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q-space configurational energy and short-range order in alloys with atomic size mismatch
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We present aq-space method for the incorporation of long-range strain fields into the statistical thermody-
namics of binary alloys with atomic size mismatch. In this approach the configurational energy is parametrized
via a set of potentials and generalized Kanzaki forces providing a powerful description of strain-induced
many-body effects for systems with lattice distortions. We show how strain-induced interactions act on the
topology of short-range-order patterns.
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Presently, the most general approach in the statistical
chanics of alloy systems on a given rigid ideal crystal latt
is based on a lattice model in which the configurational
ergy of a binary alloyA12cBc is described by a Hamiltonian
represented as an exact real space expansion1–5
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where the occupation of lattice siteRW with atom A or B is
labeled by the variablecRW 51 ~for B atom! and 0~for the A
atom!. The set of effective interaction parameters$V(n)%n
51,2,3, . . . arephenomenological constants which can
determined from electronic structure total energy calcu
tions and then used in Monte Carlo simulations.V(1) denotes
the site energy for injecting aB atom into the matrix,V(2)

describes the two-body mixing potential, andV(3) quantifies
the three-body interactions in the system~for details, see Ref
6!. This approach has been fruitfully used for the study
ground states, phase diagrams, and short-range order~SRO!
in metallic and semiconductor alloys. Conversely, expe
mental SRO data are used in inverse Monte Carlo~IMC!
techniques to determine concentration- and temperat
dependent effective pairwise interactions$VRW

e f f
%,7,8 which in-

clude contributions from the numerical mapping of all man
body interactions in Eq.~1! onto the set$VRW

e f f
%. This set can

then be used for the modeling of structural and thermo
namic properties of alloys. In the case of alloys with atom
size mismatch this accurate real-space approach shoul
improved by incorporating mechanical degrees of freed
which account for lattice distortions. Here we propose
q-space approach which allows us to overcome this prob
by constructing an analytical procedure for the mapping
strain-induced many-body effects onto the two-body eff
tive interactions. This procedure is based on the recently
veloped simple and accurate ring approximation.

Atomic size mismatch in alloys leads to mechanical rel
ation of the crystal lattice that gives rise to a stochastic lo
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range field of static atomic displacements$uW RW %. In this case,
the chemical energy parameters$V(n)% in Eq. ~1! should be
replaced by$Ṽ(n)%[$V(n)1DV(n)% for a strain-induced con-
tribution $DV(n)% caused by the lattice distortions. By way o
example, the contribution for the two-body effective intera
tions is given by3,9,10

DVRW 1 ,RW 2

(2)
52(

qW
fW qW

1
ĜqWfW qWe

iqW (RW 12RW 2)1Q, ~2!

where fW qW and ĜqW are the Fourier components of the s
called Kanzaki forces and the lattice Greens function, resp
tively ~see also Ref. 11!. The latter appears in the theory o
lattice dynamics and can be described in terms of force c
stants~the normalization constantQ is determined by the
requirement of the absence of atomic self-interact
DVRW 15RW 2

(2)
50). The summation overqW in Eq. ~1! and hereaf-

ter is carried out over the first Brillouin zone of the syste
One important feature ofDVRW 1 ,RW 2

(2) is its infinite range of ac-

tion which renders IMC and other purely real-space stati
cal thermodynamics as Monte-Carlo and the cluster-varia
method based on the Hamiltonian in Eq.~1! to be inefficient
for the study of the effects of atomic size mismatch in allo
Notice also that the long-range strain-induced interaction
hibits a nonanalytic behavior of its Fourier component aq
50 (G point!. Within the mixed-basis cluster expansio
method12,13 this problem is overcome to a certain extent
isolating this singularity and adding it as a separate term
Eq. ~1!. Doing so, the cluster energies$V(n)% are calculated
for the relaxed state of the lattice and, therefore, the sh
range part of the strain-induced interaction is included
mapping it into$V(n)% without explicit use of the force pa
rameters described in Eq.~2!.

Using the Kanzaki force approach14,15 the set of~‘‘chemi-
cal’’ ! energy constants$V(n)% determined for the average la
tice of the alloy is completed by the set of force consta
$f (n)% responsible for the lattice displacements. Note t
these artificial forces act on the average lattice in such a
that they cause the same displacements as in the actua
tice. In an adiabatic approximation, the condition of m
chanical equilibrium allows then to express the static d
©2002 The American Physical Society03-1
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placements$uW RW % in terms of the occupation variables$cRW %. It
is important to note that, even in the case of only pairw
chemical interactions, this procedure gives rise to ma
body strain-induced interactions.16 This naturally leads to a
q-space simulation of the SRO in alloys with atomic si
mismatch by means of the ring approximation.17 In addition,
it gives a simple and clear interpretation of the interaction
alloys by analytical ‘‘mapping’’ of the many-body contribu
tions onto the effective two-body interactions.

In the presence of a displacement field caused by ato
size mismatch the Hamiltonian of the system can be re
sented as the sum of a chemical part determined for the
distorted lattice and an effective strain-induced part
scribed in the quasiharmonic approximation9 as follows:

H~$cRW %,$uW RW %!5Hch~$cRW %!1Hs-i~$cRW %,$uW RW %!, ~3!

whereHch is determined by Eq.~1! taking into account the
pairwise chemical interaction only.18 The strain-induced par
of the Hamiltonian is then given by

Hs-i5
1

2 (
RW 1 ,RW 2

uW RW 1

T
f̂RW 12RW 2

(0)
uW RW 2

2 (
RW 1 ,RW 2

cRW 1
fW RW 12RW 2

(1)T
uW RW 2

2
1

2 (
RW 1 ,RW 2

cRW 1
fW RW 12RW 2

(2)T
cRW 2

uW RW 2
,

~4!

where the first term refers to the potential-energy chang
the alloy due to the lattice distortions$uW RW % which are presen
even in a pure matrix. The second and the third terms are
potential-energy changes due to the displacement field
duced by the injection of singleB atoms into the alloy matrix
andB atom pairs in the lattice, respectively. The symmetri
333 matrix f̂RW 12RW 2

(0)
5i]2Ṽ(0)/]uRW 1

i
]uRW 2

j i0 @with ( i , j

5x,y,z) as Cartesian coordinates# corresponds to the forc
~‘‘spring’’ ! constants known from semiphenomenologic
models of lattice dynamics. The vectorsfW RW

(n)

52]Ṽ(n)/]uW RW u0 with n51,2 are the generalized Kanza
forces.19 The force constants$f (n)% in Eq. ~4! as well as the
potentials$V(n)% in Eq. ~1! are determined for the undistorte
state at a given alloy compositionc. The associatedq-space
representation of Eq.~4! reads

Hs-i5
1

2N (
i j

(
qW

fqW
(0)i j

~uqW
i
!* uqW

j

2
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N (
i

(
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i
!*

2
1

2N2 (
i

(
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fkW
(2)i

~uqW
i
!* ckWcqW 2kW . ~5!

In mechanical equilibrium, i.e.,]Hs-i /]uW RW 50 for all $RW %, the
~Cartesian! Fourier components of the displacement fie
read
18020
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cqW1~2N!21(

kW
BqW ,kW

i
ckWcqW 2kW , ~6!

where

AqW
i
[(

j
GqW

i j
fqW

(1) j , BqW ,kW
i

[(
j

GqW
i j
fkW

(2) j .

Substituting Eq.~6! into Eq. ~5! we obtain
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ĜqWfW qW
(1)

cqWcqW
*

2
1
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(1)1
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1

8N3 (
qW 1 ,qW 2 ,qW 3

fW qW 1

(2)1
ĜqW 2

fW qW 3

(2)
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cqW 22qW 1
cqW 3
* cqW 22qW 3

* .

~7!

This Hamiltonian, which is one key result of this work, d
scribes, in addition to two-body, three- and four-body stra
induced contributions to the atomic interactions. Note tha

FIG. 1. Strain-induced effects on the topology of the SROaqW .
Four distinct SRO patterns~I–IV ! are discernible as a function o
the ratiof2

(1)/f1
(1) . Also shown is the correspondingf1

(1) rescaled
by the factorLBa2 where a is the lattice constant andB5(c11

12c12).
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this q-space representation of the strain-induced interact
the radius of action isa priori not limited.

In the following we show how to take into account th
many-body strain-induced interactions in the statistical m
chanics of alloys. For this we use the ring approximatio17

which yields the Warren-Cowley SRO parameters
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aqW5F11
c~12c!

kBT
VqW

e f fG21

, ~8!

where the projection of the many-body contributions on
the effective two-body potential is described by
VqW
e f f

5WqW
(2)

1N21(
kW
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(2)

[m1ṼqW
(2) wherem is determined by the constrain

N21(qWaqW51. Here the two- and three-body strain-induc
contributions read

DVqW
(2)

52(
i j

~fqW
(1)i

!* ~GqW
i j

!fqW
(1) j , ~10!

DVqW 1 ,qW 2

(3)
56 (

i j
@~fqW 1

(1)i
!* ~GqW 1

i j
!fqW 2

(2) j
1~fqW 1

(2)i
!* ~GqW 2

i j
!fqW 2

(1) j
#,

and the four-body contribution is neglected.20 It directly fol-
lows from Eq.~9! that, in the absence of strain-induced i
teractions, i.e., for allDV(n)50, VqW

e f f is a function of con-
centration which is symmetrical with respect to t
interchange of the components of the alloy~i.e., replacingc
by 12c). By adding three-body strain-induced interaction
VqW

e f f becomes an explicitly asymmetric function
concentration21 ~notice that the three-body contribution
small in the vicinity of the equiatomic composition!. This
also renders the SRO parametersaqW asymmetric with respec
to equiatomic concentration. It may also be the reason for
asymmetry in the concentration dependence of other st
tural and thermodynamic descriptions of alloys such as
phase diagram and the free energy.

When the denominator in Eq.~8! approaches zero as
function of concentration or temperature, the disordered s
of the alloy loses its stability with respect to some orde
structures.3,9 Therefore, the value ofVqW

e f f can be considered
as a measure of stability of the alloy at a given tempera
and concentration. At a wave vectorqW o associated with
such a structural instability the functionVqW

e f f then reaches
its absolute minimum. In the high-temperature lim
(uṼu!kT)VqW

e f f takes the simple, temperature-independ
form

VqW
e f f

5ṼqW
(2)

1N21~122c!(
kW

DVkW ,qW 2kW
(3) . ~11!
,

e
c-
e

te
d

re

t

In this limit the contribution of the three-body strain-induce
interaction inVqW

e f f disappears for the equiatomic compositio
c50.5.

In comparison with experimental results it is most impo
tant to reproduce the topology of the SRO parametersaqW . In
order to demonstrate the potential of this approach we h
applied our formalism to fcc alloys. In some of these syste
the SRO maxima exhibit a splitting along certain crystal
graphic directions. In the following we show that the topo
ogy of the SRO is an explicit feature of strain-induced int
actions. For the calculations the chemical interaction
assumed to be pairwise and short-range with nearest ne
bors V15100 meV and next-nearest neighborsV2
5225 meV resulting in an ordered ground state with$100%
concentration waves. The force constants$f (0)% were calcu-
lated within a microscopic model of the lattice dynamics22

using experimental values for the elastic constants of Cu3Au.
We introduce strain-induced two-body interactions by app
ing Kanzaki forcesfW 1

(1) and fW 2
(1) in the first and second

shells, respectively. The absolute value of the forcesf1
(1) and

f2
(1) are linked by the relation

L5
1

3~c1112c12!V
(

s
(
RW s

RW sfW RW s

(1)
~12!

whereci j are the elastic constants,V is the volume of the
unit cell, andL is the lattice expansion coefficient. The sum
mation is carried out over the first two atomic coordinati
shellss51,2. The SROaqW is calculated at a temperature o
T5700 K. Figure 1 shows four different types of SRO pa
ternsaqW in the (h,k,0) plane as a function of the paramet
f2

(1)/f1
(1) . The calculations demonstrate nicely that the

pology of the SRO is strongly dependent on the ra
f2

(1)/f1
(1).23 Furthermore the obtained SRO distributio

have in fact been observed in various fcc systems, such
e.g., for the parameter range III which is Cu3Au-like. This
demonstrates that strain-induced effects, in addition to w
established electronic ‘‘nesting’’ effects, can also contribu
3-3
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essentially to the formation of split peaks in SRO patter
Other recent experimental and theoretical results show ra
convincingly that the adequate description of the long-ra
part of the interaction in the alloy Cu83Mn17 ~Ref. 24! re-
quires only three force constantsf (0) and one Kanzaki force
f1

(1) in the first coordination shell. This demonstrates t
rapid convergence of the results with the number of fo
constants in this case.

In conclusion, we have presented an explicitq-space
method for the incorporation of strain-induced effects cau
by atomic size mismatch into the statistical mechanics
alloys. It contributes via effective many-body strain-induc
interactions$DV(n)% which can be parametrized by a limite
number of force parameters$f (n)% instead of an infinite se
$V(n)% ~e.g., in the case of IMC procedures, see also Ref.!.
Via the ring approximation the introduced three-body stra
induced interactions may naturally be used for calculat
SRO and other structural and thermodynamic features o
loys with atomic size mismatch. Note that the numerical
a

A:

l-

s

.

18020
.
er
e

e
e

d
f

-
g
l-
-

curacy of our procedure for mapping the many-body stra
induced interactions onto two-body effective interactions
limited especially by the accuracy of the ring approximati
which is known to decrease at low alloy concentration and
the vicinity of the phase transformation temperature.17 For
the semiphenomenological calculation ofVqW

e f f the number of
parameters$f (n)% can be limited by using a convergenc
criterion for the calculatedaqW in comparison with corre-
sponding experimental diffuse scattering data. The deter
nation of the forces$f (n)% requires the successive introdu
tion of force constants for more distant coordination she
until convergence is reached within the methodical er
bars. The sets$V(n)% and$f (n)% can also be calculated from
first principles. For the calculation of$V(n)% three approaches
can be used, the Connolly-Williams method,4 generalized
perturbation methods,25 and mean-field concentration func
tional theory.26

The authors are grateful to F. Ducastelle and D.
Johnson for helpful discussions.
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