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Evolution of rarefaction pulses into vortex rings
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The two-dimensional solitary waves of the Gross-Pitaevskii equation in the Kadomtsev-Petviashvili limit are
unstable with respect to three-dimensional perturbations. We elucidate the stages in the evolution of such
solutions subject to perturbations perpendicular to the direction of motion. Depending on the (@mamggn-
tum) and the wavelength of the perturbation different types of three-dimensional solutions emerge. In particu-
lar, we present new periodic solutions having very small energy and momentum per period. These solutions
also become unstable and this secondary instability leads to vortex ring nucleation.
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. INTRODUCTION
2iU —=Vy+(1—|y]9) ¢ i)
The recent achievements of Bose-Einstein condensation 2

(BEO) in trapped alkali-metal gask$as stimulated a tre-
mendous interest in the dynamics of BEC. From the first Jones and Roberts calculated the enefgyd momentum
BEC experiments attempts were made to create trappeR given by
guantized vortices and successes in this direction have led to
an intense theoretical activity in study of vortices, their struc- 1 ) 1 "
ture, energy, and stabilifyOver the years many different &= 5] |Vyl“dV+ Zf (1=[¢]9)%dV, ()]
methods for the creation of vortices in trapped BEC’s were
suggested and implemented. Recently vortex rings were gen- 1
erated in two-component BEC by the decay of dark solitons _ _f * P *
through the snake instabilifyThis method was motivated by P=3 [~ DVy= (= Dvy7ldv. @
the observed decay of optical dark solitons into point vorti-
ces through a similar mechanigm. and determined the location of the sequence orPfiplane.
The classical field description of the strongly degenerate In three dimensions they found two branches meeting at a
weakly interacting Bose gas is given by the Gross-Pitaevskigusp whereP and & assume their minimum valuég;;, and
(GP) equatiorr At low temperatures the GP model gives a Emin- AS P— on each branchf— . On the lower branch
precise description of the atomic condensates and their dyhe solutions are asymptotic to large vortex rings.
namics. The same equation has been the subject of extensive As £ andP decrease from infinity along the lower branch,
studies also in the framework of superfluid helium at verythe solutions begin to lose their similarity to large vortex
low temperature, although in this case the GP model give§ngs. Eventually, for a momenturf, slightly greater than
only a qualitative description of superfluid helium. In this Pmin, they lose their vorticity ¢ loses its zerp and there-
paper we consider different mechanisms that create vorte&fter the solitary solutions may better be described as “rare-
rings from irrotational solitary solutions of the GP model. We faction waves.” The upper branch consists entirely of these
are also interested in determining the entire solitary-waveénd, asP— on this branch, the solutions asymptotically
sequences of solutions of the GP model because they defim@proach the rational soliton solution of the Kadomtsev-
possible states that can be excited in a Bose condensate. Petviashvili type-I(KPI) equatiod and are unstable. In 2D
Jones and Robeftsletermined the entire sequence of axi- the family of the solitary-wave solutions is represented by
symmetric solitary solutions numerically for the GP model: two point vortices ifU<0.4. As the velocity increases the
wave loses its vorticity and becomes a rarefaction pulse. As
R 2 U—1/\/2 both the energys and momentumP per unit
—2in =V (1 [, (1) length approach zero and the solutions asymptotically ap-
proach the 2D rational soliton solution of the KPI equation.
where we use dimensionless variables such that the unit of Jones and Robeftglerived the KPI equation using an
length corresponds to the healing lengththe speed of asymptotic expansion in the parametet~2(1—2U),
sound isc=1/y/2, and the density at infinity ip..=1. The  which is small wherl approaches the speed of sound. They
axisymmetric solitary-wave solutions satisfy two conditions:sought solutions of the forng=f+ig, where f=1+ €°f,

(1) the disturbance associated with the wave vanishes at e*f,+---, g=eg;+€°g,+---, and U=1/\2+€?U;
large distancesy—1, |x|—=, and(2) they preserve their +---. The independent variables were stretched, so ghat
form as they propagate with a dimensionless velotityso  =ex’, = €%y, and {=€’z. By substituting these expres-

that #(x,y,z,t)=¢(x',y,2), x’=x—Ut, in three dimen- sions into Eq(2) and considering real and imaginary parts at
sions(3D) and ¢(x,y,t)=(x',y), in two dimensiong2D),  the leading and first orders ig, they determined thag,;
so that the solitary-wave solutions satisfy satisfies the KPI equation
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andf,=dg;/\20é—g%, U;=—1/2y2. In 2D, Eq.(5) has a
closed-form solutioff,so that the asymptotic solution of the
GP equation in the KPI limit is

Y=1-Ii 22 - 2 (6)

X2+ €2y2+3/2€2  x'2+ 2y?+3[2¢’

=0, (9

14%, 3 (ﬁgl>2

which we have written in the original variables.

It was shown by Kuznetsov and Turyt3itnat the 2D KPI
soliton is stable to 2D but unstable to 3D perturbations. A
linear stability analysis of the 2D solitary solution of the GP
equation subject to long-wavelength infinitesimal perturba-
tions was done by Kuznetsov and Rasmus8érhey dem-
onstrated that all long-wavelength antisymmetric modes are

stable and all long-wave length symmetric modes are un- t =63 t =127
stable. In particular they showed that the growth rates of
symmetric perturbations,s, is given by ol=—EKk?/ FIG. 1. The contour plot of the density field of the cross section

(JPI9U)>0, as the wave numbek—0. The maximum ©f solutions of the GP equation. The time snapshots show the evo-
growth rates of instability and the instability region of 2D Iu_tion of the KPI solution(6) of the GP equation in th&z plane
solitary solutions were found by Berloff and Robéttgy ~ With y=D,/2.In Eq.(6) we tooke=0.5 and the wavelength of the
solving the linear stability problem. Through numerical inte-Mitial perturbation(8) is | =20. The solutions starting with the third
gration of the GP equation it was shown that as perturbationganel possess vorticity and evolve into equally spaced vortex rings.
grow to finite amplitude the vortex lines reconnect to pro- ) )

duce a sequence of almost circular vortex rings. Senatorski 1he soliton(6) was perturbed along theaxis, so that at
and Infeld? numerically integrated the KPI equation to study t=0

the fate of 2D KPI solitons subject to 3D perturbations. They

determined that 2D KPI solitons evolve into 3D KPI solitons x'—x"+0.1cogkz). (8
which are also unstable.

The goal of this paper is to elucidate the fate of the 2Dwe choosek so thatN periods of this perturbation fit exactly
rarefaction pulse in the KPI limit of the GP model SUbjeCt tOintO the DZ dimension of the box. There are two main pa-
3D perturbations. We discovered that such solutions mayameters of the problem that determine the final outcome of
evolve into vortex rings and this establishes a new mechane instability:e, which determines the configuration, energy,
nism of vortex nucleation. We found that this mechanism camnd momentum of the initial field, and the wavelength of the
operate in different ways. The intermediate states may i”perturbationj =D, /N. It can be easily shown using E(§)

volve periodic solutions consisting of interacting 3D rarefac-that the energy3) and the momenturtd) of our initial field
tion pulses that belong to the lower branch of the Jonesper wavelength of perturbation are given by

Roberts cusp withP<P,.

Il. NUCLEATION OF VORTEX RINGS E=Pl\2=8mell3. ©

We have performed direct numerical simulations using theFirst, we consider the evolution of the KPI solitary solution
numerical method described in Ref. 13 We solve the GRubject to large wavelength perturbatidrs20,30,60 anck

equation in the reference frame moving with the velotly = =0.5. Figure 1 illustrates the appearance of vortex rings
chosen in such a way that the main disturbance is kept withithrough contour plots of the cross section of the solution in
the computational box: the xz plane withy=D,/2 for | = 20.
According to the time snapshots of Fig. 1 the solution
oY 9, 2 evolves directly into a set of vortex rings; other axisymmet-
—2Gp AU T =V =Yg (D i 3D solutions including 3D KPI solitons are not involved.

Moreover, exactly one vortex ring is generated for each
In these computations we follow the evolution of the wavelength of the perturbation. These vortex rings are dis-
asymptotic solutiori6) extended along theaxis and moving tanced! healing lengths apart and have radii much smaller
in the x direction. The dimensions of the computational boxthanl (see Table)l. They therefore interact only weakly with
areD,=60, D, =60, andD,=180. Thexy faces of the box each other. The energy and moment(8nof one period of
are open to allow sound waves to escape; this is achievethe perturbation are used to create one vortex ring; the extra
numerically by applying the Raymond-Kuo technid@he  energy and momentum escape and are carried away by tran-
z=0 andz=D, sides are reflective. sients, including sound wavdphonon$. The vortex rings
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TABLE I. The energy and momentum per wavelength of the  TABLE Il. The energy and momentum of the initial field and the
perturbation of the initial field; the energy, momentum, velocity, resulting periodic rarefaction solution.
and radius of the resulting vortex ring, and the amount of energy

and momentum lost as the percentage of the initial energy and | Einit Pinit Eper Proer
momentum.
15 62 90 55 78
I ginit Pinit gring Pring Uring Rring %€ lost %P lost 7.5 31.5 46.2 30.7 44
3.75 15.5 23 15 21
60 251 355 99 162 045 27 60 54
30 126 178 86 132 0.49 2.35 32 26
20 84 120 71 102 053 19 155 15 Einit= Esoundt €o- (10

Our numerical calculations indicate that the minimal energy

are aligned and propagate together with the same velocit)lf?ss to_sound wa\ges during the transitio_n to vortex rings is
This arrangement of vortex rings is itself unstable and Canno@pprox[mately 15%, so the energy carried away by sound
last forever. waves iSEound™ 0.1550i with &y given by Eq.(9). There-
Similar calculations were done for=30 andl=60. The [ore. from Eq.(10)

results are summarized in Table | which gives the energy and | it~ 7.86l. (12)
momentum per wavelength of the perturbation of the initial__ ) ) )
field; the energy, momentum, velocity, and radius of the re-This result agrees very well with our numerical calculations
sulting vortex ring; and the amount of energy and momenfor €=0.5, which givel ;;~16.

tum lost as the percentage of the initial energy and momen-
tum. P 9 9y I1l. PERIODIC RAREFACTION PULSE

From Table | we can see that the extra enetyy= &y Next we explore the evolution of the KPI limit solitary
—&ling, and momentumAP= Py~ Pying, for lower wave-  waves of the GP model subject to perturbations with wave-
lengths are carried away by exclusively sound waves sincingthl<I;. The effect of the decrease in the wavelength
A&~cAP. We can also calculate the critical value of the of the perturbation is twofold:1) the energy and the momen-
wavelength,l ., for creation of vortex rings. The Jones- tum (9) per wavelength of the initial field are decreased,
Roberts solitary solutions lose their vorticity &~56, P,  therefore leaving less energy available for creating a new
~78.5, andR,~1.° The wavelength of the perturbation of entity, and(2) these entities are in close proximity to each
the initial field,| ., that leads to the nucleation of the vortex other so they strongly interact. Figure 2 plots the cross sec-

of such minimal energy and radius can be found from thelions of the solutions fore=0.5 andl=60,30,15,7.5,3.75.
expression The first two panel§Figs. 2a) and 2b)] illustrate the vortex

nucleation discussed earlier. To the best of our knowledge

i the periodic solutions shown on FiggcR-2(e) are unknown
in the literature on the GP model or the nonlinear Sehro
dinger equation. The interesting feature of these solutions is
that they lack a vorticity and have small energy and momen-
tum per period that tend to zero ks 0. These solutions can
be understood as periodic pulse trains composed of rarefac-
tion pulses positioned on the lower branch of the Jones-
[ Roberts sequence witR<P,. These periodic solutions can

(b) execute standing-wave oscillations of decreasing amplitude

(a)
’ |
| |
' (d) .

(c)

FIG. 2. The contour plot of the density field of the cross-section
of solutions of the GP equation. The time snapshots show the dif-
ferent stages in the evolution of the KPI limit soluti@) of the GP FIG. 3. The contour plot of the density field of the cross section
equation in thexz plane withy=D,/2. In Eq.(6) we took e=0.5 of solutions of the GP equation. The time snapshots show the dif-
and the wavelengths of the initial perturbati8) werel=60 (a), ferent stages in the evolution of the KPI limit soluti@) of the GP
I=30(b), I=15(c), andl =7.5(d). The contour plots are shown for equation withe=0.5 in the xz plane withy=D/2. The wave-
| 4|2 att=149 for (a) andt= 127 for the rest of panels. lengths of the initial perturbatiofB8) arel =15 (a) andl=7.5 (b).

i [l {J
t = 469 t =554 t = 469 t =554
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FIG. 4. Isosurfaces of the density field of solutions of the GP
equation. The time snapshots show the different stages in the evo-
lution of the KPI limit solution (6) of the GP equation withe
=0.3. The wavelength of the initial perturbatiod) is |=15. The €
minimum density increases with time and approaches unity as the 120
solution breaks down into sound waves.

100

and periodl/2. The interaction between adjacent pulses re-  8°
duces the total energy per period. The analysis of these and 4,
other properties of periodic pulse trains composed from the
solitary waves of nonintegrable evolution equations can be
found in Ref. 15. 20 T
Other findings are summarized in Table Il which gives the 5
values of the energy and momentum of the initial field and 0 50 100 150 200 P
the resulting periodic rarefaction solution. o ) )
For the Korteweg—de Vries equation and some other in- _FIG- 5. Summary of the numerical integration of Ed) starting
tegrable equations Whithdfhdemonstrated that an infinite With the initial condition (6) with €=0.5 ande=0.3. The cusp

. o . - P .. corresponds to the 3D solitary-wave solutions. The upper branch is
linear superposition of the solitons in a periodic pulse train IS own by dashes to indicate that this branch is unstailg, &)

also a solution. This result generally is not true for noninte-marks the point where the vorticity disappears and point
grable systems. Berloff and Howardntroduced a method (P Ex) gives the position of the lowest momentum-energy

of construcU_ng a perlo_dlc_ pulse train s_(_)lutlon _(_)f non_mte'state of the 3D solitary solutiofsee discussion in the tgx@The line
grable equations as an infinite superpositiomaidifiedsoli- from the origin to (P, &) COrresponds to the family of periodic
tary waves. Note that these methods were developed for Solizefaction pulses. Dots indicate the position of the initial states,
tons exponentially decaying at infinity. The energy per periodyq the wavelength of the perturbatiois given next to each initial

of a periodic pulse train is greatly reduced as compared Withate: arrows show the evolution of these solutions, and the crosses
the energy of the solitary wave it is made of. The solitary-correspond to the final state before the onset of the secondary in-
wave solutions of the GP equation decay as rational funcstability.

tions at infinity:

the secondary instability that destroyed the periodic solution
is approximately 57. Similar calculations were done for the
even shorter perturbation wavelendth 7.5; see Fig. ).
The wavelength of the secondary instability is approximately
wherem is the dipole moment ang?=x'?+(1—2U?)(y? 29, resulting in the appearance of six rings. The reason for
+2%). Therefore, the effect of the solitary wave interactionsthe apparent nonuniformity of the nucleated rings is Dat
is even more pronounced for the GP periodic solutions. Weés not an exact multiple of these wavelengths.
can compare the energy and momentum of the solution with
the period = 3.75(the last entry of Table Jlwith the energy,
£=51, and momentumP=70, of the rarefaction solitary
pulse. The interactions reduced the energy and momentum Finally, we consider the evolution of the small energy and
by 70%. momentum KPI limit solitary waves. In these computations
Similarly to the periodic solutions made of aligned vortex we usee=0.3 andl =60,30,20,15. Fot=60 the KPI solu-
rings, the periodic rarefaction solutions become unstable antion follows the scenario of vortex nucleation and directly
we followed the development of this instability. Figuré3 evolves into three vortex rings of small radii. For smaller
shows the contour plots of the density for a cross section ofvavelengthd =30,20,15 the KPI solution initially evolves
the field which evolves from the periodic rarefaction solutioninto oscillating periodic rarefaction pulses of decreasjng
with =15 to produce a total of four rings. Therefore, to extent. The energy and momentum per period are apparently
create each ring the energy and momentum of several perfirsufficient to allow them to evolve into rings and the nec-
ods of the rarefaction solution were used. The wavelength ofssary energy cannot be reduced through interactions when

Rey~1+mU(3x'?2—s?)s >, (12

Imy~—mx's™ 3, (13

IV. SOUND-WAVE GENERATION
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the putative solutions are separated by such large distancdsinally, if the energy of the KPI solution is small, the solu-
These solutions break down into sound waves that carry offion can break into sound waves after forming an oscillating

all energy and momentum; see Fig. 4. periodic rarefaction pulse.
Figure 5 summarizes all calculations performed and the
V. CONCLUSIONS relationships of the different regimes studied. The initial

) ) - ~_ states considered are represented by dots orPthelane,
In summary, we studied the instability of the 2D KPI limit \yhere & and P are defined per wavelength of the perturba-
solitary wave solution in the GP equation. The evolution ofijon We plot the cusp determined by Jones and Robésts

several types of solutions is considered. We were able tghe family of the vortex rings and rarefaction pulses. The
identify three different regimes of transition depending ongrrows show the way the initial state evolves.
the initial energy and momentum of the KPI solution and on

the wavelength of the initial perturbation. For large wave-
lengths, the initial solution immediately evolves into a peri-
odic solution consisting of small equally spaced vortex rings
with a period equal to the period of the initial perturbation.  This work was supported by the NSF Grant Nos. DMS-

For shorter wavelengths the KPI solution first evolves into 89803480 and DMS-0104288. It arose from the suggestion by
periodic solution consisting of 3D interacting rarefaction Dr. Sergey Nazarenko to elucidate the instability of rarefac-
pulses that later break up into vortex rings under the inflution pulses. | am very grateful to Professor Paul Roberts for
ence of a secondary instability of a different wavelength.many useful discussions about this work.
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