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Evolution of rarefaction pulses into vortex rings

Natalia G. Berloff*
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The two-dimensional solitary waves of the Gross-Pitaevskii equation in the Kadomtsev-Petviashvili limit are
unstable with respect to three-dimensional perturbations. We elucidate the stages in the evolution of such
solutions subject to perturbations perpendicular to the direction of motion. Depending on the energy~momen-
tum! and the wavelength of the perturbation different types of three-dimensional solutions emerge. In particu-
lar, we present new periodic solutions having very small energy and momentum per period. These solutions
also become unstable and this secondary instability leads to vortex ring nucleation.
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I. INTRODUCTION

The recent achievements of Bose-Einstein condensa
~BEC! in trapped alkali-metal gases1 has stimulated a tre
mendous interest in the dynamics of BEC. From the fi
BEC experiments attempts were made to create trap
quantized vortices and successes in this direction have le
an intense theoretical activity in study of vortices, their stru
ture, energy, and stability.2 Over the years many differen
methods for the creation of vortices in trapped BEC’s w
suggested and implemented. Recently vortex rings were
erated in two-component BEC by the decay of dark solito
through the snake instability.3 This method was motivated b
the observed decay of optical dark solitons into point vo
ces through a similar mechanism.4

The classical field description of the strongly degener
weakly interacting Bose gas is given by the Gross-Pitaev
~GP! equation.5 At low temperatures the GP model gives
precise description of the atomic condensates and their
namics. The same equation has been the subject of exte
studies also in the framework of superfluid helium at ve
low temperature, although in this case the GP model gi
only a qualitative description of superfluid helium. In th
paper we consider different mechanisms that create vo
rings from irrotational solitary solutions of the GP model. W
are also interested in determining the entire solitary-w
sequences of solutions of the GP model because they d
possible states that can be excited in a Bose condensat

Jones and Roberts6 determined the entire sequence of a
symmetric solitary solutions numerically for the GP mode

22ic t5¹2c1~12ucu2!c, ~1!

where we use dimensionless variables such that the un
length corresponds to the healing lengtha, the speed of
sound isc51/A2, and the density at infinity isr`51. The
axisymmetric solitary-wave solutions satisfy two condition
~1! the disturbance associated with the wave vanishe
large distances,c→1, uxu→`, and ~2! they preserve their
form as they propagate with a dimensionless velocityU, so
that c(x,y,z,t)5c(x8,y,z), x85x2Ut, in three dimen-
sions~3D! andc(x,y,t)5c(x8,y), in two dimensions~2D!,
so that the solitary-wave solutions satisfy
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2iU
]c

]x8
5¹2c1~12ucu2!c. ~2!

Jones and Roberts calculated the energyE and momentum
P given by

E5
1

2E u¹cu2dV1
1

4E ~12ucu2!2dV, ~3!

P5
1

2i E @~c* 21!¹c2~c21!¹c* #dV, ~4!

and determined the location of the sequence on thePE plane.
In three dimensions they found two branches meeting

cusp whereP andE assume their minimum valuesPmin and
Emin . As P→` on each branch,E→`. On the lower branch
the solutions are asymptotic to large vortex rings.

As E andP decrease from infinity along the lower branc
the solutions begin to lose their similarity to large vort
rings. Eventually, for a momentumP0 slightly greater than
Pmin , they lose their vorticity (c loses its zero!, and there-
after the solitary solutions may better be described as ‘‘ra
faction waves.’’ The upper branch consists entirely of the
and, asP→` on this branch, the solutions asymptotical
approach the rational soliton solution of the Kadomtse
Petviashvili type-I~KPI! equation7 and are unstable. In 2D
the family of the solitary-wave solutions is represented
two point vortices ifU<0.4. As the velocity increases th
wave loses its vorticity and becomes a rarefaction pulse.
U→1/A2 both the energyE and momentumP per unit
length approach zero and the solutions asymptotically
proach the 2D rational soliton solution of the KPI equatio

Jones and Roberts6 derived the KPI equation using a
asymptotic expansion in the parametere2'2(12A2U),
which is small whenU approaches the speed of sound. Th
sought solutions of the formc5 f 1 ig, where f 511e2f 1

1e4f 21•••, g5eg11e3g21•••, and U51/A21e2U1
1•••. The independent variables were stretched, so thaj
5ex8, h5e2y, and z5e2z. By substituting these expres
sions into Eq.~2! and considering real and imaginary parts
the leading and first orders ine, they determined thatg1
satisfies the KPI equation
©2002 The American Physical Society18-1
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]2g1

]j2
1¹hz

2 g12
]

]j F1

2

]3g1

]j3
2

3

A2
S ]g1

]j D 2G50, ~5!

and f 15]g1 /A2]j2g1
2, U1521/2A2. In 2D, Eq.~5! has a

closed-form solution,8 so that the asymptotic solution of th
GP equation in the KPI limit is

c512 i
2A2x8

x821e2y213/2e2
2

2

x821e2y213/2e2
, ~6!

which we have written in the original variables.
It was shown by Kuznetsov and Turytsin9 that the 2D KPI

soliton is stable to 2D but unstable to 3D perturbations
linear stability analysis of the 2D solitary solution of the G
equation subject to long-wavelength infinitesimal pertur
tions was done by Kuznetsov and Rasmussen.10 They dem-
onstrated that all long-wavelength antisymmetric modes
stable and all long-wave length symmetric modes are
stable. In particular they showed that the growth rates
symmetric perturbations,s, is given by s252Ek2/
(]P/]U).0, as the wave numberk→0. The maximum
growth rates of instability and the instability region of 2
solitary solutions were found by Berloff and Roberts11 by
solving the linear stability problem. Through numerical int
gration of the GP equation it was shown that as perturbat
grow to finite amplitude the vortex lines reconnect to p
duce a sequence of almost circular vortex rings. Senato
and Infeld12 numerically integrated the KPI equation to stu
the fate of 2D KPI solitons subject to 3D perturbations. Th
determined that 2D KPI solitons evolve into 3D KPI solito
which are also unstable.

The goal of this paper is to elucidate the fate of the
rarefaction pulse in the KPI limit of the GP model subject
3D perturbations. We discovered that such solutions m
evolve into vortex rings and this establishes a new mec
nism of vortex nucleation. We found that this mechanism c
operate in different ways. The intermediate states may
volve periodic solutions consisting of interacting 3D rarefa
tion pulses that belong to the lower branch of the Jon
Roberts cusp withP,P0.

II. NUCLEATION OF VORTEX RINGS

We have performed direct numerical simulations using
numerical method described in Ref. 13 We solve the
equation in the reference frame moving with the velocityU f
chosen in such a way that the main disturbance is kept wi
the computational box:

22i
]c

]t
12iU f

]c

]x8
5¹2c1~12ucu2!c. ~7!

In these computations we follow the evolution of th
asymptotic solution~6! extended along thez axis and moving
in the x direction. The dimensions of the computational b
areDx560, Dy560, andDz5180. Thexy faces of the box
are open to allow sound waves to escape; this is achie
numerically by applying the Raymond-Kuo technique.14 The
z50 andz5Dz sides are reflective.
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The soliton~6! was perturbed along thez axis, so that at
t50

x8→x810.1 cos~kz!. ~8!

We choosek so thatN periods of this perturbation fit exactl
into the Dz dimension of the box. There are two main p
rameters of the problem that determine the final outcome
the instability:e, which determines the configuration, energ
and momentum of the initial field, and the wavelength of t
perturbation,l 5Dz /N. It can be easily shown using Eq.~6!
that the energy~3! and the momentum~4! of our initial field
per wavelength of perturbation are given by

E5P/A258pe l /3. ~9!

First, we consider the evolution of the KPI solitary solutio
subject to large wavelength perturbationsl 520,30,60 ande
50.5. Figure 1 illustrates the appearance of vortex rin
through contour plots of the cross section of the solution
the xz plane withy5Dy/2 for l 520.

According to the time snapshots of Fig. 1 the soluti
evolves directly into a set of vortex rings; other axisymm
ric 3D solutions including 3D KPI solitons are not involve
Moreover, exactly one vortex ring is generated for ea
wavelength of the perturbation. These vortex rings are d
tancedl healing lengths apart and have radii much sma
thanl ~see Table I!. They therefore interact only weakly with
each other. The energy and momentum~9! of one period of
the perturbation are used to create one vortex ring; the e
energy and momentum escape and are carried away by
sients, including sound waves~phonons!. The vortex rings

FIG. 1. The contour plot of the density field of the cross sect
of solutions of the GP equation. The time snapshots show the
lution of the KPI solution~6! of the GP equation in thexz plane
with y5Dy/2. In Eq.~6! we tooke50.5 and the wavelength of the
initial perturbation~8! is l 520. The solutions starting with the third
panel possess vorticity and evolve into equally spaced vortex ri
8-2
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EVOLUTION OF RAREFACTION PULSES INTO VORTEX RINGS PHYSICAL REVIEW B65 174518
are aligned and propagate together with the same velo
This arrangement of vortex rings is itself unstable and can
last forever.

Similar calculations were done forl 530 andl 560. The
results are summarized in Table I which gives the energy
momentum per wavelength of the perturbation of the ini
field; the energy, momentum, velocity, and radius of the
sulting vortex ring; and the amount of energy and mom
tum lost as the percentage of the initial energy and mom
tum.

From Table I we can see that the extra energy,DE5Einit
2Ering , and momentum,DP5Pinit2Pring , for lower wave-
lengths are carried away by exclusively sound waves s
DE'cDP. We can also calculate the critical value of th
wavelength,l crit , for creation of vortex rings. The Jone
Roberts solitary solutions lose their vorticity atE0'56, P0
'78.5, andR0'1.6 The wavelength of the perturbation o
the initial field, l crit , that leads to the nucleation of the vorte
of such minimal energy and radius can be found from
expression

FIG. 2. The contour plot of the density field of the cross-sect
of solutions of the GP equation. The time snapshots show the
ferent stages in the evolution of the KPI limit solution~6! of the GP
equation in thexz plane withy5Dy/2. In Eq. ~6! we tooke50.5
and the wavelengths of the initial perturbation~8! were l 560 ~a!,
l 530 ~b!, l 515 ~c!, andl 57.5 ~d!. The contour plots are shown fo
ucu2 at t5149 for ~a! and t5127 for the rest of panels.

TABLE I. The energy and momentum per wavelength of t
perturbation of the initial field; the energy, momentum, veloc
and radius of the resulting vortex ring, and the amount of ene
and momentum lost as the percentage of the initial energy
momentum.

l Einit Pinit Ering Pring U ring Rring %E lost %P lost

60 251 355 99 162 0.45 2.7 60 54
30 126 178 86 132 0.49 2.35 32 26
20 84 120 71 102 0.53 1.9 15.5 15
17451
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Einit5Esound1E0 . ~10!

Our numerical calculations indicate that the minimal ene
loss to sound waves during the transition to vortex rings
approximately 15%, so the energy carried away by sou
waves isEsound'0.15Einit with Einit given by Eq.~9!. There-
fore, from Eq.~10!

l crit'7.86/e. ~11!

This result agrees very well with our numerical calculatio
for e50.5, which givel crit'16.

III. PERIODIC RAREFACTION PULSE

Next we explore the evolution of the KPI limit solitar
waves of the GP model subject to perturbations with wa
length l , l crit . The effect of the decrease in the waveleng
of the perturbation is twofold:~1! the energy and the momen
tum ~9! per wavelength of the initial field are decrease
therefore leaving less energy available for creating a n
entity, and~2! these entities are in close proximity to ea
other so they strongly interact. Figure 2 plots the cross s
tions of the solutions fore50.5 and l 560,30,15,7.5,3.75.
The first two panels@Figs. 2~a! and 2~b!# illustrate the vortex
nucleation discussed earlier. To the best of our knowle
the periodic solutions shown on Figs. 2~c!–2~e! are unknown
in the literature on the GP model or the nonlinear Sch¨-
dinger equation. The interesting feature of these solution
that they lack a vorticity and have small energy and mom
tum per period that tend to zero asl→0. These solutions can
be understood as periodic pulse trains composed of rare
tion pulses positioned on the lower branch of the Jon
Roberts sequence withP,P0. These periodic solutions ca
execute standing-wave oscillations of decreasing amplit

n
if-

TABLE II. The energy and momentum of the initial field and th
resulting periodic rarefaction solution.

l Einit Pinit Eper Pper

15 62 90 55 78
7.5 31.5 46.2 30.7 44
3.75 15.5 23 15 21

FIG. 3. The contour plot of the density field of the cross sect
of solutions of the GP equation. The time snapshots show the
ferent stages in the evolution of the KPI limit solution~6! of the GP
equation withe50.5 in the xz plane with y5Dy/2. The wave-
lengths of the initial perturbation~8! are l 515 ~a! and l 57.5 ~b!.
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NATALIA G. BERLOFF PHYSICAL REVIEW B 65 174518
and periodl /2. The interaction between adjacent pulses
duces the total energy per period. The analysis of these
other properties of periodic pulse trains composed from
solitary waves of nonintegrable evolution equations can
found in Ref. 15.

Other findings are summarized in Table II which gives t
values of the energy and momentum of the initial field a
the resulting periodic rarefaction solution.

For the Korteweg–de Vries equation and some other
tegrable equations Whitham16 demonstrated that an infinit
linear superposition of the solitons in a periodic pulse train
also a solution. This result generally is not true for nonin
grable systems. Berloff and Howard15 introduced a method
of constructing a periodic pulse train solution of nonin
grable equations as an infinite superposition ofmodifiedsoli-
tary waves. Note that these methods were developed for
tons exponentially decaying at infinity. The energy per per
of a periodic pulse train is greatly reduced as compared w
the energy of the solitary wave it is made of. The solita
wave solutions of the GP equation decay as rational fu
tions at infinity:

Rec;11mU~3x822s2!s25, ~12!

Im c;2mx8s23, ~13!

wherem is the dipole moment ands25x821(122U2)(y2

1z2). Therefore, the effect of the solitary wave interactio
is even more pronounced for the GP periodic solutions.
can compare the energy and momentum of the solution w
the periodl 53.75~the last entry of Table II! with the energy,
E551, and momentum,P570, of the rarefaction solitary
pulse. The interactions reduced the energy and momen
by 70%.

Similarly to the periodic solutions made of aligned vort
rings, the periodic rarefaction solutions become unstable
we followed the development of this instability. Figure 3~a!
shows the contour plots of the density for a cross section
the field which evolves from the periodic rarefaction soluti
with l 515 to produce a total of four rings. Therefore,
create each ring the energy and momentum of several p
ods of the rarefaction solution were used. The wavelengt

FIG. 4. Isosurfaces of the density field of solutions of the
equation. The time snapshots show the different stages in the
lution of the KPI limit solution ~6! of the GP equation withe
50.3. The wavelength of the initial perturbation~8! is l 515. The
minimum density increases with time and approaches unity as
solution breaks down into sound waves.
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the secondary instability that destroyed the periodic solut
is approximately 57. Similar calculations were done for t
even shorter perturbation wavelengthl 57.5; see Fig. 3~b!.
The wavelength of the secondary instability is approximat
29, resulting in the appearance of six rings. The reason
the apparent nonuniformity of the nucleated rings is thatDz
is not an exact multiple of these wavelengths.

IV. SOUND-WAVE GENERATION

Finally, we consider the evolution of the small energy a
momentum KPI limit solitary waves. In these computatio
we usee50.3 andl 560,30,20,15. Forl 560 the KPI solu-
tion follows the scenario of vortex nucleation and direc
evolves into three vortex rings of small radii. For small
wavelengthsl 530,20,15 the KPI solution initially evolves
into oscillating periodic rarefaction pulses of decreasingy
extent. The energy and momentum per period are appare
insufficient to allow them to evolve into rings and the ne
essary energy cannot be reduced through interactions w

o-

he

FIG. 5. Summary of the numerical integration of Eq.~7! starting
with the initial condition ~6! with e50.5 ande50.3. The cusp
corresponds to the 3D solitary-wave solutions. The upper branc
shown by dashes to indicate that this branch is unstable. (P0 ,E0)
marks the point where the vorticity disappears and po
(Pmin ,Emin) gives the position of the lowest momentum-ener
state of the 3D solitary solution~see discussion in the text!. The line
from the origin to (Pmin ,Emin) corresponds to the family of periodi
rarefaction pulses. Dots indicate the position of the initial sta
and the wavelength of the perturbationl is given next to each initial
state; arrows show the evolution of these solutions, and the cro
correspond to the final state before the onset of the secondar
stability.
8-4
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EVOLUTION OF RAREFACTION PULSES INTO VORTEX RINGS PHYSICAL REVIEW B65 174518
the putative solutions are separated by such large distan
These solutions break down into sound waves that carry
all energy and momentum; see Fig. 4.

V. CONCLUSIONS

In summary, we studied the instability of the 2D KPI lim
solitary wave solution in the GP equation. The evolution
several types of solutions is considered. We were able
identify three different regimes of transition depending
the initial energy and momentum of the KPI solution and
the wavelength of the initial perturbation. For large wav
lengths, the initial solution immediately evolves into a pe
odic solution consisting of small equally spaced vortex rin
with a period equal to the period of the initial perturbatio
For shorter wavelengths the KPI solution first evolves into
periodic solution consisting of 3D interacting rarefactio
pulses that later break up into vortex rings under the infl
ence of a secondary instability of a different waveleng
.

tt.
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Finally, if the energy of the KPI solution is small, the sol
tion can break into sound waves after forming an oscillat
periodic rarefaction pulse.

Figure 5 summarizes all calculations performed and
relationships of the different regimes studied. The init
states considered are represented by dots on thePE plane,
whereE andP are defined per wavelength of the perturb
tion. We plot the cusp determined by Jones and Roberts6 for
the family of the vortex rings and rarefaction pulses. T
arrows show the way the initial state evolves.
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