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Electronic Raman scattering ofs¿g-wave superconductors:
Implications for borocarbide superconductors
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The electronic Raman scattering of borocarbide superconductors is studied based on the weak-coupling
theory with s1g-wave gap symmetry. The low-energy behaviors and the relative peak positions can be
naturally understood, while the explanation of the detailed shape of theB1g peak seems to require a strong
inelastic interaction not present in the weak-coupling theory.
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I. INTRODUCTION

Electronic Raman scattering is a very useful probe in
termining the symmetry of the order parameter of superc
ductors~SC’s!.1 It plays an especially important role in th
study of unconventional superconductors owing to the str
dependence of Raman responses on the symmetry of s
conducting order parameters. Along with the discovery
high-temperature superconductors, other unconventiona
perconductors have been actively investigated, for exam
Borocarbide superconductors~BCSC!2 (Y,Lu)Ni2B2C, and
ruthenate superconductors3 Sr2RuO4. The symmetry of the
order parameter of high-temperature SC’s and Ruthe
SC’s is believed to bed wave4 and p wave,3 respectively.
However, the symmetry of the order parameter of BCSC
not been determined unambiguously at present. Never
less, there is growing experimental evidence of the stron
anisotropic nature of order paramter of BCSC. Ban
structure calculations5,6 and a Tc versus g plot7 suggest
strong electron-phonon interaction as a possible origin
BCSC. In general, the superconductivity mediated
electron-phonon interaction has an isotropics-wave super-
conducting gap~SG!, and the nodes of the gap on the Fer
surface~FS! do not exist.

On the other hand, the following experiments indicate
existence of the nodes of a SG:~1! the power-law tempera
ture dependence (T3) of the nuclear relaxation rate8 1/T1
suggests the existence of line nodes of the supercondu
gap on the Fermi surface.9 Moreover, a Hebel-Slichter pea
is not observed,8 which is also consistent with the existen
of nodes.~2! The magnetic-field~H! dependence of the re
sidual density of states in the vortex state10,11 was observed
to beAH. According to the well-known result by Volovik,12

AH indicates the existence of lines of gap nodes on the
~3! Metlushkoet al. reported an observation of the fourfo
symmetric upper critical field.13 Evidently, such a behavior is
not compatible with the isotropics-wave gap, and has bee
interpreted in terms of three-dimensional d-wave
superconductivity.14 ~4! A direct measurement of the SG b
photoemission spectroscopy15 also demonstrates the exi
tence of nodes of the SG.~5! A recent experiment by Boak
nin et al. on the thermal conductivity of LuNi2B2C showed
that the magnetic-field dependence of thermal conductivit
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low temperature is very similar to that of a heavy-fermi
SC with a gap which haslines of nodes.16

Experimental facts~1!–~5! clearly corroborate a gaples
superconductivity, the simplest of which isd-wave supercon-
ductivity. However, the following experiments for BCS
with Ni substituted by some impurity element as Pt po
serious challenges for thed-wave scenario:~6! The magnetic
field H dependence of residual density of states in the vor
state10,11 changes fromAH to H upon the impurity substitu-
tion. Caroli et al.17 showed that theH dependence is linea
for an isotropic s-wave SC. ~7! The detailed plot of
ln@C(T)/gTc# versusTc /T also demonstrates the change
behavior fromT3 to the activated one.18 ~8! The photoemis-
sion experiment shows the opening of gap over the whole
for impurity substituted compound by comparing the sha
of the spectra of pure and dirty BCSC.

The experiments for the dirty BCSC@~6!–~8!# implied
that the gap symmetry cannot be a simpled wave because
the introduction of impurities does not change the gap
isotropy owing to thed-wave symmetry,19 and only overall
amplitudes decrease with the impurity concentrations.
connection with the experiments for the diry BCSC, we no
that the superconducting temperature of a conventio
s-wave SC is insensitive to the introduction of nonmagne
impurities, which is the fact known as Anderson theorem20

while unconventional SC’s depend on them sensitively.19,21

Finally there is no experimental evidence of broken tetra
nal symmetry, thus we are forced to rule out pairing inter
tions which violate tetragonal symmetry.

Synthesizing all of the above observations,~1!–~5! and
~6!–~8!, and the unbroken tetragonal symmetry, we are led
a proposal that the gap symmetry of BCSC should b
mixed one which respects the tetragonal symmetry. Ob
ously, the simplest possible candidate is the (s1g)-wave gap
symmetry. The gap function of the formD(f)
5uD0 cos(2f)u is also a viable choice, but nodes of gaps
this kind are accidental and are not enforced by symme
From the symmetry viewpoint, ans1g-wave gap is more
natural. We note that Makiet al. also adopted the model o
BCSC with the (s1g)-wave gap symmetry in their recen
preprint.22

Yang et al. studied23 BCSC by means of electronic Ra
man scattering. They observed 2D-like peaks inA1g ,B1g ,
©2002 The American Physical Society30-1
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and B2g geometries. The peak position ofB1g geometry is
found to be larger than the others. Also, peaks ofA1g and
B2g symmetries are much stronger than the peak ofB1g sym-
metry. There exists a scattering strength below the 2D gap,
which increases with frequencylinearly in B1g andB2g ge-
ometries~see Fig. 5!.

We intend to understand the qualitative features of
above Raman experiments based on the simplest model
s1g-wave gap symmetry. We adopt the weak-coupli
theory with a separable pairing interaction. Then, even if
physical origin of the pairing interaction is unknown, we c
deduce many physical consequences which depend m
on the pairing symmetry and not on the details of inter
tions. Strictly speaking, the weak-coupling theory is not e
pected to be valid on a quantitative level, and indeed
band theory calculation predicts the electron-phonon inte
tion to lie in the strong-coupling regime. Nevertheless,
believe that the qualititave features might be understood w
the simple weak-coupling model.

We find that the relative peak positions and the nature
scattering strengh below the 2D gap can be understood nat
rally, while the weak and broadB1g peak features cannot b
explained in a simple weak-coupling theory withs1g-wave
gap symmetry. Presumably, in aB1g geometry, other
inelastic-scattering mechanisms in the particle-hole chan
become important. TheB1g phonon may provide one suc
scattering mechanism.

This paper is organized as follows: In Sec. II, we brie
summarize basic formalisms of electronic Raman scatter
In Sec. III, explict expressions for the Raman intensity o
s1g-wave SC are derived. The physical results are p
sented in Sec. IV, and we conclude this paper with a su
mary and discussion in Sec. V.

II. FORMALISM

The general formalisms for the electronic Raman scat
ing of superconductors are well expounded upon in pap
by Klein and Dieker,24 Monien and Zawadowski,25 and De-
vereaux and Einzel.26 Here we shall briefly summarize th
main results of the above papers necessary for our dis
sions.

The electronic Raman cross section is proportional to
dynamical structure factorS(v,q),

S~v,q!5@11nB~v!#F2
1

p
Imxr̃r̃

R
~v,q!G , ~1!

wherenB(v) is the Bose distribution function and the supe
scriptR of xr̃r̃

R denotes the retarded correlation function. T
effective density-density correlation functionxr̃r̃ ~in imagi-
nary time! is defined by

xr̃r̃~t2t8,q!52^Ttr̃q~t!r̃2q~t8!&. ~2!

r̃q is the effective density operator,

r̃q5(
p,s

gpcp1q/2,s
† cp2q/2,s . ~3!
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For nonresonant electronic Raman scatterings, the coeffic
gp is given by

gp5(
ab

ea
I ]2ep

]pa]pb
eb

F , ~4!

whereeI andeF are the polarization vectors of the incomin
and outgoing photons, respectively.ep is the energy disper-
sion of material.a andb label the coordinates perpendicul
to the photon momentum.

Light couples with the charge fluctuations in the materi
and in this case the long-range Coulomb interaction sho
be summed in the random phase approximation~RPA!. The
RPA summation implements the screening effect. Let us
fine irreducible correlation functions which donot include
the RPA-type diagrams as subdiagrams

pgg~q,t2t8!52^Ttr̃q~t!r̃2q~t8!& irr , ~5!

pg0~q,t2t8!52^Ttr̃q~t!r2q~t8!& irr , ~6!

p0g~q,t2t8!52^Ttrq~t!r̃2q~t8!& irr , ~7!

p00~q,t2t8!52^Ttrq~t!r2q~t8!& irr , ~8!

whererq5(p,s1 cp1q/2,s
† cp2q/2,s is an ordinary density op-

erator. Then the correlation functionxr̃r̃ can be written as

xr̃r̃5Fpgg2
pg0p0g

p00
G1

pg0p0g

p00
2

xrr , ~9!

wherexrr is the density-density correlation function whic
is negligible in the lowq limit. In the low q limit, only the
first term in the brackets of Eq.~9! needs to be considered

lim
q→0

xr̃r̃~ iv,q!5pgg~ iv,q!2
pg0~ iv,q!p0g~ iv,q!

p00~ iv,q!
.

~10!

The second term on the right-hand side of Eq.~10! is usually
referred to as the screening correction.

The vertex factorgp for the lattice with tetragonal sym
metry in various scattering geometries are given by

gA1g
~f!511gAcos 4f,

gB1g
~f!5gB1

cos 2f,

gB2g
~f!5gB2

sin 2f. ~11!

There can be terms with higher harmonics such as cos(4Nf),
cos@(4N22)f#, and sin@(4N22)f# with N>2 in Eq.~11!. We
will ignore them, but in the detailed fitting of experiment
data, the higher harmonics terms are necesary.26 The factor 1
for the A1g geometry case of Eq.~11! is canceled by the
screening correction; therefore, effectively,gA1g

(f)

→gAcos 4f.
0-2
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ELECTRONIC RAMAN SCATTERING OFs1g-WAVE . . . PHYSICAL REVIEW B 65 174530
The coefficientsgA ,gB1
, andgB2

are determined by the
shape of the energy band. If we take a simple band struc
with tetragonal symmetry (a is a lattice constant!,

ep522t@cos~pxa!1cos~pya!#14t8cos~pxa!cos~pya!

22tzcos~pza!, ~12!

then gB1g
}t, gB2g

}t8 and gA}const3t1const3t8. From

the average Fermi velocities5 we can estimatet;0.2 eV and
t8;0.1 eV. In our work, we will simply putgA5gB1

5gB2
51. Thus there are some reservations in comparing

relative intensities of theoretical results with those of expe
mental ones.

III. s¿g-WAVE SUPERCONDUCTOR

The gap function of thes1g-wave superconductor is

D~f!5Ds1Dgcos~4f!, 0,Ds,Dg , ~13!

wheref is the azimuthal angle in spherical polar coordina
The weak dependence on the radial momentum is negle
(k5kF). Since the amplitude of theg-wave part is larger
than thes-wave part, thelines of nodes exist on the FS. In
the opposite caseDs.Dg the gap function does not hav
nodes, and it behaves like a gapful anisotropics-wave SC.
The cases 0,Ds,Dg and 0,Dg,Ds are physically rel-
evant for pure BCSC and dirty BCSC, respectively. We w
use the Nambu formalism for the computation of correlat
functions in a superconducting state. The one-particle Gr
function in the weak-coupling approximation is given by

Ĝ~ i e,p!5
i et01jpt31Dpt1

~ i e!22jp
22Dp

2
, ~14!

wheret i ’s are the Pauli matrices in Nambu space. The wa
function renormalizationZ( i e) is neglected, and the fre
quency dependence of interaction is encoded in the cutofvc
@see Eq.~18!# of the pairing potential in momentum space.
Nambu notation, the correlation functionspgg8 can be ex-
pressed as@p5( i e,p),q5( iv,q)#

pGg8~q!5
T

N (
p

Tr@Ĝp,p1qĜ~p!g 8̂p1qĜ~p1q!#,

~15!

whereN is the number of lattice sites.Ĝp,p1q is the renor-
malized vertex function. We will evaluate the vertex functi
in the ladder approximation. The unrenormalized~bare! ver-
tex function is

Ĝp,p1q5ĝp5t3gp . ~16!

The gap equation of the~spin-singlet! s1g-wave SC reads

D~f!52
1

N (
p8

Dpp8

tanh~Ep8/2T!

2Ep8

D~f8!, ~17!

where Dpp8 is the pairing potential in momentum spac
andEp85Ajp8

2
1Dp8

2 .
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The gap equation@Eq. ~17!# can be solved in a close
form for separable pairing interactions. Given the spec
form of the gap@Eq. ~13!#, the separable pairing interactio
which respects the tetragonal symmetry should be chose

Dpp85@Ds1Dgcos 4f cos 4f81Dsg~cos 4f1cos 4f8!#

3Q~vc2ujpu!Q~vc2ujp8u!, ~18!

whereQ(x) is the step function. The numerical values of t
coupling constantsDs , Dsg , and Dg are determined to be
consistent with the values ofDs andDg , and the supercon
ducting transition temperatureTc . For details, see Appendix
C. Since there is no dependence on the polar angleu in Eq.
~15!, the momentum integration can be written as

1

N (
p

5NFE djp

1

2pE0

2p

df, ~19!

whereNF is the density of states per spin. Note that the s
sum is implicit in the trace over Nambu space. For la
references, let us define the dimensionless coupling c
stants.

ls52NFDs , lg52NFDg , lsg52NFDsg . ~20!

The technical analysis of Eq.~15! crucially depends on
whether a bare or renormalized vertex is used.

A. Analysis for the bare vertex

Henceforth we will consider only the zero-temperatu
case for simplicity. For the bare vertex, the integrals o
frequency andupu of Eq. ~15! can be done explicitly. Then
the imaginary parts ofpgg8

R can be expressed as a sing
integral over an azimuthal anglef:

2Im pgg8
R

5
4NF

v
ReF E

0

2pdf

2p

g~f!g8~f!D2~f!

Av224D2~f!
G .

~21!

At finite temperature the factor tanh(v/4T) should be multi-
plied by the above result.

At this point we note that the screening correction is a
sent forB1g and B2g symmetries. The screening correctio
can re-expressed as

pg05NFE
0

2pdf

2p
@g~f!31#D2~f! f ~cos 4f!, ~22!

wheref is a certain complex function which can be expand
in a power series with respect to the argument. Clearly
integrals of Eq.~22! vanish for the vertexg(f)5cos 2f or
g(f)5sin 2f, since they are orthogonal to cos 4Nf with N
>1. Thus the screening corrections forB1g andB2g symme-
tries vanish. TheA1g vertex cos(4f) has a finite overlap with
the rest of integrand, and there is nonzero screening cor
tion for A1g symmetry. The integral equation~21! cannot be
done in a closed form, and the numerical integrations
required. The results are presented in Sec. IV A.
0-3
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HYUN C. LEE AND HAN-YONG CHOI PHYSICAL REVIEW B65 174530
B. Analysis for the renormalized vertex

The vertex correction will be evaluated within the ladd
approximation. We will include the corrections coming fro
the pairing interaction only. In principle, other interactio
may well contribute to the vertex correction. However, we
not have enough experimental informations to identify
specific interactions responsible for scatterings in partic
hole channel. Evidently this approximation should be i
proved, and in fact, from the comparison with the Ram
experiment we expect the existence of strong inelastic s
terings withB1g symmetry in the particle-hole channel. He
we choose to work in the simplest approximation of inclu
ing the pairing interaction only.

The summation of ladder diagrams is equivalent to so
ing an integral equation of the following type:

Ĝg~p1q/2,p2q/2,iv!

5ĝ~p1q/2,p2q/2!1
T

N (
i e8,p8

@~21!Dpp8#

3t3Ĝ~p82q/2,i e8!ĜgS p81
q

2
,p82

q

2
,iv D

3ĜS p81
q

2
,i e81 iv D t3 . ~23!

The retardation effect in the weak-coupling approximation
reflected in the cutoff of the pairing interaction inmomentum
space, then the frequency channel can be treated as insta
neous. For such an interaction, the vertex correctionĜ be-
comes independent of the incoming frequencyi e, which is
an extremely crucial simplification. In fact, for a fully sel
consistent treatment, the renormalized Green functionĜ
with @Z( i e)Þ1# should be used, which incoporate the se
energy correction due to scatterings in the particle-hole ch
nel. However, if the underlying system is a Fermi liquid, t
Z( i e) correction is not expected to introduce qualitati
changes.

The momentum transferq can be neglected for a SC wit
a large penetration depth.24–26 In the limit q50, it can be
shown that24

Ĝg~p,iv!5G2g~p,iv!t21G3g~p,iv!t3 . ~24!

Then Eq.~23! simplifies to@p85( i e8,p8)#

G2g~p,iv!5
T

N (
p8,i e8

@2G2g~p8,iv!A~p8,iv!

1G3g~p8,iv!B~p8,iv!#3@2Dpp8#

G3g~p,iv!5gp1
T

N (
p8,i e8

@G3g~p8,iv!C~p8,iv!

1G2g~p8,iv!B~p8,iv!#3@2Dpp8#, ~25!

where
17453
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A~p8,iv!5
i e8~ i e81 iv!2Dk8

2
2jk8

2

@~ i e8!22Ek8
2

#@~ i e81 iv!22Ek8
2

#
,

C~p8,iv!5
i e8~ i e81 iv!2Dk8

2
1jk8

2

@~ i e8!22Ek8
2

#@~ i e81 iv!22Ek8
2

#
,

B~p8,iv!5
iDk8iv

@~ i e8!22Ek8
2

#@~ i e81 iv!22Ek8
2

#
. ~26!

The symmetry structure of the pairing potential@Eq. ~18!#
and the separable kernel form of Eq.~25! imply that vertices
of B1g andB2g symmetries are not renormalized, namely,

G2g~p,iv!50, G3g~p,iv!5gp for B1g ,B2g .
~27!

If additional scatterings were present in particle-hole chan
with B1g and/orB2g symmetry, the vertices forB1g andB2g
symmetries would be renormalized.

The nontrivial correction influences only theA1g vertex
without the additional interactions mentioned above. T
vertex correction forA1g can be calculated explicitly. The
details of the calculations can be found in Appendix B.

IV. RESULTS

A. Results with the bare vertex

Even though analytical solutions in closed forms are
available, the asymptotic behavior at low frequency and
peak positions of correlation functions can be understo
without numerical integrations.@For a pured-wave SC, the
integral can be done exactly in terms of elliptic integrals.26#
Detailed analytical calculations of low-energy behaviors
Raman susceptibilitiespgg can be found in Appendix A.
Numerical integrations are required for solutions valid ov
the entire frequency range. The numerical results are
sented in Figs. 1 and 2. The result shown in Fig. 1, for

FIG. 1. Raman intensities with the bare vertex.Dg

51.72 meV,Ds51.34 meV, andTc515.9 K.
0-4
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ELECTRONIC RAMAN SCATTERING OFs1g-WAVE . . . PHYSICAL REVIEW B 65 174530
caseDg , is slightly larger thanDs , while Fig. 2 shows that
the result for the caseDg is much larger thanDs .

The B1g spectrum is characterized by a sharp peak av
52(Ds1Dg), and a linear frequency dependence at lo
frequency. The low-frequency behavior is described by@see
Eq. ~A13!# (12Ds /Dg)v1const3v3. Note that the slope o
linear term is larger for smallerDs /Dg .

The A1g and B2g spectra are characterized by a peak
v52(Dg2Ds), and a linear frequency dependence at l
frequency. Without the screening correction theA1g spec-
trum would have peaks atboth v52(Ds1Dg) and v
52(Dg2Ds) ~see discussions below!. The peak atv
52(Ds1Dg) of theA1g spectrum is canceled by the scree
ing correction; however, a small hump feature remains at
frequency. TheB2g spectrum does not show a noticeab
structutre atv52(Ds1Dg).

The peak positions of the above spectra are determine
the following three conditions.~A! The angular integrals
Eqs. ~21! and ~22! can be re-expressed in terms ofz
5cos 4f, then the Jacobian of the change of variab
1/A12z2 appears in the integrand. Then large contributio
to the integrals stem from the angular region wherez
5cos 4f;61. This feature is very similar to that of a va
Hove singularity.~B! Large contributions to the integral
also come from the angular region wherev224D2(f);0
@see Eq.~21!#. The frequencies which satisfy conditions~A!
and ~B! are v52(Dg6Ds), and the peaks are expected
those frequencies.~C! Conditions~A! and ~B! predict peaks
at both frequenciesv52(Dg1Ds) and 2(Dg2Ds) irrespec-
tive of the scattering symmetry. The scatttering symmetry
encoded in the vertex factorg(f).

For B1g symmetry,g2(f)5cos2(2f)5(11cos 4f)/2. The
vertex~squared! vanishes at cos 4f521, and this factor sup-
presses a peak that would appear atv52(Dg2Ds). @Recall
that D(f)5Ds1Dgcos 4f# Therefore, forB1g symmetry,
only a single peak atv52(Dg1Ds) is expected, which
agrees with the numerical result.

The vertex factor of B2g is g2(f)5sin2(2f)5(1
2cos 4f)/2. Following the same arguments as theB1g case,

FIG. 2. Raman intensities with the bare vertex.Dg52.5 meV,
Ds50.43 meV, andTc514.2 K.
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we may expect a single peak atv52(Dg2Ds), which also
agrees with the numerical result. The screening correcti
do not alter the above results because the corrections sim
vanish forB1g ,B2g spectra, as discussed in Sec. III A.

For theA1g case, we have to take the screening correct
into account. Now note that in the angular region cosf
;1 @see Eq.~11!#,

pgA1
gA1

;pgA1
0;p00. ~28!

Then the contribution to the Raman susceptibility,

xgA1
gA1

5pgA1
gA1

2~pgA1
0!2/p00, ~29!

coming from the angular region cos 4f;1, becomes smal
due to the cancellation between the first and second te
The above cancellationsalso occur for the contributions
from the angular region cos 4f;21. Then subleading con
tributions determine the peaks. Numerical results show
the A1g peak appears atv52(Dg2Ds).

B. Results with the renormalized vertex

As discussed in Sec. III B, the vertex correction affe
only theA1g spectrum. The vertex correction depends on
relative magnitude ofDs andDg . The results are presente
in Figs. 3 and 4. It turns out that the vertex correction is m
important for largerDg /Ds . In case of Fig. 3 (Dg /Ds
51.28), the vertex correction is almost negligible over t
entire frequency range. On the other hand, in case of Fi
(Dg /Ds55.8), the vertex correction suppresses the pea
v52(Dg2Ds) which was present in the spectrum with th
bare vertex. At low frequency, the vertex correction is ne
ligible as in the case of Fig. 3, while at frequency higher th
2(Dg1Ds), it slightly enhances the spectrum. More discu
sions will follow in the next section.

FIG. 3. Raman intensity with and without vertex correction f
A1g spectra.Ds51.34 meV, Dg51.72 meV, andTc515.9 K.
ls50.13, lg50.22, andlsg50.15. The solid line is the spectr
with the vertex corretion, and the dotted line is the bare ver
spectra.
0-5
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V. DISCUSSIONS AND SUMMARY

Comparing the theoretical results, especially Fig. 2, w
the experimental data@Fig. 5~b!#, we find that the relative
order of peak positions and the low-frequency behaviors
incide with those of experimental data. In our model, t
peak of theB1g spectrum is located atv52(Ds1Dg), while
that of the B2g and A1g spectrum is located atv52(Dg
2Dg). Then Dg and Ds can be extracted from the exper
mental data, and we obtainDg;2.5 meV and Ds
;0.3 meV. Thus it turns out that thes-wave component of
gap is much smaller than theg-wave component. In fact, Fig
2 (Dg /Ds55.8) compares more favorably with the expe
mental data Fig. 5 than Fig. 1 (Dg /Ds51.28).

We have to note that the linear frequency dependenceB1g
spectrum at low frequency observed in the Raman exp
ment rules out the pured-wave scenario, which predicts a
v3 dependence~see Appendix A!. The low-frequency behav
iors are robust againt the effect of vertex correction and p
vide an unambiguous evidence for thes1g-wave scenario.

But the theoretical results pose some drawbacks. M
significantly, the shape ofB1g peak looks very different from
the experimental one. Theoretical results predict a str
sharppeak atv52(Dg1Ds). Experimentally, theB1g peak
is very broad and weak compared to theA1g andB2g peaks.

However, there exist some caveats in comparing the
oretical results directly with the experimental data. Rec
that we have included only the pairing interaction in t
particle-hole channel in computing the vertex correctio
Owing to the specific symmetry of the pairing interactio
theB1g andB2g channels were immune to the vertex corre
tion. In general, we may well include interactions inB1g and
B2g symmetries in the particle-hole channel which are co
patible with tetragonal symmetries such asV cos 2f cos 2f8
and W sin 2f sin 2f8. If such interactions were present th
B1g and /or B2g channels surely would be influenced b
vertex corrections.

Regarding the discrepancies on the shape ofB1g peak

FIG. 4. Raman intensity with vertex correction forA1g spectra.
Ds50.43 meV, Dg52.5 meV, andTc514.2 K. ls50.05, lg

50.42, andlsg50.06. The solid line is the spectra with the vert
correction, and the dotted line is the bare vertex spectra.
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structure between the theory and the experiment, we pres
that there exists a very strong inelastic scattering acting
the B1g channel which suppresses and broadens theB1g
peak. The introduction of inelastic scattering acting on t
B1g channel would not modify the low-frequency behavio
since it is mostly dictated by the symmetry of supercondu
ing order parameter.

Borrowing the arguments in Sec. IV A, we may expe
that the effect of inelastic scattering on theB1g channel
would be strongest nearv52(Dg1Ds). Then the weak peak
structure atv52(Dg1Ds) of renormalized A1g spectraum
~see Fig. 4! would be suppressed, and a peak would show
again atv52(Dg2Ds), in agreement with the experiment

The physical origin of the hypothetical inelastic scatteri
acting inB1g channel is not clear, but the Raman experime
@Fig. 5~a!# strongly suggests that the scattering betweenB1g
phonons and electrons might be a possible candidate.
also note that the inclusion of the detailed momentum ani
ropy of SG compatible with the tetragonal symmetry wou
give the results which will agree better with the experimen

It should be pointed out that the peculiar natures of R
man spectra of BCSC may be understood by the collec
mode scenario.27 The nesting property of the Fermi surface28

is likely to play an important role in the collective mod
scenario.

In summary, we have studied the electronic Raman s

FIG. 5. Raman spectra of YNi2B2C with Tc515.3 K from
Yang et al.’s experiment~Ref. 23!. The strong peak of~a! near
200 cm21 is due to theB1g phonon.
0-6
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ELECTRONIC RAMAN SCATTERING OFs1g-WAVE . . . PHYSICAL REVIEW B 65 174530
tering of borocarbide superconductors based on the w
coupling theory withs1g-wave gap symmetry. The low
frequency behaviors and the relative peak positions can
naturally understood within a simple one-loop calculatio
However, there are discrepancies in the detailed shap
peak structures between theoretical predictions and exp
mental results. The inclusion of the strong inelastic scatte
betweenB1g phonon and electron may resolve the discre
ancies.
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APPENDIX A: LOW-FREQUENCY BEHAVIORS OF
CORRELATION FUNCTIONS

At low frequency, the angular integral of Eq.~21! is domi-
nated by contributions from the angular region whereD(f)
;0. In this region, the gap functionD(f) can be linearized
with respect to the anglef0 defined byD(f0)50.

Let us first consider a pured-wave case D(f)
5Ddcos 2f. If we take into account the contributions from
the first quadrant only, the gap function vanishes atf5p/4.
Writing f5p/41x, uxu!1, the integral of Eq.~21! can be
reduced to

2Impgg
R ;

NF

v E
2v/4Dd

v/4Dd dx

2p

g2S f5
p

4
1xD @4Dd

2x2#

Av2216Dd
2x2

.

~A1!

The vertex factors become@see Eq.~11!#

gA1gS p

4
1xD;21, ~A2!

gB1gS p

4
1xD;22x, ~A3!

gB2gS p

4
1xD;1. ~A4!

Using scalingx5(v/4Dd)y, for v!2Dd we obtain

2Im pA1g

R(D)~v!;v,

2Im pB1g

R(D)~v!;v3,

2Im pB2g

R(D)~v!;v, ~A5!
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where the superscript~D! indicates the symmetry of supe
conducting order parameter. Results~A5! coincide with
those obtained by Devereaux and Einzel.26

Next let us consider thes1g-wave caseD(f)5Ds
1Dgcos 4f. Upon linearization, one can write

D~f5f01x!;2ax, a54Dgsin 4f0 , ~A6!

where the anglef0 is defined by the relation

Ds1Dgcos 4f050, Ds ,Dg.0. ~A7!

Then the angular integral can be expressed as

2Im pgg
R ;

NF

v E
2v/2a

v/2a dx

2p

g2~f5f01x!@a2x2#

Av224a2x2
.

~A8!

The vertex factors become

gA1g

2 ~f01x!;cos24f05~Ds/Dg!2, ~A9!

gB1g

2 ~f01x!;
12Ds /Dg

2
2@2 sin 4f0#x2@4 cos 4f0#x2,

~A10!

gB2g

2 ~f01x!;
11Ds /Dg

2
. ~A11!

In Eq. ~A10! the second term is odd inx; thus it gives a
vanishing result upon integration. The first and third terms
Eq. ~A10! dominate the low-energy behavior. Carrying o
the integrals by rescaling as in thed-wave case, we obtain

2Im pA1g

R(SG)~v!;gA1

2 ~Ds /Dg!2v, ~A12!

2Im pB1g

R(SG)~v!;gB1

2 F12Ds /Dg

2 Gv1constv3,

~A13!

2Im pB2g

R(SG)~v!;gB2

2 F11Ds /Dg

2 Gv, ~A14!

where the superscript (SG) indicates the symmetry of orde
parameter. The coefficients of vertex factorsgA1

2 , gB1

2 , and

gB2

2 are reinstated for clarity. The above results differ fro

the pured-wave case by thev-linear component of theB1g
spectra. We also note the dependence on the gap rat
<Ds /Dg<1. For the small gap ratio, thev-linear compo-
nent of theA1g spectra is suppressed, while that of theB1g
spectra is enhanced. This agrees well with the numerica
sult. ~See Figs. 1 and 2.!

APPENDIX B: CALCULATION OF VERTEX CORRECTION

First write

G2,3~ iv,p!5G2,3
s ~ iv!1G2,3

g ~ iv!cos 4f. ~B1!
0-7
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Define two-component column vectors

G2~ iv!5S G2
s~ iv!

G2
g~ iv!D , G3~ iv!5S G3

s~ iv!

G3
g~ iv!D . ~B2!

Then the integral equation for the vertex correction@Eq.
~25!# can be recast in a matrix form

F I 21A 2B

2B I22CGFG2

G3G5F 0

g̃
G , ~B3!

whereI 2 is the 232 identity matrix, andA, B, andC are 2
32 matrices to be defined below.g̃ is a two-component
column vector defined by

g̃5F1

0G for g51,

g̃5F0

1G for g5cos 4f. ~B4!

The matrix equation~B3! can be solved, yielding the desire
solutions:

G2g5@~ I 22C!B21~ I 21A!2B#21g̃,

G3g5@~ I 22C!2B~ I 21A!21B#21g̃. ~B5!

The 232 matricesA, B, andC are defined as follows:

A5S a1 a2

a3 a4D , B5S b1 b2

b3 b4D , C5S c1 c2

c3 c4D .

~B6!

The matrix elements are given by@p5( i e,p)#

a1~ iv!5
T

N (
i e,p

I s~f!A~p,iv!,

a2~ iv!5
T

N (
i e,p

I s~f!~cos 4f!A~p,iv!,

a3~ iv!5
T

N (
i e,p

I g~f!A~p,iv!,

a4~ iv!5
T

N (
i e,p

I g~f!~cos 4f!A~p,iv!,

b1~ iv!5
T

N (
i e,p

I s~f!B~p,iv!,

b2~ iv!5
T

N (
i e,p

I s~f!~cos 4f!B~p,iv!,

b3~ iv!5
T

N (
i e,p

I g~f!B~p,iv!,
17453
b4~ iv!5
T

N (
i e,p

I g~f!~cos 4f!B~p,iv!,

c1~ iv!5
T

N (
i e,p

I s~f!C~p,iv!,

c2~ iv!5
T

N (
i e,p

I s~f!~cos 4f!C~p,iv!,

c3~ iv!5
T

N (
i e,p

I g~f!C~p,iv!,

c4~ iv!5
T

N (
i e,p

I g~f!~cos 4f!C~p,iv!, ~B7!

where

I s~f!5ls1lsgcos 4f, I g~f!5lgcos 4f1lsg ,

ls52NFDs , lg52NFDg , lsg52NFDsg .
~B8!

The vertex correction@Eq. ~B5!# together with Eq.~B1!
should be substituted into the integral equation~15!. Note
that the solutions Eq.~B5! depend only on the external fre
quency iv, so that just an analytical continuationiv→v
1 id without additional integrations is sufficient to obtain th
final answer.

APPENDIX C: CHOICE OF COUPLING CONSTANTS

The gap equation Eq.~17! can be written as a set o
coupled equations@notations are defined in Eq.~B8!#.

Ds5Ds~lsI 01lsgI 1!1Dg~ls1lsgI 2!,

Dg5Ds~lgI 11lsgI 0!1Dg~lgI 21lsgI 1!,

I n5E
0

vc
djpE

0

pdx

p
~cosx!n

Ep/2T

Ep
. ~C1!

Solving Eq.~C1! at T5Tc , we obtain a relation betweenTc
and coupling constants.

lnF1.135
vc

Tc
G5

S lg

2
1lsD2F S lg

2
2lsD 2

12lsg
2 G1/2

lslg2lsg
2

.

~C2!

For a pureg-wave case, the well-known resultTc51.135
3vce

22/lg is reproduced. Fixing the cutoffvc5100 meV,
we have chosen the following two sets of the coupling co
stants by solving Eqs.~C1! and ~C2!.
0-8
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~ I!ls50.13, lg50.22, lsg50.15,

Ds51.34 meV, Dg51.72 meV, Tc515.9 K;
~C3!
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i

a

v

ck

a

o

p
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~ II !ls50.05, lg50.42, lsg50.06,

Ds50.43 meV, Dg52.5 meV, Tc514.2 K.
~C4!
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