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The electronic Raman scattering of borocarbide superconductors is studied based on the weak-coupling
theory with s+g-wave gap symmetry. The low-energy behaviors and the relative peak positions can be
naturally understood, while the explanation of the detailed shape d8the@eak seems to require a strong
inelastic interaction not present in the weak-coupling theory.
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I. INTRODUCTION low temperature is very similar to that of a heavy-fermion
SC with a gap which haknes of nodes®

Electronic Raman scattering is a very useful probe in de- Experimental fact€1)—(5) clearly corroborate a gapless
termining the symmetry of the order parameter of superconsuperconductivity, the simplest of whichdsvave supercon-
ductors(SC’s).! It plays an especially important role in the ductivity. However, the following experiments for BCSC
study of unconventional superconductors owing to the strongvith Ni substituted by some impurity element as Pt pose
dependence of Raman responses on the symmetry of supeerious challenges for tilewave scenariof6) The magnetic
conducting order parameters. Along with the discovery offield H dependence of residual density of states in the vortex
high-temperature superconductors, other unconventional sgtaté®** changes from/H to H upon the impurity substitu-
perconductors have been actively investigated, for examplaion. Caroliet all’ showed that théd dependence is linear
Borocarbide superconductof8CSO? (Y,Lu)Ni,B,C, and for an isotropic swave SC. (7) The detailed plot of
ruthenate superconductdrSr,RuQ,. The symmetry of the In[C(T)/yT.] versusT./T also demonstrates the change of
order parameter of high-temperature SC's and Ruthenatieehavior fromT® to the activated on& (8) The photoemis-
SC’s is believed to bel wave' and p wave? respectively.  sion experiment shows the opening of gap over the whole FS
However, the symmetry of the order parameter of BCSC hasor impurity substituted compound by comparing the shapes
not been determined unambiguously at present. Neverthef the spectra of pure and dirty BCSC.
less, there is growing experimental evidence of the strongly The experiments for the dirty BCS{6)—(8)] implied
anisotropic nature of order paramter of BCSC. Band-that the gap symmetry cannot be a simglevave because
structure calculatio’s and a T, versus y plot’ suggest the introduction of impurities does not change the gap an-
strong electron-phonon interaction as a possible origin ofsotropy owing to thed-wave symmetry® and only overall
BCSC. In general, the superconductivity mediated byamplitudes decrease with the impurity concentrations. In
electron-phonon interaction has an isotropiwave super- connection with the experiments for the diry BCSC, we note
conducting gagSG), and the nodes of the gap on the Fermithat the superconducting temperature of a conventional
surface(FS) do not exist. swave SC is insensitive to the introduction of nonmagnetic

On the other hand, the following experiments indicate theémpurities, which is the fact known as Anderson theorm,
existence of the nodes of a S@) the power-law tempera- while unconventional SC’s depend on them sensitiv&fy.
ture dependenceTf) of the nuclear relaxation ratel/T; Finally there is no experimental evidence of broken tetrago-
suggests the existence of line nodes of the superconductingal symmetry, thus we are forced to rule out pairing interac-
gap on the Fermi surfaceMoreover, a Hebel-Slichter peak tions which violate tetragonal symmetry.
is not observed,which is also consistent with the existence  Synthesizing all of the above observatioi$)—(5) and
of nodes.(2) The magnetic-fieldH) dependence of the re- (6)—(8), and the unbroken tetragonal symmetry, we are led to
sidual density of states in the vortex stdte was observed a proposal that the gap symmetry of BCSC should be a
to be \H. According to the well-known result by Volovi€ ~ mixed one which respects the tetragonal symmetry. Obvi-
JH indicates the existence of lines of gap nodes on the FSiusly, the simplest possible candidate is the ())-wave gap
(3) Metlushkoet al. reported an observation of the fourfold symmetry. The gap function of the formA(¢)
symmetric upper critical field® Evidently, such a behavioris =|A,cos(2p)| is also a viable choice, but nodes of gaps of
not compatible with the isotropiswave gap, and has been this kind are accidental and are not enforced by symmetry.
interpreted in terms of threedimensional d-wave From the symmetry viewpoint, as+g-wave gap is more
superconductivity? (4) A direct measurement of the SG by natural. We note that Malét al. also adopted the model of
photoemission spectroscdpyalso demonstrates the exis- BCSC with the 6+g)-wave gap symmetry in their recent
tence of nodes of the S@5) A recent experiment by Boak- preprint??
nin et al. on the thermal conductivity of LuNB,C showed Yang et al. studied® BCSC by means of electronic Ra-
that the magnetic-field dependence of thermal conductivity aman scattering. They observed ike peaks inA;4,B,q,

0163-1829/2002/68.7)/17453@9)/$20.00 65 174530-1 ©2002 The American Physical Society



HYUN C. LEE AND HAN-YONG CHOI PHYSICAL REVIEW B65 174530

and B,, geometries. The peak position Bf; geometry is  For nonresonant electronic Raman scatterings, the coefficient
found to be larger than the others. Also, peaksAgf and v, is given by

B,y sSymmetries are much stronger than the peaRgfsym-

metry. There exists a scattering strength below thegayp, _E | (926p F 4
which increases with frequendinearly in B;4 and B,y ge- Yo~ Y €q IPadPg €5 (4)
ometries(see Fig. 5.

We intend to understand the qualitative features of thavheree' ande® are the polarization vectors of the incoming
above Raman experiments based on the simplest model wiind outgoing photons, respectivedy, is the energy disper-
s+g-wave gap symmetry. We adopt the weak-couplingsion of materiala andg label the coordinates perpendicular
theory with a separable pairing interaction. Then, even if theo the photon momentum.
physical origin of the pairing interaction is unknown, we can  Light couples with the charge fluctuations in the material,
deduce many physical consequences which depend maingnd in this case the long-range Coulomb interaction should
on the pairing symmetry and not on the details of interacte summed in the random phase approximati®RA). The
tions. Strictly speaking, the weak-coupling theory is not ex-RPA summation implements the screening effect. Let us de-
pected to be valid on a quantitative level, and indeed théine irreducible correlation functions which dmot include
band theory calculation predicts the electron-phonon interadhe RPA-type diagrams as subdiagrams
tion to lie in the strong-coupling regime. Nevertheless, we
belle\_/e that the qualmt_ave features might be understood with Ty 07— 7 )= —(T,pg(T)P—o(T')Virr (5)
the simple weak-coupling model.

We find that the relative peak positions and the nature of

scattering strengh below the\2gap can be understood natu- Tyo(0h 7= 7)== (Topal(7)p—o( ') irr ©
rally, while the weak and broal,4 peak features cannot be ~

explained in a simple weak-coupling theory with g-wave Tol A, 7= 7)== (T.pg(T)P—g(7') irr (7
gap symmetry. Presumably, in 8,4, geometry, other

inelastic-scattering mechanisms in the particle-hole channel oo &, 7= 7' )= —(T.pg(T)p—g(T") irr (8)

become important. Th&,;, phonon may provide one such . . )
- : g wherep,=3, ,1c! c is an ordinary density op-
scattering mechanism. Pq= <p,ot Cptar2oCp-a2e y y 0p

This paper is organized as follows: In Sec. II, we briefly erator. Then the correlation functigyy; can be written as
summarize basic formalisms of electronic Raman scattering.

In Sec. I, explict expressions for the Raman intensity of a B TyT0oy|  Ty0T0y

s+g-wave SC are derived. The physical results are pre- Xop™| Tyy™ o0 2 Xpp» ©

sented in Sec. IV, and we conclude this paper with a sum- 00

mary and discussion in Sec. V. wherey,, is the density-density correlation function which

is negligible in the lowqg limit. In the low q limit, only the

Il. FORMALISM first term in the brackets of Eq9) needs to be considered.

~ The general formalisms for the electronic Raman scatter- . . 70(i 0,0) 7o (1 @,9)

ing of superconductors are well expounded upon in papers lim x; (iw,q)=m7,,(i0,q)— -

by Klein and Diekef* Monien and ZawadowsKr and De- 40 Mool @,0)

vereaux and Einzéf Here we shall briefly summarize the (10

main results of the above papers necessary for our discusrhe second term on the right-hand side of E) is usually

S'O_rr‘rs]' lectronic R fion i tional to th referred to as the screening correction.
€ eleclronic Raman cross section 1s proportional 0 IN€ - e yerex factory, for the lattice with tetragonal sym-

dynamical structure factd¥(w,q), metry in various scattering geometries are given by

1
S(w,q)=[1+n3(w)]{—;Im)(%)(w,q) , (1) 7A19(¢):1+ YACOS 4,
whereng(w) is the Bose distribution function and the super- yBlg(¢>)= ¥8,COS 20,
scriptR of X—E; denotes the retarded correlation function. The
effective density-density correlation functigny; (in imagi- szg(qS): szsin 2¢. (11

nary time is defined by
There can be terms with higher harmonics such as b4

Xo(T—7',Q)= _<T75q( T);,_q( )). (2)  cog(4N—-2)¢], and sif(4N—2)¢] with N=2 in Eq.(11). We
~ will ignore them, but in the detailed fitting of experimental
pq is the effective density operator, data, the higher harmonics terms are nece®aFpe factor 1

for the A,y geometry case of Eq.1l) is canceled by the
screening correction; therefore, effectively,yAlg(¢)

- T
Pa= 2 VoCiq2.0Cp- g2 (3)
q o~ p~p+a/2,0-p—a/2,0 . yACOS 425
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The coefficientSyA,yBl, and s, are determined by the The gap equatiofiEq. (17)] can be solved in a closed

shape of the energy band. If we take a simple band structu®'m for separable pairing interactions. Given the specific

with tetragonal symmetry&(is a lattice constait form of the gap[Eq. (13)], the separable pairing interaction
which respects the tetragonal symmetry should be chosen as

€,= — 2t[cog p,a)+cog pya)]|+4t'cog psa)cog pya) 5 DD oo .
= +D,C0os 4¢ cos 4o’ + cos 4¢p+cos 4o’
—2t,co9p,a), (12) PP s+ Dge0s4p 005447+ Dsgl COS 4 v

X0 - (¢ —&u1), 18
then e, <t YBzg“t’ and y,xconstt+constxt’. From (o= [£])O(we=[ép]) (18)
the average Fermi velocitiés/e can estimate~0.2 eV and Wher§®(x) is the step function. The numerical \{alues of the
t'~0.1 eV. In our work, we will simply puty,=vys, coupling constant®g, Dsy, andD, are determined to be

=yg,=1. Thus there are some reservations in comparing theonsistent with the values dfs andAg, and the supercon-

relative intensities of theoretical results with those of experi-dU(:t'.ng transition temperatur, . For details, see Appendlx
C. Since there is no dependence on the polar afdieEq.

mental ones. (15), the momentum integration can be written as
Ill. s+g-WAVE SUPERCONDUCTOR 1 1 (2=
The gap function of ths+ g-wave superconductor is N Ep B NFJ dngJ’o a4, 19
A(p)=As+Aqcog4¢), 0<A<Ag, (13)  whereNg is the density of states per spin. Note that the spin

where ¢ is the azimuthal angle in spherical polar coordinate sum is implicit in the trace over Nambu space. For later
g b P references, let us define the dimensionless coupling con-

The weak dependence on the radial momentum is neglecteS nts
(k=kg). Since the amplitude of thg-wave part is larger '

than thes-wave part, thdines of nodes exist on the FS. In A.= —N-D
the opposite casé >A, the gap function does not have S Fos
nodes, and it behaves like a gapful anisotrapizave SC. The technical analysis of Eq15) crucially depends on
The cases €A;<Ay and 0<Ay<Ag are physically rel- whether a bare or renormalized vertex is used.

evant for pure BCSC and dirty BCSC, respectively. We will
use the Nambu formalism for the computation of correlation
functions in a superconducting state. The one-particle Green

Ng=—NeDg, Agg=—NgDggy. (20)

A. Analysis for the bare vertex

function in the weak-coupling approximation is given by Henceforth we will consider only the zero-temperature
case for simplicity. For the bare vertex, the integrals over
. €7+ Eprat ApTy frequency andp| of Eq. F(QlS) can be done explicitly. Then
G(ie,p)= (eP—-aZ ' (14 the imaginary parts ofr’ , can be expressed as a single
P Sp

integral over an azimuthal angte:
wherer;’s are the Pauli matrices in Nambu space. The wave-

function renormalizatio_nZ(ie) i_s n_eglected, a}nd the fre- r ANg 2rdep y(P)y' (H)A% ()
guency dependence of interaction is encoded in the cutoff —Ilma,, :TR 5 Jo?—4A%(d)
[see Eq(18)] of the pairing potential in momentum space. In 0 w°—44%(¢) 21
Nambu notation, the correlation functions,,, can be ex- (2D
pressed agp=(ie,p),q=(iw,q)] At finite temperature the factor tan@T) should be multi-
T plied by the above result.
e (q)=— > Tl G(p)Y o1 G(P+a)], At this point we note that the screening correction is ab-
ry (4 N Zp L epaG(R)Y praGlP )] sent forB;y and B,y symmetries. The screening correction

(15  can re-expressed as

whereN is the number of lattice sitefp,p+q is the renor-

malized vertex function. We will evaluate the vertex function o= NFJ
in the ladder approximation. The unrenormaliZedre ver- 0
tex function is

2

d¢
S-LV($)xX1]A%(¢)f(cos 4p), (22

wheref is a certain complex function which can be expanded
f =5 =1gy,. (16) in a power series with respect to the argument. Clearly the
p.p+a= Yp~ 73%p ; ; -
integrals of Eq.(22) vanish for the vertexy(¢)=cos 2p or
The gap equation of thespin-singlet s+g-wave SC reads () =sin 2¢, since they are orthogonal to casd with N
=1. Thus the screening corrections f#y, andB,, symme-
tanh(E,//2T) A(D 1 tries vanish. The\, 4 vertex cos(4) has a finite overlap with
2E,, (¢9, a7 the rest of integrand, and there is nonzero screening correc-
_ . o tion for A;4 symmetry. The integral equatig@1) cannot be
where Dy, is the pairing potential in momentum space, done in a closed form, and the numerical integrations are
andE, = \/§p2,+Ap2,. required. The results are presented in Sec. IV A.

1
A(gp)=— N 2 Dpp’
p’
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B. Analysis for the renormalized vertex Intensity

The vertex correction will be evaluated within the ladder @ Umits

. . L . . . Bl .
approximation. We will include the corrections coming from 1.2} g . .
the pairing interaction only. In principle, other interactions Alg \ "
may well contribute to the vertex correction. However, we do 1} . g :

not have enough experimental informations to identify the
specific interactions responsible for scatterings in particle-o‘8
hole channel. Evidently this approximation should be im-
proved, and in fact, from the comparison with the Raman
experiment we expect the existence of strong inelastic scatgo.
terings withB,4 symmetry in the particle-hole channel. Here
we choose to work in the simplest approximation of includ- 9-
ing the pairing interaction only.

The summation of ladder diagrams is equivalent to solv-
ing an integral equation of the following type:

Frequency (mev)

FIG. 1.

Raman
=1.72 meV,A;=1.34 meV, andl.=15.9 K.

I (p+a/2p—q/2jw) intensities with the bare verted

“ T
= +q/2p—ql2)+ — —1)D,,
Np+a2p—ai2)+ 5 Ep [(—1)Dgp/] el )= a2 - 2,
A(p'iw)=— R— 77
. e qa ., 9. [(ie)2—Ef (i€ +iw)®~Ef ]
X 13G(p' —al2jie )T, p’+§,p’—§,lw
q ie'(ie' +io)—AL+&,
Al Cor C(p',iw)= ,
X G P +§,IE +|(I)) T3. (23) (p ) [(ié/)Z_Ei,][(i6,+iw)2_Ei,]
The retardation effect in the weak-coupling approximation is iAo
reflected in the cutoff of the pairing interactionfimomentum B(p'iw)=— K (26)

space then the frequency channel can be treated as instanta- [(i€)?—E. (i€ +iw)2—EL]

neous. For such an interaction, the vertex correcfiohe- -
comes independent of the incoming frequemey which is The symmetry structure of the pairing potentii. (1.8)]
an extremely crucial simplification. In fact, for a fully self- and the separable "em‘?' form of Eg5) |mply_that vertices
; , A of B;4 andB,, symmetries are not renormalized, namely,
consistent treatment, the renormalized Green funct®n
with [Z(i€)# 1] should be used, which incoporate the self-
energy correction due to scatterings in the particle-hole chan-
nel. However, if the underlying system is a Fermi liquid, the

Fzy(p,i(l))zo, Fs,y(p,|(1)):'yp fOf BlngZg-

(27)

Z(ie) correction is not expected to introduce qualitative|f additional scatterings were present in particle-hole channel

changes.

The momentum transfer can be neglected for a SC with
a large penetration deptA=2®In the limit =0, it can be
shown that*

I (piw)=T5,(p,iw)7+T3,(piw)rs. (24)

Then Eq.(23) simplifies to[p'=(i€’,p’)]
: T . .
Toypiw)=5 2 [~To(p iw)Ap i)

p'ie
+Ta,(p'i@)B(P"iw)]X[~Dpy]
_ T _ _
Tay(Piw)=ypt 5 2 [Tay(p'iw)C(p' i)
p'lie

+I,(p"iw)B(p",iw)]X[~Dpy], (29

where

with B,4 and/orB,4 symmetry, the vertices fdB,, and B
symmetries would be renormalized.

The nontrivial correction influences only thfe, vertex
without the additional interactions mentioned above. The
vertex correction forA;, can be calculated explicitly. The
details of the calculations can be found in Appendix B.

IV. RESULTS
A. Results with the bare vertex

Even though analytical solutions in closed forms are not
available, the asymptotic behavior at low frequency and the
peak positions of correlation functions can be understood
without numerical integrationgFor a pured-wave SC, the
integral can be done exactly in terms of elliptic integr4ls.
Detailed analytical calculations of low-energy behaviors of
Raman susceptibilitiesr,,, can be found in Appendix A.
Numerical integrations are required for solutions valid over
the entire frequency range. The numerical results are pre-
sented in Figs. 1 and 2. The result shown in Fig. 1, for the
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Intensity Intensity
(arb. units.) (arb. units.) Alg Spectra
2.5¢ 0.8y

1 2 3 1 5 6 7
Frequency (mev)

Frequency (mev)
FIG. 3. Raman intensity with and without vertex correction for

Ayq spectra.Ag=1.34 meV, A;j=1.72 meV, andT,=15.9 K.

Ns=0.13, \j=0.22, andA4¢=0.15. The solid line is the spectra

L ) ] with the vertex corretion, and the dotted line is the bare vertex
casely, is slightly larger tham\s, while Fig. 2 shows that  gpectra.

the result for the casag is much larger tham\s.

The By4 spectrum i_s characterized by a sharp peakat e may expect a single peak @=2(A,—Ag), which also
=2(AstAg), and a linear frequency dependence at low-3grees with the numerical result. The screening corrections
frequency. The low-frequency behsawor is describeddBe g not alter the above results because the corrections simply
Eq.(A13)] (1-As/Ag) w+constw®. Note that the slope of - yanish forB,,B,, spectra, as discussed in Sec. Il A,
linear term is larger for smalleks/A . For theA, case, we have to take the screening correction

The A,4 and By, spectra are characterized by a peak afintg account. Now note that in the angular region ces 4
w=2(Ayg—A), and a linear frequency dependence at low._q [see Eq(11)],

frequency. Without the screening correction thg, spec-

trum would have peaks aboth w=2(As+A4,) and w - e (29)

=2(Ag—Ag) (see discussions below The peak atw YA A, a0 00

=2(Ast+Ay) of theAqq spectrum is canceled by the screen- o o

ing correction; however, a small hump feature remains at thd hen the contribution to the Raman susceptibility,

frequency. TheB,y spectrum does not show a noticeable

structutre atw=2(Ag+A,). . Xvpa,= wyAlyAl—(wyAlo)Z/Troo, (29)
The peak positions of the above spectra are determined by

the following three conditions(A) The angular integrals coming from the angular region cog41, becomes small

Egs. (21) and (22) can be re-expressed in terms Bf e 1o the cancellation between the first and second terms.
=Ccos4p, then the Jacobian of the change of variableThe apove cancellationalso occur for the contributions
1/\1—Z7? appears in the integrand. Then large contributionSrgm the angular region cosp-—1. Then subleading con-

to the integrals stem from the angular region where tripyutions determine the peaks. Numerical results show that
=cos 4p~=1. This feature is very similar to that of a van tphe Ay, peak appears ab=2(Ag—Ay).

Hove singularity. (B) Large contributions to the integrals
also come from the angular region whatd—4A2%(¢$)~0
[see Eq(21)]. The frequencies which satisfy conditio(®s)
and (B) are w=2(A4*Ay), and the peaks are expected at As discussed in Sec. Il B, the vertex correction affects
those frequenciesC) Conditions(A) and(B) predict peaks only theA,4 spectrum. The vertex correction depends on the
atbothfrequenciesv=2(A4+As) and 2A3—Ay) irrespec-  relative magnitude ofAg andAg. The results are presented
tive of the scattering symmetry. The scatttering symmetry isn Figs. 3 and 4. It turns out that the vertex correction is more
encoded in the vertex factoi( ¢). important for largerAy/Ag. In case of Fig. 3 4,/A

ForBiq symmetry,y*($) = cos(2¢)=(1+cos 4p)/2. The = =1.28), the vertex correction is almost negligible over the
vertex(squaregivanishes at cos#=—1, and this factor sup- entire frequency range. On the other hand, in case of Fig. 4
presses a peak that would appeawat2(Ag—As). [Recall  (Ay/As=5.8), the vertex correction suppresses the peak at
that A(¢)=As+Agcos4p] Therefore, forB;, symmetry, o=2(Ag—Ag) which was present in the spectrum with the
only a single peak atv=2(Ag+A,) is expected, which bare vertex. At low frequency, the vertex correction is neg-
agrees with the numerical result. ligible as in the case of Fig. 3, while at frequency higher than

The vertex factor of B,y is Y2 (@) =sirf(2¢)=(1 2(A4+Ay), it slightly enhances the spectrum. More discus-
—cos 4p)/2. Following the same arguments as Big, case, sions will follow in the next section.

FIG. 2. Raman intensities with the bare vertdy=2.5 meV,
A;=0.43 meV, andlr,=14.2 K.

B. Results with the renormalized vertex
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Intensity LA B B S s B B B S e B By S B s

(arb. units.) Alg Spectra 30
2t <
- = 20
£
1.5}F g
Bare = 10
! £
0.5¢ 0
Renormalized 0 100 200
PR - Raman shift (cm~)
1 2 3 4 5 6 7
Frequency (mev) ' ' I I
30
FIG. 4. Raman intensity with vertex correction &g, spectra. )
As=0.43 meV, A;j=25 meV, andT,=14.2 K. A;=0.05, A, *é'
=0.42, and\4¢=0.06. The solid line is the spectra with the vertex 3 5
correction, and the dotted line is the bare vertex spectra. '9
©
V. DISCUSSIONS AND SUMMARY = 40
Comparing the theoretical results, especially Fig. 2, with E
the experimental datfFig. 5b)], we find that the relative
order of peak positions and the low-frequency behaviors co- 0
incide with those of experimental data. In our model, the 10 30 50
peak of theB,4 spectrum is located aé=2(As+A,), while Raman shift (cm™)

that of the B,y and A;4 spectrum is located ab=2(A, _
—Ag). ThenAy and Ag can be extracted from the experi-  FIG. 5. Raman spectra of YbB,C with T,=15.3 K from
mental data, and we obtaimA;~2.5 meV and Ag Yang etjl.ls experiment(Ref. 23. The strong peak ofa) near
~0.3 meV. Thus it turns out that trewave component of 200 c¢m *is due to theByy phonon.
gap is much smaller than tlgewave component. In fact, Fig.
2 (Ay/As=5.8) compares more favorably with the experi- structure between the theory and the experiment, we presume
mental data Fig. 5 than Fig. AG/Ag=1.28). that there exists a very strong inelastic scattering acting in
We have to note that the linear frequency depend@&ige the B,y channel which suppresses and broadens Bhg
spectrum at low frequency observed in the Raman experipeak. The introduction of inelastic scattering acting on this
ment rules out the purd-wave scenario, which predicts an B,, channel would not modify the low-frequency behaviors,
w® dependencésee Appendix A The low-frequency behav- since it is mostly dictated by the symmetry of superconduct-
iors are robust againt the effect of vertex correction and proing order parameter.
vide an unambiguous evidence for th¢ g-wave scenario. Borrowing the arguments in Sec. IVA, we may expect
But the theoretical results pose some drawbacks. Moshat the effect of inelastic scattering on tilg, channel
significantly, the shape d,, peak looks very different from  would be strongest near=2(A,+A). Then the weak peak
the experimental one. Theoretical results predict a strongtructure atw=2(A4+A,) of renormalized A4 spectraum
sharppeak atw=2(A,+A). Experimentally, théB,;; peak  (see Fig. 4would be suppressed, and a peak would show up
is very broad and weak compared to thg, andB,y peaks. again atw=2(A4—Ay), in agreement with the experiment.
However, there exist some caveats in comparing the the- The physical origin of the hypothetical inelastic scattering
oretical results directly with the experimental data. Recallacting inB,4 channel is not clear, but the Raman experiment
that we have included only the pairing interaction in the[Fig. 5a)] strongly suggests that the scattering betwBep
particle-hole channel in computing the vertex correction.phonons and electrons might be a possible candidate. We
Owing to the specific symmetry of the pairing interaction, also note that the inclusion of the detailed momentum anisot-
the B,y andB,4 channels were immune to the vertex correc-ropy of SG compatible with the tetragonal symmetry would
tion. In general, we may well include interactionsBpy and  give the results which will agree better with the experiments.
B,y symmetries in the particle-hole channel which are com- It should be pointed out that the peculiar natures of Ra-
patible with tetragonal symmetries such\asos 25 cos 25’ man spectra of BCSC may be understood by the collective
and W sin 2¢sin 2¢'. If such interactions were present the mode scenari®’ The nesting property of the Fermi surfate
Big and /or B,y channels surely would be influenced by is likely to play an important role in the collective mode
vertex corrections. scenario.
Regarding the discrepancies on the shapeBgf peak In summary, we have studied the electronic Raman scat-
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tering of borocarbide superconductors based on the weakvhere the superscrigD) indicates the symmetry of super-
coupling theory withs+g-wave gap symmetry. The low- conducting order parameter. Resultd5) coincide with
frequency behaviors and the relative peak positions can binose obtained by Devereaux and EirPel.

naturally understood within a simple one-loop calculation. Next let us consider thes+g-wave caseA(d)=Aq
However, there are discrepancies in the detailed shape of A cos 4p. Upon linearization, one can write

peak structures between theoretical predictions and experi-

mental results. The inclusion of the strong inelastic scattering A(p=gotx)~—ax, a=4Agsindepg, (AB)
betweenB honon and electron may resolve the discrep-
ancies. 19 P y IOWhere the anglep, is defined by the relation

AgtAyc0s4po=0, Ag,A >0. (A7)
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APPENDIX A: LOW-FREQUENCY BEHAVIORS OF
CORRELATION FUNCTIONS

5 1-Ag/A ) 5
At low frequency, the angular integral of E@1) is domi- Ve,,( G0t X) = 5 —[2 Sin ddo]x—[4 cOS Apo X,
nated by contributions from the angular region whaigp) (A10)
~0. In this region, the gap functiof(¢) can be linearized
with respect to the anglé, defined byA(¢q)=0. ) 1+Ag/Ag
Let us first consider a pured-wave case A(¢) 7829(¢0+X)” T2
=A,4cos 2p. If we take into account the contributions from
the first quadrant only, the gap function vanishegat7/4.  In Eq. (A10) the second term is odd ir; thus it gives a
Writing ¢=m/4+Xx, |x|<1, the integral of Eq(21) can be vanishing result upon integration. The first and third terms of
reduced to Eqg. (A10) dominate the low-energy behavior. Carrying out
the integrals by rescaling as in thewave case, we obtain

(A11)

o Ne [orisa dx yZ( b= ;+x [4A§x2]. —Im w§§§G>(w)~y,§1(As/Ag)2w, (A12)
7w ) pang2m \/wz—lGACZ,XZ 1—A_/A
(A1) —Im WSSG)(LU)’V 72‘31{% w+ constw®,

The vertex factors beconjsee Eq(11)] (A13)
Yagg| 3 +X|~~1, (A2) —Im 759 ()~ 73, % o, (A4

- where the superscripS(G) indicates the symmetry of order
Yol 7 X ~—2x, (A3) p?rameter._ The coeff|C|ent_s of vertex factq:ﬁsl, 7’%1_' and

Vg, are reinstated for clarity. The above results differ from
- the pured-wave case by the-linear component of th& .
VB, Z+x)~1. (A4) spectra. We also note the dependence on the gap ratio 0

<As/Ag=<1. For the small gap ratio, the-linear compo-
nent of theA,4 spectra is suppressed, while that of Big
spectra is enhanced. This agrees well with the numerical re-
sult. (See Figs. 1 and 2.

Using scalingx=(w/4Ay)y, for «<2A4 we obtain

—Im Wﬁ(ls)(w)~w,
APPENDIX B: CALCULATION OF VERTEX CORRECTION

—Im WS(D)(w)~w3, . .
19 First write

—Im wggz)(w)~w, (A5) Ioio,p)=T3iw)+I'iw)cosip. (B1)

174530-7



HYUN C. LEE AND HAN-YONG CHOI

Define two-component column vectors

(i) I(io)
Fz(iw)= Fg(iw) y F3(iw)= F%(iw) . (BZ)

Then the integral equation for the vertex correctidty.
(25)] can be recast in a matrix form

I+ A
-B

-B
1,—C

I
I's

0

(B3)

wherel, is the 2x2 identity matrix, andA, B, andC are 2

X 2 matrices to be defined belowy:. is a two-component
column vector defined by

~ |1 ¢
= :l
Yo or y=1,
- |0
=y for y=cos4p. (B4)
The matrix equatioriB3) can be solved, yielding the desired
solutions:
2,=[(1,=C)B~(1,+A)~B] 'y,

I'3,=[(1,—C)—B(I,+A) 1B] %y. (B5)

The 2x 2 matricesA, B, andC are defined as follows:
a; ap b, b, C, C
ag a4 ! = b3 b4 ! C: C3 C4 )

(B6)
The matrix elements are given bp=(ie,p)]

A:

a(iw)=

.
N2 I DAPiw),
i€,p

2 Is(¢)(cos4p)A(p,iw),

N iep

a(iw)=

.
asio)= 2 I(DAP.iw),

T _
ay(io)= 2 |s(#)(cosa)AP.iw),
T .
by(iw) = 2 1(4)B(p.iw),
ie,p
by(iw)= S 1o (cos 4h)B(p.i),

|ep

.
ba(iw) = 2 1o(#)B(P.iw),

PHYSICAL REVIEW B65 174530

) T
baliw) = 2 15(¢)(cos 4p)B(p.iw),

) T
Cl(lw):N

Ep I($)C(p,iw),

_|

caiw) = 2 1(4)(cos 4)C(p.j )

ci(iw)=

.
N2 lo(@C(piw),
ie,p

Ciliw)= (B7)

-
N2 lo(@)(cosa)Clpiiw),
where

Is()=Nst )\sgCOS 49,

I4(@)=NgCOS 4+ Agg,

}\S:_NFDSY )\g:_NFDg, _NFDS

g
(B8)

The vertex correctiofEq. (B5)] together with Eq.(B1)
should be substituted into the integral equatid). Note
that the solutions EqB5) depend only on the external fre-
quencyiw, so that just an analytical continuatiow— w

+i 6 without additional integrations is sufficient to obtain the
final answer.

APPENDIX C: CHOICE OF COUPLING CONSTANTS

The gap equation Eql7) can be written as a set of
coupled equationfnotations are defined in E¢B8)].

As=Ag(Aglp+ )\sgl )+ Ag()\s+ )\sgl 2)

Ag:As()\g|1+ )\sgl O)+Ag()\g|2+ )\sgl l)l

| _fwcd fwdx Eg2T
=, &p O?(COSX) £

Solving Eq.(C1) at T=T,, we obtain a relation betweéen,
and coupling constants.
A
g
—[(7—%

Nohg—AZg

(C1)

2 12
+ 2>\§g}

We
n 1.135.'_—}2
c

(C2

For a pureg-wave case, the well-known resuft,=1.135

X w.e” 2 is reproduced. Fixing the cutofb,=100 meV,
we have chosen the following two sets of the coupling con-
stants by solving Eq€C1) and(C2).
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(DAs=0.13, Ag=0.22, N4=0.15, (INDAs=0.05, Ng=0.42, \4=0.06,
As=1.34 meV, Ay=1.72 meV, T.=159 K; As=0.43 meV, Ay=25 meV, T.=142 K.
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