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Interaction corrections at intermediate temperatures: Dephasing time
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We calculate the temperature dependence of the weak-localization correction in a two-dimensional system at
arbitrary relation between temperatufeand the elastic mean free time. We describe the crossover in the
dephasing timer,(T) between the high-temperature,fg.#Tzln T, and the low-temperature 4/~T behav-
iors. The prefactors in these dependences are not universal, but are determined by the Fermi-liquid constant
characterizing the spin exchange interaction.
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I. INTRODUCTION In the presence of magnetic field, perpendicular to the
plane of the two-dimensional system, the situation is more

The concept of a time scale characteristic of electroncomplicated. =~ The  magnetoconductivity = can  be
scattering processes in metals has been the focus of intendescribef!’8as
theoretical research for the last 3 decatié§.It has been
established for disordered systéttisat the time scale, which e? (= de
corresponds to processes that suppress quantum interference, T) —o(0,T)= — ~— f
(and are thus responsible for the temperature dependence of 2mh
the weak localization correction, for exampl@amely the

~= 4Tcoslt 5

phase relaxation time,, is quite different from the semi- X4 Y[Qu7,(e,T;H)]
classical time scales, such as the energy relaxation time
Previous work was mostly focused on the univergad (e, T:H)
dependent of interaction strengttontribution of the singlet In(L) ] , 3
channel interaction both in the diffusit® and To(eT)

iotin3,5,11,13,14 H H H H
ballistic” regimes. The_ contrlb_utlo_n of the tT'P'et whereQ)y=4DeH/#Ac, D is the diffusion constant, and
channel was only considered in the diffusive regime in Ref.

8. In this paper we fill the gaps by considering both channels 1
at arbitrary relation between temperature and the inverse Y[x]=In=—y
mean free time and thus describing the crossover between X
the diffusive and ballistic regimes. We also clarify the rela-
tion between thus calculated dephasing time and experime
tally observable physical quantities.

A discussion of phase relaxation should begin by definin
a physical quantity sensitive to quantum interferefsiace
the phase by itself is not an observable quajtitherefore,
the precise definition of the phase relaxation time depends on o o ]
the choice of such physical quantity. Consider the weak- One can simplify the magnetoconductivit{g) using

localization correction in two dimensioh® in the absence asymptotic expressions foff x] in order to facilitate com-
of magnetic field: parison with experimental data. For strong magnetic fields

Qu7,>1, one finds Y[x>1]~—Inx+2In2+C), with C
~0.5772... being the Euler constant,

1
x

1+
2

I){\_/ith #(x) being the digamma function. Notice, that the
dephasing time now depends on the magnetic field, see Refs.
g6, 18, 15 and Eq(8) below. We use the notation

7.(€,T)=7,(€,T;H=0).

e2 [« de 7,(€,T)
P = " o S HT)-o0T)= = natu+o| —|, @
—» o , —o(U, = nao T ’
47 cosﬁﬁ Py HT HTZ
wherea=1/(4e%)=0.14® . . ., and
where 7 is the transport elastic mean free time. With the
logarithmic accuracy, one can here neglect the dependence of o de
7, on € and estimate'’ Th=exp f ————Inr(eT)|. (5)
4T cosﬁﬁ
2
Sorgyu(T)= — ——in7e &1 (2 In the opposite limit of the weak fieldY(x<1]~ —x?/24)
2w%h T the magnetoconductivity is quadratic g, :
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e2 The interaction propagator in the singlet channel is given
o(H,T)—o(0,T)= —2(QHTL)2, (6) interms of(D) and the Fermi-liquid constartf (Refs. 19
487°h
and 20
where
R 1 vWo(q) +Fg
12 Dg(w,q)=—— - , . (12
T J’w de 2(eT) @ vV 1+[vVo(q)+F§[1+iw(D)]
¢ — € o ' The interaction propagator in the triplet channel is a diagonal
4T coslt L
2T matrix in spin indices:
As we show below, the two scale§ and 7, may differ by a ) Y Fg
numerical factor, which is important for a quantitative com- D?(w,q)= - = - , (13
parison with experiments. v 1+Fj[1+iw(D)]
AS gffuncnon ofe andT, the phase relaxation time i \ nere Fo is the Fermi-liquid constant in the triplet
given channelt®?° At distances larger than the screening radius,
1 " ® one can take the unitary limit in E¢L2), vV(q) — <, which
—.=j dowA(w) cothz— coincides with theFg— o limit in Eq. (13) (see Ref. 18 for
T(&TH)  Jmaxoy .7, T more details
We now evaluate the triplet contribution to the kernel
1 w—€ w+e . .
-5 tanh?+tanhf ) (8) Alw), separating E¢(10) into the sum

) ) . . A(w)=3A1(w)+Ag ). (14
Kernel A(w) contains all the information about matrix ele- _
ments of the interaction and wave functions of the disordere®/sing Egs.(13) and(11) one can rewrite Eq(10) as

system, see, e.g., Refs. 6 and 15, and this is precisely the )

same kernel that enters into the inelastic collision integral in _ qa _r "
the Boltzmann equation, see e.g., Refs. 6 and 16: Ar(w)= %Imj (Zw)sz(“"q)[<D>+<D> 1. (19
The kernelAg(w) can be obtained from Ed15) by taking
S‘in{f(f)}:J de de;A(w)f(e)[1-f(e1~w)] the limit F§—. The momentum integral in Eq15) di-
verges logarithmically in the ultraviolet. This divergence is
X{=f(e)[1-f(et+w)] typically>3*cut off at a scale of ordekg (the precise defi-
H[1-f(e)]f(e— )}, 0 nition of such cutoff is important only for the numerical fac-

tor under the logarithm, which we believe is beyond the ac-
wheref is the distribution function of the quasiparticles. ~ curacy of any discussign In the diffusive limit the
divergence does not appear since one is limited by small
momentaveq<<l/7. It is therefore convenient to separate
A+1(w) into two parts, roughly corresponding to the ballistic

The kernelA(w) can be obtained from the quantum ki- and diffusive asymptotics, respectively:

netic equationsee Ref. 1§ and it is expressed in terms of
the interaction propagatd®R and the propagatorD) de- Ar(w)=A(0)+Azx(w). (16)
scribing semiclassical dynamics of noninteracting electrons,

Il. CALCULATION OF THE KERNEL

The “ballistic” term appears from integrating over mo-
5 oq menta larger than inverse elastic mean free time and/or fre-
v . o )
Alw)= _J 2{[Re(D>]2|D§(w,q)|2 quency. Wlth logarithmic accuracy we fuﬁhere the product
7 ) (27) of the Fermi momentum and the Fermi velocitgnormal-

L L ized by interactiopis denoted byEr=vkg/2]
+Tr[RgD)]DT(w,q)[ReD) [ DF(w,q)1*}.
(F3)? E?

(10 Ay(w)= In 17
i) 4mEr(1+F))? 7 24 b(F)w? (ra

In the absence of external magnetic field and spin-orbit in-

teraction, the semi-classical propagator is diago¢ial 1+ x2
:5”<D> and b(X)“ .
(14x)?
(D)= 1 (11) This term has the logarithmic frequency dependence similar
V(—iw+1n?+vig?— 17 to that obtained by several authors for the singlet channel
interaction>*4
It becomes the usual diffus®in the diffusive limit w,vgq The “diffusive” term, i.e., the term coming from integrat-
<1/t ing over small momenta, is a generalization of the standard
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result® For simplicity, we show the kernéi,(w) in the two 3(FY)2 T /T
limiting cases. For small energy transfess<1 we find I,(T,Q)=| 1+ S — —In(—). (19b)
(1+F§)(2+Fg) /9 1 Q
A <1)= Fo !
20T )_(1+ng2+Fg)29w A. Diffusive limit (T7<1+F¢)

In this case the dephasing time follows from the self-
consistency Eq(8) where one has to include the singlet
channel contribution. The time scaleé, see Eq.(7), and
(17 7, see Eq(5), are given by

1 1+Fg
X| (1+Fg)arctan— —arctan——|,
wT wT

where g=277%/e’Ry is the dimensionless conductance of 1 1 3(|:g)2 T
the system, an® is the sheet resistance. — === 1+ ———|=In[g(1+Fg)]
Note that this result reduces to that of the diffusive theory — T¢ 7o (1+F)(2+Fg) /9
for w7<1+Fg (see Refs. 19 and 21 for a more detailed o2 \ 1o
discussion of the crossover to the ballistic reginfeor the ™ 3(Fo)” |\ T
. X . . +—( 1+ ——— | =—In(Eg7). (20
singlet channelwhich can be obtained by settirfef — ) 4 (1+Fg)2 Er

Eq. (17b) coincides with the standard resilt.
For large energy transfers7>1 integration over small At stronger field),,> T Eq. (20) is not applicable, since in

moments yields a correction to ECL7a): that regime the interaction correction in the Cooper channel
becomes of the same order as the weak-localization
1 1+F3 correction® We will not dwell on this issue here.
Aywm>1)= -— | arctan——— i i it LEC
2 11 Fg 290 wr(1—Fg) The results(20) are valid while the conditiom(1+Fg)

>1 holds. The same condition guarantees the exponential
smallness of temperature-independent dephasing induced by
. (170 spontaneously spin-polarized regidfs.
Comparing the dominant, diffusive terfthe first term in

Eq. (20), which came from integrating E¢170)] to the sec-
For numerical reasons, contributions of Efj7¢) to the final  ond, ballistic term, we find that the two become of the same
results are small compared to that of E#j7a for all tem-  order wherT 7~ 1+ F§, which sets the limit of applicability
perature regimes. to the purely diffusive theory.

1
+(1+Fg)arctan—
wT

IIl. RESULTS FOR THE DEPHASING TIME B. Ballistic limit
We now use the explicit form of the kernel E@.7) to At temperaturesT r>1+F( the leading asymptotics is
find the dephasing time from the self-consistency equatioontrolled by Eq.(194. In this regime we can no longer
(8). According to Eqs(14) and(16), it takes the form neglect thee dependence i, (€,T). As a result, the time

scalesr,, see Eq(7), and7!} , see Eq(5), are different by a
(e (T, maf Q1) (18) numerical factor:
7,(€,T;H) ne 2 Hele 1

T T=7,0T)B"T, (213
The kernel(173 is not diverging at small energy transfers,
and the calculation of terrh; can be performed by setting where

the lower limit of integration in Eq(8) to zero. We find with

logarithmical accuracy 1 o T2 (ZEF)+ 3(FY)2 | Er
- = _ n ,
2T24 &2 7,(0T) 4 Ef T (1+Fg)% | TyYb(F)
l,= s (21b
TEE
3(F")2 £2 £2 whereb(x) is defined in Eq(173), and the numerical factors
X 0 In i +In o FZ) , are
(1+FH2 \b(FY T2+ 72 T+ o1
© dz 472
(193 BT= f 1+ — ~0.8437 .. .;
0 coslfz 2

where functionb(x) is defined in Eq(173.

The diffusive terml, is logarithmically divergent at the - d 472
lower limit. The divergent contribution is independent of BHzex;{ _f z In( 1+ i)
and the divergence is cut according to E8), 0 cosifz

~0.793 .. ..

772
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The observable dephasing times are different fromand elastic mean free time The prefactors in the tempera-
7,(0,T) by the above numerical constants. The temperaturéure dependences of the dephasing rate are not universal and
dependence of ,(0,T), Eq.(21b), coincides with that found are determined by the single Fermi-liquid constifjt The
earlier in Refs. 3,5, 11, 13, and 14 for the c&f=02%?*  very same constant determines the temperature dependence
The numerical factorr/4 is the same as in Refs. 11, 13, and of the longitudinal resistivity? the Hall coefficient! and
14, while Ref. 5 reports the facter/2 and Ref. 3 reports the magnetoresistance in the parallel magnetic ffI8ince the
factor of 1/2r. The correct numerical factor/4 was also number of different observable quantities exceeds the num-
obtained in Ref. 12, however it was claimed that this resulber of input parameters this theory posesses the predictive
should be further renormalizededuced by a factor of 4) by power.
taking into account higher-order forward-scattering pro-
cesses. We believe such renormalization is erroneous and is a
result of misidentification of the Fermi-liquid constant in the
singlet channet®
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