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Charge- and spin-excitation gaps for a magnetic Anderson impurity embedded
in a nanoscale metallic sphere
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A magnetic Anderson impurity§=1/2 andU—=) placed at the center of a nanosized metallic sphere is
considered. The localizefdelectrons are hybridized with the metallic states via a contact potential, such that
only s states interact with the impurity. In nanoscale particles the conduction states have discrete energy levels,
and for equally spaced energy levels for theaves, the problem is reduced to the Beftmsatzsolution of the
Anderson impurity model in a finite box. The BetAasatzequations are solved numerically for the ground
state and the lowest energy charge and spin excitations. The energies of the states increase monotonically with
thef-level energy. For an even number of electrons in the sysiemstates and localized at the impujityhe
impurity in the ground state is spin compensated into a spin singlet via the Kondo effect. The specific heat and
the susceptibility are exponentially activated at [dwlue to the discreteness of the energy spectrum, with the
gaps given by the lowest-energy charge and spin excitations. The model also represents a quantum dot as a side
branch to a short quantum wire.
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[. INTRODUCTION Within the framework of the Kondo modémpurity spin
represented by a spin 1/2 interacting via spin exchange with
The Anderson impurity is the traditional model for the conduction statgsan impurity placed at the center of a nano-
formation of a magnetic moment in a metallic solid. The Sized sphere and equal energy spacings for the levels in the
extended conduction states of the metal hybridize with th&'0St has been mapped onto the Kondo Hamiltonian solved

highly correlated localizeflstates of the impurity. The inter- y Andref and Wiegmanfivia Bethe'sAnsatz This formu-

lay of the interactions yields a magnetic moment at inter-Iation was usef to calculate all the energy levels and the
play ylelds 9 . .~ thermodynamics of a system of three and five electrors in
mediate temperatures, which is compensated into a singl

) %Eates(corresponding to 19 and 91 electrons in the sphere,
state via the Kondo effect at low temperatutéBecause of  respectively. The ground state and lowest-energy excitation
the spin and charge separation, there are two energy scalgfolving no spin flip and one spin flip were also studied for
involved in the process: namely, the Kondo temperalige  larger systems. These excitations define the gaps for the lead-
which is the characteristic energy scale of the spin compening exponential activation energies of the specific heat and
sation, and the energy for the charge promotion at the imputhe susceptibility.

rity site. The properties of the impurity are essentially inde- In this paper we study an Anderson impurity placed at the
pendent of the dispersion of the conduction states and of thgenter of a nanosized metallic sphere. The main difference

momentum dependence of the hybridization, so that freWith the standard mixed-valence problem is that the energy

quently a dispersion linear in the momentum and a Conta&pect(um of the host is now discrete. Similarly to the Kondo

e impurity,'° the problem can be mapped onto the Beftre
hybridization are chosen. Due to the latter, ostlyave states satzsolution of the Anderson modét: The model and the

are sgatterled and nged to. be retained, so that the proble@?atheAnsatzequations diagonalizing it are summarized in
effectively is a on_e-dlmensmnal one. Sec. Il. The low-energy states correspond to two-strings,
In small metallic clusters the spacing of the energy state§hich for a finite system may lead to spurious solutions of
is determined by the finite size of the system. The discreteme BetheAnsatzequations. It is therefore convenient to re-
ness of the energy spectrum has dramatic consequences @fimulate the model in terms of hofégather than electrons
the low-temperature propertié$.The physics of the Kondo (Sec. II). The BetheAnsatzequations have now solutions
effect in a finite-size metallic particle depends on the averagjith real (rather than complexrapidities for low-energy
energy spacing of the states close to the Fermi level, but states. We present the solutions for the ground state and the
is not expected to be very sensitive to the details of theijrst charge and spifsinglet and triplet excitations for the
discrete spectrum of the occupied or empty conductiofinjte system. These excitation energies define the gaps for
states. The Anderson impurity in an ultrasmall metallic graingne leading exponential activation energies of the specific

has been studied previously using the noncrossing diagrafeat and the susceptibility. Conclusions follow in Sec. IV.
approximatior?. It was found that the Kondo resonance is

strongly affected when the mean level spacing is comparable Il. MODEL, BETHE ANSATZ EQUATIONS,
to T¢x and it also depends on the parity of the number of AND SPIN-PAIRED STATES
electrons. An Anderson-impurity-like model in a finite-size
system was also studied by Buttiker and Staffoil the A. Model

context of tunneling into a quantum dot embedded or as a In a nanoscale metallic sphere with an Anderson impurity
side branch to a small metallic ringee also Ref.)7 at its center and a contact hybridization, oslyvaves can
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interact with the impurity. Since a waves have the same different (otherwise the wave function vanishes identically
spectral weight at the origin, the hybridization matrix ele- The magnetization and the energy of the system are given by
mentV is independent of the host state and the Hamiltonian

N
has the usual form 1
S,=5N-M, E—]Z::l ;. (4)
_ T
H_é €iCioCio ™ efg |o){o] In the thermodynamic limit I(—c keeping N/L and

M/L fixed) and in the ground state, the charge rapidities
form M complex conjugated pairs of imaginary psf/2 and
real part equal to a spin rapiditk.=\=*V?%2, and N
—2M real k. The former represent spin-paired electrons,
wherei labels thes states of energies , e; is the energy of  while the latter correspond to unpaired electrons contributing
the localizedf level, and the bras and kets denote the threqo the magnetization. The ground state then consists of two
states of the impurity: 0 for the empty configuration and sets of solutionsf\ .} (a=1, ... M for the paired electrons
=1,] for the singly occupied states. The doubly occupiedand{kj}(j =1,... N—2M for unpaired electronsIn zero
impurity state is excluded by an infinite Coulomb repulsion.field we haveN=2M such that all electrons are paired.
Consequently, the impurity states do not have fermionic |n a small systeml( is finite) the charge rapidities still
commutation relations. form two-strings in the ground state, but the imaginary part
The properties of the impurity depend on the average enof the string differs fromV?/2 and the real part is not equal a
ergy spacing of the host states close to the Fermi level, bugpin rapidity. The deviations in the real and imaginary parts
are not expected to be very sensitive to the details of there a function ot.. For sufficiently large. the deviations are
discrete spectrum of the occupied or empty conductiorexponentially small. In general, for finilg the solutions of

states. For simplicity we choose equal energy spacings fahe BetheAnsatzequations have to be obtained numerically.
the levels, which is characteristic of particles in a one-

Qimensi_onal pox wit.h periodip bo_undary conditions and a C. Spin-paired states

linear dispersion. This approximation is usually also adopted e . . .

in the thermodynamic limit, where it corresponds to a con- 10 understand the difficulties in obtaining solutions in-
stant density of states. In addition we consider only forwardY0!Ving spin-paired electrons we consider here the situation

moving particles to avoid the degeneracy of states with moN=2 andM =1, i.e., two electrons, one with up spin and the
mentumk and —k. The model is now equivalent to the other one with down spin. The ground state is characterized

V2 [el,]0)(o] +]a)(0lc), ], &Y

solution of the Hamiltonian by a real spin rapidity. and a pair of complex conjugatéd
rapidities,k. = k*i y, which satisfy the nonlinear equations
1% . .
H=, fdch(x)<—i—)cg(x)+ef2 |o) (o] o k—gti(AVPEx) k—N—i(3V2EY)
o 7 ox - eIKLe+XL:

k—e—i1(3V2Ey) k—N+i(2V2=y)

> fdx5<x>[cf,<x>|0><o|+|a><0|co(x>]. N K i(IV2 4 ) Ak i BV )

1= :
) A—k+i(3V2+x) N —k+i(3VZ—yx)

©)

with  periodic boundary conditions in the interval The last equation immediately yields= «. It is convenient
(—L/2L/2). The above model is identical to the Andersonto rewrite the first equation as

Hamiltonian solved in Refs. 2 and 11 via Bethé&rsatz

(k=€) +(x*—3V7

(K_ ef)Vz

Tyt
B. Bethe Ansatzequations L (Ja~2) Larcta{
The model(2) is diagonalized by means of two nested

. . . g 2
Bethe Ansadze in terms of a set oN charge rapiditiegk;} o (X— TV2\ “(k— €)%+ (3V2+x)?
e =

(k— )2+ (3V2= )%

which determinesc and y. HereJ, is an integer{quantum
M numbei which arises from the periodic boundary conditions.
exp(ik;L)es(ki—en) =TT eik—x,), The energy is given bf=2«.
et We first analyze the solutions of the second equation of
N " Eqgs.(6) for large| k— ef|.dThe s|o|id Iinezin Fig. 1a) displays
B the right-hand side fofx—e;|=100v° as a function of
jl;[l er(ha—kj)= _}1 €2(ha=Ap), ®) x/V?. The dash-dotted line shows the left-hand siepo-
nentia) for L=2. There are two solutions to the equation:
where e,(A\)=(\—imV?2)/(\+imV?/2), j=1,...N, namely,y=0 andy=3V?+ §, with § being a positive num-
and a=1, ...M. Rapidities within one set have to be all ber. They=0 solution leads to two identical real rapidities

and a set oM spin rapidities{\,}. These rapidities satisfy (6)

the following BetheAnsatzequation$!!

x+ 3 V?
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10 given by the numerical solution of Eg&) is shown in Fig.
1(b) for J,=0, V=1, andL=4.

As discussed above, for sufficiently larggL >4 for the
parameters used in Fig.), ¥ there is a second solution,
which close to the resonance yieldg—V?/2~—|«

— &|exp(=V2L/2). The discontinuity of the energy for this
solution has the opposite sign. On the other hand, if we allow
x—V?2/2 to change sign across the resonance, we obtain a
solution with continuous energy. There are then four possible
solutions (two continuous and two discontinuguat the
resonance. In the case bf pairs of electrons this yields 2

x 2M possibilities. It is difficult to judge on physical grounds
which of these is the true ground state.

A safe approach is to reformulate the problem in terms of

F os

2 holes rather than electrons. In terms of holes the model re-
mains integrable and the low-energy states correspond to real
0.0 rapidities within the Bethé\nsatzapproach.
(b)

r IIl. ALTERNATIVE FORMULATION

A. Model and Bethe Ansatzequations
-0.5F
In terms of holes the impurity states correspond to con-

figurations with one and two particles. The latter has zero
spin and is denoted witl®). The empty configuration is now
excluded by the infinite Coulomb interaction. The creation
.0F and annihilation operators still refer to electrons. The Hamil-
tonian is given by

H=2, f dx ¢ (x)

J
—i 5) CU(X)_ff; o) (o]

o 2.0 0.0 2.0 4.0
&

FIG. 1. (a) Solutions of the second equation of E¢8). (N=2
andM=1) for V=1 and|«— ¢;|=100v2. F represents the right-
hand side(solid line and the left-hand sidéexponential of the (7)
equation. The dash-dotted line corresponds.te2, the dashed \yhere the\2 renormalizing the hybridization arises from a
curve tolL.=4, and the long-dashed curve ko=6. Intersections  clepsch-Gordan coefficient. Note that the signepfis re-
refer to possible solutions. The inset shows the blown-up behawo\r,ersed and the form of the hybridization has changed. The
for y~V?/2. (b) Energy as a function o&; for N=2, M=1, L o . N 1
=4,V=1, andJ=0. The solution(with y>V?/2) is discontinuous gggrgzy_alrEdNTi)ma,\j]netlzatlon are now glvenEbyEJ:lk]

=1 —-M.

when thef level is on resonance with the host state. . . ..
The BetheAnsatzequations diagonalizing modéf) are'?

+ 53 [ axaello)ol + 0)(ole,001

and hence to a vanishing wave function. Consequently, the M

only physical solution in this case is the second one. The exp(—ik;L)= Hl e1a(Ki—Na),

dashed curve represents the exponential lfer4. For L o

=4 both curves are tangent to each othegat0 (strictly if N M

|k—€;| =), and again we have only one physical solution ey N y— Gf)H ey Na—Kj)=— H e1(Na—Np), (8)

with x>31V?. The long-dashed curve correspondsLte 6 =1 p=1

for which there is in addition a third solution with<3V?  \vhere the direction of the momentufim exp(—kiL)] is re-

[see also the inset to Fig(d]. versed with respect to the formulation in Sec. Il and the
Consider now the situation of smdlk—e;|. When x  scattering phase shifts invols,, ande; as a consequence

— € (resonance conditigralso y has to approach the value of the 2 renormalizion in the hybridization. The impurity

V?/2, and from the second equation of E@8) we obtain  phase shift now appears in the second set of Béthsatz

that approximately — V%/2~| k — e;|exp(—VL/2). From the  equations determining the spin rapidities, while in the formu-

first equation of Eqs(6) the solution fork is discontinuous lation of Sec. Il it affected directly the charge rapiditigisst

at the resonance and the energy as a functiom;dfias a set of BetheAnsatzequations

jump proportional to (2/)exp(—LV?2) (note that in the The advantage of this formulation is that the charge rapi-

thermodynamic limit there is no discontinuityThe energy didities do not form strings, but are all real. Hence, the
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ground state and the low-energy excitations involve only real C. Ground state

charge and spin rapidities. The numerical solution of the ~qnsider first the sei,}. The values ofl, have to sat-

equations for finitel is now straightforward, in contrast to isfy |J,]<(N—M+2)/2. There areN+1) electrons K in

the formulation presented in Sec. Il, which involves complex. . quction states plus one localized eleclr@o that a sin-

rapidities. In the continuum limit the ambiguities discussed;¢ ground state require to be odd andvi=(N+1)/2
in Sec. Il disappear and the integral equations for the rapidity, < 5 the ground staté],|<(M+1)/2, with theJ '

densities are equivalent. being integers iM is odd and half-integers M is even. The
valueJ,=(M+1)/2 has to be excluded because in the limit
B. Quantum numbers e;— o it does not yield a solution on the same branch of the
) ) o ) arctan function. On the other hand, the- — o is physically
Previous investigations for small size systems of othep, ot relevant because it corresponds to ttievel below the

models via the Bethédnsatzare the following:(1) A thor- lower band edge in the original model, E@), such that the
ough study of short Heisenberg chains by comparing exagfgjej = —(M+1)/2 is allowed.

diagonalizations with the BethAnsatzwas performed by There are thenNi+1) possible values foM quantum
Karbach and Mlker,"* and (2) all the energy levels and the ,mbers, such that one hole is to be left in the sequence

thermodynamics for the exchange Kondo model in a small; 1 “£rom Eq.(10) we see that the ground state corresponds
box with three and five electrons were obtained in Ref. 10to leaving the largesl, empty: i.e., M —1)/2 is the unoc-
Tlhe ﬁ)res?nt thd%‘]’V'th'n the forr:nulatlon of Eas(®)]is  ypied state. For the ground state the seftl gf corresponds
closely re atektort] else ap[r)]roa_c SS.h ¢ . to N consecutive integers. The origin of this sequence is not
We now take the logarithm in both sets of equatiés  g|eyant, since different choices can be mapped onto each

and obtain other by shifting all rapidities and; by a given amount.
The ground-state energy for=+2, L=8, N=9, and
M M=5 is shown in Fig. 2 as a function af; by the solid
Lkj=2ml;— E {2 arcta@4(kj—)\a)/vz]+ﬂ'}, curve. The sequence of quantum numberkis—4,...,4
a=1 andJ,=-3,...,1.
N The expectation value for the number operator of local-
arctafid(\ ,— ;)/V2]+ >, arctafi4(\ ,— k;)/V?] ized electronsny, is given by the derivative of the energy
=1 with respect toe; (note that here we consider electrons and
M not holeg. This quantity is bound to have values in the in-
— _ 2 terval O<n¢=<1; as a function ofe; it is maximum in the
WJ“+;1 arctan2(ha=Ag)IV7], © band of conduction states and decreases monotonically for

large €;. The numerical solution shows a decreasenin
below e;~ — 4. The range of validity of our solution is there-

wherej=1,... N, a=1,... M, and{l;} and{J,} are two .o |imited to €=—4 for the present choice of quantum

sets of quantum numbers which determine the state. Here

assumed that all , are real, although higher-energy excita- mbers.
tions involve strings of spin rapiditites. The energy of the
system is given by D. Charge excitations
Charge excitations are generated by introducing holes into
N M the sequence dfl;}. The charge excitation with lowest en-
E=L"? 2772 I+ 2772 Jo—NM7 ergy is obtained by changing the largésvalue from 4 to 5,
=1 a=1 i.e., by introducing a hole in the above sequence;at4.
o M The energy of this state as a function gfis displayed in
-— E arctafi4(\ ,— e)/V?]. (10) Fig. 2(a) as the dash-dotted curve labeled EC1.
L a=1 Similarly, we can create a hole &t=3, so that the se-

quence{l;} is —4,...,2,4,5. The energy of this state is

The first three terms are the charge and spin contributionghoWn in Fig. 2a) as the dotted curve labeled EC2. If two
from the host, while the last sum arises from the impurity. holes are introduced, e.d;=—4, . ..,3,6(the holes corre-

The linear dispersion of the conduction states does nctPond to 4 and b we obtain the dashed curve EC3 in Fig.
provide a natural lower bound for the energy. This fact is2(). Note that the excitation energies for the charges are
manifested in the BethAnsatzsolution through the integer approximately given by integer multiples ofs2L.
quantum number;, which can take arbitrary values. A
lower bound cutoff for the energyor 1;) has then to be
introduceda posteriori Solutions involving the same set
{Jo} but two sets{l;} with all the I; between the two set Two classes of elementary spin excitations have to be
differing by the same integer are equivalent and can beonsidered(1) those involving no spin-flip, i.e., spin singlet
mapped onto each other by an adequate shift in all the raexcitations, and2) excitation changing the total spin projec-
pidities ande; . tion (spin-flip excitations

E. Spin excitations
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2.0 . . r —3,...,0,2[the hole is atl ,= 1; see dash-dotted curve la-
R beled ENF1 in Fig. th)] and the excitation with next lowest
1oL EC)’Cj_/,.«—'—“""~ energy to—3,—2,—1,1,2[the hole is at],=0; see dashed
Pl =L R — line labeled ENF2 in Fig. @)]. Note that here the charge
/’ /"’EC1 guantum numbers are the same ones as in the ground state.
0.0~ Ve The energy spacing between the non-spin-flip levels is ap-
E Y GS proximately 2r/L.
10k /’ e Spin-singlet excitationgwithout spin flip can also be
I /_/ generated by introducing pairs of complex spin rapidities. In
’ the thermodynamic limit these states reduce to so-called
20p - string states. The lowest-energy states of this class corre-
(a) spond to one pair of complex-conjugatedand all otherx
3.0 s . - being real. As in Sec. Il the real and imaginary parts have to
2‘(§5-° -3.0 0.0 3.0 6 be determined self-consistently in the finite box. The situa-

1.0

0.0

E

tion is very similar to that of a Kondo impurity in a small
system® The calculation is very tedious and the energy of
these states is larger than that of ESF1, but comparable to
ESF2.

On the other hand, spin-singlet excitations with only real
rapidities do not play any role in the thermodynamic limit
(there is only a finite number of therand physics is entirely
governed by the continuum of the string states of different
lengths.

Spin-flip excitations are obtained by reducikg i.e., the
number of flipped spins. The lowest-energy states are ob-
tained by flipping one spin with respect to the ground state.
In our example this refers to states with=4. TheJ, are
now half-integers and confined to the valueg/2, .. .,5/2,

i.e., to seven values. The state of lowest energy corresponds
to the four lowest quantum numbers, i.e.7/2, ... —1/2.

The energy of this excited state is denoted with ESF1 and
shown with a dash-dotted line in Fig(&. For the excited
state with next lowest energy we replate= —1/2 by 1/2,

i.e., leaving a hole at-1/2. The state is denoted with ESF2
and plotted in Fig. &) with a dashed curve. Again the en-
ergy difference between these states is approximateh 2

States with two flipped spins have a much larger energy;
the state with lowest energy and =3 lies about 8r/L
above the ground state. It is also important to point out that
so far we only considered elementary excitations. Excitations
can, however, also be combined; i.e., charge, “string”-type,
and spin-flip excitations can be superimposed by changing
the quantum numbers accordingly. These more complex ex-
citations typically have higher energies. In the thermody-

FIG. 2. Low-energy states fov=2, L=8, andN=9 as a Pis LI el . -
function of ;. The ground state is denoted by GS and shown as &amic limit this superposition is particularly simple and re-
thick solid line. The quantum numbers for the ground statelgre duced to dinear superposition; i.e., the excitation energies
=—4, ... 4forthecharges and,=—3, . . . 1 for thespin rapidi- Pecome additive.
ties. (a) The charge excitations are obtained by introducing holes in
the set{l;} as discussed in the texb) Spin-non-flip excitations are
constructed by moving the hole in the 48t,} as explained in the
text. (c) Spin-flip excitations are obtained by reducikgto 4 and
introducing holes into the sequenté,} (see text

IV. CONCLUSIONS

We studied the low-energy excitation spectrum of a
spherical nanosized metallic particle with an Anderson im-
purity (U—oe) at its center. Due to the finite dimension of

Spin excitations without spin flip are obtained by rear-the particle, the energy spectrum is discrete. Onlyaves
ranging the position of the hole in the sequefidg}. In the interact with the impuritfassuming a contact hybridizatipn
ground stateJ,=(M—1)/2 was unoccupied and excited such that only a reduced number of host states need to be
states are generated if this hole is shifted to lowgwralues.  considered. At low and intermediate temperatures the prop-
For the example witiN=9 andM =5 considered here, the erties depend crucially only on the average spacing of the
excitation with lowest energy corresponds to the sequencenost states close to the Fermi level. We chose a linear rela-
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tion between energy and wave numbers for thetates, of the system increases monotonically and continuously with
which has several advantages: namélythe model can be increasingf-level energy. Charge excitations are obtained by
mapped onto the integrable variant of the Anderson problemintroducing holes into the set of charge quantum numbers.
previously solved via BetheAnsatz*22(ii) it corresponds ~ Similarly, low-energy spin-singlet or non-spin-flip excita-
to a constant density of states feistates in the thermody- tions are obtained by introducing holes into the set of spin
namic limit (an assumption usual in treatments of the Kondoguantum numbers and through strings of complex spin ra-
problem, and(iii) the scaling of the energy levels with the pidities. On the other hand, spin-flip excitations are obtained
size of the systen in the thermodynamic limit leads to the by reducing the number of flipped spiivs
conformal towers for the excitations. We calculated the ground-state energy and the lowest-
The usual formulation of the Anderson impurity model  energy charge and spin excitations as a functiog ofThese
terms of electrons and th and f! configuration$ yields  excitation energies constitute the dominating activation gaps
Bethe Ansatzequations with complex-conjugated charge ra-in the low-T specific heat and susceptibility due to the finite
pidities for the ground state. Unfortunately, the equations desize of the system. The charge and spin gaps are comparable
termining the real and imaginary parts are nonlinear andn magnitude and only weakly dependent @n (This con-
have, in general, many solutions. It is difficult to determinetrasts with the situation for the Kondo exchange model
the physical ground state. This is the consequence of an “efwhere the excitation gap without spin flip is smaller than the
fective” attraction between the charges that leads to spinspin-flip gap. The gaps decrease with increasing particle
paired singlet states represented by complex-conjugatesize and in the thermodynamic limit the finite-size correc-
pairs of rapidities. The ambiguities in the solutions only oc-tions to the energy are given by the conformal towers. In this
curs in a finite system, but not in the thermodynamic limit. Alimit the gaps are infinitesimally small and the system is a
similar situation appears for the supersymmaetidcmodel in -~ Fermi liquid; i.e., the susceptibility is finite and the specific
a finite box if the BetheAnsatzis formulated within the Lai  heat is proportional td.
representation’*® On the other hand, if instead the Bethe  Finally, an Anderson impurity embedded in a small par-
Ansatzis formulated within the Sutherland representation ticle is related to a single-electron quantum dot embedded or
(in terms of a graded algebrahe rapidities for the ground as a side branch coupled to a short quantum #ir this
state are all real. case the valencéor €;) can be changed with a bias voltage
To bypass these ambiguities, in Sec. Il we reformulateand the magnetization of the dot with a magnetic tip. As a
the model and the Beth&nsatzfor the Anderson impurity in - consequence of the gaps in the spin excitation spectrum the
terms of thef! and f? configurations(these are the hole magnetization aT =0 shows plateaus as a function of field.
configurations corresponding to the electidhand f* con-  The magnetization is then stable to fluctuations in the mag-
figurationg. This is the analog to using the Sutherland rep-netic field. At low T the steps in the magnetization are
resentation rather than the Lai formulation for the supersymrounded off, but the step structure remains, such that the
metrict-J model. Now all charge and spin rapidities are realsystem could be used as a magnetic storage device.
in the ground state and the situation is closely related to the
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