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g-space configurational energy and short-range order in alloys with atomic size mismatch
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We present a-space method for the incorporation of long-range strain fields into the statistical thermody-
namics of binary alloys with atomic size mismatch. In this approach the configurational energy is parametrized
via a set of potentials and generalized Kanzaki forces providing a powerful description of strain-induced
many-body effects for systems with lattice distortions. We show how strain-induced interactions act on the
topology of short-range-order patterns.
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Presently, the most general approach in the statistical mgange field of static atomic displacemefits}. In this case,
chanics of alloy systems on a given rigid ideal crystal latticethe chemical energy parametdi™} in Eq. (1) should be
is based on a lattice model in which the configurational en'replaced by(VMy =V + AV for a strain-induced con-
ergy of a binary alloyA; B, is described ?n)_/; Hamiltonian tribution { AV("} caused by the lattice distortions. By way of
represented as an exact real space exparision example, the contribution for the two-body effective interac-
tions is given by>1°
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called Kanzaki forces and the lattice Greens function, respec-
tively (see also Ref. 11 The latter appears in the theory of
lattice dynamics and can be described in terms of force con-
stants(the normalization constar is determined by the
requirement of the absence of atomic self-interaction

where the occupation of lattice sie with atom A or B is
labeled by the variableg=1 (for B atom and O(for the A
atom. The set of effective interaction parametdis™}n
=1,2,3 ... arephenomenological constants which can be "~ i -
determined from electronic structure total energy calcula® Vr,-g,=0)- The summation ovey in Eq. (1) and hereaf-
tions and then used in Monte Carlo simulatioSt) denotes  ter is carried out over the first Brillouin zone of the system.
the site energy for injecting B atom into the matrixV®>  One important feature mvg’ 5. is its infinite range of ac-
describes the two-body mixing potential, av®) quantifies 12

X ) ) . tion which renders IMC and other purely real-space statisti-
the three-body interactions in the systéor details, see Ref. cal thermodynamics as Monte-Carlo and the cluster-variation

€). This approach has peen fruitfully used for the study Ofmethod based on the Hamiltonian in Ed) to be inefficient
ground states, phase diagrams, and short-range (3R . for the study of the effects of atomic size mismatch in alloys.

Ir?] ertztlalshgoa néjatzegr'gogsggt?r: i?]l\l/%)gé (i;)gr\]lgsgm)gpermotice also that the long-range strain-induced interaction ex-
hibits a nonanalytic behavior of its Fourier componentjat

techniques to determine concentration- and temperature-

. Lo o efh o7 =0 (I point). Within the mixed-basis cluster expansion
dependent effective pairwise interactidig; },"“which in- eh0d213 this problem is overcome to a certain extent by

clude contributions from the numerical mapping of all many-jsplating this singularity and adding it as a separate term to
body interactions in E¢(1) onto the Se(VEff}- This set can  Eq. (1). Doing so, the cluster energi¢¥™} are calculated
then be used for the modeling of structural and thermodyfor the relaxed state of the lattice and, therefore, the short-
namic properties of alloys. In the case of alloys with atomicrange part of the strain-induced interaction is included by
size mismatch this accurate real-space approach should beapping it into{V(™} without explicit use of the force pa-
improved by incorporating mechanical degrees of freedomameters described in EQ).
which account for lattice distortions. Here we propose a Using the Kanzaki force approalr®the set of(“chemi-
g-space approach which allows us to overcome this problemal”) energy constantsv(M} determined for the average lat-
by constructing an analytical procedure for the mapping otice of the alloy is completed by the set of force constants
strain-induced many-body effects onto the two-body effec{ 4™} responsible for the lattice displacements. Note that
tive interactions. This procedure is based on the recently dahese artificial forces act on the average lattice in such a way
veloped simple and accurate ring approximation. that they cause the same displacements as in the actual lat-
Atomic size mismatch in alloys leads to mechanical relaxtice. In an adiabatic approximation, the condition of me-
ation of the crystal lattice that gives rise to a stochastic longehanical equilibrium allows then to express the static dis-
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placementgug} in terms of the occupation variablésg}. It ¢(1) ¢(1)
is important to note that, even in the case of only pairwise vV L1
chemical interactions, this procedure gives rise to many- LBa2 A ¢(1)
body strain-induced interaction® This naturally leads to a P 1
g-space simulation of the SRO in alloys with atomic size 4 ' , = 0
mismatch by means of the ring approximatidnn addition, (220) < :
it gives a simple and clear interpretation of the interaction in g *®
alloys by analytical “mapping” of the many-body contribu- 1=
tions onto the effective two-body interactions. F | —
In the presence of a displacement field caused by atomic 1=
size mismatch the Hamiltonian of the system can be repre- :
sented as the sum of a chemical part determined for the un- 3 2
distorted lattice and an effective strain-induced part de- 2| =
scribed in the quasiharmonic approximafi@s follows: .
gla
H({cah {Ugh) = H({cgh) +H¥ ({cab{urh. () ol
whereH®" is determined by Eq(1) taking into account the E S
pairwise chemical interaction onf§.The strain-induced part ==
of the Hamiltonian is then given by =~
L s|<
i >T 4(0 > : :
HSI:E -E* UR1¢%1)_§2U§2 o=
=
(200) —1
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- Cr &5’ o Ug —= Cr caUR
> R PR, -R,UR, " 5 2 1P, R, CRUR, FIG. 1. Strain-induced effects on the topology of the SRQ
Four distinct SRO patternd—IV) are discernible as a function of
(4 the ratiogV/¢{M . Also shown is the correspondingi rescaled

by the factorLBa? wh the latti tant anB=
where the first term refers to the potentlal energy change 'rer2c 3 actorLBa” wherea is the lattice constant anB=(cx

the alloy due to the lattice distortiofsz} which are present

even in a pure matrix. The second and the third terms are the o .

potential-energy changes due to the displacement field in- u'a:A:iCdJr(ZN)—lz BIE| CiCa i (6)
duced by the injection of singl® atoms into the alloy matrix k ’

andB atom pairs in the lattice, respectively. The symmetrical

3X3 matrix ¢>(0) ~2=||(92V(°)/auklauk2||o [with  (i,j

=X,Y,2) as CarteS|an coordinafesorresponds to the force : i) : i@
(“spring”) constants known from semiphenomenological AaEZ G&ld’d h B(NEE Géd)g .
models of lattice dynamics. The vectorsJ)g') . .
=—oV"M/gug|, with n=1,2 are the generalized Kanzaki Substituting Eq(6) into Eq. (5) we obtain
forces!® The force constantsp(} in Eq. (4) as well as the

potentials{V(M} in Eq. (1) are determined for the undistorted v WA 2@

state at a given alloy compositian The associated-space H N E ¢> Gq ¢> C‘C

representation of Eq4) reads
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In mechanical equilibrium, i.eqH%'/9uz=0 for all {R}, the ~ This Hamiltonian, which is one key result of this work, de-
(Cartesian Fourier components of the displacement fieldscribes, in addition to two-body, three- and four-body strain-
read induced contributions to the atomic interactions. Note that in
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this g-space representation of the strain-induced interactions c(1-c)

. . . .. .. . eff
the radius of action is priori not limited. ag=|1+ (" 8)

: , kgT
In the following we show how to take into account the B

many-body strain-induced interactions in the statistical me-
chanics of alloys. For this we use the ring approximation where the projection of the many-body contributions onto
which yields the Warren-Cowley SRO parameters the effective two-body potential is described by

3 2
(1-20)AVE) W

1+c(1— )W (kT)

vert \/\/(2)+N 12

(L= AV 1P+ 2e(1- ) (1= 20 W AV) o+ (1-20)°WIWY,

2kgT[1+c(1— )W (kg) TI[1+c(1— C)W%_)lzl(kBT)]

9

with W(Z)— +V( ) Whereﬂ is determined by the constraint In this limit the Contrlbutlon of the three- bOdy strain-induced

N-1s- jag=1. Here the two- and three-body strain-inducedinteraction |nV d|sappears for the equiatomic composition
contrlbutlons read c=0.5.
In comparison with experimental results it is most impor-
tant to reproduce the topology of the SRO parametgrsin
V(z) 2 (d’(l)l (G”)¢(1)J (100 order to demonstrate the potential of this approaecmr? we have
applied our formalism to fcc alloys. In some of these systems
the SRO maxima exhibit a splitting along certain crystallo-
3 _ @iva =1l (2] @iyw iy ()] graphic directions. In the following we show that the topol-
Avql’qz 62 [(¢ql )7 (Gq))bq, * (g )7 (Cg) g, ). ogy of the SRO is an explicit feature of strain-induced inter-
actions. For the calculations the chemical interaction is
and the four-body contribution is neglect&dt directly fol-  assumed to be pairwise and short-range with nearest neigh-
lows from Eq.(9) that, in the absence of strain-induced in- hors V,=100 meV and next-nearest neighbor¥,
teractions, i.e., for alAV(M=0, V%ff is a function of con- =-—25 meV resulting in an ordered ground state Witlo0};
centration which is symmetncal with respect to the concentration waves. The force constaté®} were calcu-
interchange of the components of the all@g., replacingc  lated within a microscopic model of the lattice dynarfics
by 1—c). By adding three-body strain-induced interactions,using experimental values for the elastic constants gAQu
ve'" becomes an explicitty asymmetric function of We introduce strain-induced two-body interactions by apply-

concentratiof (notice that the three-body contribution is ing Kanzaki forces${" and ¢$ in the first and second
small in the vicinity of the equiatomic compositipriThis  shells, respectively. The absolute value of the forgld and
also renders the SRO parametegsasymmetric with respect ¢(21) are linked by the relation

to equiatomic concentration. It may also be the reason for the
asymmetry in the concentration dependence of other struc- 1
tural and thermodynamic descriptions of alloys such as the l=— - Z 2 R Qg())
phase diagram and the free energy. 3(cut2e19)Q 55 7 STRs

When the denominator in Eq8) approaches zero as a
function of concentration or temperature, the disordered sta%

herec;; are the elastic constant§, is the volume of the
of the alloy loses its stability with respect to some ordered Il andL he | ffi Th
39 Theref h lue o' can be considered unit cell, andL is the lattice expansion coefficient. The sum-
structure erelore, the value ov, mation is carried out over the first two atomic coordination

as a measure of stability of the alloy at a given temperaturgheliss=1,2. The SRQu; is calculated at a temperature of
and concentration. At a wave vec:ttn{0 assomated with  T=700 K. Figure 1 shows four different types of SRO pat-
such a structural instability the functioie’" then reaches ternSaql in the (h,k,0) plane as a function of the parameter

its absolute minimum. In the high-temperature limit ¢57/¢{". The calculations demonstrate nicely that the to-
eff

(12)

(|V|<kT)V takes the simple, temperature- mdependenp?i?gy(l)ogathe SRO s strongly dependent on the ratio
form /3. Furthermore the obtained SRO distributions
have in fact been observed in various fcc systems, such as,
e.g., for the parameter range Ill which is @w-like. This
Ve”_v(z)+N 11— 2(;)2 AV E%ilz_ (11)  demonstrates that strain-induced effects, in addition to well-

established electronic “nesting” effects, can also contribute
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essentially to the formation of split peaks in SRO patternscuracy of our procedure for mapping the many-body strain-
Other recent experimental and theoretical results show rath@énduced interactions onto two-body effective interactions is
convincingly that the adequate description of the long-rangdimited especially by the accuracy of the ring approximation
part of the interaction in the alloy GsMn,, (Ref. 24 re-  which is known to decrease at low alloy concentration and in
quires only three force constanté®) and one Kanzaki force the vicinity of the phase transformationftfemperaﬁ}rﬁor
¢ in the first coordination shell. This demonstrates thethe semiphenomenological calculation\d] " the number of
rapid convergence of the results with the number of forceparameters ¢(M} can be limited by using a convergence
constants in this case. criterion for the calculatedry in comparison with corre-

In conclusion, we have presented an expligispace sponding experimental diffuse scattering data. The determi-
method for the incorporation of strain-induced effects causedaation of the forceg¢(™} requires the successive introduc-
by atomic size mismatch into the statistical mechanics otion of force constants for more distant coordination shells
alloys. It contributes via effective many-body strain-induceduntil convergence is reached within the methodical error
interactions{ AV(M} which can be parametrized by a limited bars. The setéV(™} and{4(™} can also be calculated from
number of force parametefg("} instead of an infinite set first principles. For the calculation ¢¥(M} three approaches
{V(M} (e.g., in the case of IMC procedures, see also Ref. 22 can be used, the Connolly-Williams methbdjeneralized
Via the ring approximation the introduced three-body strain-perturbation method®, and mean-field concentration func-
induced interactions may naturally be used for calculatingional theory?®
SRO and other structural and thermodynamic features of al- The authors are grateful to F. Ducastelle and D. D.
loys with atomic size mismatch. Note that the numerical acJohnson for helpful discussions.
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