

. . L . ~0 ne ©
ff)r 0the time-independent Schtimger equation H°¢, 7= e fEny S e An+12hag
- En¢n are n=0 n=n.+1
n —pho 1
E%=(n+ 112w, (21) =2° o ey © Bhoo(Net1) 29
=0 eﬁth/Z_ e—BfLwO/Z !

and
The free energy of the double-well oscillator can then be

2712 [ M) 14 mon evaluated as
¢ — Y e mwolezﬁH OX (22)
"ont | A n i

for ne Ny, whereH, (x) is thenth Hermite polynomial. o o ) )

double well isH=H+V/, wherevlze(efxz’z”z—l) is the Having proposed that each soft mode at a given wave
extra Gaussian term. Let the eigenfunctions and eigenenevector be described by a double well of the form given in Eq.
gies of the full Hamiltonian be), andE,,. (9), we now describe how the parametetso, and w, can

The eigenfunctions of the simple harmonic oscillatorbe determined. Note that {ix;} are mass-reduced phonon
(SHO) are chosen as the basis of wave-function space. Thisoefficients then we may, without loss of generality, set
choice makes the computation particularly simple, as will ben=1.
seen below. Consider the phonon dispersion curve of a crystal struc-

The matrix elements of the Hamiltonian with respect toture in which imaginary frequencies are present. Those
our chosen basis are branches that remain real throughout the whole of the Bril-

louin zone are treated as harmonic and, for each mode at
O AN — /A (D0 4 , N (i - each wave vector, Equatids) may be used to find the cor-
(iR =C Al )+ (il Vi) = (i + 12 hwod, responding free ene?gy. For thoie branches that are imagi-
€ = nary in some re_gion of the Brillouin zone, however, we pro-
+ PN e Hi(2)H;(2)dz, po?f)t'ziagglcl:zmgng treatment. o )
ymmetry point of the Brillouin zone the ei
(23 genvector corresponding to the relevant mode should be
evaluated and the displacement pattern frozen into the crys-
where K=#/2mwqo?+ 1. Note that the matrix is real and tal. Ab initio techniques can then be used to find the corre-
symmetric. _ sponding low-symmetry structure, if desired. Using three

The Hermite polynomials satisfid;(—x)=(—1)'H;(x), total-energy calculations with different amplitudes of the soft
so that(¢;|V,1¢;)=0 if i +] is odd. Ifi+] is even then the phonon frozen into the structuféwe may evaluate the pa-
integrand is an even function. Hence, in this case, rameterse, o and wy of the double well. Note that it is
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possible to fit Eq(9) to every branch even if the mode is not © o

imaginary since that Eq9) does not necessarily describe a  (x)= >, >, c*cye'En Emh g Iy )
double well. In practice the harmonic approximation is used =0 m=0

for all-real branches, it is equivalent to settiag 0.

(2) For each branch we use our results for the double-well =2 > > |callcml cot @nmt+ 7rm){ UnlXthm),
parameters at the symmetry points to construct interpolating nevenm odd
polynomials over the whole of the Brillouin zone for tlee (28

and o parameters. h CE—Eh d _

(3) For any wave vector in the Brillouin zone, we may where wnm=|Eq—Enp| h an ””“ﬁ_[?rg(cm)h

find the spectrum of correspondiiigossibly imaginaryfre- —arg(cn)]sgn_(wnm). Note t a_t we use fthe fact that
g | Xty =0 if ¢, and ¢, are either both odd or both even,

quencies. Provided we know to which branch these mode teelf | | he f h
belong, we have sufficient information to determine the paSINce X itself is odd. We also use the fact t @ln| X )
rameters of the appropriate double-well for each medend = thm|X il .

o are found by interpolating to our wavevector and the un- e assume that the energy levels are initially populated

stable frequency gives, [see Eq(14)], from which we may according to Boltzmann xstat@'ggs;_ this,|?=Z .1e .BEn'.
find w2= w2+ e/ma2. v_vhere,Bz_l/kBT andZ=X__,e F"n is the canonical parti-
(4) Hence, for any given wave vector, the free energy oftion function. So we have
each mode, whether harmonic or soft, can be evaluated.
These free energies can be summed to give the free-energy X)= > > oo @nmt+ 7nm), (29
contribution from all modes at the given wavevector. nevenm odd
(5 The free energy can then be integrated over all wave, pore  —27-1a=B(En+ En/2( o Xthr) is the amplitude of
vectors in the Brillouin zone to give the total lattice thermal i« cinusoidal component in the ex%ansion(x))‘ with fre-
free_ energy. By using a grid-based scheme to integrate Ovecfuencywnm.
an wyedymble wedge .Of the zone and by mgk_mg use of the For the harmonic-oscillator potential, the frequencies of
continuity of the gradient of each branch, it is possible Oihe oscillations in(x) are of the formwyy=|E,— Enl/%
keep track of which branch is which—necessary if the P~ |n_m|w,. Thus the lowest oscillationn?requgncymdso.

propriate valut_as Of? and o are to be _interpolated in the For the symmetric double well, however, we end up with a
pressence of imaginary branch crossings. The problem Qajet of pairs of energy levels that are very close to each other

interpolation over an irreduciblg wedge of the Brillouin Z.One_(becoming degenerate in the limit that the barrier height goes
has been studied extensively in the context of electronic elg, infinity). These give rise to oscillation frequencies very
genvalues: see, for example, Ref. 18. much lower thano,

The high-symmetry dynamically stabilized phase and the As the temperature is increased, higher-frequency compo-

low-symmetry “frozen-phonon” phase can now be treated 3%hents have largel” coefficients. We suggest that the soft-

bein_g distinpt. Hence the methodology of Sec. Il B can bemode phase transition be judged to occur when the frequency
applied to find the phase diagram.

with the highest coefficient exceeds the frequency of the ex-
perimental probe. When this has happened, the predominant
D. Interpretation of the soft mode transition sinusoidal component dk) has a frequency higher than can
be measured by the experimental probe, and so it appears to

- . . -the experimenter thgix)=0. Below this temperature, mea-
For the probability density to be asymmetric—necessary Iftsurements ofx) will tend to find it in one well or the other.

we are to meaningfully say that the particle is in one well or— . TR A .
the other—we must have a mixture of symmetric and anti_Th|s definition is different from the polymorphic ori€ec.

symmetric energy eigenstates. Therefore, we cannot simultél- Er’n)n?st? afjbsri;:i:]he(;gg?t?g:o(; tt%;h?agiec i ﬁﬂ:{g?; Lr\?igglhe
neously know the energy of our particd@d which well it is y Y 9 y

1 Unless e reak e Symmety . by allwing he oy So00TEANES e ension, In aricar e auasharmorie
tal to distort under phonon-strain coupling P

If the oscillating particle’s wave function is a superposi- soft-mode” one is second ordef.

. ) ; . . Thus the first-order transition is determined by comparin
tion (.)f. dlffere_nt energy e!genfun(:_tlons then the expansmnm the free energy of the soft-mode phase c):/alcularied gs
coefficients will evolve in timdprovided the system remains '

both undisturbecand unobservex according to the Schiro above, expanded about an unstable frozen-ion structure with-
9 %ut strain-phonon coupling, witf2) the free energy of the

dinger equation._Hence th_e_ quantum mechanical expectatiqOW symmetry phase, calculated by expanding about the
Val‘ll{ﬁeori:r:]:-g:rtéﬂsgn?(\)/\fg\l/%h?gni?iecl)?lgs;nl%gvv?i.tten as minimum of total energy. Typically, the former will have a
P higher entropy(sampling from both wells while the latter

has a lower energy.

Consider an isolated symmetric double-well oscillator.

_ —iELt/h
‘I’(X’t)_go Cn€ ¥n(X). 27) E. Absorption of low-frequency photons
Figure 2 shows the energy difference between neighbor-
Hence the expectation ofcan be written as ing energy levelsk,—E, _;)/# plotted against the mean of
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T I T I T I T I T I
\ —— Classical frequency
25 \\\ —— Difference between neighboring energy levels divided by Dirac constant
- \\\\ _
\\\\\
2 \\\\\ —
T Int
£ 3 . FIG. 2. Thick line: frequency
c:>’ of a classical isolated double-well
5 L5 I oscillator against energy. The
& double-well parameters are as
= i i in Fig. 1 withe=0.2972 eV. Fine
§ . — line: energy differences K
g —E;_))/% against energy K,
© i i +E;_)/2h for a quantum
oscillator.
05— —
0 1 Il I 1 I 1
0 0.1 0.2 0.3 04 0.5
Oscillator energy / eV
the two energieskE,+E,,_;)/2 for the quantum double-well For theB1 phase, the simulation cell consists of a single
oscillator. Absorption of photons at frequencyE,( cubic unit cell. The Brillouin zone is sampled at 20 special
—E,_1)/h is symmetry allowed. points generated from an X3X8 mesh using the

For energies in excess of the barrier height the frequencionkhorst-Pack schenfé.For theB2 phase, the simulation
(En—En-1)/fi is virtually identical to the classical fre- cell is a single cubic primitive cell. The Brillouin zone is
quency for energy&,+E,_,)/2, obtained using the method sampled at 35 special points from &9x9 mesh. In each
of Sec. Il B 1. In the very high-energy limit the frequency case the point symmetries of the crystal are enfoféed.
behaves as that of the quadratic potential well without the ¢ equilibrium lattice parameter of ti& phase at zero

Gaussian barrier. external pressur@vhich corresponds to the minimum of the

For energies less th_an the barrier height the energy level,sold-curvé calculated usingASTEPis a=4.259 A, which
tend to degenerate pairs of levels. The frequencies given b ay be compared with an experimentally determined param-

the Fjlﬂ‘erence between the energy levels of pe|ghbor|ng pa|rgtera:4.2115(1) A28 The difference between the theoret-
again correspond to the classical frequencies. However, the | and . tal val is about 1%

pairs of almost-degenerate eigenstates imply the existence gt and expenmental vajues 1s about 1.

very low-frequency absorption peak&hese are the very

low frequencies that alternate with the classical frequencies 2. Determination of the matrix of force constants
below the transition energy in Fig.)dt should be noted that
these frequencies are not associated with the normal modes . .
of the Iov?—symmetry phase and do not, therefore, contributgchce constants for th&1 phase consist of 22X 2 cubic

to the quasiharmonic thermal energy. They are a featurgnit cell_s(64_atom$. Thus the inte_ractions betyveen a given
of the quantum double-well oscillator without a classical'©" and _|ts third-closest shell of neighbors are mcludgd in our
analog. calculations. For thé82 phase, the cells used consist of 2
X 2X 2 cubic primitive unit cell§16 atoms. In these super-
cells the crystal symmetry is such that only two ionic dis-
placements are required to complete the entire matrix of
force constants. The plane-wave cutoff energy is 540 eV and
A. Computational details the Brillouin zone is sampled at six special points from a 4
X4X4 mesh. In each simulation the ion displaced from
equilibrium is moved by 0.4% of the lattice parameter.

For each lattice parameter the total energy is evaluated As demonstrated by Parlinskt al,'? it is possible to cal-
using thecasTePsoftware packag® which utilizes density- culate the Born effective charge tensors from first principles
functional theory in the generalized gradient approximatiorusing simulations of elongated supercells. Note that because
(GGA).?° The ionic cores are accounted for using ultrasoftof the symmetry of th&1 andB2 phases, the Born effective
pseudopotentiafs in Kleinman-Bylander fornf> The wave charge tensors are isotropiso Zn a.5=Znb,,p). Further-
functions of the valence electrons are expanded in a planenore, the sum of the Born effective charges over the ions in
wave basis set up to an energy cutoff of 540 eV. a unit cell must be zer8 (so Zyg= —Zg). Hence there is

The supercells simulated to determine the matrices of

IV. APPLICATION OF QUASIHARMONIC METHODS
TO PERICLASE

1. Cold curve
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25

FIG. 3. Dispersion curves for
B1 MgO at a lattice parameter 4.2
A. The symmetry points in the
dispersion curve aréfrom left to
right) I' [000], X [001], X [011], T
[000], and L [33%]. Note the
LO-TO splitting (atT", the LO fre-
quency is 22.0 THz whereas the
TO frequency is 12.4 THzarising
from the nonanalytic term of Eq.
(5). Also shown are Peckham’s
experimental results foB1 MgO
at a lattice parameter 4.212 A.
Note that the reciprocal-lattice
vectors referred to in the results
for the B1 phase are those of the
cubic unit cell rather than the true
reciprocal-lattice vectors.

20

Frequency / THz
O

—
=)

r X X T L

Wavevector

effectively only one undetermined parameter in the nonanaments are similar; hence it is reasonable to assume that the

lytic term: Zy,4(0)/ v €o(0). forces remain lineafand the quasiharmonic assumption is
We choose&Z,(0)/\/en(0) =4.4 to give the LO branch in valid) for temperatures up to several thousand K.

the dispersion curve of Fig. 3. Our values for the effective

charge tensors of thB1 phase are such that the calculated 3. Other sources of error

LO branch for lattice parameter 4.2 A are in reasonable apother potential source of error is the limited size of the

agreement the experlmen_tal results of Peckﬁ%We neg!ect simulation supercells. However, the results shown in Table |

the variation of the effective charge tensors with lattice pasy, he B1 phase make it clear that interactions beyond the

rameter. third-closest shell of neighbors may be safely negleéfed.
Contributions to the free energy from the thermal excitation
B. Approximations and errors of the valence electrons, from coupled electron-phonon ex-
citations and from the equilibrium population of defects are
thought to be negligible in comparison with the frozen-ion
Total-energy differences between structures calculated usnd lattice thermal energié®.
ing density-functional theory in the generalized gradient ap- A poor convergence of the Hellmann-Feynman forces can
proximation are thought to be reliable to within a few result in the violation of Newton’s third law for the matrix of
percent? The cutoff energy of the plane-wave basis atforce constants. Typically this results in the acoustic
540eV is sufficient for convergence of the total energies obranches of the dispersion curve failing to pass through zero
the crystals to within 10ueV per ion, several orders of at the center of the Brillouin zoré.As discussed in Sec.
magnitude less than the likely error due to the use of theél A 2, Newton’s third law is imposed on the matrix of force
GGA. The Hellmann-Feynman forces are converged taconstants. However, even without this, the calculated acous-
within 1 meV A1, at least two orders of magnitude less tic branches pass very close to zero at the zone center.
than the dominant forces arising when an ion is displaced. ©— The method by which long-range polarization effects are
accounted for is also approximate. The effects of this are
2. Harmonic approximation discussed below.

1. Errors in ab initio total-energy calculations

We investigate the range of validity of the harmonic ap-
proximation. This is done for th®1 phase with a lattice C. Ab initio phonons
parametea=4.2 A.

We evaluate the force constant of the restoring force on a 1. B1 phase
magnesium ion as it is displaced in tRelirection. The re- Inelastic neutron-scattering experiments were carried out
sults are shown in Fig. 4. It can be seen that the force conby Peckhanf?® and used to generate dispersion curves for the
stant starts to increase when the ionic displacement reach&l phasée.’ We compare our theoretical dispersion curve
ama=0.084 A, about 2% of the lattice parameter, at whichwith these results in Fig. 3Note that our dispersion curve
point the potential energy is about 0.4 eV. Other displacewas generated for a lattice parameter of 4.2 A, whereas Peck-
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200 1 | 1 1 1 1 1 T 1 T 1 I 1 T T T
180— —

1601~ FIG. 4. Graph of the restoring

force divided by the finite dis-
placement of a Mg ion in the
[100] direction against that dis-
placement. Results are appropriate
for a 2xX1X 1 supercell of théB1
phase at a lattice parameter 4.2 A.
The force constant is independent
of the magnitude of the displace-
ment until the displacement is at

=
=
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Force constant / eV A
=
[

60— - least 0.084 A. Thereafter the re-
B . storing force increases faster than
40— — linearly with the displacement; the
- . harmonic approximation has bro-
20— — ken down.
1 I 1 1 1 1 1 1 1 1 1 I 1 1 1 1
0 0.01 0.1

Displacement of Mg ion/ A

ham'’s results were obtained under ambient conditions where Thus Reichmannet al’s experimental results show
the lattice parameter is 4.212)A0ur theoretical results are a higher degree of anisotropy than do our theoretical results.
in reasonable agreement with experimgfthe lattice pa- The discrepancy would appear to (@ least partly caused
rameter of 4.2 A corresponds to a pressure of about 7 GPa hy the imposition of symmetry and Newton’s third law
zero temperaturg. on the matrix of force constant$:if this procedure is
The specific frequency density-of-states function is showmot carried out then we find thatda/dko0)k=0
in Fig. 5. Without the addition of the nonanalytic term to the =10770 ms* and dwja/dk1117)k—0=12651 ms*. Al-
dynamical matrix, the longitudinal optic branch is degeneratéhough Reichmanet al’'s P-wave velocities are still some-
with the transverse optic branch at tRepoint, and this is what less than these theoretical velocities, both are now in
also shown. Although only the LO branch is altered substanagreement that the velocity in th&00] direction is less than
tially, it can be seen that the inclusion of the nonanalytic ternthe velocity in the[ 111] direction.
has a significant effect on the density of states.
We compare sound velocities calculated from our disper- 2. B2 phase
sion curves with the experimental results of Reichmann
et al?® obtained using ultrasonic interferometry. Reichmann
et al. obtained aP-wave sound speed of 9119 misin the
[100] direction, whereas our longitudinal-acoustic mode ha
(dwa/dk100)k=0= 11367 ms*. On the other hand, in the
[111] direction, the experimentalP-wave velocity is
10125 ms?t, which may be compared with our theoretical
value of 10818 ms?.

Typical dispersion curves for thB2 phase at lattice pa-
rameters 2.0 and 2.7 A are shown in Figs. 6 and 7. At zero
temperature these lattice parameters correspond to pressures
f 653 GPa and-6 GPa, respectively.
Note the presence of unstable modes at low pressures in
the dispersion curve of thB2 phase(Fig. 7). We find that
the B2 phase is structurally unstable for pressures below
about 82 GPa. In our calculations for the phase boundary in
TABLE I. Magnitude of the component of force in tH801] periclase we dmot require our method for dealing with soft _
direction when the Mg ion &0,0,0 is displaced in th§001] direc- ~ Modes, because the imaginary frequencies are only found in
tion by 0.05% of the length of a ¥2x 1/\2x 8 supercell. Coordi- the B2 phase at pressures for which & phase is clearly
nates are given as fractions of the supercell dimensitfisese favored.
results are foB1 MgO at a lattice parameter 4.2)A.

D. Ab initio equation of state
Magnitude of[001] component

Position of Mg atom of force / eV Al We plot the pressure against specific volume for a range
of temperatures in Fig. 8. This is the desired thermodynamic
(0,0,0 0.13424 equation of state for periclase. Also shown is a third-order
(0.5,0.5,0.062p 0.03356 Birch-Murnaghan equation of state generated from the iso-
(0,0,0.125 0.00981 thermal bulk modulus and its first derivative with respect to
(0.5,0.5,0.1875 0.00006 volume, which were obtained by means of ultrasonic sound

velocity measuremenrt.
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FIG. 5. Specific frequency
density of states for thB1 phase
at a lattice parameter 4.2 A with
and without the inclusion of the
nonanalytic term in the dynamical
matrix.

e
=
|

Specific frequency density—of—states / A amu
=]
[\
|

Frequency / THz

As a test of the validity of our results, the isothermal bulkthe data from—8.3 to 21.12 GPa we find that the the gradi-
modulus at zero temperature and external presSuhere  ent is 4.11, in excellent agreement with the experimentally
periclase is entirely in th81 phasg can be compared with determined value of 4:20.22 It is found that the pressure
experimental results. We calculate the bulk modulus to belerivative of the bulk modulus decreases slightly as the pres-
—v(dpldv)t,=155 GPa, whereas an experimentally deter-sure is increased.
mined value is 160.80.3 GP&° The theoretical and ex-
perimental results differ by about 3%.

We may also compare the pressure derivative of the bulk The theoretical phase diagram of solid periclase is shown
modulus at zero pressure and temperature with experimentad Fig. 9. At pressures and temperatures below and to the left
results. The bulk modulus is found to be almost, but notof the phase boundary shown in the diagram, periclase exists
quite, a linear function of pressure. Fitting a straight line toin the B1 phase; above and to the right of the boundary it

E. Ab initio phase diagram

FIG. 6. Dispersion curves for
B2 MgO at a lattice parameter 2.0
A. The symmetry points in the
dispersion curve arérom left to
righty X [200], T [000], M
[220], R[27z], T [000], andX
[300].

Frequency / THz

R r X

Wavevector
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FIG. 7. Dispersion curves for
B2 MgO at a lattice constant of
2.7 A. The symmetry points are as
in Fig. 6. Note the branches of
imaginary phonon frequencies, in-
dicating that the structure is me-
chanically unstable at this volume.

Frequency / THz

10i— —

X r M R r X

Wavevector

exists in theB2 phase. Duffyet al3% showed experimentally different. Karkiet al® obtained aB1-B2 transition pressure
that’ at room temperature, t phase is stable to pressures of 460 GPa at 0 K, which also differs SubStantially from that
of at least 227 GPa. This lies well within th&l region of  Of Strachanet al. Figure 10 shows the Gibbs free energy
our theoretical phase diagram. It can also be noted that thelotted against pressure for the two phases at two different
B2 phase is not favored at the pressures at which it is strugemperatures. The difficulty in ascertaining the transition
turally unstable. pressures at which the curves cross is apparent. This consid-
Also shown in Fig. 9 is the theoretical phase diagrameration will affect all theoretical calculations of the phase
obtained by Strachaet al3' using a molecular-dynamics diagram of periclase.
simulation. Although qualitatively similar, the calculated po-  We confirm the difficulty in locating the transition by at-
sition and orientation of th81-B2 phase boundary is very tempting to reproduce Karldt al's zero-temperature results,

600 T I T I T 1
i . —— Temperature OK (Jackson) i
500 "\.‘ ------- Temperature OK (present work) —
w ---- Temperature 3200K (present work)
i R FEES Temperature 6400K (present work) T
400 {~ —
- FIG. 8. Equation of state of
% i ] periclase: pressure against specific
> 300 _ volume at various temperatures.
E The position of the phase transi-
Zfi - s tion is clearly visible as a kink in
= the curves. A Birch-Murnaghan
200~ ] equation of state generated from
| i Jackson’s experimental results is
also shown.
100 —
0 -
0.2

Specific volume / A% amu™
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700 T T T I T
— BI1-B2 coexistence (this work)
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L~ e B1-liquid coexistence (Strachan) i
X B1-B2 coexistence (Karki)
500

400

300
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100 —

1
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FIG. 9. Theoretical phase dia-
gram of periclase. Th81 phase
region is below and to the left of
the B1-B2 coexistence line. Also
shown are other theoretical results
(Refs. 5 and 3), including a the-
oretical B1-liquid phase bound-
ary.

in which zero-point lattice vibrational energy is neglected.For a given unit-cell enthalpy for thB2 phase, we find the
We simply calculate the enthalpy against pressure for the twéractional volume difference as

phases usingASTER The results are shown in Fig. 11. We
find a transition pressure of 664 GPa, different from that of
Karki et al. (460 GPa. The possibility of a metallization
transition lowering the energy of tHg2 phase was investi-
gated but found not to occur at relevant pressures.

where hg;=—34.4043 eVA?3

hBZ hBl (30)

hBZ+hBl

and hg,=—34.3978

We consider the fractional error in unit-cell volume for eV A~2 are the specific enthalpies of the two phases at 451
the B2 phase to which the difference between the specifi&GPa. Thus a discrepancy @\V/VXx10 4~0.02% in the
enthalpies of th&1 andB2 phases at 451 GPa corresponds.volume of either phase would correspond to a 200-GPa

-34.5

— BI1 MgO; Temperature OK
--- B2 MgO; Temperature OK
----- B1 MgO; Temperature 3200K
------- B2 MgO; Temperature 3200K

<
b

Specific Gibbs free energy / eVA™

35.5 R RS I S R R

0 100 200 300 400 500

Pressure / GPa
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600

FIG. 10. Gibbs free energy
plotted against pressure for tBd
andB2 phases of periclase at two
different temperatures. The transi-
tion pressure at each temperature
corresponds to the point where the
curves cross. The similarity of the
curves for each phase means that
small errors in the energies lead to
large uncertainties in the transition
pressures.
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Enthalpy against pressure for B1 and B2 MgO
Curves cross at 663.975 GPa

3381 — MgOBI phase - FIG. 11. Enthalpyh=e+pv
---- MgO B2 phase plotted against pressure for tBd

. andB2 phases of MgO at a tem-
perature 0 K(note that zero-point
- energy is not included in the re-
sults shown on this graphThe
curves cross(and so the phase
transition is predicted to occuat
664 GPa. These results are ob-
tained directly from the results of
CASTER. Note that, again, the two
curves are extremely close when
they cross; thus the position of
- the theoretical transition point
is sensitive to the simulation
— parameters.
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344

-34.6—

0 500 1000
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change in the transition pressure. This illustrates the sens@ur approach is based on a form of potential double-well
tivity of the transition point to the details of how the total- different for that used in previous work on soft phonons: a

energy calculations are carried out. o parabola-plus-Gaussian form that has the advantage of being
We use the generallzzled gradient approximation and ultraharmonic in both the low- and high-temperature limits.
soft pseudopotentiaf;** whereas Karkietal. used the We argue that the first-order nature of the phase transi-

local-density ~approximation andQc-tuned pseudopo- tjons found using our extended quasiharmonic method arises
tentials®***The difference between calculated volume usingpecause of the coupling of the relevant phonon to strain in
these two methods is typically of the order of 5%; hence thishe crystal. Without this coupling, the transition would be

is likely to be rgsponsmle for the difference between ourgecond order. We have suggested a criterion for judging
results and Karket al’s. when a second-order soft-mode phase transition has oc-

The CIausius-CIapgyron equauqn for the coexistence IIn%urred, taking into account the quantum-mechanical nature
between two phases ip(T) space is of the problem

dp As At energies less than the height of the central barrier in
It Ao’ (3D our symmetric potential double well, the allowed energy lev-
v els consist of near-degenerate pairs. Hence we suggest there

wherep(T) is the coexistence line antis and Av are the —must exist extremely low-frequency photon absorption peaks

specific entropy and volume differences between the twdor soft-mode materials in their low-temperature phase, cor-

phases across the line. At zero temperature the entropy of thresponding to photon-induced transitions between such pairs.

two phases should be zero by the third law of thermodynam- We have evaluated the equation of state and the phase

ics which is valid within our methodthough not, e.g. in  boundary for theB1-B2 transition in periclase usinab ini-

classical molecular dynamit$; therefore, provided the tio calculations in the quasiharmonic approximation. We pre-

phases have different densities, the coexistence line shoultict that this transition will occur, but that it is well outside

satisfydp/dT=0 atT=0. Fig. 9 does not appear to satisfy the ranges encountered inside the Earth. Locatin@dth@®2

this requirement. phase boundary with precision is difficult, however, because
The explanation for this apparent discrepancy lies withthe Gibbs free energy curves of the two phases are very

the fact that the densities of the two phases are very similagimilar when they cross.

(and convergingat their predicted zero-temperature transi-

tion point: the specific volumes of tH&l andB2 phases are

0.202 and 0.198 Zamu !, respectively. ACKNOWLEDGMENTS
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V. CONCLUSIONS
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