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Charge- and spin-excitation gaps for a magnetic Anderson impurity embedded
in a nanoscale metallic sphere

P. Schlottmann
Department of Physics, Florida State University, Tallahassee, Florida 32306

~Received 19 November 2001; published 18 April 2002!

A magnetic Anderson impurity (S51/2 andU→`) placed at the center of a nanosized metallic sphere is
considered. The localizedf electrons are hybridized with the metallic states via a contact potential, such that
only s states interact with the impurity. In nanoscale particles the conduction states have discrete energy levels,
and for equally spaced energy levels for thes waves, the problem is reduced to the BetheAnsatzsolution of the
Anderson impurity model in a finite box. The BetheAnsatzequations are solved numerically for the ground
state and the lowest energy charge and spin excitations. The energies of the states increase monotonically with
the f-level energy. For an even number of electrons in the system~in s states and localized at the impurity!, the
impurity in the ground state is spin compensated into a spin singlet via the Kondo effect. The specific heat and
the susceptibility are exponentially activated at lowT due to the discreteness of the energy spectrum, with the
gaps given by the lowest-energy charge and spin excitations. The model also represents a quantum dot as a side
branch to a short quantum wire.

DOI: 10.1103/PhysRevB.65.174407 PACS number~s!: 75.20.Hr, 75.75.1a, 73.22.2f
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I. INTRODUCTION

The Anderson impurity is the traditional model for th
formation of a magnetic moment in a metallic solid. T
extended conduction states of the metal hybridize with
highly correlated localizedf states of the impurity. The inter
play of the interactions yields a magnetic moment at int
mediate temperatures, which is compensated into a sin
state via the Kondo effect at low temperatures.1,2 Because of
the spin and charge separation, there are two energy s
involved in the process: namely, the Kondo temperatureTK ,
which is the characteristic energy scale of the spin comp
sation, and the energy for the charge promotion at the im
rity site. The properties of the impurity are essentially ind
pendent of the dispersion of the conduction states and of
momentum dependence of the hybridization, so that
quently a dispersion linear in the momentum and a con
hybridization are chosen. Due to the latter, onlys-wave states
are scattered and need to be retained, so that the pro
effectively is a one-dimensional one.

In small metallic clusters the spacing of the energy sta
is determined by the finite size of the system. The discre
ness of the energy spectrum has dramatic consequence
the low-temperature properties.3,4 The physics of the Kondo
effect in a finite-size metallic particle depends on the aver
energy spacing of thes states close to the Fermi level, b
is not expected to be very sensitive to the details of
discrete spectrum of the occupied or empty conduct
states. The Anderson impurity in an ultrasmall metallic gr
has been studied previously using the noncrossing diag
approximation.5 It was found that the Kondo resonance
strongly affected when the mean level spacing is compar
to TK and it also depends on the parity of the number
electrons. An Anderson-impurity-like model in a finite-siz
system was also studied by Buttiker and Stafford6 in the
context of tunneling into a quantum dot embedded or a
side branch to a small metallic ring~see also Ref. 7!.
0163-1829/2002/65~17!/174407~6!/$20.00 65 1744
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Within the framework of the Kondo model~impurity spin
represented by a spin 1/2 interacting via spin exchange w
conduction states! an impurity placed at the center of a nan
sized sphere and equal energy spacings for the levels in
host has been mapped onto the Kondo Hamiltonian sol
by Andrei8 and Wiegmann9 via Bethe’sAnsatz. This formu-
lation was used10 to calculate all the energy levels and th
thermodynamics of a system of three and five electronss
states~corresponding to 19 and 91 electrons in the sphe
respectively!. The ground state and lowest-energy excitati
involving no spin flip and one spin flip were also studied f
larger systems. These excitations define the gaps for the l
ing exponential activation energies of the specific heat
the susceptibility.

In this paper we study an Anderson impurity placed at
center of a nanosized metallic sphere. The main differe
with the standard mixed-valence problem is that the ene
spectrum of the host is now discrete. Similarly to the Kon
impurity,10 the problem can be mapped onto the BetheAn-
satzsolution of the Anderson model.2,11 The model and the
BetheAnsatzequations diagonalizing it are summarized
Sec. II. The low-energy states correspond to two-strin
which for a finite system may lead to spurious solutions
the BetheAnsatzequations. It is therefore convenient to r
formulate the model in terms of holes12 rather than electrons
~Sec. III!. The BetheAnsatzequations have now solution
with real ~rather than complex! rapidities for low-energy
states. We present the solutions for the ground state and
first charge and spin~singlet and triplet! excitations for the
finite system. These excitation energies define the gaps
the leading exponential activation energies of the spec
heat and the susceptibility. Conclusions follow in Sec. IV.

II. MODEL, BETHE ANSATZ EQUATIONS,
AND SPIN-PAIRED STATES

A. Model

In a nanoscale metallic sphere with an Anderson impu
at its center and a contact hybridization, onlys waves can
©2002 The American Physical Society07-1
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interact with the impurity. Since alls waves have the sam
spectral weight at the origin, the hybridization matrix e
mentV is independent of the host state and the Hamilton
has the usual form

H5(
is

e icis
† cis1e f(

s
us&^su

1V(
is

@cis
† u0&^su1us&^0ucj s#, ~1!

wherei labels thes states of energiese i , e f is the energy of
the localizedf level, and the bras and kets denote the th
states of the impurity: 0 for the empty configuration ands
5↑,↓ for the singly occupied states. The doubly occup
impurity state is excluded by an infinite Coulomb repulsio
Consequently, the impurity states do not have fermio
commutation relations.

The properties of the impurity depend on the average
ergy spacing of the host states close to the Fermi level,
are not expected to be very sensitive to the details of
discrete spectrum of the occupied or empty conduct
states. For simplicity we choose equal energy spacings
the levels, which is characteristic of particles in a on
dimensional box with periodic boundary conditions and
linear dispersion. This approximation is usually also adop
in the thermodynamic limit, where it corresponds to a co
stant density of states. In addition we consider only forwa
moving particles to avoid the degeneracy of states with m
mentum k and 2k. The model is now equivalent to th
solution of the Hamiltonian

H5(
s

E dx cs
†~x!S 2 i

]

]xD cs~x!1e f(
s

us&^su

1V(
s

E dx d~x!@cs
†~x!u0&^su1us&^0ucs~x!#,

~2!

with periodic boundary conditions in the interv
(2L/2,L/2). The above model is identical to the Anders
Hamiltonian solved in Refs. 2 and 11 via Bethe’sAnsatz.

B. BetheAnsatzequations

The model~2! is diagonalized by means of two neste
BetheAnsätze in terms of a set ofN charge rapidities$kj%
and a set ofM spin rapidities$la%. These rapidities satisfy
the following BetheAnsatzequations2,11

exp~ ik jL !e1~kj2e f !5 )
a51

M

e1~kj2la!,

)
j 51

N

e1~la2kj !52 )
b51

M

e2~la2lb!, ~3!

where em(l)5(l2 imV2/2)/(l1 imV2/2), j 51, . . . ,N,
and a51, . . .M . Rapidities within one set have to be a
17440
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different ~otherwise the wave function vanishes identically!.
The magnetization and the energy of the system are give

Sz5
1

2
N2M , E5(

j 51

N

kj . ~4!

In the thermodynamic limit (L→` keeping N/L and
M /L fixed! and in the ground state, the charge rapidit
form M complex conjugated pairs of imaginary partV2/2 and
real part equal to a spin rapidity,k65l6V2/2, and N
22M real k. The former represent spin-paired electron
while the latter correspond to unpaired electrons contribut
to the magnetization. The ground state then consists of
sets of solutions:$la%(a51, . . . ,M for the paired electrons!
and $kj%( j 51, . . . ,N22M for unpaired electrons!. In zero
field we haveN52M such that all electrons are paired.

In a small system (L is finite! the charge rapidities stil
form two-strings in the ground state, but the imaginary p
of the string differs fromV2/2 and the real part is not equal
spin rapidity. The deviations in the real and imaginary pa
are a function ofL. For sufficiently largeL the deviations are
exponentially small. In general, for finiteL, the solutions of
the BetheAnsatzequations have to be obtained numerical

C. Spin-paired states

To understand the difficulties in obtaining solutions i
volving spin-paired electrons we consider here the situa
N52 andM51, i.e., two electrons, one with up spin and th
other one with down spin. The ground state is characteri
by a real spin rapidityl and a pair of complex conjugatedk
rapidities,k65k6 ix, which satisfy the nonlinear equation

eikLe7xL5
k2e f1 i ~ 1

2 V26x!

k2e f2 i ~ 1
2 V27x!

k2l2 i ~ 1
2 V27x!

k2l1 i ~ 1
2 V26x!

,

15
l2k2 i ~ 1

2 V21x!

l2k1 i ~ 1
2 V21x!

l2k2 i ~ 1
2 V22x!

l2k1 i ~ 1
2 V22x!

. ~5!

The last equation immediately yieldsl5k. It is convenient
to rewrite the first equation as

k5
p

L
~Ja2 1

2 !2
1

L
arctanF ~k2e f !

21~x22 1
4 V4!

~k2e f !V
2 G ,

e22xL5S x2 1
2 V2

x1 1
2 V2D 2

~k2e f !
21~ 1

2 V21x!2

~k2e f !
21~ 1

2 V22x!2
, ~6!

which determinesk andx. HereJa is an integer~quantum
number! which arises from the periodic boundary condition
The energy is given byE52k.

We first analyze the solutions of the second equation
Eqs.~6! for largeuk2e f u. The solid line in Fig. 1~a! displays
the right-hand side foruk2e f u5100V2 as a function of
x/V2. The dash-dotted line shows the left-hand side~expo-
nential! for L52. There are two solutions to the equatio
namely,x50 andx5 1

2 V21d, with d being a positive num-
ber. Thex50 solution leads to two identical real rapiditie
7-2
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and hence to a vanishing wave function. Consequently,
only physical solution in this case is the second one. T
dashed curve represents the exponential forL54. For L
54 both curves are tangent to each other atx50 ~strictly if
uk2e f u5`), and again we have only one physical soluti
with x. 1

2 V2. The long-dashed curve corresponds toL56
for which there is in addition a third solution withx, 1

2 V2

@see also the inset to Fig. 1~a!#.
Consider now the situation of smalluk2e f u. When k

→e f ~resonance condition! alsox has to approach the valu
V2/2, and from the second equation of Eqs.~6! we obtain
that approximatelyx2V2/2'uk2e f uexp(2V2L/2). From the
first equation of Eqs.~6! the solution fork is discontinuous
at the resonance and the energy as a function ofe f has a
jump proportional to (2/L)exp(2LV2/2) ~note that in the
thermodynamic limit there is no discontinuity!. The energy

FIG. 1. ~a! Solutions of the second equation of Eqs.~6! (N52
and M51) for V51 and uk2e f u5100V2. F represents the right
hand side~solid line! and the left-hand side~exponential! of the
equation. The dash-dotted line corresponds toL52, the dashed
curve to L54, and the long-dashed curve toL56. Intersections
refer to possible solutions. The inset shows the blown-up beha
for x'V2/2. ~b! Energy as a function ofe f for N52, M51, L
54, V51, andJ50. The solution~with x.V2/2) is discontinuous
when thef level is on resonance with the host state.
17440
e
e

given by the numerical solution of Eqs.~6! is shown in Fig.
1~b! for Ja50, V51, andL54.

As discussed above, for sufficiently largeL (L.4 for the
parameters used in Fig. 1!,13 there is a second solution
which close to the resonance yieldsx2V2/2'2uk
2e f uexp(2V2L/2). The discontinuity of the energy for thi
solution has the opposite sign. On the other hand, if we al
x2V2/2 to change sign across the resonance, we obta
solution with continuous energy. There are then four poss
solutions ~two continuous and two discontinuous! at the
resonance. In the case ofM pairs of electrons this yields 2
32M possibilities. It is difficult to judge on physical ground
which of these is the true ground state.

A safe approach is to reformulate the problem in terms
holes rather than electrons. In terms of holes the model
mains integrable and the low-energy states correspond to
rapidities within the BetheAnsatzapproach.

III. ALTERNATIVE FORMULATION

A. Model and BetheAnsatzequations

In terms of holes the impurity states correspond to c
figurations with one and two particles. The latter has z
spin and is denoted withu0&. The empty configuration is now
excluded by the infinite Coulomb interaction. The creati
and annihilation operators still refer to electrons. The Ham
tonian is given by12

H5(
s

E dx cs
†~x!S 2 i

]

]xD cs~x!2e f(
s

us&^su

1
V

A2
(
s

E dx d~x!@cs
†~x!us&^0u1u0&^sucs~x!#,

~7!

where theA2 renormalizing the hybridization arises from
Clebsch-Gordan coefficient. Note that the sign ofe f is re-
versed and the form of the hybridization has changed. T
energy and the magnetization are now given byE5( j 51

N kj

andSz5
1
2 (N11)2M .

The BetheAnsatzequations diagonalizing model~7! are12

exp~2 ik jL !5 )
a51

M

e1/2~kj2la!,

e1/2~la2e f !)
j 51

N

e1/2~la2kj !52 )
b51

M

e1~la2lb!, ~8!

where the direction of the momentum@in exp(2kjL)# is re-
versed with respect to the formulation in Sec. II and t
scattering phase shifts involvee1/2 ande1 as a consequenc
of the A2 renormalizion in the hybridization. The impurit
phase shift now appears in the second set of BetheAnsatz
equations determining the spin rapidities, while in the form
lation of Sec. II it affected directly the charge rapidities~first
set of BetheAnsatzequations!.

The advantage of this formulation is that the charge ra
didities do not form strings, but are all real. Hence, t

or
7-3
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P. SCHLOTTMANN PHYSICAL REVIEW B 65 174407
ground state and the low-energy excitations involve only r
charge and spin rapidities. The numerical solution of
equations for finiteL is now straightforward, in contrast t
the formulation presented in Sec. II, which involves comp
rapidities. In the continuum limit the ambiguities discuss
in Sec. II disappear and the integral equations for the rapi
densities are equivalent.

B. Quantum numbers

Previous investigations for small size systems of ot
models via the BetheAnsatzare the following:~1! A thor-
ough study of short Heisenberg chains by comparing ex
diagonalizations with the BetheAnsatzwas performed by
Karbach and Mu¨ller,14 and ~2! all the energy levels and th
thermodynamics for the exchange Kondo model in a sm
box with three and five electrons were obtained in Ref.
The present study@within the formulation of Eqs.~8!# is
closely related to these approaches.

We now take the logarithm in both sets of equations~8!
and obtain

Lkj52pI j2 (
a51

M

$2 arctan@4~kj2la!/V2#1p%,

arctan@4~la2e f !/V
2#1(

j 51

N

arctan@4~la2kj !/V
2#

5pJa1 (
b51

M

arctan@2~la2lb!/V2#, ~9!

wherej 51, . . . ,N, a51, . . . ,M , and$I j% and$Ja% are two
sets of quantum numbers which determine the state. Here
assumed that allla are real, although higher-energy excit
tions involve strings of spin rapiditites. The energy of t
system is given by

E5L21H 2p(
j 51

N

I j12p (
a51

M

Ja2NMpJ
2

2

L (
a51

M

arctan@4~la2e f !/V
2#. ~10!

The first three terms are the charge and spin contribut
from the host, while the last sum arises from the impurity

The linear dispersion of the conduction states does
provide a natural lower bound for the energy. This fact
manifested in the BetheAnsatzsolution through the intege
quantum numberI j , which can take arbitrary values.
lower bound cutoff for the energy~or I j ! has then to be
introduceda posteriori. Solutions involving the same se
$Ja% but two sets$I j% with all the I j between the two se
differing by the same integer are equivalent and can
mapped onto each other by an adequate shift in all the
pidities ande f .
17440
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C. Ground state

Consider first the set$Ja%. The values ofJa have to sat-
isfy uJau<(N2M12)/2. There are (N11) electrons (N in
conduction states plus one localized electron!, so that a sin-
glet ground state requiresN to be odd andM5(N11)/2.
Hence, for the ground state,uJau<(M11)/2, with the Ja
being integers ifM is odd and half-integers ifM is even. The
valueJa5(M11)/2 has to be excluded because in the lim
e f→` it does not yield a solution on the same branch of
arctan function. On the other hand, thee f→2` is physically
not relevant because it corresponds to thef level below the
lower band edge in the original model, Eq.~1!, such that the
valueJa52(M11)/2 is allowed.

There are then (M11) possible values forM quantum
numbers, such that one hole is to be left in the seque
$Ja%. From Eq.~10! we see that the ground state correspon
to leaving the largestJa empty; i.e., (M21)/2 is the unoc-
cupied state. For the ground state the set of$I j% corresponds
to N consecutive integers. The origin of this sequence is
relevant, since different choices can be mapped onto e
other by shifting all rapidities ande f by a given amount.

The ground-state energy forV5A2, L58, N59, and
M55 is shown in Fig. 2 as a function ofe f by the solid
curve. The sequence of quantum numbers isI j524, . . . ,4
andJa523, . . . ,1.

The expectation value for the number operator of loc
ized electrons,nf , is given by the derivative of the energ
with respect toe f ~note that here we consider electrons a
not holes!. This quantity is bound to have values in the i
terval 0<nf<1; as a function ofe f it is maximum in the
band of conduction states and decreases monotonically
large e f . The numerical solution shows a decrease innf
belowe f'24. The range of validity of our solution is there
fore limited to e f>24 for the present choice of quantum
numbers.

D. Charge excitations

Charge excitations are generated by introducing holes
the sequence of$I j%. The charge excitation with lowest en
ergy is obtained by changing the largestI j value from 4 to 5,
i.e., by introducing a hole in the above sequence atI j54.
The energy of this state as a function ofe f is displayed in
Fig. 2~a! as the dash-dotted curve labeled EC1.

Similarly, we can create a hole atI j53, so that the se-
quence$I j% is 24, . . .,2,4,5. The energy of this state
shown in Fig. 2~a! as the dotted curve labeled EC2. If tw
holes are introduced, e.g.,I j524, . . . ,3,6~the holes corre-
spond to 4 and 5!, we obtain the dashed curve EC3 in Fi
2~a!. Note that the excitation energies for the charges
approximately given by integer multiples of 2p/L.

E. Spin excitations

Two classes of elementary spin excitations have to
considered:~1! those involving no spin-flip, i.e., spin single
excitations, and~2! excitation changing the total spin projec
tion ~spin-flip excitations!.
7-4
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Spin excitations without spin flip are obtained by rea
ranging the position of the hole in the sequence$Ja%. In the
ground stateJa5(M21)/2 was unoccupied and excite
states are generated if this hole is shifted to lowerJa values.
For the example withN59 andM55 considered here, th
excitation with lowest energy corresponds to the sequen

FIG. 2. Low-energy states forV5A2, L58, and N59 as a
function of e f . The ground state is denoted by GS and shown a
thick solid line. The quantum numbers for the ground state arI j

524, . . . ,4 for thecharges andJa523, . . . ,1 for thespin rapidi-
ties.~a! The charge excitations are obtained by introducing hole
the set$I j% as discussed in the text.~b! Spin-non-flip excitations are
constructed by moving the hole in the set$Ja% as explained in the
text. ~c! Spin-flip excitations are obtained by reducingM to 4 and
introducing holes into the sequence$Ja% ~see text!.
17440
-

e

23, . . . ,0,2@the hole is atJa51; see dash-dotted curve la
beled ENF1 in Fig. 2~b!# and the excitation with next lowes
energy to23,22,21,1,2 @the hole is atJa50; see dashed
line labeled ENF2 in Fig. 2~b!#. Note that here the charg
quantum numbers are the same ones as in the ground s
The energy spacing between the non-spin-flip levels is
proximately 2p/L.

Spin-singlet excitations~without spin flip! can also be
generated by introducing pairs of complex spin rapidities.
the thermodynamic limit these states reduce to so-ca
string states. The lowest-energy states of this class co
spond to one pair of complex-conjugatedl and all otherl
being real. As in Sec. II the real and imaginary parts have
be determined self-consistently in the finite box. The situ
tion is very similar to that of a Kondo impurity in a sma
system.10 The calculation is very tedious and the energy
these states is larger than that of ESF1, but comparabl
ESF2.

On the other hand, spin-singlet excitations with only re
rapidities do not play any role in the thermodynamic lim
~there is only a finite number of them! and physics is entirely
governed by the continuum of the string states of differ
lengths.

Spin-flip excitations are obtained by reducingM, i.e., the
number of flipped spins. The lowest-energy states are
tained by flipping one spin with respect to the ground sta
In our example this refers to states withM54. TheJa are
now half-integers and confined to the values27/2, . . .,5/2,
i.e., to seven values. The state of lowest energy correspo
to the four lowest quantum numbers, i.e.,27/2, . . . ,21/2.
The energy of this excited state is denoted with ESF1
shown with a dash-dotted line in Fig. 2~c!. For the excited
state with next lowest energy we replaceJa521/2 by 1/2,
i.e., leaving a hole at21/2. The state is denoted with ESF
and plotted in Fig. 2~c! with a dashed curve. Again the en
ergy difference between these states is approximately 2p/L.

States with two flipped spins have a much larger ener
the state with lowest energy andM53 lies about 8p/L
above the ground state. It is also important to point out t
so far we only considered elementary excitations. Excitati
can, however, also be combined; i.e., charge, ‘‘string’’-typ
and spin-flip excitations can be superimposed by chang
the quantum numbers accordingly. These more complex
citations typically have higher energies. In the thermod
namic limit this superposition is particularly simple and r
duced to alinear superposition; i.e., the excitation energi
become additive.

IV. CONCLUSIONS

We studied the low-energy excitation spectrum of
spherical nanosized metallic particle with an Anderson i
purity (U→`) at its center. Due to the finite dimension o
the particle, the energy spectrum is discrete. Onlys waves
interact with the impurity~assuming a contact hybridization!,
such that only a reduced number of host states need to
considered. At low and intermediate temperatures the pr
erties depend crucially only on the average spacing of
host states close to the Fermi level. We chose a linear r

a

n
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P. SCHLOTTMANN PHYSICAL REVIEW B 65 174407
tion between energy and wave numbers for thes states,
which has several advantages: namely,~i! the model can be
mapped onto the integrable variant of the Anderson probl
previously solved via Bethe’sAnsatz,2,11,12~ii ! it corresponds
to a constant density of states fors states in the thermody
namic limit ~an assumption usual in treatments of the Kon
problem!, and ~iii ! the scaling of the energy levels with th
size of the systemL in the thermodynamic limit leads to th
conformal towers for the excitations.

The usual formulation of the Anderson impurity model~in
terms of electrons and thef 0 and f 1 configurations! yields
BetheAnsatzequations with complex-conjugated charge
pidities for the ground state. Unfortunately, the equations
termining the real and imaginary parts are nonlinear a
have, in general, many solutions. It is difficult to determi
the physical ground state. This is the consequence of an
fective’’ attraction between the charges that leads to sp
paired singlet states represented by complex-conjug
pairs of rapidities. The ambiguities in the solutions only o
curs in a finite system, but not in the thermodynamic limit
similar situation appears for the supersymmetrict-J model in
a finite box if the BetheAnsatzis formulated within the Lai
representation.15,16 On the other hand, if instead the Beth
Ansatzis formulated within the Sutherland representatio17

~in terms of a graded algebra!, the rapidities for the ground
state are all real.

To bypass these ambiguities, in Sec. III we reformul
the model and the BetheAnsatzfor the Anderson impurity in
terms of the f 1 and f 2 configurations~these are the hole
configurations corresponding to the electronf 0 and f 1 con-
figurations!. This is the analog to using the Sutherland re
resentation rather than the Lai formulation for the supersy
metric t-J model. Now all charge and spin rapidities are re
in the ground state and the situation is closely related to
previous finite-size studies of Bethe states for the Heisenb
chain14 and the Kondo problem.10

The states are characterized by integer~half-integer!
quantum numbers for the charge and spin rapidities.
ground state corresponds to compact sets of consecutiv
tegers or half-integers~without leaving ‘‘holes’’!. The energy
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of the system increases monotonically and continuously w
increasingf-level energy. Charge excitations are obtained
introducing holes into the set of charge quantum numb
Similarly, low-energy spin-singlet or non-spin-flip excita
tions are obtained by introducing holes into the set of s
quantum numbers and through strings of complex spin
pidities. On the other hand, spin-flip excitations are obtain
by reducing the number of flipped spinsM.

We calculated the ground-state energy and the low
energy charge and spin excitations as a function ofe f . These
excitation energies constitute the dominating activation g
in the low-T specific heat and susceptibility due to the fin
size of the system. The charge and spin gaps are compa
in magnitude and only weakly dependent one f . ~This con-
trasts with the situation for the Kondo exchange mo
where the excitation gap without spin flip is smaller than t
spin-flip gap!. The gaps decrease with increasing parti
size and in the thermodynamic limit the finite-size corre
tions to the energy are given by the conformal towers. In t
limit the gaps are infinitesimally small and the system is
Fermi liquid; i.e., the susceptibility is finite and the speci
heat is proportional toT.

Finally, an Anderson impurity embedded in a small p
ticle is related to a single-electron quantum dot embedde
as a side branch coupled to a short quantum wire.6,7 In this
case the valence~or e f! can be changed with a bias voltag
and the magnetization of the dot with a magnetic tip. As
consequence of the gaps in the spin excitation spectrum
magnetization atT50 shows plateaus as a function of fiel
The magnetization is then stable to fluctuations in the m
netic field. At low T the steps in the magnetization a
rounded off, but the step structure remains, such that
system could be used as a magnetic storage device.
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