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Interaction corrections at intermediate temperatures: Dephasing time
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We calculate the temperature dependence of the weak-localization correction in a two-dimensional system at
arbitrary relation between temperatureT and the elastic mean free time. We describe the crossover in the
dephasing timetw(T) between the high-temperature, 1/tw.T2ln T, and the low-temperature 1/tw.T behav-
iors. The prefactors in these dependences are not universal, but are determined by the Fermi-liquid constant
characterizing the spin exchange interaction.
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I. INTRODUCTION

The concept of a time scale characteristic of electr
scattering processes in metals has been the focus of int
theoretical research for the last 3 decades.1–16 It has been
established for disordered systems4 that the time scale, which
corresponds to processes that suppress quantum interfe
~and are thus responsible for the temperature dependen
the weak localization correction, for example!, namely the
phase relaxation timetw , is quite different from the semi
classical time scales, such as the energy relaxation timetE .

Previous work was mostly focused on the universal~in-
dependent of interaction strength! contribution of the singlet
channel interaction both in the diffusive4,5 and
ballistic3,5,11,13,14 regimes. The contribution of the triple
channel was only considered in the diffusive regime in R
8. In this paper we fill the gaps by considering both chann
at arbitrary relation between temperature and the inve
mean free time and thus describing the crossover betw
the diffusive and ballistic regimes. We also clarify the re
tion between thus calculated dephasing time and experim
tally observable physical quantities.

A discussion of phase relaxation should begin by defin
a physical quantity sensitive to quantum interference~since
the phase by itself is not an observable quantity!. Therefore,
the precise definition of the phase relaxation time depend
the choice of such physical quantity. Consider the we
localization correction in two dimensions6,15 in the absence
of magnetic field:

dsWL~T!52
e2

2p2\
E

2`

` de

4T cosh2
e

2T

ln
tw~e,T!

t
, ~1!

where t is the transport elastic mean free time. With t
logarithmic accuracy, one can here neglect the dependen
tw on e and estimate6,17

dsWL~T!'2
e2

2p2\
ln

tw~0,T!

t
. ~2!
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In the presence of magnetic fieldH, perpendicular to the
plane of the two-dimensional system, the situation is m
complicated. The magnetoconductivity can
described6,17,18as

s~H,T!2s~0,T!52
e2

2p2\
E

2`

` de

4Tcosh2 e
2T

3H Y@VHtw~e,T;H !#

1 lnS tw~e,T;H !

tw~e,T! D J , ~3!

whereVH54DeH/\c, D is the diffusion constant, and

Y@x#5 ln
1

x
2cS 1

2
1

1

xD ,

with c(x) being the digamma function. Notice, that th
dephasing time now depends on the magnetic field, see R
6, 18, 15 and Eq.~8! below. We use the notation

tw~e,T![tw~e,T;H50!.

One can simplify the magnetoconductivity~3! using
asymptotic expressions forY@x# in order to facilitate com-
parison with experimental data. For strong magnetic fie
VHtw@1, one finds (Y@x@1#'2 ln x12 ln 21C), with C
'0.5772 . . . being the Euler constant,

s~H,T!2s~0,T!5
e2

2p2\
ln aVHtw

H1OS 1

VHtw
HD , ~4!

wherea51/(4eC)50.1403 . . . , and

tw
H5expS E2`

` de

4T cosh2
e

2T

ln tw~e,T!D . ~5!

In the opposite limit of the weak field (Y@x!1#'2x2/24)
the magnetoconductivity is quadratic inVH :
©2002 The American Physical Society02-1
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s~H,T!2s~0,T!5
e2

48p2\
~VHtw

T!2, ~6!

where

tw
T5F E2`

` de

4T cosh2
e

2T

tw
2~e,T!G 1/2

. ~7!

As we show below, the two scalestw
T andtw

H may differ by a
numerical factor, which is important for a quantitative com
parison with experiments.

As a function ofe and T, the phase relaxation time i
given by6

1

tw~e,T;H !
5E

max[VH ,tw
21]

`

dvvA~v!Fcoth
v

2T

2
1

2 S tanh
v2e

2T
1tanh

v1e

2T D G . ~8!

Kernel A(v) contains all the information about matrix ele
ments of the interaction and wave functions of the disorde
system, see, e.g., Refs. 6 and 15, and this is precisely
same kernel that enters into the inelastic collision integra
the Boltzmann equation, see e.g., Refs. 6 and 16:

Stin$ f ~e!%5E dvE de1A~v! f ~e1!@12 f ~e12v!#

3$2 f ~e!@12 f ~e1v!#

1@12 f ~e!# f ~e2v!%, ~9!

wheref is the distribution function of the quasiparticles.

II. CALCULATION OF THE KERNEL

The kernelA(v) can be obtained from the quantum k
netic equation~see Ref. 19!, and it is expressed in terms o
the interaction propagatorD R and the propagatorŝD& de-
scribing semiclassical dynamics of noninteracting electro

A~v!5
2n

p E d2q

~2p!2
$@Rê D&#2uD S

R~v,q!u2

1Tr@Rê D̂&#D̂T
R~v,q!@Rê D̂&#@D̂T

R~v,q!#* %.

~10!

In the absence of external magnetic field and spin-orbit
teraction, the semi-classical propagator is diagonal^D̂&
5d i j ^D& and

^D&5
1

A~2 iv11/t!21vF
2q221/t

. ~11!

It becomes the usual diffuson6 in the diffusive limit v,vFq
!1/t.
18020
-
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The interaction propagator in the singlet channel is giv
in terms of^D& and the Fermi-liquid constantF0

r ~Refs. 19
and 20!

D S
R~v,q!52

1

n

nV0~q!1F0
s

11@nV0~q!1F0
s#@11 iv^D&#

. ~12!

The interaction propagator in the triplet channel is a diago
matrix in spin indices:

D̂T
R~v,q!52

d i j

n

F0
s

11F0
s@11 iv^D&#

, ~13!

where F0
s is the Fermi-liquid constant in the triple

channel.19,20 At distances larger than the screening radi
one can take the unitary limit in Eq.~12!, nV0(q)→`, which
coincides with theF0

s→` limit in Eq. ~13! ~see Ref. 18 for
more details!.

We now evaluate the triplet contribution to the kern
A(v), separating Eq.~10! into the sum

A~v!53AT~v!1AS~v!. ~14!

Using Eqs.~13! and ~11! one can rewrite Eq.~10! as

AT~v!5
1

pv
ImE d2q

~2p!2
D T

R~v,q!@^D&1^D&* #. ~15!

The kernelAS(v) can be obtained from Eq.~15! by taking
the limit F0

s→`. The momentum integral in Eq.~15! di-
verges logarithmically in the ultraviolet. This divergence
typically5,3,14 cut off at a scale of orderkF ~the precise defi-
nition of such cutoff is important only for the numerical fa
tor under the logarithm, which we believe is beyond the
curacy of any discussion!. In the diffusive limit the
divergence does not appear since one is limited by sm
momentavFq!1/t. It is therefore convenient to separa
AT(v) into two parts, roughly corresponding to the ballist
and diffusive asymptotics, respectively:

AT~v!5A1~v!1A2~v!. ~16!

The ‘‘ballistic’’ term appears from integrating over mo
menta larger than inverse elastic mean free time and/or
quency. With logarithmic accuracy we find@here the product
of the Fermi momentum and the Fermi velocity~renormal-
ized by interaction! is denoted byEF5vFkF/2]

A1~v!5
~F0

s!2

4pEF~11F0
s!2

ln
EF

2

t221b~F0
s!v2

, ~17a!

b~x!'
11x2

~11x!2
.

This term has the logarithmic frequency dependence sim
to that obtained by several authors for the singlet chan
interaction.5,14

The ‘‘diffusive’’ term, i.e., the term coming from integrat
ing over small momenta, is a generalization of the stand
2-2
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result.6 For simplicity, we show the kernelA2(v) in the two
limiting cases. For small energy transfersvt!1 we find

A2~vt!1!5
F0

s

~11F0
s!~21F0

s!

1

2gv

3F ~11F0
s!arctan

1

vt
2arctan

11F0
s

vt G ,
~17b!

where g52p\/e2Rh is the dimensionless conductance
the system, andRh is the sheet resistance.

Note that this result reduces to that of the diffusive the
for vt!11F0

s ~see Refs. 19 and 21 for a more detail
discussion of the crossover to the ballistic regime!. For the
singlet channel~which can be obtained by settingF0

s→`)
Eq. ~17b! coincides with the standard result.6

For large energy transfersvt@1 integration over smal
moments yields a correction to Eq.~17a!:

A2~vt@1!5
1

11F0
s

1

2gv Farctan
11F0

s

vt~12F0
s!

1~11F0
s!arctan

1

vtG . ~17c!

For numerical reasons, contributions of Eq.~17c! to the final
results are small compared to that of Eq.~17a! for all tem-
perature regimes.

III. RESULTS FOR THE DEPHASING TIME

We now use the explicit form of the kernel Eq.~17! to
find the dephasing time from the self-consistency equa
~8!. According to Eqs.~14! and ~16!, it takes the form

1

tw~e,T;H !
5I 1~e,T!1I 2~T, max@VH ,tw

21# !. ~18!

The kernel~17a! is not diverging at small energy transfer
and the calculation of termI 1 can be performed by settin
the lower limit of integration in Eq.~8! to zero. We find with
logarithmical accuracy

I 15
t2T21e2

8pEF

3F 3~F0
s!2

~11F0
s!2

ln S EF
2

b~F0
s!T21t22D 1 lnS EF

2

T21t22D G ,

~19a!

where functionb(x) is defined in Eq.~17a!.
The diffusive termI 2 is logarithmically divergent at the

lower limit. The divergent contribution is independent ofe
and the divergence is cut according to Eq.~8!,
18020
y

n

I 2~T,V!5S 11
3~F0

s!2

~11F0
s!~21F0

s!
D T

g
lnS T

V D . ~19b!

A. Diffusive limit „Tt™1¿F 0
s
…

In this case the dephasing time follows from the se
consistency Eq.~8! where one has to include the singl
channel contribution. The time scalestw

T , see Eq.~7!, and
tw

H , see Eq.~5!, are given by

1

tw
H 5

1

tw
T 5S 11

3~F0
s!2

~11F0
s!~21F0

s!
D T

g
ln@g~11F0

s!#

1
p

4 S 11
3~F0

s!2

~11F0
s!2D T2

EF

ln~EFt!. ~20!

At stronger fieldsVH.T Eq. ~20! is not applicable, since in
that regime the interaction correction in the Cooper chan
becomes of the same order as the weak-localiza
correction.6 We will not dwell on this issue here.

The results~20! are valid while the conditiong(11F0
s)

@1 holds. The same condition guarantees the expone
smallness of temperature-independent dephasing induce
spontaneously spin-polarized regions.22

Comparing the dominant, diffusive term@the first term in
Eq. ~20!, which came from integrating Eq.~17c!# to the sec-
ond, ballistic term, we find that the two become of the sa
order whenTt;11F0

s , which sets the limit of applicability
to the purely diffusive theory.

B. Ballistic limit

At temperaturesTt@11F0
s the leading asymptotics is

controlled by Eq.~19a!. In this regime we can no longe
neglect thee dependence intw(e,T). As a result, the time
scalestw

T , see Eq.~7!, andtw
H , see Eq.~5!, are different by a

numerical factor:

tw
H,T5tw~0,T!BH,T, ~21a!

where

1

tw~0,T!
5

p

4

T2

EF
F lnS 2EF

T D1
3~F0

s!2

~11F0
s!2

lnS EF

TAb~F0
s!

D G ,

~21b!

whereb(x) is defined in Eq.~17a!, and the numerical factors
are

BT5F E
0

` dz

cosh2z
S 11

4z2

p2 D 22G 1/2

'0.8437 . . . ;

BH5expF2E
0

` dz

cosh2z
lnS 11

4z2

p2 D G'0.7931 . . . .
2-3
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The observable dephasing times are different fr
tw(0,T) by the above numerical constants. The tempera
dependence oftw(0,T), Eq. ~21b!, coincides with that found
earlier in Refs. 3, 5, 11, 13, and 14 for the caseF0

s50.23,24

The numerical factorp/4 is the same as in Refs. 11, 13, a
14, while Ref. 5 reports the factorp/2 and Ref. 3 reports the
factor of 1/2p. The correct numerical factorp/4 was also
obtained in Ref. 12, however it was claimed that this res
should be further renormalized~reduced by a factor of 4) by
taking into account higher-order forward-scattering p
cesses. We believe such renormalization is erroneous and
result of misidentification of the Fermi-liquid constant in th
singlet channel.25

IV. SUMMARY

We have calculated the temperature dependence of
weak-localization correction at arbitrary relation betweenT
C

ev

Jp

n

.
,

-

18020
re

lt

-
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he

and elastic mean free timet. The prefactors in the tempera
ture dependences of the dephasing rate are not universa
are determined by the single Fermi-liquid constantF0

s . The
very same constant determines the temperature depend
of the longitudinal resistivity,19 the Hall coefficient,21 and
magnetoresistance in the parallel magnetic field.26 Since the
number of different observable quantities exceeds the n
ber of input parameters this theory posesses the predic
power.
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